Alterations in the axon initial segment plasticity is involved in early pathogenesis in Alzheimer’s disease

Yu Li , Han Wang , Yiming Wang , Zhiya Chen , Yiqiong Liu , Wu Tian , Xinrui Kang , Abolghasem Pashang , Don Kulasiri , Xiaoli Yang , Hung Wing Li , Yan Zhang

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e768

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e768 DOI: 10.1002/mco2.768
ORIGINAL ARTICLE

Alterations in the axon initial segment plasticity is involved in early pathogenesis in Alzheimer’s disease

Author information +
History +
PDF

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, characterized by the early presence of amyloid-β (Aβ) and hyperphosphorylated tau. Identifying the neuropathological changes preceding cognitive decline is crucial for early intervention. Axon initial segment (AIS) maintains the orderly structure of the axon and is responsible for initiating action potentials (APs). To investigate the role of AIS in early stages of AD pathogenesis, we focused on alterations in the AIS of neurons from APP/PS1 mouse models harboring familial AD mutations. AIS length and electrophysiological properties were assessed in neurons using immunostaining and patch-clamp techniques. The expression and function of ankyrin G (AnkG) isoforms were evaluated by western blot and rescue experiments. We observed a significant shortening of AIS in APP/PS1 mice, which correlated with impaired action potential propagation. Furthermore, a decrease in the 480 kDa isoform of AnkG was observed. Rescue of this isoform restored AIS plasticity and improved long-term potentiation in APP/PS1 neurons. Our study implicates AIS plasticity alterations and AnkG dysregulation as early events in AD. The restoration of AIS integrity by the 480 kDa AnkG isoform presents a potential therapeutic strategy for AD, underscoring the importance of targeting AIS stability in neurodegenerative diseases.

Keywords

Alzheimer’s disease / ankyrin G / axon initial segment / plasticity

Cite this article

Download citation ▾
Yu Li, Han Wang, Yiming Wang, Zhiya Chen, Yiqiong Liu, Wu Tian, Xinrui Kang, Abolghasem Pashang, Don Kulasiri, Xiaoli Yang, Hung Wing Li, Yan Zhang. Alterations in the axon initial segment plasticity is involved in early pathogenesis in Alzheimer’s disease. MedComm, 2024, 5(11): e768 DOI:10.1002/mco2.768

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021; 397(10284): 1577-1590.

[2]

Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001; 81(2): 741-766.

[3]

Jack CR, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024;20:5143-5169.

[4]

Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010; 6(3): 131-144.

[5]

Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019; 15(9): 501-518.

[6]

Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, et al. Transgenic mouse models of Alzheimer’s disease: an integrative analysis. Int J Mol Sci. 2022; 23(10): 5404.

[7]

Kim TA, Syty MD, Wu K, Ge W. Adult hippocampal neurogenesis and its impairment in Alzheimer’s disease. Zool Res. 2022; 43(3): 481-496.

[8]

Chen ZY, Zhang Y. Animal models of Alzheimer’s disease: applications, evaluation, and perspectives. Zool Res. 2022; 43(6): 1026-1040.

[9]

Citron M, Westaway D, Xia W, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med. 1997; 3(1): 67-72.

[10]

Jankowsky JL, Fadale DJ, Anderson J, et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet. 2004; 13(2): 159-170.

[11]

Calafate S, Özturan G, Thrupp N, et al. Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer’s disease. Nat Neurosci. 2023; 26(6): 1021-1031.

[12]

Wang Y, Guan M, Wang H, et al. The largest isoform of ankyrin-G is required for lattice structure of the axon initial segment. Biochem Biophys Res Commun. 2021; 578: 28-34.

[13]

Palay SL, Sotelo C, Peters A, Orkand PM. The axon hillock and the initial segment. J Cell Biol. 1968; 38(1): 193-201.

[14]

Huang CY, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci. 2018; 1420(1): 46-61.

[15]

Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol. 2022; 489: 47-54.

[16]

Grubb MS, Burrone J. Building and maintaining the axon initial segment. Curr Opin Neurobiol. 2010; 20(4): 481-488.

[17]

Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci. 2010; 11(8): 552-562.

[18]

Jones SL, Svitkina TM. Axon initial segment cytoskeleton: architecture, development, and role in neuron polarity. Neural Plast. 2016; 2016: 1-19.

[19]

Leterrier C. The axon initial segment: an updated viewpoint. J Neurosci. 2018; 38(9): 2135-2145.

[20]

Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. In: Bennett V, ed. Current Topics in Membranes. Academic Press; 2013: 159-192.

[21]

Leterrier C. Putting the axonal periodic scaffold in order. Curr Opin Neurobiol. 2021; 69: 33-40.

[22]

Jenkins PM, Kim N, Jones SL, et al. Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc Natl Acad Sci. 2015; 112(4): 957-964.

[23]

Tseng WC, Jenkins PM, Tanaka M, Mooney R, Bennett V. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors. Proc Natl Acad Sci. 2015; 112(4): 1214-1219.

[24]

Yang R, Walder-Christensen KK, Lalani S, et al. Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proc Natl Acad Sci. 2019; 116(39): 19717-19726.

[25]

Kuba H, Adachi R, Ohmori H. Activity-dependent and activity-independent development of the axon initial segment. J Neurosci. 2014; 34(9): 3443-3453.

[26]

Jamann N, Dannehl D, Lehmann N, et al. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex. Nat Commun. 2021; 12(1): 23.

[27]

Kuba H, Oichi Y, Ohmori H. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature. 2010; 465(7301): 1075-1078.

[28]

Harley P, Kerins C, Gatt A, et al. Aberrant axon initial segment plasticity and intrinsic excitability of ALS hiPSC motor neurons. Cell Rep. 2023; 42(12): 113509.

[29]

Sobotzik JM, Sie JM, Politi C, et al. AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc Natl Acad Sci. 2009; 106(41): 17564-17569.

[30]

Chen ZY, Peng L, Zhao M, et al. Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice. Zool Res. 2022; 43(4): 615-633.

[31]

Shah K, DeSilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s disease. Int J Mol Sci. 2012; 13(10): 12629-12655.

[32]

Yermakov LM, Drouet DE, Griggs RB, Elased KM, Susuki K. Type 2 diabetes leads to axon initial segment shortening in db/db mice. Front Cell Neurosci. 2018; 12: 146.

[33]

Jenkins PM, Vasavda C, Hostettler J, Davis JQ, Abdi K, Bennett V. E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through ankyrin-g and apical-lateral transcytosis through clathrin. J Biol Chem. 2013; 288(20): 14018-14031.

[34]

Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331-356.

[35]

Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986; 319(6056): 774-776.

[36]

McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell. 1996; 87(7): 1339-1349.

[37]

Straight AF, Cheung A, Limouze J, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science. 2003; 299(5613): 1743-1747.

[38]

Roman BI, Verhasselt S, Stevens CV. Medicinal chemistry and use of myosin II inhibitor(s)-blebbistatin and its derivatives. J Med Chem. 2018; 61(21): 9410-9428.

[39]

Marchant James L, Smith Frank M, Farrell Anthony P. The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol. 2022; 5: 48-54.

[40]

Marin MA, Ziburkus J, Jankowsky J, Rasband MN. Amyloid-β plaques disrupt axon initial segments. Exp Neurol. 2016; 281: 93-98.

[41]

Ma F, Akolkar H, Xu J, et al. The amyloid precursor protein modulates the position and length of the axon initial segment. J Neurosci. 2023; 43(10): 1830-1844.

[42]

Sohn PD, Huang CTL, Yan R, et al. Pathogenic tau impairs axon initial segment plasticity and excitability homeostasis. Neuron. 2019; 104(3): 458-470.

[43]

Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature. 2010; 465(7301): 1070-1074.

[44]

Wefelmeyer W, Cattaert D, Burrone J. Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc Natl Acad Sci. 2015; 112(31): 9757-9762.

[45]

Evans MD, Dumitrescu AS, Kruijssen DLH, Taylor SE, Grubb MS. Rapid modulation of axon initial segment length influences repetitive spike firing. Cell Rep. 2015; 13(6): 1233-1245.

[46]

Huang C, Hsieh Y, Tsai J, Huang C. Effects of Lamotrigine on field potentials, propagation, and long-term potentiation in rat prefrontal cortex in multi-electrode recording. J Neurosci Res. 2006; 83(6): 1141-1150.

[47]

Sun Z, Wang B, Chen C, Li C, Zhang Y. 5-HT6R null mutatrion induces synaptic and cognitive defects. Aging Cell. 2021; 20(6): e13369.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/