Cardiomyopathy: pathogenesis and therapeutic interventions

Shitong Huang , Jiaxin Li , Qiuying Li , Qiuyu Wang , Xianwu Zhou , Jimei Chen , Xuanhui Chen , Abdelouahab Bellou , Jian Zhuang , Liming Lei

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e772

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e772 DOI: 10.1002/mco2.772
REVIEW

Cardiomyopathy: pathogenesis and therapeutic interventions

Author information +
History +
PDF

Abstract

Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.

Keywords

cardiomyopathy / disease-causing gene / gene therapy / pathogenesis / personalized medicine / therapeutic interventions

Cite this article

Download citation ▾
Shitong Huang, Jiaxin Li, Qiuying Li, Qiuyu Wang, Xianwu Zhou, Jimei Chen, Xuanhui Chen, Abdelouahab Bellou, Jian Zhuang, Liming Lei. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm, 2024, 5(11): e772 DOI:10.1002/mco2.772

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lipshultz SE, Law YM, Asante-Korang A, et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation. 2019; 140(1): e9-e68.

[2]

Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy. Clin Sci (Lond). 2017; 131(13): 1375-1392.

[3]

Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113(14): 1807-1816.

[4]

Strong A, Musunuru K. Genome editing in cardiovascular diseases. Nat Rev Cardiol. 2017; 14(1): 11-20.

[5]

Tan K, Foo R, Loh M. Cardiomyopathy in Asian Cohorts: Genetic and Epigenetic Insights. Circ Genom Precis Med. 2023; 16(5): 496-506.

[6]

Hershberger RE, Givertz MM, Ho CY, et al. Genetic Evaluation of Cardiomyopathy-A Heart Failure Society of America Practice Guideline. J Card Fail. 2018; 24(5): 281-302.

[7]

Yamada T, Nomura S. Recent Findings Related to Cardiomyopathy and Genetics. Int J Mol Sci. 2021; 22(22): 12522.

[8]

Argiro A, Bui Q, Hong KN, Ammirati E, Olivotto I, Adler E. Applications of Gene Therapy in Cardiomyopathies. JACC Heart Fail. 2024; 12(2): 248-260.

[9]

Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic Cardiomyopathy: An Overview of Genetics and Management. Biomolecules. 2019; 9(12): 878.

[10]

Tsoutsman T, Lam L, Semsarian C. Genes, calcium and modifying factors in hypertrophic cardiomyopathy. Clin Exp Pharmacol Physiol. 2006; 33(1-2): 139-145.

[11]

Lopes LR, Garcia-Hernández S, Lorenzini M, et al. Alpha-protein kinase 3 (ALPK3) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. Eur Heart J. 2021; 42(32): 3063-3073.

[12]

Landstrom AP, Ackerman MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation. 2010; 122(23): 2441-2449. discussion 2450.

[13]

Alimadadi A, Munroe PB, Joe B, Cheng X. Meta-Analysis of Dilated Cardiomyopathy Using Cardiac RNA-Seq Transcriptomic Datasets. Genes (Basel). 2020; 11(1): 60.

[14]

Asimaki A, Tandri H, Huang H, et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2009; 360(11): 1075-1084.

[15]

Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006; 113(9): 1171-1179.

[16]

Corrado D, Basso C, Pilichou K, Thiene G. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart. 2011; 97(7): 530-539.

[17]

Caleshu C, Sakhuja R, Nussbaum RL, et al. Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy. Am J Med Genet A. 2011; 155a(9): 2229-2235.

[18]

Luedde M, Ehlermann P, Weichenhan D, et al. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res. 2010; 86(3): 452-460.

[19]

Verdonschot JAJ, Hazebroek MR, Krapels IPC, et al. Implications of Genetic Testing in Dilated Cardiomyopathy. Circ Genom Precis Med. 2020; 13(5): 476-487.

[20]

Cirino AL, Seidman CE, Ho CY. Genetic Testing and Counseling for Hypertrophic Cardiomyopathy. Cardiol Clin. 2019; 37(1): 35-43.

[21]

Kubo T, Kitaoka H. Genetic Testing for Cardiomyopathy in Japan 2022: Current Status and Issues of Precision Medicine. J Card Fail. 2023; 29(5): 805-814.

[22]

Chiswell K, Zaininger L, Semsarian C. Evolution of genetic testing and gene therapy in hypertrophic cardiomyopathy. Prog Cardiovasc Dis. 2023; 80: 38-45.

[23]

Ahluwalia M, Ho CY. Cardiovascular genetics: the role of genetic testing in diagnosis and management of patients with hypertrophic cardiomyopathy. Heart. 2021; 107(3): 183-189.

[24]

Gaine SP, Calkins H. Antiarrhythmic Drug Therapy in Arrhythmogenic Right Ventricular Cardiomyopathy. Biomedicines. 2023; 11(4): 1213.

[25]

Cappelli F, Morini S, Pieragnoli P, et al. Cardiac Resynchronization Therapy for End-Stage Hypertrophic Cardiomyopathy: The Need for Disease-Specific Criteria. Journal of the American College of Cardiology. 2018; 71(4): 464-466.

[26]

Sidhu K, Castrini AI, Parikh V, et al. The response to cardiac resynchronization therapy in LMNA cardiomyopathy. Eur J Heart Fail. 2022; 24(4): 685-693.

[27]

Daubert JP, Barnett AS. Primary Prevention Implantable Cardioverter-Defibrillators in Patients With Nonischemic Cardiomyopathy. JACC Heart Fail. 2019; 7(8): 725-727.

[28]

Stefàno P, Argirò A, Bacchi B, et al. Does a standard myectomy exist for obstructive hypertrophic cardiomyopathy? From the Morrow variations to precision surgery. Int J Cardiol. 2023; 371: 278-286.

[29]

Bogle C, Colan SD, Miyamoto SD, et al. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation. 2023; 148(2): 174-195.

[30]

Callis TE, Jensen BC, Weck KE, Willis MS. Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all. Expert Rev Mol Diagn. 2010; 10(3): 329-351.

[31]

Li Z, Chen P, Li C, et al. Genetic arrhythmias complicating patients with dilated cardiomyopathy. Heart Rhythm. 2020; 17(2): 305-312.

[32]

Gacita AM, Fullenkamp DE, Ohiri J, et al. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation. 2021; 143(13): 1302-1316.

[33]

Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res. 2014; 114(11): 1827-1846.

[34]

Salman OF, El-Rayess HM, Abi Khalil C, Nemer G, Refaat MM. Inherited Cardiomyopathies and the Role of Mutations in Non-coding Regions of the Genome. Front Cardiovasc Med. 2018; 5: 77.

[35]

Ashrafian H, Watkins H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J Am Coll Cardiol. 2007; 49(12): 1251-1264.

[36]

Ferrua F, Cicalese MP, Galimberti S, et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol. 2019; 6(5): e239-e253.

[37]

Sessa M, Lorioli L, Fumagalli F, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016; 388(10043): 476-487.

[38]

Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013; 341(6148): 1233151.

[39]

De Ravin SS, Wu X, Moir S, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2016; 8(335): 335ra57.

[40]

Campochiaro PA, Lauer AK, Sohn EH, et al. Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Hum Gene Ther. 2017; 28(1): 99-111.

[41]

Villanueva MT. Gene therapy: Gene therapy before the cradle. Nat Rev Drug Discov. 2018; 17(9): 619.

[42]

Naso MF, Tomkowicz B, Perry WL, 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs. 2017; 31(4): 317-334.

[43]

Lodola F, Morone D, Denegri M, et al. Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2016; 7(10): e2393.

[44]

Guo Y, VanDusen NJ, Zhang L, et al. Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo. Circ Res. 2017; 120(12): 1874-1888.

[45]

Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010; 21(6): 704-712.

[46]

Hirata R, Chamberlain J, Dong R, Russell DW. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat Biotechnol. 2002; 20(7): 735-738.

[47]

Wang S, Li Y, Xu Y, et al. AAV Gene Therapy Prevents and Reverses Heart Failure in a Murine Knockout Model of Barth Syndrome. Circ Res. 2020; 126(8): 1024-1039.

[48]

Werfel S, Jungmann A, Lehmann L, et al. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res. 2014; 104(1): 15-23.

[49]

Ishikawa K, Weber T, Hajjar RJ. Human Cardiac Gene Therapy. Circ Res. 2018; 123(5): 601-613.

[50]

Nguyen GN, Everett JK, Kafle S, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021; 39(1): 47-55.

[51]

Mullard A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat Rev Drug Discov. 2021; 20(11): 804-805.

[52]

Vekstein AM, Wendell DC, DeLuca S, et al. Targeted Delivery for Cardiac Regeneration: Comparison of Intra-coronary Infusion and Intra-myocardial Injection in Porcine Hearts. Front Cardiovasc Med. 2022; 9: 833335.

[53]

Chung ES, Miller L, Patel AN, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J. 2015; 36(33): 2228-2238.

[54]

Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018; 32(7): 1529-1541.

[55]

Zsebo K, Yaroshinsky A, Rudy JJ, et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014; 114(1): 101-108.

[56]

Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016; 387(10024): 1178-1186.

[57]

Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther. 2000; 7(3): 232-240.

[58]

Boekstegers P, Kupatt C. Current concepts and applications of coronary venous retroinfusion. Basic Res Cardiol. 2004; 99(6): 373-381.

[59]

Salami CO, Jackson K, Jose C, et al. Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich’s Ataxia Corrected by AAV-mediated Gene Therapy. Hum Gene Ther. 2020; 31(15-16): 819-827.

[60]

Kevany BM, Padegimas L, Miller TJ. A novel AAV capsid with improved CNS tropism for treating Pompe disease by intravenous administration. Molecular Genetics and Metabolism. 2019; 126(2): S83.

[61]

Vassalli G, Büeler H, Dudler J, von Segesser LK, Kappenberger L. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol. 2003; 90(2-3): 229-238.

[62]

Mearini G, Stimpel D, Krämer E, et al. Repair of Mybpc3 mRNA by 5’-trans-splicing in a Mouse Model of Hypertrophic Cardiomyopathy. Mol Ther Nucleic Acids. 2013; 2(7): e102.

[63]

Wally V, Murauer EM, Bauer JW. Spliceosome-mediated trans-splicing: the therapeutic cut and paste. J Invest Dermatol. 2012; 132(8): 1959-1966.

[64]

Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science. 2013; 342(6154): 111-114.

[65]

Bongianino R, Denegri M, Mazzanti A, et al. Allele-Specific Silencing of Mutant mRNA Rescues Ultrastructural and Arrhythmic Phenotype in Mice Carriers of the R4496C Mutation in the Ryanodine Receptor Gene (RYR2). Circ Res. 2017; 121(5): 525-536.

[66]

Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, et al. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med. 2013; 5(7): 1128-1145.

[67]

Hahn JK, Neupane B, Pradhan K, et al. The assembly and evaluation of antisense oligonucleotides applied in exon skipping for titin-based mutations in dilated cardiomyopathy. J Mol Cell Cardiol. 2019; 131: 12-19.

[68]

Gramlich M, Pane LS, Zhou Q, et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med. 2015; 7(5): 562-576.

[69]

West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol. 2003; 4(6): 435-445.

[70]

He X, Du T, Long T, Liao X, Dong Y, Huang ZP. Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther. 2022; 7(1): 134.

[71]

Nie J, Han Y, Jin Z, et al. Homology-directed repair of an MYBPC3 gene mutation in a rat model of hypertrophic cardiomyopathy. Gene Ther. 2023; 30(6): 520-527.

[72]

Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015; 21(2): 121-131.

[73]

Vermersch E, Jouve C, Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res. 2020; 116(5): 894-907.

[74]

Rezaei H, Khadempar S, Farahani N, et al. Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends Cardiovasc Med. 2020; 30(2): 93-101.

[75]

Motta BM, Pramstaller PP, Hicks AA, Rossini A. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells Int. 2017; 2017: 8960236.

[76]

Mehta A, Merkel OM. Immunogenicity of Cas9 Protein. J Pharm Sci. 2020; 109(1): 62-67.

[77]

Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X. TALE: a tale of genome editing. Prog Biophys Mol Biol. 2014; 114(1): 25-32.

[78]

Dimitrov AS. Methods in molecular biology. Therapeutic antibodies. Methods and protocols. Preface. Methods Mol Biol. 2009; 525: vii-viii, xiii.

[79]

Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1): 49-55.

[80]

Karakikes I, Termglinchan V, Cepeda DA, et al. A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases. Circ Res. 2017; 120(10): 1561-1571.

[81]

Schreurs J, Sacchetto C, Colpaert RMW, Vitiello L, Rampazzo A, Calore M. Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases. Int J Mol Sci. 2021; 22(20): 10985.

[82]

Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep. 2020; 40(4): BSR20200127.

[83]

Chen K, Gao C. TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics. 2013; 40(6): 271-279.

[84]

Zhang HX, Zhang Y, Yin H. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Mol Ther. 2019; 27(4): 735-746.

[85]

Yoshida Y, Yamanaka S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. Circ Res. 2017; 120(12): 1958-1968.

[86]

Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014; 510(7504): 273-277.

[87]

Ong SG, Huber BC, Lee WH, et al. Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation. 2015; 132(8): 762-771.

[88]

Tohyama S, Fukuda K. Safe and Effective Cardiac Regenerative Therapy With Human-Induced Pluripotent Stem Cells: How Should We Prepare Pure Cardiac Myocytes? Circ Res. 2017; 120(10): 1558-1560.

[89]

Jung JH, Fu X, Yang PC. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res. 2017; 120(2): 407-417.

[90]

Tachibana A, Santoso MR, Mahmoudi M, et al. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circ Res. 2017; 121(6): e22-e36.

[91]

Song Y, Zheng Z, Lian J. Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cardiovasc Med. 2022; 9: 889519.

[92]

Brieler J, Breeden MA, Tucker J. Cardiomyopathy: An Overview. Am Fam Physician. 2017; 96(10): 640-646.

[93]

Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF. Demographics and Epidemiology of Sudden Deaths in Young Competitive Athletes: From the United States National Registry. Am J Med. 2016; 129(11): 1170-1177.

[94]

Maron BJ, Haas TS, Murphy CJ, Ahluwalia A, Rutten-Ramos S. Incidence and causes of sudden death in U.S. college athletes. J Am Coll Cardiol. 2014; 63(16): 1636-1643.

[95]

Tuohy CV, Kaul S, Song HK, Nazer B, Heitner SB. Hypertrophic cardiomyopathy: the future of treatment. Eur J Heart Fail. 2020; 22(2): 228-240.

[96]

Walsh R, Mazzarotto F, Whiffin N, et al. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med. 2019; 11(1): 5.

[97]

Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014; 35(39): 2733-2779.

[98]

van Velzen HG, Schinkel AFL, Baart SJ, et al. Outcomes of Contemporary Family Screening in Hypertrophic Cardiomyopathy. Circ Genom Precis Med. 2018; 11(4): e001896.

[99]

Jensen MK, Havndrup O, Christiansen M, et al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation. 2013; 127(1): 48-54.

[100]

Lopes LR, Zekavati A, Syrris P, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet. 2013; 50(4): 228-239.

[101]

Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res. 2011; 108(6): 751-764.

[102]

Nag S, Trivedi DV, Sarkar SS, et al. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol. 2017; 24(6): 525-533.

[103]

Witjas-Paalberends ER, Güçlü A, Germans T, et al. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res. 2014; 103(2): 248-257.

[104]

Ranjbarvaziri S, Kooiker KB, Ellenberger M, et al. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation. 2021; 144(21): 1714-1731.

[105]

van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006; 113(13): 1650-1658.

[106]

Ye JZ, Delmar M, Lundby A, Olesen MS. Reevaluation of genetic variants previously associated with arrhythmogenic right ventricular cardiomyopathy integrating population-based cohorts and proteomics data. Clin Genet. 2019; 96(6): 506-514.

[107]

Lippi M, Chiesa M, Ascione C, et al. Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients. Biomolecules. 2022; 12(8): 1043.

[108]

Asatryan B, Asimaki A, Landstrom AP, et al. Inflammation and Immune Response in Arrhythmogenic Cardiomyopathy: State-of-the-Art Review. Circulation. 2021; 144(20): 1646-1655.

[109]

Odak M, Douedi S, Mararenko A, et al. Arrhythmogenic Right Ventricular Cardiomyopathy: The Role of Genetics in Diagnosis, Management, and Screening. Cardiol Res. 2022; 13(4): 177-184.

[110]

Weissler-Snir A, Hindieh W, Gruner C, et al. Lack of Phenotypic Differences by Cardiovascular Magnetic Resonance Imaging in MYH7 (β-Myosin Heavy Chain)-Versus MYBPC3 (Myosin-Binding Protein C)-Related Hypertrophic Cardiomyopathy. Circ Cardiovasc Imaging. 2017; 10(2): e005311.

[111]

Repetti GG, Toepfer CN, Seidman JG, Seidman CE. Novel Therapies for Prevention and Early Treatment of Cardiomyopathies. Circ Res. 2019; 124(11): 1536-1550.

[112]

Mearini G, Stimpel D, Geertz B, et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun. 2014; 5: 5515.

[113]

Adalsteinsdottir B, Teekakirikul P, Maron BJ, et al. Nationwide study on hypertrophic cardiomyopathy in Iceland: evidence of a MYBPC3 founder mutation. Circulation. 2014; 130(14): 1158-1167.

[114]

Montag J, Petersen B, Flögel AK, et al. Successful knock-in of Hypertrophic Cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. Sci Rep. 2018; 8(1): 4786.

[115]

Coto E, Reguero JR, Palacín M, et al. Resequencing the whole MYH7 gene (including the intronic, promoter, and 3’ UTR sequences) in hypertrophic cardiomyopathy. J Mol Diagn. 2012; 14(5): 518-524.

[116]

Singh A, Kukreti S. A triple stranded G-quadruplex formation in the promoter region of human myosin β(Myh7) gene. J Biomol Struct Dyn. 2018; 36(11): 2773-2786.

[117]

Lee SP, Ashley EA, Homburger J, et al. Incident Atrial Fibrillation Is Associated With MYH7 Sarcomeric Gene Variation in Hypertrophic Cardiomyopathy. Circ Heart Fail. 2018; 11(9): e005191.

[118]

Castellana S, Mastroianno S, Palumbo P, et al. Sudden death in mild hypertrophic cardiomyopathy with compound DSG2/DSC2/MYH6 mutations: Revisiting phenotype after genetic assessment in a master runner athlete. J Electrocardiol. 2019; 53: 95-99.

[119]

Pua CJ, Tham N, Chin CWL, et al. Genetic Studies of Hypertrophic Cardiomyopathy in Singaporeans Identify Variants in TNNI3 and TNNT2 That Are Common in Chinese Patients. Circ Genom Precis Med. 2020; 13(5): 424-434.

[120]

Wu G, Liu L, Zhou Z, et al. East Asian-Specific Common Variant in TNNI3 Predisposes to Hypertrophic Cardiomyopathy. Circulation. 2020; 142(21): 2086-2089.

[121]

Olivotto I, Girolami F, Sciagrà R, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011; 58(8): 839-848.

[122]

Girolami F, Ho CY, Semsarian C, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010; 55(14): 1444-1453.

[123]

Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet. 2016; 61(1): 41-50.

[124]

Wang H, Li Z, Wang J, et al. Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy. Am J Hum Genet. 2010; 87(5): 687-693.

[125]

Gallego-Delgado M, Gonzalez-Lopez E, Garcia-Guereta L, et al. Adverse clinical course and poor prognosis of hypertrophic cardiomyopathy due to mutations in FHL1. Int J Cardiol. 2015; 191: 194-197.

[126]

Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020; 396(10253): 759-769.

[127]

Desai MY, Owens A, Geske JB, et al. Dose-Blinded Myosin Inhibition in Patients With Obstructive Hypertrophic Cardiomyopathy Referred for Septal Reduction Therapy: Outcomes Through 32 Weeks. Circulation. 2023; 147(11): 850-863.

[128]

Tian Z, Li L, Li X, et al. Effect of Mavacamten on Chinese Patients With Symptomatic Obstructive Hypertrophic Cardiomyopathy: The EXPLORER-CN Randomized Clinical Trial. JAMA Cardiol. 2023; 8(10): 957-965.

[129]

Coats CJ, Masri A, Nassif ME, et al. Dosing and Safety Profile of Aficamten in Symptomatic Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. J Am Heart Assoc. 2024; 13(15): e035993.

[130]

Dimopoulos MA, Beksac M, Pour L, et al. Belantamab Mafodotin, Pomalidomide, and Dexamethasone in Multiple Myeloma. N Engl J Med. 2024; 391(5): 408-421.

[131]

Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020; 21(2): 207-221.

[132]

Dimopoulos MA, Hungria VTM, Radinoff A, et al. Efficacy and safety of single-agent belantamab mafodotin versus pomalidomide plus low-dose dexamethasone in patients with relapsed or refractory multiple myeloma (DREAMM-3): a phase 3, open-label, randomised study. Lancet Haematol. 2023; 10(10): e801-e812.

[133]

Mendell JR, Sahenk Z, Lehman K, et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020; 77(9): 1122-1131.

[134]

Mercuri E, Vilchez JJ, Boespflug-Tanguy O, et al. Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2024; 23(4): 393-403.

[135]

McDonald CM, Shieh PB, Abdel-Hamid HZ, et al. Open-Label Evaluation of Eteplirsen in Patients with Duchenne Muscular Dystrophy Amenable to Exon 51 Skipping: PROMOVI Trial. J Neuromuscul Dis. 2021; 8(6): 989-1001.

[136]

Hilfiker-Kleiner D, Haghikia A, Berliner D, et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J. 2017; 38(35): 2671-2679.

[137]

Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018; 379(1): 22-31.

[138]

Giusti, II, Rodrigues CG, Salles FB, et al. High doses of vascular endothelial growth factor 165 safely, but transiently, improve myocardial perfusion in no-option ischemic disease. Hum Gene Ther Methods. 2013; 24(5): 298-306.

[139]

Rosengart TK, Bishawi MM, Halbreiner MS, et al. Long-term follow-up assessment of a phase 1 trial of angiogenic gene therapy using direct intramyocardial administration of an adenoviral vector expressing the VEGF121 cDNA for the treatment of diffuse coronary artery disease. Hum Gene Ther. 2013; 24(2): 203-208.

[140]

Landstrom AP, Kellen CA, Dixit SS, et al. Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling. Circ Heart Fail. 2011; 4(2): 214-223.

[141]

Friedrich FW, Bausero P, Sun Y, et al. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J. 2009; 30(13): 1648-1655.

[142]

Landstrom AP, Weisleder N, Batalden KB, et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol. 2007; 42(6): 1026-1035.

[143]

Matsushita Y, Furukawa T, Kasanuki H, et al. Mutation of junctophilin type 2 associated with hypertrophic cardiomyopathy. J Hum Genet. 2007; 52(6): 543-548.

[144]

Chiu C, Tebo M, Ingles J, et al. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2007; 43(3): 337-343.

[145]

Roberts R. JPH2 Mutant Gene Causes Familial Hypertrophic Cardiomyopathy: A Possible Model to Unravel the Subtlety of Calcium-Regulated Contractility. JACC Basic Transl Sci. 2017; 2(1): 68-70.

[146]

Vanninen SUM, Leivo K, Seppälä EH, et al. Heterozygous junctophilin-2 (JPH2) p.(Thr161Lys) is a monogenic cause for HCM with heart failure. PLoS One. 2018; 13(9): e0203422.

[147]

Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front Cardiovasc Med. 2021; 8: 722340.

[148]

Green EM, Wakimoto H, Anderson RL, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016; 351(6273): 617-621.

[149]

Chuang C, Collibee S, Ashcraft L, et al. Discovery of Aficamten (CK-274), a Next-Generation Cardiac Myosin Inhibitor for the Treatment of Hypertrophic Cardiomyopathy. J Med Chem. 2021; 64(19): 14142-14152.

[150]

Singh SR, Zech ATL, Geertz B, et al. Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail. 2017; 10(10): e004140.

[151]

Maron BJ, Desai MY, Nishimura RA, et al. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022; 79(4): 390-414.

[152]

Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflugers Arch. 2019; 471(5): 807-815.

[153]

Merkulov S, Chen X, Chandler MP, Stelzer JE. In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ Heart Fail. 2012; 5(5): 635-644.

[154]

Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol. 2021; 150: 101-108.

[155]

Prondzynski M, Krämer E, Laufer SD, et al. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Mol Ther Nucleic Acids. 2017; 7: 475-486.

[156]

Behrens-Gawlik V, Mearini G, Gedicke-Hornung C, Richard P, Carrier L. MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction. Pflugers Arch. 2014; 466(2): 215-223.

[157]

van Velzen HG, Schinkel AFL, Oldenburg RA, et al. Clinical Characteristics and Long-Term Outcome of Hypertrophic Cardiomyopathy in Individuals With a MYBPC3 (Myosin-Binding Protein C) Founder Mutation. Circ Cardiovasc Genet. 2017; 10(4): e001660.

[158]

Seeger T, Shrestha R, Lam CK, et al. A Premature Termination Codon Mutation in MYBPC3 Causes Hypertrophic Cardiomyopathy via Chronic Activation of Nonsense-Mediated Decay. Circulation. 2019; 139(6): 799-811.

[159]

Mearini G, Simpel D, Geertz B, et al. P236Evaluation of safety and feasibility of Mybpc3 gene therapy in a mouse model of hypertrophic cardiomyopathy. Cardiovascular Research. 2014; 103(suppl_1): S42-S42.

[160]

Li J, Mamidi R, Doh CY, et al. AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice. JCI Insight. 2020; 5(17): e130182.

[161]

Anderson BR, Jensen ML, Hagedorn PH, et al. Allele-Selective Knockdown of MYH7 Using Antisense Oligonucleotides. Mol Ther Nucleic Acids. 2020; 19: 1290-1298.

[162]

Yue P, Xia S, Wu G, et al. Attenuation of Cardiomyocyte Hypertrophy via Depletion Myh7 using CASAAV. Cardiovasc Toxicol. 2021; 21(3): 255-264.

[163]

Bu H, Ding Y, Li J, et al. Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI Insight. 2021; 6(24): e154215.

[164]

Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res. 2000; 86(7): 737-744.

[165]

Bell CL, Vandenberghe LH, Bell P, et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest. 2011; 121(6): 2427-2435.

[166]

Prasad KM, Xu Y, Yang Z, Acton ST, French BA. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 2011; 18(1): 43-52.

[167]

Ma S, Jiang W, Liu X, et al. Efficient Correction of a Hypertrophic Cardiomyopathy Mutation by ABEmax-NG. Circ Res. 2021; 129(10): 895-908.

[168]

Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014; 514(7520): 102-106.

[169]

Scherba JC, Halushka MK, Andersen ND, et al. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci Rep. 2022; 12(1): 7996.

[170]

Helms AS, Alvarado FJ, Yob J, et al. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation. 2016; 134(22): 1738-1748.

[171]

Peña JR, Szkudlarek AC, Warren CM, et al. Neonatal gene transfer of Serca2a delays onset of hypertrophic remodeling and improves function in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2010; 49(6): 993-1002.

[172]

Gaffin RD, Peña JR, Alves MS, et al. Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein. J Mol Cell Cardiol. 2011; 51(5): 812-820.

[173]

Jessup M, Greenberg B, Mancini D, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011; 124(3): 304-313.

[174]

Kim M, Hunter RW, Garcia-Menendez L, et al. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res. 2014; 114(6): 966-975.

[175]

Arad M, Moskowitz IP, Patel VV, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation. 2003; 107(22): 2850-2856.

[176]

Ben Jehuda R, Eisen B, Shemer Y, et al. CRISPR correction of the PRKAG2 gene mutation in the patient’s induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm. 2018; 15(2): 267-276.

[177]

Zhan Y, Sun X, Li B, et al. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells. J Mol Cell Cardiol. 2018; 117: 49-61.

[178]

Mosqueira D, Mannhardt I, Bhagwan JR, et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J. 2018; 39(43): 3879-3892.

[179]

Elliott PM, Anastasakis A, Asimaki A, et al. Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. Eur J Heart Fail. 2019; 21(8): 955-964.

[180]

James CA, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy: Progress Toward Personalized Management. Annu Rev Med. 2019; 70: 1-18.

[181]

Cruz FM, Sanz-Rosa D, Roche-Molina M, et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol. 2015; 65(14): 1438-1450.

[182]

Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2007; 50(19): 1813-1821.

[183]

Towbin JA. Inherited cardiomyopathies. Circ J. 2014; 78(10): 2347-2356.

[184]

Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011; 364(17): 1643-1656.

[185]

Brun F, Gigli M, Graw SL, et al. FLNC truncations cause arrhythmogenic right ventricular cardiomyopathy. J Med Genet. 2020; 57(4): 254-257.

[186]

Elias Neto J, Tonet J, Frank R, Fontaine G. Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D) - What We Have Learned after 40 Years of the Diagnosis of This Clinical Entity. Arq Bras Cardiol. 2019; 112(1): 91-103.

[187]

Mundisugih J, Ravindran D, Kizana E. Exploring the Therapeutic Potential of Gene Therapy in Arrhythmogenic Right Ventricular Cardiomyopathy. Biomedicines. 2024; 12(6): 1351.

[188]

Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Eur Heart J. 2015; 36(46): 3227-3237.

[189]

Garcia FC, Bazan V, Zado ES, Ren JF, Marchlinski FE. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2009; 120(5): 366-375.

[190]

Yoda M, Minami K, Fritzsche D, Tendrich G, Schulte-Eistrup S, Koerfer R. Three cases of orthotopic heart transplantation for arrhythmogenic right ventricular cardiomyopathy. Ann Thorac Surg. 2005; 80(6): 2358-2360.

[191]

Cerrone M, Montnach J, Lin X, et al. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun. 2017; 8(1): 106.

[192]

Wu I, Zeng A, Greer-Short A, et al. AAV9:PKP2 improves heart function and survival in a Pkp2-deficient mouse model of arrhythmogenic right ventricular cardiomyopathy. Commun Med (Lond). 2024; 4(1): 38.

[193]

van Opbergen CJM, Narayanan B, Sacramento CB, et al. AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans. Circ Genom Precis Med. 2024; 17(1): e004305.

[194]

Feyen DAM, Perea-Gil I, Maas RGC, et al. Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation. 2021; 144(5): 382-392.

[195]

Karakikes I, Stillitano F, Nonnenmacher M, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015; 6: 6955.

[196]

Dave J, Raad N, Mittal N, et al. Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovasc Res. 2022; 118(15): 3140-3150.

[197]

Zankov D, Ohno S. Desmoglein 2 mutant mice reproduce arrhythmogenic right ventricular cardiomyopathy patients’ phenotype. European Heart Journal. 2022; 43(Supplement_2).

[198]

Sonoda K, Nagase S, Aiba T, et al. Homozygous or compound heterozygous variants in DSG2 are mainly causative of Japanese arrhythmogenic right ventricular cardiomyopathy. European Heart Journal. 2023; 44(Supplement_2)

[199]

Shiba M, Higo S, Kondo T, et al. Phenotypic recapitulation and correction of desmoglein-2-deficient cardiomyopathy using human-induced pluripotent stem cell-derived cardiomyocytes. Hum Mol Genet. 2021; 30(15): 1384-1397.

[200]

McNally EM, Mestroni L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ Res. 2017; 121(7): 731-748.

[201]

Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013; 10(9): 531-547.

[202]

Cho KW, Lee J, Kim Y. Genetic Variations Leading to Familial Dilated Cardiomyopathy. Mol Cells. 2016; 39(10): 722-727.

[203]

Hänselmann A, Veltmann C, Bauersachs J, Berliner D. Dilated cardiomyopathies and non-compaction cardiomyopathy. Herz. 2020; 45(3): 212-220.

[204]

Mazzarotto F, Tayal U, Buchan RJ, et al. Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation. 2020; 141(5): 387-398.

[205]

Jordan E, Peterson L, Ai T, et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation. 2021; 144(1): 7-19.

[206]

Eijgenraam TR, Boogerd CJ, Stege NM, et al. Protein Aggregation Is an Early Manifestation of Phospholamban p.(Arg14del)-Related Cardiomyopathy: Development of PLN-R14del-Related Cardiomyopathy. Circ Heart Fail. 2021; 14(11): e008532.

[207]

Yost O, Friedenberg SG, Jesty SA, Olby NJ, Meurs KM. The R9H phospholamban mutation is associated with highly penetrant dilated cardiomyopathy and sudden death in a spontaneous canine model. Gene. 2019; 697: 118-122.

[208]

Ceholski DK, Turnbull IC, Kong CW, et al. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2018; 119: 147-154.

[209]

Gerull B, Gramlich M, Atherton J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002; 30(2): 201-204.

[210]

Yoskovitz G, Peled Y, Gramlich M, et al. A novel titin mutation in adult-onset familial dilated cardiomyopathy. Am J Cardiol. 2012; 109(11): 1644-1650.

[211]

Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015; 349(6251): 982-986.

[212]

Vikhorev PG, Vikhoreva NN, Yeung W, et al. Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc Res. 2022; 118(1): 241-253.

[213]

Akhtar MM, Lorenzini M, Cicerchia M, et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ Heart Fail. 2020; 13(10): e006832.

[214]

Ang YS, Rivas RN, Ribeiro AJS, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016; 167(7): 1734-1749. e22.

[215]

Li RG, Li L, Qiu XB, et al. GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun. 2013; 439(4): 591-596.

[216]

Zhao L, Xu JH, Xu WJ, et al. A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. Int J Mol Med. 2014; 33(3): 654-660.

[217]

Li J, Liu WD, Yang ZL, et al. Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene. 2014; 548(2): 174-181.

[218]

Khan RS, Pahl E, Dellefave-Castillo L, et al. Genotype and Cardiac Outcomes in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc. 2022; 11(1): e022854.

[219]

Rani DS, Vijaya Kumar A, Nallari P, et al. Novel Mutations in β-MYH7 Gene in Indian Patients With Dilated Cardiomyopathy. CJC Open. 2022; 4(1): 1-11.

[220]

Arimura T, Onoue K, Takahashi-Tanaka Y, et al. Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovasc Res. 2013; 99(3): 382-394.

[221]

Cai ZJ, Lee YK, Lau YM, et al. Expression of Lmna-R225X nonsense mutation results in dilated cardiomyopathy and conduction disorders (DCM-CD) in mice: Impact of exercise training. Int J Cardiol. 2020; 298: 85-92.

[222]

Sabater-Molina M, Navarro M, García-Molina Sáez E, et al. Mutation in JPH2 cause dilated cardiomyopathy. Clin Genet. 2016; 90(5): 468-469.

[223]

Jones EG, Mazaheri N, Maroofian R, et al. Analysis of enriched rare variants in JPH2-encoded junctophilin-2 among Greater Middle Eastern individuals reveals a novel homozygous variant associated with neonatal dilated cardiomyopathy. Sci Rep. 2019; 9(1): 9038.

[224]

Mann SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012; 60(16): 1566-1573.

[225]

Ding Y, Dvornikov AV, Ma X, et al. Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Dis Model Mech. 2019; 12(10): dmm040154.

[226]

Domínguez F, Cuenca S, Bilińska Z, et al. Dilated Cardiomyopathy Due to BLC2-Associated Athanogene 3 (BAG3) Mutations. J Am Coll Cardiol. 2018; 72(20): 2471-2481.

[227]

Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A. Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat. 2011; 32(12): 1481-1491.

[228]

Hakui H, Kioka H, Miyashita Y, et al. Loss-of-function mutations in the co-chaperone protein BAG5 cause dilated cardiomyopathy requiring heart transplantation. Sci Transl Med. 2022; 14(628): eabf3274.

[229]

Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017; 390(10092): 400-414.

[230]

Rupp S, Jux C. Advances in heart failure therapy in pediatric patients with dilated cardiomyopathy. Heart Fail Rev. 2018; 23(4): 555-562.

[231]

Verdonschot JAJ, Hazebroek MR, Ware JS, Prasad SK, Heymans SRB. Role of Targeted Therapy in Dilated Cardiomyopathy: The Challenging Road Toward a Personalized Approach. J Am Heart Assoc. 2019; 8(11): e012514.

[232]

Zhan DY, Morimoto S, Du CK, et al. Therapeutic effect of {beta}-adrenoceptor blockers using a mouse model of dilated cardiomyopathy with a troponin mutation. Cardiovasc Res. 2009; 84(1): 64-71.

[233]

Li B, Guo Y, Zhan Y, et al. Cardiac Overexpression of XIN Prevents Dilated Cardiomyopathy Caused by TNNT2 ΔK210 Mutation. Front Cell Dev Biol. 2021; 9: 691749.

[234]

Migliore L, Galvagni F, Pierantozzi E, Sorrentino V, Rossi D. Allele-specific silencing by RNAi of R92Q and R173W mutations in cardiac troponin T. Exp Biol Med (Maywood). 2022; 247(10): 805-814.

[235]

Lee JM, Nobumori C, Tu Y, et al. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J Clin Invest. 2016; 126(4): 1592-1602.

[236]

Santiago-Fernández O, Osorio FG, Quesada V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med. 2019; 25(3): 423-426.

[237]

Beyret E, Liao HK, Yamamoto M, et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med. 2019; 25(3): 419-422.

[238]

Lee YK, Lau YM, Cai ZJ, et al. Modeling Treatment Response for Lamin A/C Related Dilated Cardiomyopathy in Human Induced Pluripotent Stem Cells. J Am Heart Assoc. 2017; 6(8): e005677.

[239]

Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012; 366(7): 619-628.

[240]

Granzier HL, Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res. 2004; 94(3): 284-295.

[241]

Musa H, Meek S, Gautel M, Peddie D, Smith AJ, Peckham M. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci. 2006; 119(Pt 20): 4322-4331.

[242]

Norton N, Li D, Rampersaud E, et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ Cardiovasc Genet. 2013; 6(2): 144-153.

[243]

Davis J, Davis LC, Correll RN, et al. A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell. 2016; 165(5): 1147-1159.

[244]

Romano R, Ghahremani S, Zimmerman T, et al. Reading Frame Repair of TTN Truncation Variants Restores Titin Quantity and Functions. Circulation. 2022; 145(3): 194-205.

[245]

Kaneko M, Hashikami K, Yamamoto S, Matsumoto H, Nishimoto T. Phospholamban Ablation Using CRISPR/Cas9 System Improves Mortality in a Murine Heart Failure Model. PLoS One. 2016; 11(12): e0168486.

[246]

Stillitano F, Turnbull IC, Karakikes I, et al. Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J. 2016; 37(43): 3282-3284.

[247]

Hoshijima M, Ikeda Y, Iwanaga Y, et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med. 2002; 8(8): 864-871.

[248]

Grote Beverborg N, Später D, Knöll R, et al. Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy. Nat Commun. 2021; 12(1): 5180.

[249]

Maddatu TP, Garvey SM, Schroeder DG, et al. Dilated cardiomyopathy in the nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet. 2005; 14(21): 3179-3189.

[250]

Maddatu TP, Garvey SM, Schroeder DG, Hampton TG, Cox GA. Transgenic rescue of neurogenic atrophy in the nmd mouse reveals a role for Ighmbp2 in dilated cardiomyopathy. Hum Mol Genet. 2004; 13(11): 1105-1115.

[251]

Hikoso S, Ikeda Y, Yamaguchi O, et al. Progression of heart failure was suppressed by inhibition of apoptosis signal-regulating kinase 1 via transcoronary gene transfer. J Am Coll Cardiol. 2007; 50(5): 453-462.

[252]

Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. Faseb j. 2010; 24(5): 1467-1478.

[253]

Pepe M, Mamdani M, Zentilin L, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res. 2010; 106(12): 1893-1903.

[254]

Bry M, Kivelä R, Leppänen VM, Alitalo K. Vascular endothelial growth factor-B in physiology and disease. Physiol Rev. 2014; 94(3): 779-794.

[255]

Farzaneh Behelgardi M, Zahri S, Mashayekhi F, Mansouri K, Asghari SM. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep. 2018; 8(1): 17924.

[256]

Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart–a critical review from definition and classification of cell death. Int J Cardiol. 2013; 167(6): 2373-2386.

[257]

Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008; 103(4): 343-351.

[258]

Woitek F, Zentilin L, Hoffman NE, et al. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy. J Am Coll Cardiol. 2015; 66(2): 139-153.

[259]

Kyrychenko S, Kyrychenko V, Badr MA, Ikeda Y, Sadoshima J, Shirokova N. Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy. Cardiovasc Res. 2015; 108(3): 324-334.

[260]

Tharp CA, Haywood ME, Sbaizero O, Taylor MRG, Mestroni L. The Giant Protein Titin’s Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front Physiol. 2019; 10: 1436.

[261]

Quattrocelli M, Crippa S, Montecchiani C, et al. Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. J Am Heart Assoc. 2013; 2(4): e000284.

[262]

Pankuweit S. Lamin A/C mutations in patients with dilated cardiomyopathy. Eur Heart J. 2018; 39(10): 861-863.

[263]

Jansweijer JA, Nieuwhof K, Russo F, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail. 2017; 19(4): 512-521.

[264]

Sébillon P, Bouchier C, Bidot LD, et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet. 2003; 40(8): 560-567.

[265]

Hasselberg NE, Haland TF, Saberniak J, et al. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J. 2018; 39(10): 853-860.

[266]

Li D, Morales A, Gonzalez-Quintana J, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci. 2010; 3(3): 90-97.

[267]

Refaat MM, Lubitz SA, Makino S, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012; 9(3): 390-396.

[268]

Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch. 2019; 471(5): 683-699.

[269]

Ditaranto R, Caponetti AG, Ferrara V, et al. Pediatric Restrictive Cardiomyopathies. Front Pediatr. 2021; 9: 745365.

[270]

Kostareva A, Kiselev A, Gudkova A, et al. Genetic Spectrum of Idiopathic Restrictive Cardiomyopathy Uncovered by Next-Generation Sequencing. PLoS One. 2016; 11(9): e0163362.

[271]

Muchtar E, Blauwet LA, Gertz MA. Restrictive Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017; 121(7): 819-837.

[272]

Gallego-Delgado M, Delgado JF, Brossa-Loidi V, et al. Idiopathic Restrictive Cardiomyopathy Is Primarily a Genetic Disease. J Am Coll Cardiol. 2016; 67(25): 3021-3023.

[273]

Brodehl A, Ferrier RA, Hamilton SJ, et al. Mutations in FLNC are Associated with Familial Restrictive Cardiomyopathy. Hum Mutat. 2016; 37(3): 269-279.

[274]

Kaski JP, Syrris P, Burch M, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008; 94(11): 1478-1484.

[275]

Gambarin FI, Tagliani M, Arbustini E. Pure restrictive cardiomyopathy associated with cardiac troponin I gene mutation: mismatch between the lack of hypertrophy and the presence of disarray. Heart. 2008; 94(10): 1257.

[276]

Chen Y, Yang S, Li J, et al. Pediatric restrictive cardiomyopathy due to a heterozygous mutation of the TNNI3 gene. J Biomed Res. 2014; 28(1): 59-63.

[277]

Parvatiyar MS, Pinto JR, Dweck D, Potter JD. Cardiac troponin mutations and restrictive cardiomyopathy. J Biomed Biotechnol. 2010; 2010: 350706.

[278]

Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003; 111(2): 209-216.

[279]

Kostareva A, Gudkova A, Sjöberg G, et al. Deletion in TNNI3 gene is associated with restrictive cardiomyopathy. Int J Cardiol. 2009; 131(3): 410-412.

[280]

Menon SC, Michels VV, Pellikka PA, et al. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin Genet. 2008; 74(5): 445-454.

[281]

Peddy SB, Vricella LA, Crosson JE, et al. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics. 2006; 117(5): 1830-1833.

[282]

Rai TS, Ahmad S, Ahluwalia TS, et al. Genetic and clinical profile of Indian patients of idiopathic restrictive cardiomyopathy with and without hypertrophy. Mol Cell Biochem. 2009; 331(1-2): 187-192.

[283]

Peled Y, Gramlich M, Yoskovitz G, et al. Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol. 2014; 171(1): 24-30.

[284]

Ploski R, Rydzanicz M, Ksiazczyk TM, et al. Evidence for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with fatal outcome in infancy. Am J Med Genet A. 2016; 170(12): 3241-3248.

[285]

Zaleta-Rivera K, Dainis A, Ribeiro AJS, et al. Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. Circulation. 2019; 140(9): 765-778.

[286]

Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015; 386(9995): 813-825.

[287]

Dong X, Fan P, Tian T, et al. Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy. Clin Chim Acta. 2017; 465: 40-44.

[288]

Lin Y, Huang J, Zhu Z, et al. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis. 2021; 16(1): 496.

[289]

Milano A, Vermeer AM, Lodder EM, et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014; 64(8): 745-756.

[290]

Hirono K, Hata Y, Miyao N, et al. Increased Burden of Ion Channel Gene Variants Is Related to Distinct Phenotypes in Pediatric Patients With Left Ventricular Noncompaction. Circ Genom Precis Med. 2020; 13(4): e002940.

[291]

Luxán G, Casanova JC, Martínez-Poveda B, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013; 19(2): 193-201.

[292]

Kulikova O, Brodehl A, Kiseleva A, et al. The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy. Genes (Basel). 2021; 12(1): 121.

[293]

Zhang J, Han X, Lu Q, Feng Y, Ma A, Wang T. Left ventricular non-compaction cardiomyopathy associated with the PRKAG2 mutation. BMC Med Genomics. 2022; 15(1): 214.

[294]

Kolokotronis K, Kühnisch J, Klopocki E, et al. Biallelic mutation in MYH7 and MYBPC3 leads to severe cardiomyopathy with left ventricular noncompaction phenotype. Hum Mutat. 2019; 40(8): 1101-1114.

[295]

Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016; 18(10): 1031-1042.

[296]

Li D, Wang C. Advances in symptomatic therapy for left ventricular non-compaction in children. Front Pediatr. 2023; 11: 1147362.

[297]

Stacey RB, Caine AJ, Jr., Hundley WG. Evaluation and management of left ventricular noncompaction cardiomyopathy. Curr Heart Fail Rep. 2015; 12(1): 61-67.

[298]

Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005; 352(4): 362-372.

[299]

Hedberg-Oldfors C, Oldfors A. Polyglucosan storage myopathies. Mol Aspects Med. 2015; 46: 85-100.

[300]

Eduardo BS. Too much sugar leaves a sour taste: A cardiac disease caused by excess glycogen deposit. EBioMedicine. 2020; 55: 102764.

[301]

Yavari A, Sarma D, Sternick EB. Human γ2-AMPK Mutations. Methods Mol Biol. 2018; 1732: 581-619.

[302]

Arad M, Benson DW, Perez-Atayde AR, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002; 109(3): 357-362.

[303]

Laforêt P, Richard P, Said MA, et al. A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord. 2006; 16(3): 178-182.

[304]

Lopez-Sainz A, Dominguez F, Lopes LR, et al. Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis. J Am Coll Cardiol. 2020; 76(2): 186-197.

[305]

Thevenon J, Laurent G, Ader F, et al. High prevalence of arrhythmic and myocardial complications in patients with cardiac glycogenosis due to PRKAG2 mutations. Europace. 2017; 19(4): 651-659.

[306]

Xie C, Zhang YP, Song L, et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016; 26(10): 1099-1111.

[307]

Alcalai R, Arad M, Wakimoto H, et al. LAMP2 Cardiomyopathy: Consequences of Impaired Autophagy in the Heart. J Am Heart Assoc. 2021; 10(17): e018829.

[308]

Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006; 27(5-6): 495-502.

[309]

Stypmann J, Janssen PM, Prestle J, et al. LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling. Basic Res Cardiol. 2006; 101(4): 281-291.

[310]

Dvornikov AV, Wang M, Yang J, et al. Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. J Mol Cell Cardiol. 2019; 133: 199-208.

[311]

Rossano J, Lin K, Epstein S, et al. Safety Profile Of The First Pediatric Cardiomyopathy Gene Therapy Trial: RP-A501 (AAV9:LAMP2B) For Danon Disease. Journal of Cardiac Failure. 2023; 29(4): 554.

[312]

Colella P, Mingozzi F. Gene Therapy for Pompe Disease: The Time is now. Hum Gene Ther. 2019; 30(10): 1245-1262.

[313]

Pauly DF, Johns DC, Matelis LA, Lawrence JH, Byrne BJ, Kessler PD. Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther. 1998; 5(4): 473-480.

[314]

Mah C, Pacak CA, Cresawn KO, et al. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther. 2007; 15(3): 501-507.

[315]

Keeler AM, Zieger M, Todeasa SH, et al. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther. 2019; 30(1): 57-68.

[316]

Stok M, de Boer H, Huston MW, et al. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. Mol Ther Methods Clin Dev. 2020; 17: 1014-1025.

[317]

Liang Q, Catalano F, Vlaar EC, et al. IGF2-tagging of GAA promotes full correction of murine Pompe disease at a clinically relevant dosage of lentiviral gene therapy. Mol Ther Methods Clin Dev. 2022; 27: 109-130.

[318]

Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013; 40(4): 385-394.

[319]

Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014; 20(6): 616-623.

[320]

Zegallai HM, Hatch GM. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem. 2021; 476(3): 1605-1629.

[321]

Suzuki-Hatano S, Saha M, Rizzo SA, et al. AAV-Mediated TAZ Gene Replacement Restores Mitochondrial and Cardioskeletal Function in Barth Syndrome. Hum Gene Ther. 2019; 30(2): 139-154.

[322]

Yue P, Zhang Y, Liu L, et al. Yap1 modulates cardiomyocyte hypertrophy via impaired mitochondrial biogenesis in response to chronic mechanical stress overload. Theranostics. 2022; 12(16): 7009-7031.

[323]

Salvarani N, Crasto S, Miragoli M, et al. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat Commun. 2019; 10(1): 2267.

[324]

Gerbino A, Bottillo I, Milano S, et al. Functional Characterization of a Novel Truncating Mutation in Lamin A/C Gene in a Family with a Severe Cardiomyopathy with Conduction Defects. Cell Physiol Biochem. 2017; 44(4): 1559-1577.

[325]

Sun Y, Guo C, Chen Z, et al. Non-cell autonomous cardiomyocyte regulation complicates gene supplementation therapy for LMNA cardiomyopathy. bioRxiv. 2023:2023.07.18.549413.

[326]

Lee J, Termglinchan V, Diecke S, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019; 572(7769): 335-340.

[327]

Chen SN, Lombardi R, Karmouch J, et al. DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circ Res. 2019; 124(6): 856-873.

[328]

Muchir A, Worman HJ. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations. Methods Enzymol. 2016; 568: 557-580.

[329]

Choi JC, Muchir A, Wu W, et al. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med. 2012; 4(144): 144ra102.

[330]

Chatzifrangkeskou M, Le Dour C, Wu W, et al. ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Hum Mol Genet. 2016; 25(11): 2220-2233.

[331]

Wu W, Muchir A, Shan J, Bonne G, Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation. 2011; 123(1): 53-61.

[332]

Tan CY, Wong JX, Chan PS, et al. Yin Yang 1 Suppresses Dilated Cardiomyopathy and Cardiac Fibrosis Through Regulation of Bmp7 and Ctgf. Circ Res. 2019; 125(9): 834-846.

[333]

Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present Status of Brugada Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018; 72(9): 1046-1059.

[334]

Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta. 2016; 1863(7 Pt B): 1799-805.

[335]

Brugada R, Campuzano O, Sarquella-Brugada G, Brugada P, Brugada J, Hong K. Brugada Syndrome. In: Adam MP, Everman DB, Mirzaa GM, et al, eds. GeneReviews(®). University of Washington, Seattle. Copyright © 1993–2023, GeneReviews is a registered trademark of the University of Washington, University of Washington, Seattle, Seattle. All rights reserved.; 1993.

[336]

Wilde AAM, Amin AS. Clinical Spectrum of SCN5A Mutations: Long QT Syndrome, Brugada Syndrome, and Cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(5): 569-579.

[337]

Hu D, Barajas-Martínez H, Pfeiffer R, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol. 2014; 64(1): 66-79.

[338]

Ciconte G, Monasky MM, Santinelli V, et al. Brugada syndrome genetics is associated with phenotype severity. Eur Heart J. 2021; 42(11): 1082-1090.

[339]

Liantonio A, Bertini M, Mele A, et al. Brugada Syndrome: More than a Monogenic Channelopathy. Biomedicines. 2023; 11(8): 2297.

[340]

Curcio A, Santarpia G, Indolfi C. The Brugada Syndrome - From Gene to Therapy. Circ J. 2017; 81(3): 290-297.

[341]

Liang P, Sallam K, Wu H, et al. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. J Am Coll Cardiol. 2016; 68(19): 2086-2096.

[342]

Teng S, Huang J, Gao Z, et al. Readthrough of SCN5A Nonsense Mutations p.R1623X and p.S1812X Questions Gene-therapy in Brugada Syndrome. Curr Gene Ther. 2017; 17(1): 50-58.

[343]

Yu G, Chakrabarti S, Tischenko M, et al. Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy. Sci Transl Med. 2022; 14(648): eabf3136.

[344]

Chakrabarti S, Wu X, Yang Z, et al. MOG1 rescues defective trafficking of Na(v)1.5 mutations in Brugada syndrome and sick sinus syndrome. Circ Arrhythm Electrophysiol. 2013; 6(2): 392-401.

[345]

Schwartz PJ, Ackerman MJ, George AL, Jr., Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013; 62(3): 169-180.

[346]

Li W, Yin L, Shen C, Hu K, Ge J, Sun A. SCN5A Variants: Association With Cardiac Disorders. Front Physiol. 2018; 9: 1372.

[347]

Zhao Z, Zang X, Niu K, et al. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine. 2024; 103: 105108.

[348]

Kim M, Sager PT, Tester DJ, et al. SGK1 inhibition attenuates the action potential duration in reengineered heart cell models of drug-induced QT prolongation. Heart Rhythm. 2023; 20(4): 589-595.

[349]

Bezzerides VJ, Zhang A, Xiao L, et al. Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders. Sci Rep. 2017; 7(1): 346.

[350]

Philippaert K, Kalyaanamoorthy S, Fatehi M, et al. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation. 2021; 143(22): 2188-2204.

[351]

Dotzler SM, Kim CSJ, Gendron WAC, et al. Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome. Circulation. 2021; 143(14): 1411-1425.

[352]

Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018; 15(8): 1261-1267.

[353]

Rudic B, Schimpf R, Borggrefe M. Short QT Syndrome - Review of Diagnosis and Treatment. Arrhythm Electrophysiol Rev. 2014; 3(2): 76-79.

[354]

Bjerregaard P, Jahangir A, Gussak I. Targeted therapy for short QT syndrome. Expert Opin Ther Targets. 2006; 10(3): 393-400.

[355]

Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets. 2018; 22(5): 439-451.

[356]

Zheng J, Huang E, Tang S, et al. A case-control study of sudden unexplained nocturnal death syndrome in the southern Chinese Han population. Am J Forensic Med Pathol. 2015; 36(1): 39-43.

[357]

Lehnart SE, Ackerman MJ, Benson DW, Jr., et al. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation. 2007; 116(20): 2325-2345.

[358]

Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011; 8(8): 1308-1339.

[359]

Senapati A, Sperry BW, Grodin JL, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016; 102(10): 748-754.

[360]

Sperry BW, Tang WHW. Amyloid heart disease: genetics translated into disease-modifying therapy. Heart. 2017; 103(11): 812-817.

[361]

Sperry BW, Vranian MN, Hachamovitch R, et al. Subtype-Specific Interactions and Prognosis in Cardiac Amyloidosis. J Am Heart Assoc. 2016; 5(3): e002877.

[362]

Maurer MS, Hanna M, Grogan M, et al. Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol. 2016; 68(2): 161-172.

[363]

Mankad AK, Sesay I, Shah KB. Light-chain cardiac amyloidosis. Curr Probl Cancer. 2017; 41(2): 144-156.

[364]

Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019; 33(9): 2266-2275.

[365]

Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med. 2002; 346(23): 1786-1791.

[366]

Planté-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011; 10(12): 1086-1097.

[367]

Suhr OB, Lindqvist P, Olofsson BO, Waldenström A, Backman C. Myocardial hypertrophy and function are related to age at onset in familial amyloidotic polyneuropathy. Amyloid. 2006; 13(3): 154-159.

[368]

Buxbaum J, Alexander A, Koziol J, Tagoe C, Fox E, Kitzman D. Significance of the amyloidogenic transthyretin Val 122 Ile allele in African Americans in the Arteriosclerosis Risk in Communities (ARIC) and Cardiovascular Health (CHS) Studies. Am Heart J. 2010; 159(5): 864-870.

[369]

Dungu JN, Papadopoulou SA, Wykes K, et al. Afro-Caribbean Heart Failure in the United Kingdom: Cause, Outcomes, and ATTR V122I Cardiac Amyloidosis. Circ Heart Fail. 2016; 9(9): e003352.

[370]

Sattianayagam PT, Hahn AF, Whelan CJ, et al. Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur Heart J. 2012; 33(9): 1120-1127.

[371]

Nehashi T, Oikawa M, Amami K, et al. Sporadic Cardiac Amyloidosis by Amyloidogenic Transthyretin V122I Variant. Int Heart J. 2019; 60(6): 1441-1443.

[372]

Nakase T, Yamashita T, Matsuo Y, et al. Hereditary ATTR Amyloidosis with Cardiomyopathy Caused by the Novel Variant Transthyretin Y114S (p.Y134S). Intern Med. 2019; 58(18): 2695-2698.

[373]

Bauer R, Dikow N, Brauer A, et al. The “Wagshurst study”: p.Val40Ile transthyretin gene variant causes late-onset cardiomyopathy. Amyloid. 2014; 21(4): 267-275.

[374]

Papathanasiou M, Carpinteiro A, Kersting D, et al. Rare variant (p.Ser43Asn) of familial transthyretin amyloidosis associated with isolated cardiac phenotype: A case series with literature review. Mol Genet Genomic Med. 2021; 9(12): e1581.

[375]

Kittleson MM, Maurer MS, Ambardekar AV, et al. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement From the American Heart Association. Circulation. 2020; 142(1): e7-e22.

[376]

Sekijima Y. Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry. 2015; 86(9): 1036-1043.

[377]

Butler JS, Chan A, Costelha S, et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid. 2016; 23(2): 109-118.

[378]

Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther. 2019; 13: 1515-1525.

[379]

Benson MD, Kluve-Beckerman B, Zeldenrust SR, et al. Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve. 2006; 33(5): 609-618.

[380]

Benson MD, Dasgupta NR, Rissing SM, Smith J, Feigenbaum H. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid. 2017; 24(4): 219-225.

[381]

Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021; 385(6): 493-502.

[382]

Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet. 2019; 394(10213): 2025-2038.

[383]

Wong TWY, Ahmed A, Yang G, et al. A novel mouse model of Duchenne muscular dystrophy carrying a multi-exonic Dmd deletion exhibits progressive muscular dystrophy and early-onset cardiomyopathy. Dis Model Mech. 2020; 13(9): dmm045369.

[384]

Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs. 2016; 4(2): 169-183.

[385]

Duan D. Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy Patients. Hum Gene Ther. 2018; 29(7): 733-736.

[386]

Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther. 2018; 26(10): 2337-2356.

[387]

Bostick B, Yue Y, Lai Y, Long C, Li D, Duan D. Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum Gene Ther. 2008; 19(8): 851-856.

[388]

Bostick B, Shin JH, Yue Y, Wasala NB, Lai Y, Duan D. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol. 2012; 53(2): 217-222.

[389]

Bauer R, Enns H, Jungmann A, et al. Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd-/-) mice. Neuromuscul Disord. 2019; 29(3): 231-241.

[390]

Xu R, Jia Y, Zygmunt DA, Martin PT. rAAVrh74.MCK.GALGT2 Protects against Loss of Hemodynamic Function in the Aging mdx Mouse Heart. Mol Ther. 2019; 27(3): 636-649.

[391]

El Refaey M, Xu L, Gao Y, et al. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. Circ Res. 2017; 121(8): 923-929.

[392]

Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018; 362(6410): 86-91.

[393]

Xu L, Lau YS, Gao Y, Li H, Han R. Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice. Mol Ther. 2019; 27(8): 1407-1414.

[394]

Hakim CH, Wasala NB, Nelson CE, et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight. 2018; 3(23): e124297.

[395]

Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016; 351(6271): 400-403.

[396]

Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016; 351(6271): 403-407.

[397]

Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016; 351(6271): 407-411.

[398]

Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev. 2017; 39(7): 547-556.

[399]

Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017; 3(4): e1602814.

[400]

Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med. 2015; 21(3): 270-275.

[401]

Rodino-Klapac LR. MicroRNA based treatment of cardiomyopathy: not all dystrophies are created equal. J Am Heart Assoc. 2013; 2(4): e000384.

[402]

Iwata Y, Matsumura T. Blockade of TRPV2 is a Novel Therapy for Cardiomyopathy in Muscular Dystrophy. Int J Mol Sci. 2019; 20(16): 3844.

[403]

Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139(10): e56-e528.

[404]

Iqbal J, Zhang YJ, Holmes DR, et al. Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial at the 5-year follow-up. Circulation. 2015; 131(14): 1269-1277.

[405]

Hinkel R, Trenkwalder T, Kupatt C. Gene therapy for ischemic heart disease. Expert Opin Biol Ther. 2011; 11(6): 723-737.

[406]

Pastena P, Frye JT, Ho C, Goldschmidt ME, Kalogeropoulos AP. Ischemic cardiomyopathy: epidemiology, pathophysiology, outcomes, and therapeutic options. Heart Fail Rev. 2024; 29(1): 287-299.

[407]

Ye L, Haider H, Jiang S, et al. Angiopoietin-1 for myocardial angiogenesis: a comparison between delivery strategies. Eur J Heart Fail. 2007; 9(5): 458-465.

[408]

Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KA, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis. 2016; 21(3): 252-268.

[409]

Marotta P, Cianflone E, Aquila I, et al. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther. 2018; 18(4): 409-423.

[410]

Laakkonen JP, Lähteenvuo J, Jauhiainen S, Heikura T, Ylä-Herttuala S. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol. 2019; 112: 91-101.

[411]

Bates DO, Beazley-Long N, Benest AV, et al. Physiological Role of Vascular Endothelial Growth Factors as Homeostatic Regulators. Compr Physiol. 2018; 8(3): 955-979.

[412]

Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011; 437(2): 169-183.

[413]

Mason D, Chen YZ, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release. 2015; 215: 101-111.

[414]

Hedman M, Hartikainen J, Syvänne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003; 107(21): 2677-2683.

[415]

Hedman M, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther. 2009; 16(5): 629-634.

[416]

Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006; 13(21): 1503-1511.

[417]

Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity. 2016; 45(5): 963-973.

[418]

Anzai A, Choi JL, He S, et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J Exp Med. 2017; 214(11): 3293-3310.

[419]

Seiler C, Pohl T, Wustmann K, et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation. 2001; 104(17): 2012-2017.

[420]

Parissis JT, Adamopoulos S, Venetsanou K, et al. Plasma profiles of circulating granulocyte-macrophage colony-stimulating factor and soluble cellular adhesion molecules in acute myocardial infarction. Contribution to post-infarction left ventricular dysfunction. Eur Cytokine Netw. 2004; 15(2): 139-144.

[421]

Maekawa Y, Anzai T, Yoshikawa T, et al. Effect of granulocyte-macrophage colony-stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2004; 44(7): 1510-1520.

[422]

Hadas Y, Katz MG, Bridges CR, Zangi L. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdiscip Rev Syst Biol Med. 2017; 9(1): e1367.

[423]

Kurisu S, Kihara Y. Tako-tsubo cardiomyopathy: clinical presentation and underlying mechanism. J Cardiol. 2012; 60(6): 429-437.

[424]

Sestini S, Coppola A, Dona M, et al. Rethinking Tako-tsubo Cardiomyopathy: The Contribution of Myocardial Pathology and Molecular Imaging. Curr Radiopharm. 2023; 16(4): 253-268.

[425]

Ware JS, Li J, Mazaika E, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016; 374(3): 233-241.

[426]

Sliwa K, Bauersachs J, Arany Z, Spracklen TF, Hilfiker-Kleiner D. Peripartum cardiomyopathy: from genetics to management. Eur Heart J. 2021; 42(32): 3094-3102.

[427]

Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018; 39(34): 3165-3241.

[428]

Kim DY, Kim SH, Ryu KH. Tachycardia induced Cardiomyopathy. Korean Circ J. 2019; 49(9): 808-817.

[429]

Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis–diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015; 12(11): 670-680.

[430]

Robinson J, Hartling L, Vandermeer B, Sebastianski M, Klassen TP. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. Cochrane Database Syst Rev. 2020; 8(8): Cd004370.

[431]

Krueger GR, Ablashi DV. Human herpesvirus-6: a short review of its biological behavior. Intervirology. 2003; 46(5): 257-269.

[432]

Sharma A, Marceau C, Hamaguchi R, et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res. 2014; 115(6): 556-566.

[433]

Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives. Ann Thorac Surg. 2016; 101(6): 2407-2416.

[434]

Lu J, Zhang F, Kay MA. A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther. 2013; 21(5): 954-963.

[435]

Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev. 2013; 65(3): 357-367.

[436]

Darband SG, Mirza-Aghazadeh-Attari M, Kaviani M, et al. Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J Control Release. 2018; 289: 158-170.

[437]

Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med. 2019; 29(6): 313-323.

[438]

Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol. 2017; 228: 465-480.

[439]

Naftali-Shani N, Molotski N, Nevo-Caspi Y, et al. Modeling Peripartum Cardiomyopathy With Human Induced Pluripotent Stem Cells Reveals Distinctive Abnormal Function of Cardiomyocytes. Circulation. 2018; 138(23): 2721-2723.

[440]

Han L, Li Y, Tchao J, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014; 104(2): 258-269.

[441]

Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? J Am Coll Cardiol. 2016; 68(9): 949-966.

[442]

Paszkowska A, Piekutowska-Abramczuk D, Ciara E, et al. Clinical Presentation of Left Ventricular Noncompaction Cardiomyopathy and Bradycardia in Three Families Carrying HCN4 Pathogenic Variants. Genes (Basel). 2022; 13(3): 477.

[443]

Nozaki Y, Kato Y, Uike K, et al. Co-Phenotype of Left Ventricular Non-Compaction Cardiomyopathy and Atypical Catecholaminergic Polymorphic Ventricular Tachycardia in Association With R169Q, a Ryanodine Receptor Type 2 Missense Mutation. Circ J. 2020; 84(2): 226-234.

[444]

Yuan C-C, Kazmierczak K, Liang J, et al. Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovasc Res. 2017; 113(10): 1124-1136.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

271

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/