Raman spectroscopy on dried blood plasma allows diagnosis and monitoring of colorectal cancer

Carlo Morasso , Elena Daveri , Arianna Bonizzi , Marta Truffi , Francesco Colombo , Piergiorgio Danelli , Sara Albasini , Licia Rivoltini , Serena Mazzucchelli , Luca Sorrentino , Fabio Corsi

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e774

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e774 DOI: 10.1002/mco2.774
ORIGINAL ARTICLE

Raman spectroscopy on dried blood plasma allows diagnosis and monitoring of colorectal cancer

Author information +
History +
PDF

Abstract

Colorectal cancer (CRC) remains challenging to diagnose, necessitating the identification of a noninvasive biomarker that can differentiate it from other conditions such as inflammatory bowel diseases (IBD) and diverticular disease (DD). Raman spectroscopy (RS) stands out as a promising technique for monitoring blood biochemical profiles, with the potential to identify distinct signatures identifying CRC subjects. We performed RS analysis on dried plasma from 120 subjects: 32 CRC patients, 37 IBD patients, 20 DD patients, and 31 healthy controls. We also conducted longitudinal studies of CRC patient’s postsurgery to monitor the spectral changes over time. We identified six spectral features that showed significant differences between CRC and non-CRC patients, corresponding to tryptophan, tyrosine, phenylalanine, lipids, carotenoids, and disulfide bridges. These features enabled the classification of CRC patients with an accuracy of 87.5%. Moreover, longitudinal analysis revealed that the spectral differences normalized over 6 months after surgery, indicating their association with the presence of the disease. Our study demonstrates the potential of RS to identify specific biomolecular signatures related to CRC. These results suggest that RS could be a novel screening and monitoring tool, providing valuable insights for the development of noninvasive and accurate diagnostic methods for CRC.

Keywords

biomarkers / colorectal cancer / dried blood plasma / inflammation / Raman spectroscopy

Cite this article

Download citation ▾
Carlo Morasso, Elena Daveri, Arianna Bonizzi, Marta Truffi, Francesco Colombo, Piergiorgio Danelli, Sara Albasini, Licia Rivoltini, Serena Mazzucchelli, Luca Sorrentino, Fabio Corsi. Raman spectroscopy on dried blood plasma allows diagnosis and monitoring of colorectal cancer. MedComm, 2024, 5(11): e774 DOI:10.1002/mco2.774

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adelstein BA, Macaskill P, Chan SF, Katelaris PH, Irwig L. Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review. BMC Gastroenterol. 2011; 11: 65.

[2]

Rasmussen S, Larsen PV, Søndergaard J, Elnegaard S, Svendsen RP, Jarbøl DE. Specific and non-specific symptoms of colorectal cancer and contact to general practice. Fam Pract. 2015; 32(4): 387-394.

[3]

Gupta M, Holub J, Knigge K, Eisen G. Constipation is not associated with an increased rate of findings on colonoscopy: results from a national endoscopy consortium. Endoscopy. 2010; 42(3): 208-212.

[4]

Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021; 325(7): 669-685.

[5]

Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet Lond Engl. 2017; 389(10080): 1756-1770.

[6]

Peery AF, Shaukat A, Strate LL. AGA clinical practice update on medical management of colonic diverticulitis: expert review. Gastroenterology. 2021; 160(3): 906-911.

[7]

Kim SY, Kim HS, Park HJ. Adverse events related to colonoscopy: global trends and future challenges. World J Gastroenterol. 2019; 25(2): 190-204.

[8]

Hsu WF, Chang CY, Chang CC, et al. Risk of colonoscopy-related complications in a fecal immunochemical test-based population colorectal cancer screening program. Endoscopy. 2022; 54(03): 290-298.

[9]

Kavic SM, Basson MD. Complications of endoscopy. Am J Surg. 2001; 181(4): 319-332.

[10]

Lohsiriwat V. Colonoscopic perforation: incidence, risk factors, management and outcome. World J Gastroenterol. 2010; 16(4): 425.

[11]

Lüning TH, Keemers-Gels ME, Barendregt WB, Tan ACITL, Rosman C. Colonoscopic perforations: a review of 30, 366 patients. Surg Endosc. 2007; 21(6): 994-997.

[12]

Causada-Calo N, Bishay K, Albashir S, Al Mazroui A, Armstrong D. Association between age and complications after outpatient colonoscopy. JAMA Netw Open. 2020; 3(6): e208958.

[13]

Stratmann K, Czerwinska K, Filmann N, et al. Prevalence of colorectal cancer and its precursor lesions in symptomatic patients under 55 years of age undergoing total colonoscopy: results of a large retrospective, multicenter, controlled endoscopy study. Int J Colorectal Dis. 2021; 36(8): 1695-1700.

[14]

Rex DK. Colonoscopy: a review of its yield for cancers and adenomas by indication. Am J Gastroenterol. 1995; 90(3): 353-365. Published online.

[15]

Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg Oncol. 2009; 18(1): 15-24.

[16]

The Japanese Study Group for Postoperative Follow-up of Colorectal Cancer, Okamura R, Hasegawa S, et al, The Japanese Study Group for Postoperative Follow-up of Colorectal Cancer. The role of periodic serum CA19-9 test in surveillance after colorectal cancer surgery. Int J Clin Oncol. 2017; 22(1): 96-101.

[17]

Tie J, Cohen JD, Lahouel K, et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med. 2022; 386(24): 2261-2272.

[18]

Mazouji O, Ouhajjou A, Incitti R, Mansour H. Updates on clinical use of liquid biopsy in colorectal cancer screening, diagnosis, follow-up, and treatment guidance. Front Cell Dev Biol. 2021; 9: 660924.

[19]

Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016; 11(4): 664-687.

[20]

Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine. Chem Rev. 2023; 123(13): 8297-8346.

[21]

Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015; 89: 121-134.

[22]

Singh R, Yadav V, Dhillon AK, Sharma A, Ahuja T, Siddhanta S. Emergence of Raman spectroscopy as a probing tool for theranostics. Nanotheranostics. 2023; 7(3): 216-235.

[23]

Parachalil DR, McIntyre J, Byrne HJ. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances. Anal Bioanal Chem. 2020; 412(9): 1993-2007.

[24]

Noothalapati H, Iwasaki K, Yamamoto T. Non-invasive diagnosis of colorectal cancer by Raman spectroscopy: recent developments in liquid biopsy and endoscopy approaches. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 258: 119818.

[25]

Jenkins C, Woods F, Chandler S, et al. A novel blood based triage test for colorectal cancer in primary care: a pilot study. BJGP Open. 2023; 7(1): BJGPO20220077.

[26]

Schipper HM, Kwok CS, Rosendahl SM, et al. Spectroscopy of human plasma for diagnosis of idiopathic Parkinson’s disease. Biomark Med. 2008; 2(3): 229-238.

[27]

Ranasinghe JC, Wang Z, Huang S. Raman spectroscopy on brain disorders: transition from fundamental research to clinical applications. Biosensors. 2022; 13(1): 27.

[28]

Cameron D, Talari A, Rehman I, Mitchell P, Parkin E. Detecting colorectal cancer using infrared spectroscopy. Br J Surg. 2022; 109(4): e61-e62.

[29]

Ito H, Uragami N, Miyazaki T, et al. Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum. World J Gastrointest Oncol. 2020; 12(11): 1311-1324.

[30]

Bonizzi A, Magri F, Mazzucchelli S, et al. Determination of the quality of lipoproteins by Raman spectroscopy in obese and healthy subjects. The Analyst. 2023; 148(9): 2012-2020.

[31]

Depciuch J, Jakubczyk P, Paja W, et al. Attempting to use Raman spectroscopy in the determination of tumor markers for colon cancer. Nanomed Nanotechnol Biol Med. 2023; 48: 102657. . Correlation between human colon cancer specific antigens and Raman spectra.

[32]

Tenny S, Kerndt CC, Hoffman MR. Case Control Studies. StatPearls Publishing; 2023. In: StatPearls. 2023. Accessed. July 18.http://www.ncbi.nlm.nih.gov/books/NBK448143/

[33]

Udensi J, Loughman J, Loskutova E, Byrne HJ. Raman spectroscopy of carotenoid compounds for clinical applications—a review. Mol Basel Switz. 2022; 27(24): 9017.

[34]

Nakamura K, Era S, Ozaki Y, Sogami M, Hayashi T, Murakami M. Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy. FEBS Lett. 1997; 417(3): 375-378.

[35]

Morasso C, Truffi M, Vanna R, et al. Raman analysis reveals biochemical differences in plasma of Crohn’s disease patients. J Crohns Colitis. 2020; 14(11): 1572-1580.

[36]

Talari ACS, Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2015; 50(1): 46-111.

[37]

Poon KWC, Lyng FM, Knief P, et al. Quantitative reagent-free detection of fibrinogen levels in human blood plasma using Raman spectroscopy. The Analyst. 2012; 137(8): 1807.

[38]

Casella M, Lucotti A, Tommasini M, et al. Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochim Acta A Mol Biomol Spectrosc. 2011; 79(5): 915-919.

[39]

Novikov VS, Kuzmin VV, Darvin ME, et al. Relations between the Raman spectra and molecular structure of selected carotenoids: dFT study of α-carotene, β-carotene, γ-carotene and lycopene. Spectrochim Acta A Mol Biomol Spectrosc. 2022; 270: 120755.

[40]

Demsar J, Leban G, Zupan B. FreeViz–an intelligent multivariate visualization approach to explorative analysis of biomedical data. J Biomed Inform. 2007; 40(6): 661-671.

[41]

Bratchenko LA, Bratchenko IA, Lykina AA, et al. Comparative study of multivariative analysis methods of blood Raman spectra classification. J Raman Spectrosc. 2020; 51(2): 279-292.

[42]

Mahmoud AYF, Teixeira A, Aranda M, et al. Will data analytics revolution finally bring SERS to the clinic?. TrAC Trends Anal Chem. 2023; 169: 117311.

[43]

Fornasaro S, Esposito A, Florian F, et al. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet. Anal Bioanal Chem. 2022; 414(11): 3517-3527.

[44]

Jenkins CA, Jenkins RA, Pryse MM, et al. A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics. Analyst. 2018; 143(24): 6014-6024.

[45]

Bechtel TJ, Weerapana E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics. 2017; 17(6).

[46]

Chen Y, Dai J, Zhou X, Liu Y, Zhang W, Peng G. Raman spectroscopy analysis of the biochemical characteristics of molecules associated with the malignant transformation of gastric mucosa. PloS One. 2014; 9(4): e93906.

[47]

Campesato LF, Budhu S, Tchaicha J, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nat Commun. 2020; 11(1): 4011.

[48]

Wang Y, Fang L, Wang Y, Xiong Z. Current trends of Raman spectroscopy in clinic settings: opportunities and challenges. Adv Sci. 2024; 11(7): 2300668.

[49]

Huang J, Ali N, Quansah E, et al. Vibrational spectroscopic investigation of blood plasma and serum by drop coating deposition for clinical application. Int J Mol Sci. 2021; 22(4): 2191.

[50]

Atkins CG, Buckley K, Blades MW, Turner RFB. Raman spectroscopy of blood and blood components. Appl Spectrosc. 2017; 71(5): 767-793.

[51]

Stone N, Kendall C, Smith J, Crow P, Barr H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 2004; 126: 141-157. . discussion 169–183.

[52]

De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007; 38(9): 1133-1147.

[53]

Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol Biomol Spectrosc. 2005; 61(7): 1529-1535.

[54]

Shetty G, Kendall C, Shepherd N, Stone N, Barr H. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer. 2006; 94(10): 1460-1464.

[55]

Huang Z, Lui H, McLean DI, Korbelik M, Zeng H. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues. Photochem Photobiol. 2005; 81(5): 1219-1226.

[56]

Ruiz-Chica AJ, Medina MA, Sánchez-Jiménez F, Ramírez FJ. Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine. J Raman Spectrosc. 2004; 35(2): 93-100.

[57]

Mahadevan-Jansen A, Richards-Kortum RR. Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt. 1996; 1(1): 31-70.

[58]

Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 2013; 44(8): 1061-1076.

[59]

Vanna R, Masella A, Bazzarelli M, et al. High-resolution Raman imaging of >300 patient-derived cells from nine different leukemia subtypes: a global clustering approach. Anal Chem. 2024; 96(23): 9468-9477.

[60]

Ó Faoláin E, Hunter MB, Byrne JM, et al. A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib Spectrosc. 2005; 38(1-2): 121-127.

[61]

Toplak M, Read ST, Sandt C, Borondics F. Quasar: easy machine learning for biospectroscopy. Cells. 2021; 10(9): 2300.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/