Comprehensive single-cell profiling of monocytes in HLA-B27-positive ankylosing spondylitis with acute anterior uveitis

Huan Li , Xueming Ju , Lixin Zhang , Jing Zhu , Jing Zhang , Jialing Xiao , Ting Wang , Weijia Wu , Liang Wang , Chengzi Gan , Xiangmei Li , Yutong Wei , Siyu Zhu , Yu Zhou , Bolin Deng , Ning Xiao , Bo Gong

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e759

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e759 DOI: 10.1002/mco2.759
ORIGINAL ARTICLE

Comprehensive single-cell profiling of monocytes in HLA-B27-positive ankylosing spondylitis with acute anterior uveitis

Author information +
History +
PDF

Abstract

Acute anterior uveitis (AAU) is a common extra-articular manifestation of ankylosing spondylitis (AS), particularly in patients positive for the human leucocyte antigen (HLA)-B27 genetic marker. To explore the underlying mechanisms of HLA-B27+ AS-associated AAU, we employed single-cell RNA sequencing to profile the transcriptomes of peripheral blood mononuclear cells in three HLA-B27+ AS-associated AAU patients and three healthy controls (HCs). We identified 11 distinct immune cell clusters, with a particular focus on monocytes, revealing six subsets, including three previously unidentified subsets, namely, GTPase immune-associated proteins, Th17-related, and lncRNA monocytes, with unique gene expression patterns. Significant differences in monocyte composition, activation states, and gene expression were observed between patients and HCs, particularly within HLA monocyte subpopulations. Notably, enhanced expression of X-inactive specific transcript and myeloid cell nuclear differentiation antigen genes was validated across monocyte subclusters in patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted significant enrichment in antigen processing and presentation pathways, shedding light on the disease’s molecular mechanisms. These findings provide novel insights into the molecular mechanisms of HLA-B27+ AS-associated AAU and may contribute to the development of targeted diagnostic and therapeutic strategies. Further clinical validation is essential.

Keywords

acute anterior uveitis / ankylosing spondylitis / human leucocyte antigen (HLA)-B27 positive / monocyte subsets / single-cell RNA sequencing

Cite this article

Download citation ▾
Huan Li, Xueming Ju, Lixin Zhang, Jing Zhu, Jing Zhang, Jialing Xiao, Ting Wang, Weijia Wu, Liang Wang, Chengzi Gan, Xiangmei Li, Yutong Wei, Siyu Zhu, Yu Zhou, Bolin Deng, Ning Xiao, Bo Gong. Comprehensive single-cell profiling of monocytes in HLA-B27-positive ankylosing spondylitis with acute anterior uveitis. MedComm, 2024, 5(11): e759 DOI:10.1002/mco2.759

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miserocchi E, Fogliato G, Modorati G, Bandello F. Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol. 2013; 23(5): 705-717.

[2]

Tsirouki T, Dastiridou A, Symeonidis C, et al. A focus on the epidemiology of uveitis. Ocul Immunol Inflamm. 2018; 26(1): 2-16.

[3]

Patel A, Kelgaonkar A, Kaza H, et al. Recent advances in diagnosis and treatment of infectious uveitis prevalent in Asia-Pacific Region. Asia-Pac J Ophthalmol. 2021; 10(1): 99-108.

[4]

Akhter M, Toy B. Big data-based epidemiology of uveitis and related intraocular inflammation. Asia-Pac J Ophthalmol. 2021; 10(1): 60-62.

[5]

Jones NP. The Manchester Uveitis Clinic: the first 3000 patients–epidemiology and casemix. Ocul Immunol Inflamm. 2015; 23(2): 118-126.

[6]

Zeboulon N, Dougados M, Gossec L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review. Ann Rheum Dis. 2008; 67(7): 955-959.

[7]

Canoui-Poitrine F, Lekpa FK, Farrenq V, et al. Prevalence and factors associated with uveitis in spondylarthritis patients in France: results from an observational survey. Arthritis Care Res (Hoboken). 2012; 64(6): 919-924.

[8]

Kalogeropoulos D, Asproudis I, Stefaniotou M, et al. The large hellenic study of uveitis: diagnostic and therapeutic algorithms, complications, and final outcome. Asia-Pac J Ophthalmol. 2023; 12(1): 44-57.

[9]

D’Ambrosio EM, La Cava M, Tortorella P, Gharbiya M, Campanella M, Iannetti L. Clinical features and complications of the HLA-B27-associated acute anterior uveitis: a metanalysis. Semin Ophthalmol. 2017; 32(6): 689-701.

[10]

Tuncer S, Adam YS, Urgancioglu M. Tugal-Tutkun I. Clinical features and outcomes of HLA-b27-positive and HLA-B27-negative acute anterior uveitis in a Turkish patient population. Ocul Immunol Inflamm. 2005; 13(5): 367-373.

[11]

Sampaio-Barros PD, Conde RA, Bonfiglioli R, Bertolo MB, Samara AM. Characterization and outcome of uveitis in 350 patients with spondyloarthropathies. Rheumatol Int. 2006; 26(12): 1143-1146.

[12]

Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008; 205(4): 799-810.

[13]

Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021; 80: 100866.

[14]

Jager MJ, Dogrusöz M, Woodman SE. Uveal melanoma: identifying immunological and chemotherapeutic targets to treat metastases. Asia-Pac J Ophthalmol. 2017; 6(2): 179-185.

[15]

Lyu C, Bing SJ, Wandu WS, et al. TMP778, a selective inhibitor of RORgammat, suppresses experimental autoimmune uveitis development, but affects both Th17 and Th1 cell populations. Eur J Immunol. 2018; 48(11): 1810-1816.

[16]

Su W, Chen X, Zhu W, et al. The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells. J Immunol. 2019; 203(6): 1436-1446.

[17]

Chi W, Yang P, Li B, et al. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J Allergy Clin Immunol. 2007; 119(5): 1218-1224.

[18]

Chi W, Zhu X, Yang P, et al. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008; 49(7): 3058-3064.

[19]

Chi W, Yang P, Zhu X, et al. Production of interleukin-17 in Behcet’s disease is inhibited by cyclosporin A. Mol Vis. 2010; 16: 880-886.

[20]

Yang Y, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016; 7: 11385.

[21]

Rana AK, Li Y, Dang Q, Yang F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol. 2018; 65: 348-359.

[22]

Zhou H, Zhao X, Chen Y. Plasma cytokine profiles in patients with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Asia-Pac J Ophthalmol. 2022; 11(6): 536-542.

[23]

Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015; 163(4): 799-810.

[24]

Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018; 18(1): 35-45.

[25]

Ong SM, Teng K, Newell E, et al. A novel, five-marker alternative to CD16-CD14 gating to identify the three human monocyte subsets. Front Immunol. 2019; 10: 1761.

[26]

Shao W, Tang J, Song W, et al. CCL3L1 and CCL4L1: variable gene copy number in adolescents with and without human immunodeficiency virus type 1 (HIV-1) infection. Genes Immun. 2007; 8(3): 224-231.

[27]

Mortier A, Gouwy M, Van Damme J, Proost P, Struyf S. CD26/dipeptidylpeptidase IV—chemokine interactions: double-edged regulation of inflammation and tumor biology. J Leukocyte Biol. 2016; 99(6): 955-969.

[28]

Jinglei L, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019; 11(18): 7830-7846.

[29]

Hu Y, Hu Y, Xiao Y, et al. Genetic landscape and autoimmunity of monocytes in developing Vogt-Koyanagi-Harada disease. Proc Natl Acad Sci USA. 2020; 117(41): 25712-25721.

[30]

Jain R, Chen Y, Kanno Y, et al. Interleukin-23-induced transcription factor blimp-1 promotes pathogenicity of T helper 17 cells. Immunity. 2016; 44(1): 131-142.

[31]

Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol. 2018; 9: 1298.

[32]

Tang-Huau T-L, Gueguen P, Goudot C, et al. Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun. 2018; 9(1).

[33]

Nishida M, Saegusa J, Tanaka S, Morinobu A. S100A12 facilitates osteoclast differentiation from human monocytes. PLoS One. 2018; 13(9): e0204140.

[34]

Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017; 356(6335): eaah4573.

[35]

Lee YJ, Horie Y, Wallace GR, et al. Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet’s disease. Ann Rheum Dis. 2013; 72(9): 1510-1516.

[36]

Owada T, Kurasawa K, Endou H, Fujita T, Anzai N, Hayashi K. LAT1-specific inhibitor ameliorates severe autoimmune arthritis in SKG mouse. Int Immunopharmacol. 2022; 109: 108817.

[37]

Li JQ, Tian JM, Fan XR, et al. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway. Cell Cycle. 2020; 19(11): 1265-1274.

[38]

Lu S, Lu P. Comprehensive LncRNA and potential molecular mechanism analysis in noninfectious uveitis. Transl Vis Sci Technol. 2023; 12(3): 2.

[39]

Lin HJ, Wei CC, Chang CY, et al. Role of chronic inflammation in myopia progression: clinical evidence and experimental validation. EBioMedicine. 2016; 10: 269-281.

[40]

Wang Y, Zhang Z, Zhang L, et al. S100A8 promotes migration and infiltration of inflammatory cells in acute anterior uveitis. Sci Rep. 2016; 6: 36140.

[41]

Liu L, Yu Y, Hu LL, et al. Potential target genes in the development of atrial fibrillation: a comprehensive bioinformatics analysis. Med Sci Monit. 2021; 27: e928366.

[42]

Hiddingh S, Pandit A, Verhagen F, et al. Transcriptome network analysis implicates CX3CR1-positive type 3 dendritic cells in non-infectious uveitis. eLife. 2023; 12.

[43]

Yang Y, Ding R, Wang R. Identification of candidate targets and mechanisms involved in miRNA regulation in multiple myeloma. World J Surg Oncol. 2022; 20(1): 23.

[44]

Takeuchi M, Mizuki N, Ohno S. Pathogenesis of non-infectious uveitis elucidated by recent genetic findings. Front Immunol. 2021; 12: 640473.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/