Clinical glycoproteomics: methods and diseases

Yujia Wang , Kaixin Lei , Lijun Zhao , Yong Zhang

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e760

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e760 DOI: 10.1002/mco2.760
REVIEW

Clinical glycoproteomics: methods and diseases

Author information +
History +
PDF

Abstract

Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.

Keywords

cancers / clinical glycoproteomics / glycosylation / kidney diseases / mass spectrometry,metabolic diseases

Cite this article

Download citation ▾
Yujia Wang, Kaixin Lei, Lijun Zhao, Yong Zhang. Clinical glycoproteomics: methods and diseases. MedComm, 2024, 5(10): e760 DOI:10.1002/mco2.760

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gibbs RA. The Human Genome Project changed everything. Nat Rev Genet. 2020; 21(10): 575-576.

[2]

Liao WW, Asri M, Ebler J, et al. A draft human pangenome reference. Nature. 2023; 617(7960): 312-324.

[3]

Rood JE, Regev A. The legacy of the Human Genome Project. Science. 2021; 373(6562): 1442-1443.

[4]

Omenn GS, Lane L, Overall CM, et al. The 2022 report on the human proteome from the HUPO Human Proteome Project. J Proteome Res. 2023; 22(4): 1024-1042.

[5]

Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003; 33(Suppl): 311-323.

[6]

Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022; 86: 101097.

[7]

Flynn RA, Pedram K, Malaker SA, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021; 184(12): 3109-3124. e22.

[8]

Zhou Y, Tao L, Qiu J, et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther. 2024; 9(1): 132.

[9]

Bagdonaite I, Malaker SA, Polasky DA, et al. Glycoproteomics. Nat Rev Meth Primers. 2022; 2(1): 48.

[10]

Piovesana S, Cavaliere C, Cerrato A, Laganà A, Montone CM, Capriotti AL. Recent trends in glycoproteomics by characterization of intact glycopeptides. Anal Bioanal Chem. 2023; 415(18): 3727-3738.

[11]

Thomas DR, Scott NE. Glycoproteomics: growing up fast. Curr Opin Struct Biol. 2021; 68: 18-25.

[12]

Plomp R, Bondt A, de Haan N, Rombouts Y, Wuhrer M. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Mol Cell Proteomics. 2016; 15(7): 2217-2228.

[13]

Zhang Y, Zeng W, Zhao Y, Yang H. Editorial: New methods, techniques and applications in clinical glycoproteomics. Front Mol Biosci. 2023; 10: 1170818.

[14]

Bedair M, Sumner LW. Current and emerging mass-spectrometry technologies for metabolomics. TrAC, Trends Anal Chem. 2008; 27(3): 238-250.

[15]

Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D. The Hitchhiker’s guide to glycoproteomics. Biochem Soc Trans. 2021; 49(4): 1643-1662.

[16]

Nickerson JL, Baghalabadi V, Rajendran S, et al. Recent advances in top-down proteome sample processing ahead of MS analysis. Mass Spectrom Rev. 2023; 42(2): 457-495.

[17]

Miller SA, Jeanne Dit Fouque K, Hard ER, et al. Top/middle-down characterization of α-synuclein glycoforms. Anal Chem. 2023; 95(49): 18039-18045.

[18]

Zhong Q, Xiao X, Qiu Y, et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications. MedComm. 2023; 4(3): e261.

[19]

Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol. 2021; 100(7-8):151186.

[20]

Li X, Pinou L, Du Y, Chen X, Liu C. Emerging roles of O-glycosylation in regulating protein aggregation, phase separation, and functions. Curr Opin Chem Biol. 2023; 75: 102314.

[21]

Cheng Q, Luo M, Xu Z, Li F, Zhang Y. Developing glycoproteomics reveals the role of posttranslational glycosylation in the physiological and pathological processes of male reproduction. Analysis. iMetaOmics. 2024; 1(1): e10.

[22]

Chace DH. Mass spectrometry in the clinical laboratory. Chem Rev. 2001; 101(2): 445-478.

[23]

Go EP, Irungu J, Zhang Y, et al. Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes’ accessibility. J Proteome Res. 2008; 7(4): 1660-1674.

[24]

Ang IL, Poon TCW, Lai PBS, et al. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteome Res. 2006; 5(10): 2691-2700.

[25]

Hiki Y, Odani H, Takahashi M, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001; 59(3): 1077-1085.

[26]

Nakazawa S, Imamura R, Kawamura M, et al. Difference in IgA1 O-glycosylation between IgA deposition donors and IgA nephropathy recipients. Biochem Bioph Res Co. 2019; 508(4): 1106-1112.

[27]

Dotz V, Visconti A, Lomax-Browne HJ, et al. O-and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J Am Soc Nephrol. 2021; 32(10): 2455-2465.

[28]

Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006; 126(5): 855-867.

[29]

Alvarez-Manilla G, Atwood J, III, Guo Y, Warren NL, Orlando R, Pierce M. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res. 2006; 5(3): 701-708.

[30]

Tabang DN, Ford M, Li L. Recent advances in mass spectrometry-based glycomic and glycoproteomic studies of pancreatic diseases. Front Chem. 2021; 9: 707387.

[31]

Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal BioanalChem. 2022; 414(27): 7855-7863.

[32]

Riley NM, Malaker SA, Driessen MD, Bertozzi CR. Optimal dissociation methods differ for N-and O-glycopeptides. J Proteome Res. 2020; 19(8): 3286-3301.

[33]

Kawahara R, Chernykh A, Alagesan K, et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods. 2021; 18(11): 1304-1316.

[34]

Polasky DA, Nesvizhskii AI. Recent advances in computational algorithms and software for large-scale glycoproteomics. Curr Opin Chem Biol. 2023; 72: 102238.

[35]

Cao W. Advancing mass spectrometry-based glycoproteomic software tools for comprehensive site-specific glycoproteome analysis. Curr Opin Chem Biol. 2024; 80: 102442.

[36]

Ogata S, Masuda T, Ito S, Ohtsuki S. Targeted proteomics for cancer biomarker verification and validation. Cancer Biomark. 2022; 33(4): 427-436.

[37]

Cao L, Huang C, Cui Zhou D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell. 2021; 184(19): 5031-5052.e26.

[38]

Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002; 1(11): 845-67.

[39]

Lee PY, Osman J, Low TY, Jamal R. Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis. 2019; 11(19): 1799-1812.

[40]

Zhang Y, Yang H, Yu Y, Zhang Y. Application of nanomaterials in proteomics-driven precision medicine. Theranostics. 2022; 12(6): 2674-2686.

[41]

Blume JE, Manning WC, Troiano G, et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun. 2020; 11(1): 3662.

[42]

Aitekenov S, Gaipov A, Bukasov R. Review: Detection and quantification of proteins in human urine. Talanta. 2021; 223(Pt 1):121718.

[43]

Qin W, Liang A, Han X, Zhang M, Gao Y, Zhao C. Quantitative urinary proteome analysis reveals potential biomarkers for disease activity of Behcet’s disease uveitis. BMC Ophthalmol. 2024; 24(1): 277.

[44]

Virreira Winter S, Karayel O, Strauss MT, et al. Urinary proteome profiling for stratifying patients with familial Parkinson’s disease. EMBO Mol Med. 2021; 13(3): e13257.

[45]

Karayel O, Virreira Winter S, Padmanabhan S, et al. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson’s disease. Cell Rep Med. 2022; 3(6): 100661.

[46]

Jin PH, Sarwal RD, Sarwal MM. Urinary biomarkers for kidney allograft injury. Transplantation. 2022; 106(7): 1330-1338.

[47]

Hahn J, Moritz M, Voß H, Pelczar P, Huber S, Schlüter H. Tissue sampling and homogenization in the sub-microliter scale with a nanosecond infrared laser (NIRL) for mass spectrometric proteomics. Int J Mol Sci. 2021; 22(19): 10833.

[48]

Duong VA, Lee H. Bottom-up proteomics: advancements in sample preparation. Int J Mol Sci. 2023; 24(6): 5350.

[49]

Zhang Y, Zheng S, Mao Y, et al. Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst. 2021; 146(23): 7274-7283.

[50]

Lin T, Chen Z, Luo M, et al. Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine. Analyst. 2023; 148(20): 5041-5049.

[51]

Zhang Y, Zhao W, Mao Y, et al. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol Cell Proteomics. 2021; 20: 100058.

[52]

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020; 369(6501): 330-333.

[53]

Vilaj M, Lauc G, Trbojević-Akmačić I. Evaluation of different PNGase F enzymes in immunoglobulin G and total plasma N-glycans analysis. Glycobiology. 2021; 31(1): 2-7.

[54]

Zhang L, Wang C, Wu Y, et al. Microwave irradiation-assisted high-efficiency N-glycan release using oriented immobilization of PNGase F on magnetic particles. J Chromatogr A. 2020; 1619: 460934.

[55]

Zhang Y, Zhao W, Mao Y, et al. O-glycosylation landscapes of SARS-CoV-2 spike proteins. Front Chem. 2021; 9: 689521.

[56]

Vainauskas S, Guntz H, McLeod E, et al. A broad-specificity O-glycoprotease that enables improved analysis of glycoproteins and glycopeptides containing intact complex O-glycans. Anal Chem. 2022; 94(2): 1060-1069.

[57]

Suttapitugsakul S, Matsumoto Y, Aryal RP, Cummings RD. Large-scale and site-specific mapping of the murine brain O-glycoproteome with IMPa. Anal Chem. 2023; 95(36): 13423-13430.

[58]

Helms A, Escobar EE, Vainauskas S, Taron CH, Brodbelt JS. Ultraviolet photodissociation permits comprehensive characterization of O-glycopeptides cleaved with O-glycoprotease IMPa. Anal Chem. 2023; 95(24): 9280-9287.

[59]

Noach I, Ficko-Blean E, Pluvinage B, et al. Recognition of protein-linked glycans as a determinant of peptidase activity. Proc Natl Acad Sci USA. 2017; 114(5): E679-E688.

[60]

Kida Y, Taira J, Kuwano K. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa. Microbiology. 2016; 162(2): 318-329.

[61]

Riley NM, Bertozzi CR. Deciphering O-glycoprotease substrate preferences with O-Pair Search. Mol Omics. 2022; 18(10): 908-922.

[62]

Jiang X, Yeung D, Liu Y, et al. Accelerating proteomics using broad specificity proteases. J Proteome Res. 2024; 23(4): 1360-1369.

[63]

Gutierrez-Reyes CD, Jiang P, Atashi M, et al. Advances in mass spectrometry-based glycoproteomics: an update covering the period 2017–2021. Electrophoresis. 2022; 43(1-2): 370-387.

[64]

Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. Mass Spectrom Rev. 2015; 34(2): 148-165.

[65]

Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst. 2014; 139(4): 688-704.

[66]

Mechref Y, Madera M, Novotny MV. Glycoprotein enrichment through lectin affinity techniques. In: Posch A, ed. 2D PAGE: Sample Preparation and Fractionation. Humana Press; 2008: 373-396.

[67]

Llop E, Peracaula R. Lectin affinity chromatography for the discovery of novel cancer glycobiomarkers: a case study with PSA glycoforms and prostate cancer. Methods Mol Biol. 2022; 2370: 301-313.

[68]

Xu M, Jin H, Wu Z, et al. Mass spectrometry-based analysis of serum N-glycosylation changes in patients with Parkinson’s disease. ACS Chem Neurosci. 2022; 13(12): 1719-1726.

[69]

Lee J, Yeo I, Kim Y, et al. Comparison of fucose-specific lectins to improve quantitative AFP-L3 assay for diagnosing hepatocellular carcinoma using mass spectrometry. J Proteome Res. 2022; 21(6): 1548-1557.

[70]

Liu QW, Ruan HJ, Chao WX, et al. N-linked glycoproteomic profiling in esophageal squamous cell carcinoma. World J Gastroenterol. 2022; 28(29): 3869-3885.

[71]

Wang X, Xia N, Liu L. Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci. 2013; 14(10): 20890-912.

[72]

Chao X, Zhang B, Yang S, et al. Enrichment methods of N-linked glycopeptides from human serum or plasma: a mini-review. Carbohydr Res. 2024; 538: 109094.

[73]

Xiao H, Suttapitugsakul S, Sun F, Wu R. Mass spectrometry-based chemical and enzymatic methods for global analysis of protein glycosylation. Acc Chem Res. 2018; 51(8): 1796-1806.

[74]

Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev. 2009; 28(2): 192-206.

[75]

Zhang H, Li X-J, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003; 21(6): 660-666.

[76]

Li Z, Wang Q, Mao J, Zhang L, Zhang W, Ye M. Selective enrichment of N-terminal proline peptides via hydrazide chemistry for proteomics analysis. Anal Chim Acta. 2021; 1142: 48-55.

[77]

Chen Y, Qin H, Yue X, et al. Highly efficient enrichment of O-GlcNAc glycopeptides based on chemical oxidation and reversible hydrazide chemistry. Anal Chem. 2021; 93(49): 16618-16627.

[78]

Qi H, Jiang L, Jia Q. Application of magnetic solid phase extraction in separation and enrichment of glycoproteins and glycopeptides. Chin Chem Lett. 2021; 32(9): 2629-2636.

[79]

Li Y, Deng C, Sun N. Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Anal Chim Acta. 2018; 1024: 84-92.

[80]

Yi L, Wang B, Feng Q, Yan Y, Ding C-F, Mao H. Surface functionalization modification of ultra-hydrophilic magnetic spheres with mesoporous silica for specific identification of glycopeptides in serum exosomes. Anal BioanalChem. 2023; 415(9): 1741-1749.

[81]

Yang Y, Franc V, Heck AJR. Glycoproteomics: a balance between high-throughput and in-depth analysis. Trends Biotechnol. 2017; 35(7): 598-609.

[82]

Wang Z, Fang Z, Liu L, et al. Development of an integrated platform for the simultaneous enrichment and characterization of N-and O-linked intact glycopeptides. Anal Chem. 2023; 95(19): 7448-7457.

[83]

Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies. Front Mol Biosci. 2021; 8: 746822.

[84]

Bie Z, Chen Y, Ye J, Wang S, Liu Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed. 2015; 54(35): 10211-10215.

[85]

Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: a comprehensive review. Anal Chim Acta. 2024; 1306: 342513.

[86]

Aimjongjun S, Reamtong O, Janvilisri T. Lectin affinity chromatography and quantitative proteomic analysis reveal that galectin-3 is associated with metastasis in nasopharyngeal carcinoma. Sci Rep. 2020; 10(1): 16462.

[87]

Wang X, Xia N, Liu L. Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci. 2013; 14(10): 20890-20912.

[88]

Suttapitugsakul S, Sun F, Wu R. Recent advances in glycoproteomic analysis by mass spectrometry. Anal Chem. 2020; 92(1): 267-291.

[89]

Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal BioanalChem. 2012; 402(1): 231-247.

[90]

Lauber MA, Yu Y-Q, Brousmiche DW, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 2015; 87(10): 5401-5409.

[91]

Sajid MS, Jabeen F, Hussain D, Ashiq MN, Najam-ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal BioanalChem. 2017; 409(12): 3135-3143.

[92]

Cao Q, Ma C, Bai H, et al. Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification. Analyst. 2014; 139(3): 603-609.

[93]

Liu L, Yu M, Zhang Y, Wang C, Lu H. Hydrazide functionalized core–shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. ACS Appl Mater Interfaces. 2014; 6(10): 7823-7832.

[94]

Le TD, Suttikhana I, Ashaolu TJ. State of the art on the separation and purification of proteins by magnetic nanoparticles. J Nanobiotechnology. 2023; 21(1): 363.

[95]

Tarhan T, Tural B, Tural S, Topal G. Enantioseparation of mandelic acid enantiomers with magnetic nano-sorbent modified by a chiral selector. Chirality. 2015; 27(11): 835-842.

[96]

Chen Y, Jiang P, Liu S, Zhao H, Cui Y, Qin S. Purification of 6×His-tagged phycobiliprotein using zinc-decorated silica-coated magnetic nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879(13-14): 993-997.

[97]

Zhu R, Zacharias L, Wooding KM, Peng W, Mechref Y. Glycoprotein enrichment analytical techniques. Proteomics in biology, Part A. Methods Enzymol. 2017; 585: 397-429.

[98]

Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrom Rev. 2023; 42(2): e21771.

[99]

Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012; 35(18): 2341-2372.

[100]

Babushok VI, Zenkevich IG. Retention characteristics of peptides in RP-LC: peptide retention prediction. Chromatographia. 2010; 72(9): 781-797.

[101]

Hu Y, Mechref Y. Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis. 2012; 33(12): 1768-1777.

[102]

Zhao Y, Xue Q, Wang M, et al. Evolution of mass spectrometry instruments and techniques for blood proteomics. J Proteome Res. 2023; 22(4): 1009-1023.

[103]

Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2019–2020. Mass Spectrom Rev. 2023; 42(5): 1984-2206.

[104]

Zeng W, Zheng S, Su T, et al. Comparative N-glycoproteomics analysis of clinical samples via different mass spectrometry dissociation methods. Front Chem. 2022; 10: 839470.

[105]

Yu Q, Wang B, Chen Z, et al. Electron-transfer/higher-energy collision dissociation (EThcD)-enabled intact glycopeptide/glycoproteome characterization. J Am Soc Mass Spectrom. 2017; 28(9): 1751-1764.

[106]

Zhang Y, Xie X, Zhao X, et al. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry. J Proteomics. 2018; 170: 14-27.

[107]

Zhang Y, Zheng SS, Zhao WJ, et al. Sequential analysis of the N/O-glycosylation of heavily glycosylated HIV-1 gp120 using EThcD-sceHCD-MS/MS. Front Immunol. 2021; 12: 755568.

[108]

Zhang Y, Zheng S, Zhao W, et al. Sequential analysis of the N/O-glycosylation of heavily glycosylated HIV-1 gp120 using EThcD-sceHCD-MS/MS. Front Immunol. 2021; 12: 755568.

[109]

Cao W, Liu M, Kong S, Wu M, Zhang Y, Yang P. Recent advances in software tools for more generic and precise intact glycopeptide analysis. Mol Cell Proteomics. 2021; 20: 100060.

[110]

Desaire H. Glycopeptide analysis, recent developments and applications. Mol Cell Proteomics. 2013; 12(4): 893-901.

[111]

Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018; 118(17): 7886-7930.

[112]

Turiák L, Sugár S, Ács A, et al. Site-specific N-glycosylation of HeLa cell glycoproteins. Sci Rep. 2019; 9(1): 14822.

[113]

Pap A, Kiraly IE, Medzihradszky KF, Darula Z. Multiple layers of complexity in O-glycosylation illustrated with the urinary glycoproteome. Mol Cell Proteomics. 2022; 21(12): 100439.

[114]

Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012; 40(1): 13.20.1-13.20.14.

[115]

Polasky DA, Yu F, Teo GC, Nesvizhskii AI. Fast and comprehensive N-and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods. 2020; 17(11): 1125-1132.

[116]

Lu L, Riley NM, Shortreed MR, Bertozzi CR, Smith LM. O-pair search with MetaMorpheus for O-glycopeptide characterization. Nat Methods. 2020; 17(11): 1133-1138.

[117]

Strum JS, Nwosu CC, Hua S, et al. Automated assignments of N-and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal Chem. 2013; 85(12): 5666-5675.

[118]

Shen J, Jia L, Dang L, et al. StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods. 2021; 18(8): 921-929.

[119]

Liu MQ, Zeng WF, Fang P, et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat Commun. 2017; 8(1): 438.

[120]

Kong S, Gong P, Zeng WF, et al. pGlycoQuant with a deep residual network for quantitative glycoproteomics at intact glycopeptide level. Nat Commun. 2022; 13(1): 7539.

[121]

Yergey JA. A general approach to calculating isotopic distributions for mass spectrometry. J Mass Spectrom. 2020; 55(8): e4498.

[122]

Whiteaker JR, Lin C, Kennedy J, et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol. 2011; 29(7): 625-634.

[123]

Moqri M, Herzog C, Poganik JR, et al. Validation of biomarkers of aging. Nat Med. 2024; 30(2): 360-372.

[124]

Yu S, Zou Y, Ma X, et al. Evolution of LC–MS/MS in clinical laboratories. Clin Chim Acta. 2024; 555: 117797.

[125]

Khoo K-H. Glycoproteomic software solutions spotlight glycans. Nat Methods. 2021; 18(12): 1457-1458.

[126]

Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021; 397(10284): 1577-1590.

[127]

Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021; 20(1): 68-80.

[128]

Hart GW. Nutrient regulation of signaling and transcription. J Biol Chem. 2019; 294(7): 2211-2231.

[129]

Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med. 2022; 219(3): e20211275.

[130]

Zhang Q, Ma C, Chin LS, Li L. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer’s disease. Sci Adv. 2020; 6(40): eabc5802.

[131]

Fang P, Xie J, Sang S, et al. Multilayered N-glycoproteome profiling reveals highly heterogeneous and dysregulated protein N-glycosylation related to Alzheimer’s disease. Anal Chem. 2020; 92(1): 867-874.

[132]

Suttapitugsakul S, Stavenhagen K, Donskaya S, et al. Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain. Mol Cell Proteomics. 2022; 21(12): 100433.

[133]

Losev Y, Frenkel-Pinter M, Abu-Hussien M, et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration. Cell Mol Life Sci. 2021; 78(5): 2231-2245.

[134]

Zhou RZ, Vetrano DL, Grande G, et al. A glycan epitope correlates with tau in serum and predicts progression to Alzheimer’s disease in combination with APOE4 allele status. Alzheimers Dement. 2023; 19(7): 3244-3249.

[135]

Schedin-Weiss S, Gaunitz S, Sui P, et al. Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment. Febs J. 2020; 287(15): 3221-3234.

[136]

Ohkawa Y, Kizuka Y, Takata M, et al. Peptide sequence mapping around bisecting GlcNAc-bearing N-glycans in mouse brain. Int J Mol Sci. 2021; 22(16): 8579.

[137]

Wang Y, Cao Y, Huang H, Xue Y, Chen S, Gao X. DHEC mesylate attenuates pathologies and aberrant bisecting N-glycosylation in Alzheimer’s disease models. Neuropharmacology. 2024; 248: 109863.

[138]

Kronimus Y, Albus A, Hasenberg M, et al. Fc N-glycosylation of autoreactive Aβ antibodies as a blood-based biomarker for Alzheimer’s disease. Alzheimers Dement. 2023; 19(12): 5563-5572.

[139]

Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther. 2022; 235: 108122.

[140]

Akasaka-Manya K, Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules. 2020; 10(11): 1569.

[141]

Chen Z, Wang D, Yu Q, et al. In-depth site-specific o-glycosylation analysis of glycoproteins and endogenous peptides in cerebrospinal fluid (CSF) from healthy individuals, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) patients. ACS Chem Biol. 2022; 17(11): 3059-3068.

[142]

Shi J, Ku X, Zou X, Hou J, Yan W, Zhang Y. Comprehensive analysis of O-glycosylation of amyloid precursor protein (APP) using targeted and multi-fragmentation MS strategy. Biochim Biophys Acta. 2021; 1865(10): 129954.

[143]

Tachida Y, Iijima J, Takahashi K, et al. O-GalNAc glycosylation determines intracellular trafficking of APP and Aβ production. J Biol Chem. 2023; 299(7): 104905.

[144]

Krüger L, Biskup K, Schipke CG, et al. The cerebrospinal fluid free-glycans Hex(1) and HexNAc(1)Hex(1)Neu5Ac(1) as potential biomarkers of Alzheimer’s disease. Biomolecules. 2024; 14(5): 512.

[145]

Weber P, Bojarová P, Brouzdová J, et al. Diaminocyclopentane-l-lysine adducts: potent and selective inhibitors of human O-GlcNAcase. Bioorg Chem. 2024; 148: 107452.

[146]

Williams SE, Mealer RG, Scolnick EM, Smoller JW, Cummings RD. Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry. 2020; 25(12): 3198-3207.

[147]

Mealer RG, Jenkins BG, Chen CY, et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep. 2020; 10(1): 13162.

[148]

Dwyer CA, Esko JD. Glycan susceptibility factors in autism spectrum disorders. Mol Aspects Med. 2016; 51: 104-114.

[149]

Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry. 2020; 25(12): 3129-3139.

[150]

Cast TP, Boesch DJ, Smyth K, Shaw AE, Ghebrial M, Chanda S. An autism-associated mutation impairs neuroligin-4 glycosylation and enhances excitatory synaptic transmission in human neurons. J Neurosci. 2021; 41(3): 392-407.

[151]

Percy AK. Rett syndrome: exploring the autism link. Arch Neurol. 2011; 68(8): 985-959.

[152]

Cheng J, Zhao Z, Chen L, et al. Loss of O-GlcNAcylation on MeCP2 at threonine 203 leads to neurodevelopmental disorders. Neurosci Bull. 2022; 38(2): 113-134.

[153]

Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol. 2024; 21(8): 525-544.

[154]

Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P. Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med. 2024; 30(2): 178-196.

[155]

Zhong FY, Zhao YC, Zhao CX, et al. The role of CD147 in pathological cardiac hypertrophy is regulated by glycosylation. Oxid Med Cell Longev. 2022; 2022: 6603296.

[156]

Liu M, Peng T, Hu L, et al. N-glycosylation-mediated CD147 accumulation induces cardiac fibrosis in the diabetic heart through ALK5 activation. Int J Biol Sci. 2023; 19(1): 137-155.

[157]

Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022; 185(10): 1630-1645.

[158]

Libby P. The changing landscape of atherosclerosis. Nature. 2021; 592(7855): 524-533.

[159]

Kong P, Cui Z-Y, Huang X-F, Zhang D-D, Guo R-J, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022; 7(1): 131.

[160]

Eckardt V, Weber C, von Hundelshausen P. Glycans and glycan-binding proteins in atherosclerosis. Thromb Haemost. 2019; 119(8): 1265-1273.

[161]

Miao J, Zang X, Cui X, Zhang J. Autophagy, hyperlipidemia, and atherosclerosis. In: Le W, ed. Autophagy: Biology and Diseases: Clinical Science. Springer Singapore; 2020: 237-264.

[162]

Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res. 2021; 117(4): 1033-1045.

[163]

Sukhorukov V, Gudelj I, Pučić-Baković M, et al. Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties. Biochim Biophys Acta Mol Cell Biol Lipids. 2019; 1864(5): 643-653.

[164]

Luo W, He Y, Ding F, et al. Study on the levels of glycosylated lipoprotein in patients with coronary artery atherosclerosis. J Clin Lab Anal. 2019; 33(1): e22650.

[165]

Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-selectins bind to sLex and PSGL-1: a quantification of critical residue interactions. J Chem Inf Model. 2023; 63(17): 5604-5618.

[166]

Ye Z, Guo H, Wang L, et al. GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol. 2022; 165: 54-63.

[167]

Teng D, Wang W, Jia W, et al. The effects of glycosylation modifications on monocyte recruitment and foam cell formation in atherosclerosis. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(3): 167027.

[168]

Stegner D, Haining EJ, Nieswandt B. Targeting Glycoprotein VI and the Immunoreceptor Tyrosine-Based Activation Motif Signaling Pathway. Arterioscler Thromb Vasc Biol. 2014; 34(8): 1615-1620.

[169]

Schönberger T, Siegel-Axel D, Bußl R, et al. The immunoadhesin glycoprotein VI-Fc regulates arterial remodelling after mechanical injury in ApoE–/– mice. Cardiovasc Res. 2008; 80(1): 131-137.

[170]

Boulaftali Y, Mawhin MA, Jandrot-Perrus M, Ho-Tin-Noé B. Glycoprotein VI in securing vascular integrity in inflamed vessels. Res Pract Thromb Haemost. 2018; 2(2): 228-239.

[171]

Bültmann A, Li Z, Wagner S, et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis—a possible role of fibronectin. J Mol Cell Cardiol. 2010; 49(3): 532-542.

[172]

George J, Harats D, Gilburd B, et al. Immunolocalization of β2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques. Circulation. 1999; 99(17): 2227-2230.

[173]

Li J, Xu J, Zhao R, et al. Progress of fluorescent probes for protein phosphorylation and glycosylation in atherosclerosis. Chem. 2024; 30(18): e202303778.

[174]

Chan DZL, Kerr AJ, Doughty RN. Temporal trends in the burden of heart failure. Intern Med J. 2021; 51(8): 1212-1218.

[175]

Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020; 22(8): 1342-1356.

[176]

Omote K, Verbrugge FH, Borlaug BA. Heart failure with preserved ejection fraction: mechanisms and treatment strategies. Annu Rev Med. 2022; 73: 321-337.

[177]

Elgendy IY, Mahtta D, Pepine CJ. Medical therapy for heart failure caused by ischemic heart disease. Circ Res. 2019; 124(11): 1520-1535.

[178]

Mann DL, Bristow MR. Mechanisms and models in heart failure. Circulation. 2005; 111(21): 2837-2849.

[179]

Dyck JRB, Sossalla S, Hamdani N, et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol. 2022; 167: 17-31.

[180]

Dai H, Fan Q, Wang C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration (Beijing, China). 2022; 2(6): 20210157.

[181]

Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 2022; 291(6): 713-731.

[182]

Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother. 2023; 157: 113983.

[183]

Su M, Paknejad N, Zhu L, et al. Structures of β1-adrenergic receptor in complex with Gs and ligands of different efficacies. Nat Commun. 2022; 13(1): 4095.

[184]

Hu P, Guo S, Yang S, et al. Stachytine hydrochloride improves cardiac function in mice with ISO-induced heart failure by inhibiting the α-1, 6-fucosylation on N-glycosylation of β1AR. Front Pharmacol. 2022; 12: 834192.

[185]

Yang S, Chatterjee S, Cipollo J. The glycoproteomics–MS for studying glycosylation in cardiac hypertrophy and heart failure. Proteomics Clin Appl. 2018; 12(5): 1700075.

[186]

Korotaeva AA, Samoilova EV, Zhirov IV, Mindzaev DR, Nasonova SN, Tereschenko SN. Dynamics of the levels of interleukin 6, its soluble receptor, and soluble glycoprotein 130 in patients with chronic heart failure and preserved or reduced ejection fraction. Bull Exp Biol Med. 2023; 174(5): 666-669.

[187]

Aggarwal NR, Patel HN, Mehta LS, et al. Sex differences in ischemic heart disease. Circ: Cardiovasc Qual and Outcomes. 2018; 11(2): e004437.

[188]

Jensen RV, Hjortbak MV, Bøtker HE. Ischemic heart disease: an update. Semin Nucl Med. 2020; 50(3): 195-207.

[189]

Severino P, D’Amato A, Pucci M, et al. Ischemic heart disease and heart failure: role of coronary ion channels. Int J Mol Sci. 2020; 21(9): 3167.

[190]

Kong AS, Lai K-S, Lim S-HE, Sivalingam S, Loh J-Y, Maran S. miRNA in ischemic heart disease and its potential as biomarkers: a comprehensive review. Int J Mol Sci. 2022; 23(16): 9001.

[191]

Dziedzic EA, Gąsior JS, Tuzimek A, et al. Investigation of the Associations of Novel Inflammatory Biomarkers—systemic inflammatory index (SII) and systemic inflammatory response index (SIRI)—with the severity of coronary artery disease and acute coronary syndrome occurrence. Int J Mol Sci. 2022; 23(17): 9553.

[192]

Kaski JC, Lluch N, Lopez-Sendon JL, et al. Changes in circulating ApoJ-Glyc levels in patients with suspected acute coronary syndrome: The EDICA trial. Int J Cardiol. 2023; 391: 131291.

[193]

Cubedo J, Padró T, Badimon L. Glycoproteome of human apolipoprotein A-I: N-and O-glycosylated forms are increased in patients with acute myocardial infarction. Transl Res. 2014; 164(3): 209-222.

[194]

Feng X, Shi Q, Jian Q, Li F, Li Z, Cheng K. Alterations in mitochondrial protein glycosylation in myocardial ischaemia reperfusion injury. Biochem Biophys Rep. 2023; 35: 101509.

[195]

Baloglu UB, Talo M, Yildirim O, Tan RS, Acharya UR. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn Lett. 2019; 122: 23-30.

[196]

Al-Zaiti SS, Martin-Gill C, Zègre-Hemsey JK, et al. Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. Nat Med. 2023; 29(7): 1804-1813.

[197]

Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: a new signaling paradigm for the neurovascular diseases. Life Sci. 2024; 336: 122303.

[198]

Connelly MA, Gruppen EG, Otvos JD, Dullaart RPF. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer. Clin Chim Acta. 2016; 459: 177-186.

[199]

Maidana D, Arroyo-Álvarez A, Arenas-Loriente A, et al. Inflammation as a new therapeutic target among older patients with ischemic heart disease. J Clin Med. 2024; 13(2): 363.

[200]

Weber BN, Giles JT, Liao KP. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol. 2023; 19(7): 417-428.

[201]

Dashti H, Pabon Porras MA, Mora S. Glycosylation and cardiovascular diseases. In: Lauc G, Trbojević-Akmačić I, eds. The Role of Glycosylation in Health and Disease. Springer International Publishing; 2021: 307-319.

[202]

Abplanalp WT, Tucker N, Dimmeler S. Single-cell technologies to decipher cardiovascular diseases. Eur Heart J. 2022; 43(43): 4536-4547.

[203]

Gutmann C, Joshi A, Mayr M. Platelet “-omics” in health and cardiovascular disease. Atherosclerosis. 2020; 307: 87-96.

[204]

Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol. 2023; 14: 1196033.

[205]

Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol. 2023; 118(1): 30.

[206]

Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019; 9(4): 217-222.

[207]

Katsaounou K, Nicolaou E, Vogazianos P, et al. Colon cancer: from epidemiology to prevention. Metabolites. 2022; 12(6): 499.

[208]

Smolarz B, Nowak AZ, Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment (review of literature). Cancers. 2022; 14(10): 2569.

[209]

Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites EC. Cancer gene mutation frequencies for the U.S. population. Nat Commun. 2021; 12(1): 5961.

[210]

Gilham C, Sargent A, Crosbie EJ, Peto J. Long-term risks of invasive cervical cancer following HPV infection: follow-up of two screening cohorts in Manchester. Br J Cancer. 2023; 128(10): 1933-1940.

[211]

Xu T, Xie M, Jing X, Cui J, Wu X, Shu Y. Crosstalk between environmental inflammatory stimuli and non-coding RNA in cancer occurrence and development. Cancers. 2021; 13(17): 4436.

[212]

Savage SR, Yi X, Lei JT, et al. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell. 2024; 187(16): 4389-4407.

[213]

Ruhen O, Meehan K. Tumor-derived extracellular vesicles as a novel source of protein biomarkers for cancer diagnosis and monitoring. Proteomics. 2019; 19(1-2):1800155.

[214]

Zhang Z, Li J, He T, Ding J. Bioinformatics Identified 17 immune genes as prognostic biomarkers for breast cancer: application study based on artificial intelligence algorithms. Front Oncol. 2020; 10: 330.

[215]

Alexander J, Schipper K, Nash S, et al. Pathway-based signatures predict patient outcome, chemotherapy benefit and synthetic lethal dependencies in invasive lobular breast cancer. Br J Cancer. 2024; 130(11): 1828-1840.

[216]

Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol. 2015; 12(2): 115-124.

[217]

Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015; 12(9): 527-540.

[218]

Galmarini D, Galmarini CM, Galmarini FC. Cancer chemotherapy: a critical analysis of its 60 years of history. Crit Rev Oncol Hematol. 2012; 84(2): 181-199.

[219]

Rosenberg SA. Entering the mainstream of cancer treatment. Nat Rev Clin Oncol. 2014; 11(11): 630-632.

[220]

Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021; 14(1): 156.

[221]

Alsina M, Arrazubi V, Diez M, Tabernero J. Current developments in gastric cancer: from molecular profiling to treatment strategy. Nat Rev Gastroenterol Hepatol. 2023; 20(3): 155-170.

[222]

Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018; 834: 188-196.

[223]

Zhang H-W, Lv C, Zhang L-J, et al. Application of omics-and multi-omics-based techniques for natural product target discovery. Biomed Pharmacother. 2021; 141: 111833.

[224]

Nagaraja AK, Kikuchi O, Bass AJ. Genomics and targeted therapies in gastroesophageal adenocarcinoma. Cancer Discov. 2019; 9(12): 1656-1672.

[225]

Liu W, Xie L, He Y-H, et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun. 2021; 12(1): 4961.

[226]

Qu J, Ke F, Liu Z, et al. Uncovering the mechanisms of dandelion against triple-negative breast cancer using a combined network pharmacology, molecular pharmacology and metabolomics approach. Phytomedicine. 2022; 99: 153986.

[227]

Gabriele C, Prestagiacomo LE, Cuda G, Gaspari M. Mass spectrometry-based glycoproteomics and prostate cancer. Int J Mol Sci. 2021; 22(10): 5222.

[228]

Pan J, Hu Y, Sun S, et al. Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat Commun. 2020; 11(1): 6139.

[229]

Tu C-F, Li F-A, Li L-H, Yang R-B. Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness. Breast Cancer Res. 2022; 24(1): 21.

[230]

He K, Baniasad M, Kwon H, et al. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol. 2024; 17(1): 12.

[231]

Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023; 20(9): 624-639.

[232]

Wolf AMD, Oeffinger KC, Shih TY, et al. Screening for lung cancer: 2023 guideline update from the American Cancer Society. CA Cancer J Clin. 2024; 74(1): 50-81.

[233]

Zhang H, Liu C, Wang S, et al. Proteogenomic analysis of air-pollution-associated lung cancer reveals prevention and therapeutic opportunities. medRxiv. 2024:2024.03.11.24304129.

[234]

Oronsky B, Reid TR, Oronsky A, Carter CA. What’s new in SCLC? A review. Neoplasia. 2017; 19(10): 842-847.

[235]

Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): a review of risk factors, diagnosis, and treatment. Medicine (Baltimore). 2023; 102(8): e32899.

[236]

Wang Q, Gümüş ZH, Colarossi C, et al. SCLC: epidemiology, risk factors, genetic susceptibility, molecular pathology, screening, and early detection. J Thorac Oncol. 2023; 18(1): 31-46.

[237]

Ferrer L, Giaj Levra M, Brevet M, et al. A brief report of transformation from NSCLC to SCLC: molecular and therapeutic characteristics. J Thorac Oncol. 2019; 14(1): 130-134.

[238]

Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022; 40(6): 611-625.

[239]

Tian X, Gu T, Lee M-H, Dong Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta (BBA). 2022; 1877(1): 188645.

[240]

Niu Z, Jin R, Zhang Y, Li H. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther. 2022; 7(1): 353.

[241]

Liu S, Wang H, Jiang X, et al. Integrated N-glycoproteomics analysis of human saliva for lung cancer. J Proteome Res. 2022; 21(7): 1589-1602.

[242]

Ahn J-M, Sung H-J, Yoon Y-H, et al. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer *. Mol Cell Proteomics. 2014; 13(1): 30-48.

[243]

Kondo K, Harada Y, Nakano M, et al. Identification of distinct N-glycosylation patterns on extracellular vesicles from small-cell and non–small-cell lung cancer cells. J Biol Chem. 2022; 298(6): 101950.

[244]

Zeng W, Zheng S, Mao Y, et al. Elevated N-glycosylation contributes to the cisplatin resistance of non-small cell lung cancer cells revealed by membrane proteomic and glycoproteomic analysis. Front Pharmacol. 2021; 12: 805499.

[245]

Waniwan JT, Chen Y-J, Capangpangan R, Weng S-H, Chen Y-J. Glycoproteomic alterations in drug-resistant nonsmall cell lung cancer cells revealed by lectin magnetic nanoprobe-based mass spectrometry. J Proteome Res. 2018; 17(11): 3761-3773.

[246]

Alvarez MRS, Zhou Q, Grijaldo SJB, et al. An integrated mass spectrometry-based glycomics-driven glycoproteomics analytical platform to functionally characterize glycosylation inhibitors. Molecules. 2022; 27(12): 3834.

[247]

Mitchell A, Pickering C, Xu G, et al. Glycoproteomics as a powerful liquid biopsy-based screening tool for non-small cell lung cancer. J Clin Oncol. 2022; 40(16_suppl): e21148-e21148.

[248]

Lee J, Shin J, Jeong M, et al. Glycoproteomics method to discover reliable biomarkers from human plasma of lung cancer patients for MS-based clinical studies. Bull Korean Chem Soc. 2019; 40(6): 572-577.

[249]

Chen T, He C, Zhang M, et al. Disease-specific haptoglobin-β chain N-glycosylation as biomarker to differentiate non-small cell lung cancer from benign lung diseases. J Cancer. 2019; 10(23): 5628-5637.

[250]

Shaukat A, Levin TR. Current and future colorectal cancer screening strategies. Nat Rev Gastroenterol Hepatol. 2022; 19(8): 521-531.

[251]

Spaander MCW, Zauber AG, Syngal S, et al. Young-onset colorectal cancer. Nat Rev Dis Primers. 2023; 9(1): 21.

[252]

Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023; 73(3): 233-254.

[253]

Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020; 5(1): 22.

[254]

Pedrosa L, Esposito F, Thomson TM, Maurel J. The tumor microenvironment in colorectal cancer therapy. Cancers. 2019; 11(8): 429-452.

[255]

Ciardiello D, Vitiello PP, Cardone C, et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat Rev. 2019; 76: 22-32.

[256]

Nicastri A, Gaspari M, Sacco R, et al. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue. J Proteome Res. 2014; 13(11): 4932-4941.

[257]

Gong Q, Zhang X, Liang A, et al. Proteomic screening of potential N-glycoprotein biomarkers for colorectal cancer by TMT labeling combined with LC-MS/MS. Clin Chim Acta. 2021; 521: 122-130.

[258]

Qiu Z, Wang Y, Zhang Z, et al. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol. 2022; 12: 1052672.

[259]

Kim DS, Hahn Y. The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinf. 2015; 16(1): 29.

[260]

Sun Z, Ji S, Wu J, et al. Proteomics-based identification of candidate exosomal glycoprotein biomarkers and their value for diagnosing colorectal cancer. Front Oncol. 2021; 11: 725211.

[261]

Takakura D, Ohashi S, Kobayashi N, Tokuhisa M, Ichikawa Y, Kawasaki N. Targeted O-glycoproteomics for the development of diagnostic markers for advanced colorectal cancer. Front Oncol. 2023; 13: 1104936.

[262]

Fernández-Ponce C, Geribaldi-Doldán N, Sánchez-Gomar I, et al. The role of glycosyltransferases in colorectal cancer. Int J Mol Sci. 2021; 22(11): 5822. doi:10.3390/ijms22115822

[263]

Wan Y, Yu L-G. Expression and impact of C1GalT1 in cancer development and progression. Cancers. 2021; 13(24): 6305.

[264]

Hung JS, Huang J, Lin YC, et al. C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 2014; 5(8): 2096-2106.

[265]

Tian H, Yu JL, Chu X, Guan Q, Liu J, Liu Y. Unraveling the role of C1GALT1 in abnormal glycosylation and colorectal cancer progression. Front Oncol. 2024; 14: 1389713.

[266]

Pucci M, Malagolini N, Dall’Olio F. Glycosyltransferase B4GALNT2 as a predictor of good prognosis in colon cancer: lessons from databases. Int J Mol Sci. 2021; 22(9): 4331.

[267]

Madunić K, Zhang T, Mayboroda OA, et al. Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. Cell Mol Life Sci. 2021; 78(1): 337-350.

[268]

Madunić K, Mayboroda OA, Zhang T, et al. Specific (sialyl-)Lewis core 2 O-glycans differentiate colorectal cancer from healthy colon epithelium. Theranostics. 2022; 12(10): 4498-4512.

[269]

Ferreira JA, Magalhães A, Gomes J, et al. Protein glycosylation in gastric and colorectal cancers: toward cancer detection and targeted therapeutics. Cancer Lett. 2017; 387: 32-45.

[270]

Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta (BBA). 2020; 1873(1): 188314.

[271]

Saitta C, Pollicino T, Raimondo G. Obesity and liver cancer. Ann Hepatol. 2019; 18(6): 810-815.

[272]

Petrick JL, McGlynn KA. The changing epidemiology of primary liver cancer. Curr Epidemiol Rep. 2019; 6(2): 104-111.

[273]

Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022; 77(6): 1598-1606.

[274]

Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis. 2019; 39(1): 26-42.

[275]

Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016; 64(1, Supplement): S84-S101.

[276]

Li Z, Zhang N, Dong Z, et al. Integrating transcriptomics, glycomics and glycoproteomics to characterize hepatitis B virus-associated hepatocellular carcinoma. Cell Commun Signal. 2024; 22(1): 200.

[277]

Dalal K, Dalal B, Bhatia S, Shukla A, Shankarkumar A. Analysis of serum haptoglobin using glycoproteomics and lectin immunoassay in liver diseases in hepatitis B virus infection. Clin Chim Acta. 2019; 495: 309-317.

[278]

Li D, Jia S, Wang S, Hu L. Glycoproteomic analysis of urinary extracellular vesicles for biomarkers of hepatocellular carcinoma. Molecules. 2023; 28(3): 1293.

[279]

Cao X, Shao Y, Meng P, et al. Nascent proteome and glycoproteome reveal the inhibition role of ALG1 in hepatocellular carcinoma cell migration. Phenomics. 2022; 2(4): 230-241.

[280]

Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016; 65(4): 798-808.

[281]

Jia L, Li J, Li P, et al. Site-specific glycoproteomic analysis revealing increased core-fucosylation on FOLR1 enhances folate uptake capacity of HCC cells to promote EMT. Theranostics. 2021; 11(14): 6905-6921.

[282]

Pousset D, Piller V, Bureaud N, Piller F. High levels of ceruloplasmin in the serum of transgenic mice developing hepatocellular carcinoma. Eur J Biochem. 2001; 268(5): 1491-1499.

[283]

Gong J, Jie Y, Xiao C, et al. Increased expression of fibulin-1 is associated with hepatocellular carcinoma progression by regulating the notch signaling pathway. Front Cell Dev Biol. 2020; 8: 478.

[284]

Kim D-H, Sung M, Park M-S, et al. Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun. 2024;n/a(n/a).

[285]

Liu T, Shang S, Li W, et al. Assessment of hepatocellular carcinoma metastasis glycobiomarkers using advanced quantitative N-glycoproteome analysis. Front Physiol. 2017; 8: 472.

[286]

Huang Z, Yang H, Lao J, Deng W. Solute carrier family 35 member A2 (SLC35A2) is a prognostic biomarker and correlated with immune infiltration in stomach adenocarcinoma. PLoS One. 2023; 18(7): e0287303.

[287]

Cheng H, Wang S, Gao D, et al. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr). 2023; 46(2): 283-297.

[288]

Zhou J, Sun H, Wang Z, et al. Guidelines for the diagnosis and treatment of primary liver cancer (2022 edition). Liver Cancer. 2023; 12(5): 405-444.

[289]

Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020; 5(1): 87.

[290]

Psilopatis I, Damaskos C, Garmpi A, et al. FDA-approved monoclonal antibodies for unresectable hepatocellular carcinoma: what do we know so far? Int J Mol Sci. 2023; 24(3): 2685.

[291]

Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol. 2023; 18: 123-148.

[292]

Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis. 2024; 15(8): 553.

[293]

Ushio J, Kanno A, Ikeda E, et al. Pancreatic ductal adenocarcinoma: epidemiology and risk factors. Diagnostics. 2021; 11(3): 562.

[294]

Principe DR, Rana A. Updated risk factors to inform early pancreatic cancer screening and identify high risk patients. Cancer Lett. 2020; 485: 56-65.

[295]

Zhao Z, Liu W. Pancreatic cancer: a review of risk factors, diagnosis, and treatment. Technol Cancer Res Treat. 2020; 19: 1533033820962117.

[296]

Stoop TF, Theijse RT, Seelen LWF, et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2024; 21(2): 101-124.

[297]

Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2024; 21(1): 7-24.

[298]

Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol. 2016; 22(42): 9288-9299.

[299]

Luo G, Jin K, Deng S, et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim Biophys Acta (BBA). 2021; 1875(2): 188409.

[300]

Kato S, Honda K. CA19-9 as a therapeutic target in pancreatitis. Ann Transl Med. 2019; 7(Suppl 8): S318.

[301]

Engle DD, Tiriac H, Rivera KD, et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science. 2019; 364(6446): 1156-1162.

[302]

Zhong A, Qin R, Qin W, et al. Diagnostic significance of serum IgG galactosylation in CA19-9-negative pancreatic carcinoma patients. Front Oncol. 2019; 9: 114.

[303]

Wu C-C, Lu Y-T, Yeh T-S, Chan Y-H, Dash S, Yu J-S. Identification of fucosylated SERPINA1 as a novel plasma marker for pancreatic cancer using lectin affinity capture coupled with iTRAQ-based quantitative glycoproteomics. Int J Mol Sci. 2021; 22(11): 6079.

[304]

Li X, Kong R, Hou W, et al. Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin-and gemcitabine-based chemotherapy on pancreatic cancer cells. Cell Oncol. 2024; 47(1): 141-156.

[305]

Munkley J. The glycosylation landscape of pancreatic cancer (Review). Oncol Lett. 2019; 17(3): 2569-2575.

[306]

Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med. 2022; 219(6): e20211505.

[307]

Grzesik K, Janik M, Hoja-Łukowicz D. The hidden potential of glycomarkers: Glycosylation studies in the service of cancer diagnosis and treatment. Biochim Biophys Acta (BBA). 2023; 1878(3): 188889.

[308]

Haga Y, Ueda K. Glycosylation in cancer: its application as a biomarker and recent advances of analytical techniques. Glycoconjugate J. 2022; 39(2): 303-313.

[309]

Suzuki H, Yasutake J, Makita Y, et al. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int. 2018; 93(3): 700-705.

[310]

Medjeral-Thomas NR, Cook HT, Pickering MC. Complement activation in IgA nephropathy. Semin Immunopathol. 2021; 43(5): 679-690.

[311]

Sun Q, Zhang Z, Zhang H, Liu X. Aberrant IgA1 Glycosylation in IgA nephropathy: a systematic review. PLoS One. 2016; 11(11): e0166700.

[312]

Coppo R, Amore A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int. 2004; 65(5): 1544-1547.

[313]

Steffen U, Koeleman CA, Sokolova MV, et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun. 2020; 11(1): 120.

[314]

Liu J, Wu L, Gu H, Lu M, Zhang J, Zhou H. Detection of N-glycoprotein associated with IgA nephropathy in urine as a potential diagnostic biomarker using glycosylated proteomic analysis. Exp Ther Med. 2023; 26(4): 478.

[315]

Uenoyama Y, Matsuda A, Ohashi K, et al. Development and evaluation of a robust sandwich immunoassay system detecting serum WFA-reactive IgA1 for diagnosis of IgA nephropathy. Int J Mol Sci. 2022; 23(9): 5165.

[316]

Narimatsu Y, Kuno A, Ito H, et al. IgA nephropathy caused by unusual polymerization of IgA1 with aberrant N-glycosylation in a patient with monoclonal immunoglobulin deposition disease. PLoS One. 2014; 9(3): e91079.

[317]

Yu G, Zhang Y, Meng B, et al. O-glycoforms of polymeric immunoglobulin A1 in the plasma of patients with IgA nephropathy are associated with pathological phenotypes. Nephrol Dial Transplant. 2022; 37(1): 33-41.

[318]

Zhang S, Sun H, Zhang Z, et al. Diagnostic potential of plasma IgA1 O-glycans in discriminating IgA nephropathy from other glomerular diseases and healthy participants. Front Mol Biosci. 2022; 9: 871615.

[319]

Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009; 119(6): 1668-1677.

[320]

Stewart TJ, Takahashi K, Xu N, et al. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology. 2021; 31(5): 540-556.

[321]

Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013; 124(3): 139-152.

[322]

Zhang J, Lin C, Jin S, et al. The pharmacology and therapeutic role of cannabidiol in diabetes. Exploration (Beijing, China). 2023; 3(5): 20230047.

[323]

Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021; 2021: 1497449.

[324]

Guo Z, Liu X, Li M, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC–MS/MS and iTRAQ quantification. J Transl Med. 2015; 13(1): 371.

[325]

Liljedahl L, Pedersen MH, Norlin J, McGuire JN, James P. N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models. Clin Proteomics. 2016; 13(1): 22.

[326]

Elsheikh M, Elhefnawy KA, Emad G, Ismail M, Borai M. Zinc alpha 2 glycoprotein as an early biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus. J Bras Nefrol. 2019; 41(4): 509-517.

[327]

Fineberg D, Jandeleit-Dahm KAM, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol. 2013; 9(12): 713-723.

[328]

Lim SC, Liying DQ, Toy WC, et al. Adipocytokine zinc α2 glycoprotein (ZAG) as a novel urinary biomarker for normo-albuminuric diabetic nephropathy. Diabet Med. 2012; 29(7): 945-949.

[329]

Wang Y, Li Y-M, Zhang S, Zhao J-Y, Liu C-Y. Adipokine zinc-alpha-2-glycoprotein as a novel urinary biomarker presents earlier than microalbuminuria in diabetic nephropathy. J Int Med Res. 2016; 44(2): 278-286.

[330]

Zhu H, Liu M, Yu H, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. J Diabetes Res. 2017; 2017: 5728087.

[331]

Khramova A, Boi R, Fridén V, et al. Proteoglycans contribute to the functional integrity of the glomerular endothelial cell surface layer and are regulated in diabetic kidney disease. Sci Rep. 2021; 11(1): 8487.

[332]

Gu Y, Xu H, Tang D. Mechanisms of primary membranous nephropathy. Biomolecules. 2021; 11(4): 513.

[333]

Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol. 2017; 12(6): 983-997.

[334]

Beck LH, Jr., Salant DJ. Membranous nephropathy: from models to man. J Clin Invest. 2014; 124(6): 2307-2314.

[335]

Nieto-Gañán I, Iturrieta-Zuazo I, Rita C, Carrasco-Sayalero Á. Revisiting immunological and clinical aspects of membranous nephropathy. Clin Immunol. 2022; 237: 108976.

[336]

Haddad G, Lorenzen JM, Ma H, et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1–associated membranous nephropathy. J Clin Invest. 2021; 131(5): e140453.

[337]

Cai Y, Ren W, Li S, Liao R, Bian Q. Deep analysis of total serum N-glycome suggests glyco-signatures for phospholipase A2 receptor 1-related idiopathic membranous nephropathy diagnosis. J Proteomics. 2024; 303: 105223.

[338]

Cai Y, Ren W, Wang H, Bian Q. In-depth profiling of urinary N-glycome in diabetic kidney disease by ultrafast glycoprotein immobilization for glycan extraction (UltraGIG). Anal Chim Acta. 2022; 1221: 340144.

[339]

Hofstra JM, Fervenza FC, Wetzels JFM. Treatment of idiopathic membranous nephropathy. Nat Rev Nephrol. 2013; 9(8): 443-458.

[340]

Safar-Boueri L, Piya A, Beck LH, Ayalon R. Membranous nephropathy: diagnosis, treatment, and monitoring in the post-PLA2R era. Pediatr Nephrol. 2021; 36(1): 19-30.

[341]

Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011; 80(8): 806-821.

[342]

Hill C, Avila-Palencia I, Maxwell AP, Hunter RF, McKnight AJ. Harnessing the full potential of multi-omic analyses to advance the study and treatment of chronic kidney disease. Front Nephrol. 2022; 2: 923068.

[343]

Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol. 2020; 16(11): 657-668.

[344]

Shin A, Connolly S, Kabytaev K. Protein glycation in diabetes mellitus. Adv Clin Chem. 2023; 113: 101-156.

[345]

Gillery P. HbA(1c) and biomarkers of diabetes mellitus in clinical chemistry and laboratory medicine: ten years after. Clin Chem Lab Med. 2023; 61(5): 861-872.

[346]

Yazdanpanah S, Rabiee M, Tahriri M, et al. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit Rev Clin Lab Sci. 2017; 54(4): 219-232.

[347]

Šoić D, Keser T, Štambuk J, et al. High-throughput human complement C3 N-glycoprofiling identifies markers of early onset type 1 diabetes mellitus in children. Mol Cell Proteomics. 2022; 21(10): 100407.

[348]

Nemčić M, Tijardović M, Rudman N, et al. N-glycosylation of serum proteins in adult type 1 diabetes mellitus exposes further changes compared to children at the disease onset. Clin Chim Acta. 2023; 543: 117298.

[349]

Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015; 47(4): 381-386.

[350]

Rudman N, Kaur S, Simunović V, et al. Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of plasma proteins and IgGs, as well as the complement system, in the development of type 1 diabetes. Diabetologia. 2023; 66(6): 1071-1083.

[351]

Rudman N, Kifer D, Kaur S, et al. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia. 2022; 65(8): 1315-1327.

[352]

Nemčić M, Shkunnikova S, Kifer D, et al. N-glycosylation of immunoglobulin A in children and adults with type 1 diabetes mellitus. Heliyon. 2024; 10(9): e30529.

[353]

Memarian E, Heijmans R, Slieker RC, et al. IgG N-glycans are associated with prevalent and incident complications of type 2 diabetes. Diabetes Metab Res Rev. 2023; 39(7): e3685.

[354]

Hoshi RA, Plavša B, Liu Y, et al. N-glycosylation profiles of immunoglobulin G and future cardiovascular events. Circ Res. 2024; 134(5): e3-e14.

[355]

Birukov A, Plavša B, Eichelmann F, et al. Immunoglobulin G N-glycosylation signatures in incident type 2 diabetes and cardiovascular disease. Diabetes Care. 2022; 45(11): 2729-2736.

[356]

Meng X, Wang F, Gao X, et al. Association of IgG N-glycomics with prevalent and incident type 2 diabetes mellitus from the paradigm of predictive, preventive, and personalized medicine standpoint. Epma J. 2023; 14(1): 1-20.

[357]

Zhao Y, Wang M, Meng B, et al. Identification of dysregulated complement activation pathways driven by N-glycosylation alterations in T2D patients. Front Chem. 2021; 9: 677621.

[358]

Singh SS, Naber A, Dotz V, et al. Metformin and statin use associate with plasma protein N-glycosylation in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2020; 8(1): e001230.

[359]

Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol. 2024; 591: 112269.

[360]

Xing X, Wang H, Zhang Y, et al. O-glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition. Biochem Biophys Res Commun. 2019; 512(3): 552-557.

[361]

Naber A, Demus D, Slieker R, et al. Apolipoprotein-CIII O-glycosylation, a link between GALNT2 and plasma lipids. Int J Mol Sci. 2023; 24(19): 14844.

[362]

Naber A, Demus D, Slieker RC, et al. Apolipoprotein-CIII O-glycosylation is associated with micro-and macrovascular complications of type 2 diabetes. Int J Mol Sci. 2024; 25(10): 5365.

[363]

He A, Guo Y, Xu Z, et al. Hypoglycaemia aggravates impaired endothelial-dependent vasodilation in diabetes by suppressing endothelial nitric oxide synthase activity and stimulating inducible nitric oxide synthase expression. Microvasc Res. 2023; 146: 104468.

[364]

Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019; 15(5): 288-298.

[365]

Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024; 403(10431): 1027-1050.

[366]

Russell AC, Kepka A, Trbojević-Akmačić I, et al. Increased central adiposity is associated with pro-inflammatory immunoglobulin G N-glycans. Immunobiology. 2019; 224(1): 110-115.

[367]

Liu D, Li Q, Dong J, et al. The association between normal BMI with central adiposity and proinflammatory potential immunoglobulin G N-glycosylation. Diabetes Metab Syndr Obes. 2019; 12: 2373-2385.

[368]

He Y, Hao F, Fu H, et al. N-glycosylated intestinal protein BCF-1 shapes microbial colonization by binding bacteria via its fimbrial protein. Cell Rep. 2023; 42(1): 111993.

[369]

Štambuk T, Kifer D, Greto VL, et al. Alterations in plasma protein N-glycosylation after caloric restriction and bariatric surgery. Surg Obes Relat Dis. 2024; 20(6): 587-596.

[370]

Greto VL, Cvetko A, Štambuk T, et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond). 2021; 45(7): 1521-1531.

[371]

Šimunić-Briški N, Dukarić V, Očić M, et al. Regular moderate physical exercise decreases Glycan Age index of biological age and reduces inflammatory potential of Immunoglobulin G. Glycoconj J. 2024; 41(1): 67-76.

[372]

Šimunić-Briški N, Zekić R, Dukarić V, et al. Physical exercise induces significant changes in immunoglobulin G N-glycan composition in a previously inactive, overweight population. Biomolecules. 2023; 13(5): 762.

[373]

Zhang J, Huang Y, Li H, et al. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun. 2024; 15(1): 5919.

[374]

Ruan Z, Yu Y, Han P, Zhang L, Hu Z. Si-Wu water extracts protect against colonic mucus barrier damage by regulating Muc2 mucin expression in mice fed a high-fat diet. Foods. 2022; 11(16): 2499.

[375]

Guo H, Guo J, Jiang X, Li Z, Ling W. Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: involvement of FoxO1-mediated transcription of adipose triglyceride lipase. Food Chem Toxicol. 2012; 50(9): 3040-3047.

[376]

González-Domínguez Á, Visiedo F, Domínguez-Riscart J, et al. Catalase post-translational modifications as key targets in the control of erythrocyte redox homeostasis in children with obesity and insulin resistance. Free Radic Biol Med. 2022; 191: 40-47.

[377]

Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021; 13(2): 202.

[378]

Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020; 41(12): 1100-1115.

[379]

Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-1263.

[380]

Hatmal MM, Alshaer W, Al-Hatamleh MAI, et al. Comprehensive structural and molecular comparison of spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and their interactions with ACE2. Cells. 2020; 9(12): 2638.

[381]

Gan HH, Twaddle A, Marchand B, Gunsalus KC. Structural modeling of the SARS-CoV-2 spike/human ACE2 complex interface can identify high-affinity variants associated with increased transmissibility. J Mol Biol. 2021; 433(15): 167051.

[382]

Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020; 183(4): 1043-1057. e15.

[383]

Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci. 2022; 23(3): 1716.

[384]

Stravalaci M, Pagani I, Paraboschi EM, et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol. 2022; 23(2): 275-286.

[385]

Stewart H, Palmulli R, Johansen KH, et al. Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release. EMBO Rep. 2023; 24(12): e57224.

[386]

Scheim DE. A deadly embrace: hemagglutination mediated by SARS-CoV-2 spike protein at Its 22 N-glycosylation sites, red blood cell surface sialoglycoproteins, and antibody. Int J Mol Sci. 2022; 23(5): 2558.

[387]

Amraei R, Yin W, Napoleon MA, et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. ACS Cent Sci. 2021; 7(7): 1156-1165.

[388]

Yang Q, Kelkar A, Sriram A, Hombu R, Hughes TA, Neelamegham S. Role for N-glycans and calnexin-calreticulin chaperones in SARS-CoV-2 Spike maturation and viral infectivity. Sci Adv. 2022; 8(38): eabq8678.

[389]

Huang HC, Lai YJ, Liao CC, et al. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine. 2021; 74: 103712.

[390]

Isobe A, Arai Y, Kuroda D, et al. ACE2 N-glycosylation modulates interactions with SARS-CoV-2 spike protein in a site-specific manner. Commun Biol. 2022; 5(1): 1188.

[391]

Xu W, Wang M, Yu D, Zhang X. Variations in SARS-CoV-2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID-19. Front Immunol. 2020; 11: 565278.

[392]

Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020; 586(7830): 572-577.

[393]

Long F, Xiao C, Cui H, et al. The impact of immunoglobulin G N-glycosylation level on COVID-19 outcome: evidence from a Mendelian randomization study. Front Immunol. 2023; 14: 1217444.

[394]

Melo-Braga MN, Carvalho MB, Ferreira MCE, et al. Unveiling the multifaceted landscape of N-glycosylation in antibody variable domains: Insights and implications. Int J Biol Macromol. 2024; 257(Pt 1):128362.

[395]

Haslund-Gourley BS, Woloszczuk K, Hou J, et al. IgM N-glycosylation correlates with COVID-19 severity and rate of complement deposition. Nat Commun. 2024; 15(1): 404.

[396]

Sanda M, Morrison L, Goldman R. N-and O-glycosylation of the SARS-CoV-2 spike protein. Anal Chem. 2021; 93(4): 2003-2009.

[397]

Zhang L, Mann M, Syed ZA, et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc Natl Acad Sci USA. 2021; 118(47): e2109905118.

[398]

Gonzalez-Rodriguez E, Zol-Hanlon M, Bineva-Todd G, et al. O-linked sialoglycans modulate the proteolysis of SARS-CoV-2 spike and likely contribute to the mutational trajectory in variants of concern. ACS Cent Sci. 2023; 9(3): 393-404.

[399]

Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R. Review of COVID-19 testing and diagnostic methods. Talanta. 2022; 244: 123409.

[400]

Banerjee A, Pai MGJ, Singh A, Nissa MU, Srivastava S. Mass spectrometry and proteome analysis to identify SARS-CoV-2 protein from COVID-19 patient swab samples. STAR Protoc. 2022; 3(1): 101177.

[401]

Cazares LH, Chaerkady R, Samuel Weng SH, et al. Development of a parallel reaction monitoring mass spectrometry assay for the detection of SARS-CoV-2 spike glycoprotein and nucleoprotein. Anal Chem. 2020; 92(20): 13813-13821.

[402]

Bezstarosti K, Lamers MM, Doff WAS, et al. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. PLoS One. 2021; 16(11): e0259165.

[403]

Paton B, Herrero P, Peraire J, et al. Fucosylated N-glycans as early biomarkers of COVID-19 severity. Front Immunol. 2023; 14: 1204661.

[404]

Beimdiek J, Janciauskiene S, Wrenger S, et al. Plasma markers of COVID-19 severity: a pilot study. Respir Res. 2022; 23(1): 343.

[405]

Moir S, Chun TW, Fauci AS. Pathogenic mechanisms of HIV disease. Annu Rev Pathol. 2011; 6: 223-48.

[406]

Weibull Wärnberg A, Brännström J, Elvstam O, et al. The molecular epidemiology of HIV-1 in Sweden 1996 to 2022, and the influence of migration from Ukraine. Euro Surveill. 2023; 28(48): 2300224.

[407]

Okano JT, Sharp K, Valdano E, Palk L, Blower S. HIV transmission and source-sink dynamics in sub-Saharan Africa. Lancet HIV. 2020; 7(3): e209-e214.

[408]

Yu C, Wang G, Liu Q, et al. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect. 2023; 12(1): 2164742.

[409]

Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env exceptionalism: why are HIV-1 env glycoproteins atypical immunogens? Cell Host Microbe. 2020; 27(4): 507-518.

[410]

Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv. 2024; 70: 108283.

[411]

Molinos-Albert LM, Baquero E, Bouvin-Pley M, et al. Anti-V1/V3-glycan broadly HIV-1 neutralizing antibodies in a post-treatment controller. Cell Host Microbe. 2023; 31(8): 1275-1287. e8.

[412]

Sharma S, Lewinski MK, Guatelli J. An N-glycosylated form of SERINC5 is specifically incorporated into HIV-1 virions. J Virol. 2018; 92(22):e00753-18.

[413]

Keating CL, Kuhn E, Bals J, et al. Spontaneous glycan reattachment following N-glycanase treatment of influenza and HIV vaccine antigens. J Proteome Res. 2020; 19(2): 733-743.

[414]

Silver ZA, Antonopoulos A, Haslam SM, et al. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies. Cell Rep. 2020; 30(6): 1862-1869. e4.

[415]

Chuang GY, Asokan M, Ivleva VB, et al. Removal of variable domain N-linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs. 2020; 12(1): 1836719.

[416]

Giron LB, Colomb F, Papasavvas E, et al. Interferon-α alters host glycosylation machinery during treated HIV infection. EBioMedicine. 2020; 59: 102945.

[417]

Offersen R, Yu WH, Scully EP, et al. HIV antibody Fc N-linked glycosylation is associated with viral rebound. Cell Rep. 2020; 33(11): 108502.

[418]

Chen JL, Fries CN, Berendam SJ, et al. Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. Sci Adv. 2022; 8(38): eabq0273.

[419]

Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design - engaging the shield. Trends Microbiol. 2022; 30(9): 866-881.

[420]

Farzin L, Shamsipur M, Samandari L, Sheibani S. HIV biosensors for early diagnosis of infection: the intertwine of nanotechnology with sensing strategies. Talanta. 2020; 206: 120201.

[421]

Abbasi AD, Hussain Z, Liaqat U, Arif D, Yang KL. Liquid crystal based binding assay for detecting HIV-1 surface glycoprotein. Front Chem. 2021; 9: 668870.

[422]

Abbasi AD, Hussain Z, Yang KL. Aptamer laden liquid crystals biosensing platform for the detection of HIV-1 glycoprotein-120. Molecules. 2021; 26(10): 2893.

[423]

Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019; 20(21): 5376.

[424]

Mellhammar L, Wollter E, Dahlberg J, et al. Estimating sepsis incidence using administrative data and clinical medical record review. JAMA Netw Open. 2023; 6(8): e2331168.

[425]

Yaykasli KO, van Schie KA, Toes REM, et al. Neutrophil depletion changes the N-glycosylation pattern of IgG in experimental murine sepsis. Int J Mol Sci. 2024; 25(12): 6478.

[426]

Wu D, Su S, Zha X, et al. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice. Redox Biol. 2023; 59: 102581.

[427]

Blangy-Letheule A, Persello A, Rozec B, Waard M, Lauzier B. New approaches to identify sepsis biomarkers: the importance of model and sample source for mass spectrometry. Oxid Med Cell Longev. 2020; 2020: 6681073.

[428]

Mi Y, Burnham KL, Charles PD, et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med. 2024; 16(750): eadh0185.

[429]

García-Giménez JL, García-López E, Mena-Mollá S, et al. Validation of circulating histone detection by mass spectrometry for early diagnosis, prognosis, and management of critically ill septic patients. J Transl Med. 2023; 21(1): 344.

[430]

Strålin K, Rothman RE, Özenci V, et al. Performance of PCR/electrospray ionization-mass spectrometry on whole blood for detection of bloodstream microorganisms in patients with suspected sepsis. J Clin Microbiol. 2020; 58(9):e01860-19.

[431]

Yu J, Lin HH, Tseng KH, et al. Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from flagged blood cultures by combining rapid Sepsityper MALDI-TOF mass spectrometry with machine learning. Int J Antimicrob Agents. 2023; 62(6): 106994.

[432]

Čaval T, Lin YH, Varkila M, et al. Glycoproteoform profiles of individual patients’ plasma alpha-1-antichymotrypsin are unique and extensively remodeled following a septic episode. Front Immunol. 2020; 11: 608466.

[433]

Bond MR, Kohler JJ. Chemical methods for glycoprotein discovery. Curr Opin Chem Biol. 2007; 11(1): 52-58.

[434]

Chau TH, Chernykh A, Kawahara R, Thaysen-Andersen M. Critical considerations in N-glycoproteomics. Curr Opin Chem Biol. 2023; 73: 102272.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/