Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology

Nan Wang , Weifeng Hong , Yixing Wu , Zhe-Sheng Chen , Minghua Bai , Weixin Wang , Ji Zhu

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e765

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e765 DOI: 10.1002/mco2.765
REVIEW

Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology

Author information +
History +
PDF

Abstract

The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.

Keywords

biomarker profiling / mechanism elucidation / oncology / single-cell resolution / spatial transcriptomics / tumor microenvironment

Cite this article

Download citation ▾
Nan Wang, Weifeng Hong, Yixing Wu, Zhe-Sheng Chen, Minghua Bai, Weixin Wang, Ji Zhu. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm, 2024, 5(10): e765 DOI:10.1002/mco2.765

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. 2018; 18(6): 359-376.

[2]

Bressan D, Battistoni G, Hannon GJ. The dawn of spatial omics. Science. 2023; 381(6657): eabq4964.

[3]

Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial transcriptomics: emerging technologies in tissue gene expression profiling. Anal Chem. 2023; 95(42): 15450-15460.

[4]

Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023; 41(3): 404-420.

[5]

Yue L, Liu F, Hu J, et al. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Comput Struct Biotechnol J. 2023; 21: 940-955.

[6]

Asp M, Bergenstrahle J, Lundeberg J. Spatially resolved transcriptomes-next generation tools for tissue exploration. Bioessays. 2020; 42(10): e1900221.

[7]

Wang N, Li X, Wang R, Ding Z. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnol J. 2021; 16(9): e2100041.

[8]

Park HE, Jo SH, Lee RH, et al. Spatial transcriptomics: technical aspects of recent developments and their applications in neuroscience and cancer research. Adv Sci (Weinh). 2023; 10(16): e2206939.

[9]

Zhou R, Yang G, Zhang Y, Wang Y. Spatial transcriptomics in development and disease. Mol Biomed. 2023; 4(1): 32.

[10]

Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017; 12(3): 566-580.

[11]

Boisset JC, Vivie J, Grun D, Muraro MJ, Lyubimova A, van Oudenaarden A. Mapping the physical network of cellular interactions. Nat Methods. 2018; 15(7): 547-553.

[12]

Lovatt D, Ruble BK, Lee J, et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods. 2014; 11(2): 190-196.

[13]

Medaglia C, Giladi A, Stoler-Barak L, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017; 358(6370): 1622-1626.

[14]

Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020; 38(5): 586-599.

[15]

Kishi JY, Liu N, West ER, et al. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nat Methods. 2022; 19(11): 1393-1402.

[16]

Junker JP, Noel ES, Guryev V, et al. Genome-wide RNA Tomography in the zebrafish embryo. Cell. 2014; 159(3): 662-675.

[17]

Schede HH, Schneider CG, Stergiadou J, et al. Spatial tissue profiling by imaging-free molecular tomography. Nat Biotechnol. 2021; 39(8): 968-977.

[18]

Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science. 1998; 280(5363): 585-590.

[19]

Larsson C, Grundberg I, Soderberg O, Nilsson M. In situ detection and genotyping of individual mRNA molecules. Nat Methods. 2010; 7(5): 395-397.

[20]

Ke R, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 2013; 10(9): 857-860.

[21]

Lee JH, Daugharthy ER, Scheiman J, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015; 10(3): 442-458.

[22]

Lee JH, Daugharthy ER, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ. Science. 2014; 343(6177): 1360-1363.

[23]

Wang X, Allen WE, Wright MA, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018; 361(6400): eaat5691.

[24]

Chen X, Sun YC, Church GM, Lee JH, Zador AM. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 2018; 46(4): e22.

[25]

Alon S, Goodwin DR, Sinha A, et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science. 2021; 371(6528): eaax2656.

[26]

Gyllborg D, Langseth CM, Qian X, et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 2020; 48(19): e112.

[27]

Janesick A, Shelansky R, Gottscho AD, et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat Commun. 2023; 14(1): 8353.

[28]

Seo ES, Lee B, Hwang I, Kim J-Y, Park K, Park W-Y. Decoding spatial organization maps and context-specific landscapes of breast cancer and its microenvironment via high-resolution spatial transcriptomic analysis. bioRxiv. 2023:2023.2010.2025.563904.

[29]

Haga Y, Sakamoto Y, Kajiya K, et al. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat Commun. 2023; 14(1): 8375.

[30]

Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012; 14(1): 22-29.

[31]

Shah S, Lubeck E, Schwarzkopf M, et al. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development. 2016; 143(15): 2862-2867.

[32]

Codeluppi S, Borm LE, Zeisel A, et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods. 2018; 15(11): 932-935.

[33]

Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014; 11(4): 360-361.

[34]

Eng CL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature. 2019; 568(7751): 235-239.

[35]

Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015; 348(6233): aaa6090.

[36]

Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci USA. 2019; 116(39): 19490-19499.

[37]

Chiba K, Lorbeer FK, Shain AH, et al. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science. 2017; 357(6358): 1416-1420.

[38]

He S, Bhatt R, Brown C, et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol. 2022; 40(12): 1794-1806.

[39]

Groiss S, Pabst D, Faber C, et al. Highly resolved spatial transcriptomics for detection of rare events in cells. bioRxiv. 2021:2021.2010.2011.463936.

[40]

Stahl PL, Salmen F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353(6294): 78-82.

[41]

Cheng M, Jiang Y, Xu J, et al. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J Genet Genomics. 2023; 50(9): 625-640.

[42]

Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434): 1463-1467.

[43]

Vickovic S, Eraslan G, Salmen F, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019; 16(10): 987-990.

[44]

Srivatsan SR, Regier MC, Barkan E, et al. Embryo-scale, single-cell spatial transcriptomics. Science. 2021; 373(6550): 111-117.

[45]

Cho CS, Xi J, Si Y, et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell. 2021; 184(13): 3559-3572 e3522.

[46]

Liu Y, Yang M, Deng Y, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell. 2020; 183(6): 1665-1681 e1618.

[47]

Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022; 185(10): 1777-1792 e1721.

[48]

Duan H, Cheng T, Cheng H. Spatially resolved transcriptomics: advances and applications. Blood Sci. 2023; 5(1): 1-14.

[49]

Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022; 19(5): 534-546.

[50]

Seferbekova Z, Lomakin A, Yates LR, Gerstung M. Spatial biology of cancer evolution. Nat Rev Genet. 2023; 24(5): 295-313.

[51]

Wu Y, Cheng Y, Wang X, Fan J, Gao Q. Spatial omics: Navigating to the golden era of cancer research. Clin Transl Med. 2022; 12(1): e696.

[52]

Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2021; 39(3): 313-319.

[53]

Cao J, Zheng Z, Sun D, et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat Biotechnol. 2024.

[54]

Song X, Guo P, Xia K, et al. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proc Natl Acad Sci USA. 2023; 120(38): e2310163120.

[55]

Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 2021; 39(1): 43-58.

[56]

You Y, Fu Y, Li L, et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat Methods. 2024; 21(9): 1743-1754.

[57]

Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996; 274(5289): 998-1001.

[58]

Zhou Q, Xu X, Li M, et al. Laser capture microdissection transcriptome (LCM RNA-seq) reveals BcDFR is a key gene in anthocyanin synthesis of non-heading Chinese cabbage. BMC Genomics. 2024; 25(1): 425.

[59]

Oliveira MF, Romero JP, Chung M, et al. Characterization of immune cell populations in the tumor microenvironment of colorectal cancer using high definition spatial profiling. bioRxiv. 2024;2024.2006.2004.597233.

[60]

Rademacher A, Huseynov A, Bortolomeazzi M, et al. Comparison of spatial transcriptomics technologies using tumor cryosections. bioRxiv. 2024;2024.2004.2003.586404.

[61]

Wang H, Huang R, Nelson J, et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. bioRxiv. 2023:2023.2012.2007.570603.

[62]

Hartman A, Satija R. Comparative analysis of multiplexed in situ gene expression profiling technologies. bioRxiv. 2024.

[63]

Zeng Z, Li Y, Li Y, Luo Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 2022; 23(1): 83.

[64]

Hu J, Schroeder A, Coleman K, Chen C, Auerbach BJ, Li M. Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput Struct Biotechnol J. 2021; 19: 3829-3841.

[65]

Fang S, Chen B, Zhang Y, et al. Computational approaches and challenges in spatial transcriptomics. Genomics Proteomics Bioinformatics. 2023; 21(1): 24-47.

[66]

Schurch CM, Bhate SS, Barlow GL, et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell. 2020; 182(5): 1341-1359 e1319.

[67]

Elyanow R, Zeira R, Land M, Raphael BJ. STARCH: copy number and clone inference from spatial transcriptomics data. Phys Biol. 2021; 18(3): 035001.

[68]

Bhate SS, Barlow GL, Schurch CM, Nolan GP. Tissue schematics map the specialization of immune tissue motifs and their appropriation by tumors. Cell Syst. 2022; 13(2): 109-130 e106.

[69]

Palla G, Fischer DS, Regev A, Theis FJ. Spatial components of molecular tissue biology. Nat Biotechnol. 2022; 40(3): 308-318.

[70]

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019; 20(1): 296.

[71]

Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019; 177(7): 1888-1902 e1821.

[72]

Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17: 75.

[73]

Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019; 16(12): 1289-1296.

[74]

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015; 33(5): 495-502.

[75]

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1): 15.

[76]

Gayoso A, Lopez R, Xing G, et al. A Python library for probabilistic analysis of single-cell omics data. Nat Biotechnol. 2022; 40(2): 163-166.

[77]

Edsgard D, Johnsson P, Sandberg R. Identification of spatial expression trends in single-cell gene expression data. Nat Methods. 2018; 15(5): 339-342.

[78]

Wu Y, Hu Q, Wang S, et al. Highly Regional Genes: graph-based gene selection for single-cell RNA-seq data. J Genet Genomics. 2022; 49(9): 891-899.

[79]

Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020; 15(4): 1484-1506.

[80]

Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021; 12(1): 1088.

[81]

Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38(12): 1408-1414.

[82]

Street K, Risso D, Fletcher RB, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018; 19(1): 477.

[83]

La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells. Nature. 2018; 560(7719): 494-498.

[84]

Kleino I, Frolovaite P, Suomi T, Elo LL. Computational solutions for spatial transcriptomics. Comput Struct Biotechnol J. 2022; 20: 4870-4884.

[85]

Stoltzfus CR, Filipek J, Gern BH, et al. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep. 2020; 31(3): 107523.

[86]

Pham D, Tan X, Xu J, et al. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv. 2020;2020.2005.2031.125658.

[87]

Dries R, Zhu Q, Dong R, et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 2021; 22(1): 78.

[88]

Kueckelhaus J, Ehr Jv, Ravi VM, et al. Inferring spatially transient gene expression pattern from spatial transcriptomic studies. bioRxiv. 2020;2020.2010.2020.346544.

[89]

Biancalani T, Scalia G, Buffoni L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods. 2021; 18(11): 1352-1362.

[90]

Bergenstrahle J, Larsson L, Lundeberg J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics. 2020; 21(1): 482.

[91]

Sztanka-Toth TR, Jens M, Karaiskos N, Rajewsky N. Spacemake: processing and analysis of large-scale spatial transcriptomics data. Gigascience. 2022; 11: giac064.

[92]

Dong R, Yuan GC. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 2021; 22(1): 145.

[93]

Kleshchevnikov V, Shmatko A, Dann E, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol. 2022; 40(5): 661-671.

[94]

Zhao E, Stone MR, Ren X, et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol. 2021; 39(11): 1375-1384.

[95]

Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods. 2018; 15(5): 343-346.

[96]

Cable DM, Murray E, Zou LS, et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022; 40(4): 517-526.

[97]

Abdelaal T, Mourragui S, Mahfouz A, Reinders MJT. SpaGE: spatial gene enhancement using scRNA-seq. Nucleic Acids Res. 2020; 48(18): e107.

[98]

Liu J, Gao C, Sodicoff J, Kozareva V, Macosko EZ, Welch JD. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat Protoc. 2020; 15(11): 3632-3662.

[99]

Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun. 2020; 11(1): 2084.

[100]

Abdelaal T, Lelieveldt BPF, Reinders MJT, Mahfouz A. SIRV: Spatial inference of RNA velocity at the single-cell resolution. bioRxiv. 2021;2021.2007.2026.453774.

[101]

Li B, Zhang W, Guo C, et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat Methods. 2022; 19(6): 662-670.

[102]

Cheng A, Hu G, Li WV. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data. Brief Bioinform. 2023; 24(1): bbac475.

[103]

Yuan Z, Zhao F, Lin S, et al. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. Nat Methods. 2024; 21(4): 712-722.

[104]

Yan L, Sun X. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics. 2023; 39(1): btac805.

[105]

Ma Y, Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol. 2022; 40(9): 1349-1359.

[106]

Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun. 2022; 13(1): 2339.

[107]

Yang C, Sin D, Ng R. SMART: reference-free deconvolution for spatial transcriptomics using marker-gene-assisted topic models. bioRxiv. 2023;2023.2006.2020.545793.

[108]

Shen R, Liu L, Wu Z, et al. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding. Nat Commun. 2022; 13(1): 7640.

[109]

Garrido-Trigo A, Corraliza AM, Veny M, et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat Commun. 2023; 14(1): 4506.

[110]

Littman R, Hemminger Z, Foreman R, et al. Joint cell segmentation and cell type annotation for spatial transcriptomics. Mol Syst Biol. 2021; 17(6): e10108.

[111]

Wang N, Song Y, Hong W, et al. Spatial single-cell transcriptomic analysis in breast cancer reveals potential biomarkers for PD-1 blockade therapy. In: Research Square, 2024.

[112]

Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020; 17(2): 193-200.

[113]

Andersson A, Lundeberg J. sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling. Bioinformatics. 2021; 37(17): 2644-2650.

[114]

Hu J, Li X, Coleman K, et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods. 2021; 18(11): 1342-1351.

[115]

Li K, Yan C, Li C, et al. Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data. Mol Ther Nucleic Acids. 2022; 27: 404-411.

[116]

Chen C, Kim HJ, Yang P. Evaluating spatially variable gene detection methods for spatial transcriptomics data. Genome Biol. 2024; 25(1): 18.

[117]

Lopez R, Nazaret A, Langevin M, et al. A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements. ArXiv. 2019;abs/1905.02269.

[118]

Zhang D, Schroeder A, Yan H, et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat Biotechnol. 2024.

[119]

Duan Z, Riffle D, Li R, Liu J, Min MR, Zhang J. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation. Bioinformatics. 2024; 40(6): btae339.

[120]

Dimitrov D, Turei D, Garrido-Rodriguez M, et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat Commun. 2022; 13(1): 3224.

[121]

Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020; 17(2): 159-162.

[122]

Hu Y, Peng T, Gao L, Tan K. CytoTalk: De novo construction of signal transduction networks using single-cell transcriptomic data. Sci Adv. 2021; 7(16): eabf1356.

[123]

Cang Z, Zhao Y, Almet AA, et al. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat Methods. 2023; 20(2): 218-228.

[124]

Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 2019; 29(1): 202-211 e206.

[125]

Yuan Y, Bar-Joseph Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 2020; 21(1): 300.

[126]

Tanevski J, Flores ROR, Gabor A, Schapiro D, Saez-Rodriguez J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 2022; 23(1): 97.

[127]

Wolf FA, Hamey FK, Plass M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019; 20(1): 59.

[128]

Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019; 37(5): 547-554.

[129]

Ruf B, Bruhns M, Babaei S, et al. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell. 2023; 186(17): 3686-3705 e3632.

[130]

Hu Y, Rong J, Xu Y, et al. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. Nat Methods. 2024; 21(2): 267-278.

[131]

Shiao SL, Gouin KH 3rd, Ing N, et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell. 2024; 42(1): 70-84 e78.

[132]

Wang N, Li X, Ding Z. High-plex spatial profiling of RNA and protein using digital spatial profiler. Methods Mol Biol. 2023; 2660: 69-83.

[133]

Zhang Q, Abdo R, Iosef C, et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat Commun. 2022; 13(1): 5983.

[134]

Ling Y, Zhong J, Weng Z, et al. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma. Clin Transl Med. 2022; 12(10): e1074.

[135]

Tripodo C, Bertolazzi G, Cancila V, Morello G, Iannitto E. Pseudotemporal ordering of spatial lymphoid tissue microenvironment profiles trails Unclassified DLBCL at the periphery of the follicle. Front Immunol. 2023; 14: 1207959.

[136]

Guo J, Tang B, Fu J, et al. High-plex spatial transcriptomic profiling reveals distinct immune components and the HLA class I/DNMT3A/CD8 modulatory axis in mismatch repair-deficient endometrial cancer. Cell Oncol (Dordr). 2023.

[137]

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9: 559.

[138]

Palla G, Spitzer H, Klein M, et al. Squidpy: a scalable framework for spatial omics analysis. Nat Methods. 2022; 19(2): 171-178.

[139]

Vahid MR, Brown EL, Steen CB, et al. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat Biotechnol. 2023; 41(11): 1543-1548.

[140]

Tan X, Su A, Tran M, Nguyen Q. SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells. Bioinformatics. 2020; 36(7): 2293-2294.

[141]

Bergenstrahle L, He B, Bergenstrahle J, et al. Super-resolved spatial transcriptomics by deep data fusion. Nat Biotechnol. 2022; 40(4): 476-479.

[142]

Pham D, Tan X, Balderson B, et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. Nat Commun. 2023; 14(1): 7739.

[143]

Atta L, Clifton K, Anant M, Aihara G, Fan J. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics. Genome Biol. 2024; 25(1): 153.

[144]

Singhal V, Chou N, Lee J, et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat Genet. 2024; 56(3): 431-441.

[145]

Li Z, Zhou X. BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies. Genome Biol. 2022; 23(1): 168.

[146]

Cang Z, Ning X, Nie A, Xu M, Zhang J. SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network. BMVC : proceedings of the British Machine Vision Conference British Machine Vision Conference. 2021; 32: 406.

[147]

Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun. 2022; 13(1): 1739.

[148]

Long Y, Ang KS, Li M, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat Commun. 2023; 14(1): 1155.

[149]

Fu H, Xu H, Chong K, et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. bioRxiv. 2021;2021.2006.2015.448542.

[150]

Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021; 49(9): e50.

[151]

Wei R, He S, Bai S, et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol. 2022; 40(8): 1190-1199.

[152]

Liao J, Qian J, Fang Y, et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat Commun. 2022; 13(1): 6498.

[153]

Zhu J, Sabatti C. Integrative spatial single-cell analysis with graph-based feature learning. bioRxiv. 2020;2020.2008.2012.248971.

[154]

Lopez R, Nazaret A, Langevin M, et al. A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements. bioRxiv. 2019;abs/1905.02269.

[155]

Haviv D, Remsik J, Gatie M, et al. The covariance environment defines cellular niches for spatial inference. Nat Biotechnol. 2024.

[156]

Yang W, Wang P, Xu S, et al. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network. Nat Commun. 2024; 15(1): 7101.

[157]

Shao X, Li C, Yang H, et al. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat Commun. 2022; 13(1): 4429.

[158]

Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10): 979-982.

[159]

Abdelaal T, Lelieveldt BPF, Reinders MJT, Mahfouz A. SIRV: Spatial inference of RNA velocity at the single-cell resolution. bioRxiv. 2021:2021.2007.2026.453774.

[160]

Sheridan C. Can single-cell biology realize the promise of precision medicine? Nat Biotechnol. 2024; 42(2): 159-162.

[161]

Wang Q, Zhi Y, Zi M, et al. Spatially resolved transcriptomics technology facilitates cancer research. Adv Sci (Weinh). 2023; 10(30): e2302558.

[162]

Coulson A. How is spatial transcriptomics influencing cancer research and diagnostics? Biotechniques. 2022; 73(5): 215-217.

[163]

Erfanian N, Nasseri S, Miraki Feriz A, Safarpour H, Namaei MH. Characterization of Wnt signaling pathway under treatment of Lactobacillus acidophilus postbiotic in colorectal cancer using an integrated in silico and in vitro analysis. Sci Rep. 2023; 13(1): 22988.

[164]

Ferri-Borgogno S, Burks JK, Seeley EH, et al. Molecular, metabolic, and subcellular mapping of the tumor immune microenvironment via 3D targeted and non-targeted multiplex multi-omics analyses. Cancers (Basel). 2024; 16(5): 846.

[165]

Yeh CY, Aguirre K, Laveroni O, et al. Mapping ovarian cancer spatial organization uncovers immune evasion drivers at the genetic, cellular, and tissue level. bioRxiv. 2023;2023.2010.2016.562592.

[166]

Magen A, Hamon P, Fiaschi N, et al. Intratumoral dendritic cell-CD4(+) T helper cell niches enable CD8(+) T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med. 2023; 29(6): 1389-1399.

[167]

Chen JH, Nieman LT, Spurrell M, et al. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy. Nat Immunol. 2024; 25(4): 644-658.

[168]

Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell. 2021; 39(6): 779-792 e711.

[169]

Li Z, Pai R, Gupta S, et al. Presence of onco-fetal neighborhoods in hepatocellular carcinoma is associated with relapse and response to immunotherapy. Nat Cancer. 2024; 5(1): 167-186.

[170]

Chen C, Guo Q, Liu Y, et al. Single-cell and spatial transcriptomics reveal POSTN(+) cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med. 2023; 13(12): e1515.

[171]

Qin P, Chen H, Wang Y, et al. Cancer-associated fibroblasts undergoing neoadjuvant chemotherapy suppress rectal cancer revealed by single-cell and spatial transcriptomics. Cell Rep Med. 2023; 4(10): 101231.

[172]

Wu L, Yan J, Bai Y, et al. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res. 2023; 33(8): 585-603.

[173]

Ou Z, Lin S, Qiu J, et al. Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal the Immunological Microenvironment of Cervical Squamous Cell Carcinoma. Adv Sci (Weinh). 2022; 9(29): e2203040.

[174]

Karras P, Bordeu I, Pozniak J, et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature. 2022; 610(7930): 190-198.

[175]

Zhang R, Feng Y, Ma W, et al. Spatial transcriptome unveils a discontinuous inflammatory pattern in proficient mismatch repair colorectal adenocarcinoma. Fundam Res. 2023; 3(4): 640-646.

[176]

Denisenko E, de Kock L, Tan A, et al. Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones. Nat Commun. 2024; 15(1): 2860.

[177]

Moffet JJD, Fatunla OE, Freytag L, et al. Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct domains. Neurooncol Adv. 2023; 5(1): vdad142.

[178]

Derry JMJ, Burns C, Frazier JP, et al. Trackable intratumor microdosing and spatial profiling provide early insights into activity of investigational agents in the intact tumor microenvironment. Clin Cancer Res. 2023; 29(18): 3813-3825.

[179]

Duchatel RJ, Jackson ER, Parackal SG, et al. PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma. J Clin Invest. 2024; 134(6): e170329.

[180]

Seo ES, Lee B, Hwang I, Kim J-Y, Park K, Park W-Y. Decoding spatial organization maps and context-specific landscapes of breast cancer and its microenvironment via high-resolution spatial transcriptomic analysis. bioRxiv. 2023;2023.2010.2025.563904.

[181]

Mangoli A, Wu S, Liu HQ, et al. Ataxia-telangiectasia mutated (Atm) disruption sensitizes spatially-directed H3.3K27M/TP53 diffuse midline gliomas to radiation therapy. bioRxiv. 2023;2023.2010.2018.562892.

[182]

Patel AG, Ashenberg O, Collins NB, et al. A spatial cell atlas of neuroblastoma reveals developmental, epigenetic and spatial axis of tumor heterogeneity. bioRxiv. 2024;2024.2001.2007.574538.

[183]

Hirz T, Mei S, Sarkar H, et al. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat Commun. 2023; 14(1): 663.

[184]

Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun. 2021; 12(1): 6012.

[185]

Mao X, Zhou D, Lin K, et al. Single-cell and spatial transcriptome analyses revealed cell heterogeneity and immune environment alternations in metastatic axillary lymph nodes in breast cancer. Cancer Immunol Immunother. 2023; 72(3): 679-695.

[186]

Sun H, Li Y, Zhang Y, et al. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front Immunol. 2022; 13: 1042835.

[187]

Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020; 368(6494): 973-980.

[188]

Galeano Nino JL, Wu H, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022; 611(7937): 810-817.

[189]

Wong-Rolle A, Dong Q, Zhu Y, et al. Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature. J Immunother Cancer. 2022; 10(7): e004698.

[190]

Larroquette M, Guegan JP, Besse B, et al. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. J Immunother Cancer. 2022; 10(5): e003890.

[191]

Zhu J, Fan Y, Xiong Y, et al. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp Mol Med. 2022; 54(11): 2060-2076.

[192]

Wang Y, Liu B, Min Q, et al. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. Cell Discov. 2023; 9(1): 96.

[193]

Nirmal AJ, Maliga Z, Vallius T, et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 2022; 12(6): 1518-1541.

[194]

Liu Y, Xun Z, Ma K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023; 78(4): 770-782.

[195]

Sun Y, Wu P, Zhang Z, et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell. 2024; 42(1): 135-156 e117.

[196]

Hwang WL, Jagadeesh KA, Guo JA, et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet. 2022; 54(8): 1178-1191.

[197]

Cui Zhou D, Jayasinghe RG, Chen S, et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat Genet. 2022; 54(9): 1390-1405.

[198]

Hong WF, Zhang F, Wang N, et al. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat. 2024; 76: 101115.

[199]

Wang N, Wang R, Li X, et al. Tumor microenvironment profiles reveal distinct therapy-oriented proteogenomic characteristics in colorectal cancer. Front Bioeng Biotechnol. 2021; 9: 757378.

[200]

Qi J, Sun H, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat Commun. 2022; 13(1): 1742.

[201]

Kumar V, Ramnarayanan K, Sundar R, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022; 12(3): 670-691.

[202]

Yeh CY, Aguirre K, Laveroni O, et al. Mapping ovarian cancer spatial organization uncovers immune evasion drivers at the genetic, cellular, and tissue level. bioRxiv. 2023;2023.2010.2016.562592.

[203]

Liu X, Zhao S, Wang K, et al. Spatial transcriptomics analysis of esophageal squamous precancerous lesions and their progression to esophageal cancer. Nat Commun. 2023; 14(1): 4779.

[204]

Zheng H, An M, Luo Y, et al. PDGFRalpha(+)ITGA11(+) fibroblasts foster early-stage cancer lymphovascular invasion and lymphatic metastasis via ITGA11-SELE interplay. Cancer Cell. 2024; 42(4): 682-700 e612.

[205]

Vo T, Balderson B, Jones K, et al. Spatial transcriptomic analysis of Sonic hedgehog medulloblastoma identifies that the loss of heterogeneity and promotion of differentiation underlies the response to CDK4/6 inhibition. Genome Med. 2023; 15(1): 29.

[206]

Ning K, Li Z, Liu H, et al. Perirenal fat thickness significantly associated with prognosis of metastatic renal cell cancer patients receiving anti-VEGF therapy. Nutrients. 2022; 14(16) 3388.

[207]

Xie F, Xi N, Han Z, et al. Progress in research on tumor microenvironment-based spatial omics technologies. Oncol Res. 2023; 31(6): 877-885.

[208]

Scott EC, Baines AC, Gong Y, et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat Rev Drug Discov. 2023; 22(8): 625-640.

[209]

Niu X, Liu W, Zhang Y, et al. Cancer plasticity in therapy resistance: mechanisms and novel strategies. Drug Resist Updat. 2024; 76: 101114.

[210]

Zhang L, Chen D, Song D, et al. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther. 2022; 7(1): 111.

[211]

Wang Y, Mashock M, Tong Z, et al. Changing technologies of RNA sequencing and their applications in clinical oncology. Front Oncol. 2020; 10: 447.

[212]

Gan X, Dong W, You W, et al. Spatial multimodal analysis revealed tertiary lymphoid structures as a risk stratification indicator in combined hepatocellular-cholangiocarcinoma. Cancer Lett. 2024; 581: 216513.

[213]

Kiuru M, Kriner MA, Wong S, et al. High-plex spatial RNA profiling reveals cell type–specific biomarker expression during melanoma development. J Invest Dermatol. 2022; 142(5): 1401-1412 e1420.

[214]

Ferri-Borgogno S, Zhu Y, Sheng J, et al. Spatial transcriptomics depict ligand-receptor cross-talk heterogeneity at the tumor-stroma interface in long-term ovarian cancer survivors. Cancer Res. 2023; 83(9): 1503-1516.

[215]

Monkman J, Kim H, Mayer A, et al. Multi-omic and spatial dissection of immunotherapy response groups in non-small cell lung cancer. Immunology. 2023; 169(4): 487-502.

[216]

Park S, Hong C, Cheong J-H, et al. Abstract 2262: spatial architecture and cellular interactions of tumor immune microenvironment to discover biomarkers and predict immune checkpoint inhibitor response in gastric cancer. Cancer Res. 2023; 83(7_Supplement): 2262-2262.

[217]

Moutafi M, Martinez-Morilla S, Garcia-Milian R, et al. Abstract 2027: Spatial omics and multiplexed imaging to discover new biomarkers of response or resistance to immune checkpoint inhibitors (ICI) in advanced non-small cell lung cancer (NSCLC). Cancer Res. 2022; 82(12_Supplement): 2027-2027.

[218]

Yang L, Zhang Z, Dong J, et al. Multi-dimensional characterization of immunological profiles in small cell lung cancer uncovers clinically relevant immune subtypes with distinct prognoses and therapeutic vulnerabilities. Pharmacol Res. 2023; 194: 106844.

[219]

Zhang Z, Sun X, Liu Y, et al. Spatial transcriptome-wide profiling of small cell lung cancer reveals intra-tumoral molecular and subtype heterogeneity. Adv Sci (Weinh). 2024:e2402716.

[220]

Wang XQ, Danenberg E, Huang CS, et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature. 2023; 621(7980): 868-876.

[221]

Cassier P, Eberst L, Garin G, et al. 439O - A first in human, phase I trial of NP137, a first-in-class antibody targeting netrin-1, in patients with advanced refractory solid tumors. Ann Oncol. 2019; 30: v159.

[222]

Kornauth C, Pemovska T, Vladimer GI, et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 2022; 12(2): 372-387.

[223]

Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021; 18(6): 345-362.

[224]

Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020; 20(11): 662-680.

[225]

Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020; 30(6): 507-519.

[226]

Ling AL, Solomon IH, Landivar AM, et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature. 2023; 623(7985): 157-166.

[227]

Yi L, Ning Z, Xu L, et al. The combination treatment of oncolytic adenovirus H101 with nivolumab for refractory advanced hepatocellular carcinoma: an open-label, single-arm, pilot study. ESMO Open. 2024; 9(2): 102239.

[228]

Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: strategies for competitive advancement. Drug Resist Updat. 2024; 75: 101086.

[229]

Powles T, Valderrama BP, Gupta S, et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N Engl J Med. 2024; 390(10): 875-888.

[230]

Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018; 175(2): 313-326.

[231]

Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019; 5(8): 1195-1204.

[232]

Engblom C, Thrane K, Lin Q, et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science. 2023; 382(6675): eadf8486.

[233]

Schott M, Leon-Perinan D, Splendiani E, et al. Open-ST: High-resolution spatial transcriptomics in 3D. Cell. 2024; 187(15): 3953-3972 e3926.

[234]

Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. 2023; 8(1): 35.

[235]

Lotstedt B, Strazar M, Xavier R, Regev A, Vickovic S. Spatial host-microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol. 2023; 42(9): 1394-1403.

[236]

Magoulopoulou A, Qian X, Pediatama Setiabudiawan T, et al. Spatial resolution of mycobacterium tuberculosis bacteria and their surrounding immune environments based on selected key transcripts in mouse lungs. Front Immunol. 2022; 13: 876321.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/