Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel–Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation

Fuyan Xu , Jiao Li , Min Ai , Tingting Zhang , Yue Ming , Cong Li , Wenchen Pu , Yang Yang , Zhang Li , Yucheng Qi , Xiaomin Xu , Qingxiang Sun , Zhu Yuan , Yong Xia , Yong Peng

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e758

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e758 DOI: 10.1002/mco2.758
ORIGINAL ARTICLE

Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel–Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation

Author information +
History +
PDF

Abstract

Melanoma’s high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood–brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel–Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin–proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF’s potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.

Keywords

brain metastasis / cancerous inhibitor of protein phosphatase 2a / melanoma / ubiquitination / von Hippel–Lindau tumor suppressor

Cite this article

Download citation ▾
Fuyan Xu, Jiao Li, Min Ai, Tingting Zhang, Yue Ming, Cong Li, Wenchen Pu, Yang Yang, Zhang Li, Yucheng Qi, Xiaomin Xu, Qingxiang Sun, Zhu Yuan, Yong Xia, Yong Peng. Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel–Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation. MedComm, 2024, 5(10): e758 DOI:10.1002/mco2.758

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Makawita S, Tawbi HA. Nonsurgical management of melanoma brain metastasis: current therapeutics, challenges, and strategies for progress. Am Soc Clin Oncol Educ Book. 2021; 41: 79-90.

[2]

Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XH. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019; 49(3): 375-391.

[3]

Cohen JV, Tawbi H, Margolin KA, et al. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res. 2016; 29(6): 627-642.

[4]

Fares J, Kanojia D, Cordero A, et al. Current state of clinical trials in breast cancer brain metastases. Neuro-Oncol Pract. 2019; 6(5): 392-401.

[5]

Braeuer RR, Watson IR, Wu CJ, et al. Why is melanoma so metastatic. Pigment Cell Melanoma Res. 2014; 27(1): 19-36.

[6]

Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020; 16(12): 661-673.

[7]

Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020; 72(9): 1145-1151.

[8]

Palve V, Liao Y, Remsing Rix LL, et al. Turning liabilities into opportunities: off-target based drug repurposing in cancer. Semin Cancer Biol. 2021; 68: 209-229.

[9]

Fond G, Macgregor A, Attal J, et al. Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypotheses. 2012; 79(1): 38-42.

[10]

Dalton SO, Johansen C, Poulsen AH, et al. Cancer risk among users of neuroleptic medication: a population-based cohort study. Br J Cancer. 2006; 95(7): 934-939.

[11]

Jhou AJ, Chang HC, Hung CC, et al. Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer. Biochem Pharmacol. 2021; 184: 114403.

[12]

Feng Z, Xia Y, Gao T, et al. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis. 2018; 9(10): 1006.

[13]

Xu F, Xia Y, Feng Z, et al. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am J Cancer Res. 2019; 9(3): 459-478.

[14]

Zheng C, Yu X, Liang Y, et al. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B. 2022; 12(3): 1271-1287.

[15]

Hung WY, Chang JH, Cheng Y, et al. Autophagosome accumulation-mediated ATP energy deprivation induced by penfluridol triggers nonapoptotic cell death of lung cancer via activating unfolded protein response. Cell Death Dis. 2019; 10(8): 538.

[16]

Dandawate P, Kaushik G, Ghosh C, et al. Diphenylbutylpiperidine antipsychotic drugs inhibit prolactin receptor signaling to reduce growth of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2020; 158(5): 1433-1449.

[17]

Ranjan A, Gupta P, Srivastava SK. Penfluridol: an antipsychotic agent suppresses metastatic tumor growth in triple-negative breast cancer by inhibiting integrin signaling axis. Cancer Res. 2016; 76(4): 877-890.

[18]

Andrabi S, Gjoerup OV, Kean JA, Roberts TM, Schaffhausen B. Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner. Proc Natl Acad Sci U S A. 2007; 104(48): 19011-19016.

[19]

De Marco Zompit M, Esteban MT, Mooser C, et al. The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nat Commun. 2022; 13(1): 4143.

[20]

Wang J, Okkeri J, Pavic K, et al. Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56. EMBO Rep. 2017; 18(3): 437-450.

[21]

Pavic K, Gupta N, Omella JD, et al. Structural mechanism for inhibition of PP2A-B56α and oncogenicity by CIP2A. Nat Commun. 2023; 14(1): 1143.

[22]

Sablina AA, Hahn WC. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev. 2008; 27(2): 137-146.

[23]

Chen B, Hu H, Chen X. From basic science to clinical practice: the role of cancerous inhibitor of protein phosphatase 2A (CIP2A)/p90 in cancer. Front Genet. 2023; 14: 1110656.

[24]

Nagelli S, Westermarck J. CIP2A coordinates phosphosignaling, mitosis, and the DNA damage response. Trends Cancer. 2024; 10(1): 52-64.

[25]

Junttila MR, Puustinen P, Niemelä M, et al. CIP2A inhibits PP2A in human malignancies. Cell. 2007; 130(1): 51-62.

[26]

Shi F, Ding Y, Ju S, Wu X, Cao S. Expression and prognostic significance of CIP2A in cutaneous malignant melanoma. Biomarkers. 2014; 19(1): 70-76.

[27]

Flørenes VA, Emilsen E, Dong HP, Førsund M, Holm R, Slipicevic A. Cellular localization of CIP2A determines its prognostic impact in superficial spreading and nodular melanoma. Cancer Med. 2015; 4(6): 903-913.

[28]

Soofiyani SR, Hejazi MS, Baradaran B. The role of CIP2A in cancer: a review and update. Biomed Pharmacother. 2017; 96: 626-633.

[29]

Rusilowicz-Jones EV, Urbé S, Clague MJ. Protein degradation on the global scale. Mol Cell. 2022; 82(8): 1414-1423.

[30]

Zou T, Lin Z. The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int J Mol Sci. 2021; 22(11): 5754.

[31]

Yuan T, Yan F, Ying M, et al. Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol. 2018; 9: 1080.

[32]

Liu Z, Hu M, Yang Y, et al. An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 2022; 3(1): 46.

[33]

Lin YC, Chen KC, Chen CC, Cheng AL, Chen KF. CIP2A-mediated Akt activation plays a role in bortezomib-induced apoptosis in head and neck squamous cell carcinoma cells. Oral Oncol. 2012; 48(7): 585-593.

[34]

Yu HC, Chen HJ, Chang YL, et al. Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma. Biochem Pharmacol. 2013; 85(3): 356-366.

[35]

Elgendy M, Cirò M, Hosseini A, et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell. 2019; 35(5): 798-815.

[36]

Denk S, Schmidt S, Schurr Y, et al. CIP2A regulates MYC translation (via its 5’UTR) in colorectal cancer. Int J Colorectal Dis. 2021; 36(5): 911-918.

[37]

Ranjan A, Srivastava SK. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget. 2017; 8(20): 32960-32976.

[38]

Li J, Pu W, Sun HL, et al. Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death Differ. 2018; 25(9): 1612-1624.

[39]

Cazzoli R, Romeo F, Pallavicini I, et al. Endogenous PP2A inhibitor CIP2A degradation by chaperone-mediated autophagy contributes to the antitumor effect of mitochondrial complex I inhibition. Cell Rep. 2023; 42(6): 112616.

[40]

Liu Z, Ma L, Wen ZS, et al. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis. 2014; 35(4): 905-914.

[41]

Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995; 269(5229): 1402-1406.

[42]

Ranjan A, Srivastava SK. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016; 6: 26165.

[43]

Li J, Zhou JK, Mu X, et al. Regulation of XPO5 phosphorylation by PP2A in hepatocellular carcinoma. MedComm. 2022; 3(2): e125.

[44]

Okada C, Yamashita E, Lee SJ, et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009; 326(5957): 1275-1279.

[45]

Chen C, Qin H, Tan J, Hu Z, Zeng L. The role of ubiquitin–proteasome pathway and autophagy–lysosome pathway in cerebral ischemia. Oxid Med Cell Longev. 2020; 2020: 5457049.

[46]

Kawahata I, Fukunaga K. Degradation of tyrosine hydroxylase by the ubiquitin–proteasome system in the pathogenesis of Parkinson’s disease and dopa-responsive dystonia. Int J Mol Sci. 2020; 21(11): 3779.

[47]

Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel–Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev. 2022; 51(19): 8216-8257.

[48]

Stebbins CE, Kaelin WG, Pavletich NP. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science. 1999; 284(5413): 455-461.

[49]

Iwai K, Yamanaka K, Kamura T, et al. Identification of the von Hippel–Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A. 1999; 96(22): 12436-12441.

[50]

Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol. 2000; 2(7): 423-427.

[51]

Fang Y, Wang S, Han S, et al. Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends Pharmacol Sci. 2023; 44(5): 303-317.

[52]

Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017; 16(2): 101-114.

[53]

Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem. 2021; 64(15): 10606-10620.

[54]

Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: progressing toward a new dream. Cell Chem Biol. 2024; 31(6): 1064-1088.

[55]

Vennepureddy A, Thumallapally N, Motilal Nehru V, Atallah JP, Terjanian T. Novel drugs and combination therapies for the treatment of metastatic melanoma. J Clin Med Res. 2016; 8(2): 63-75.

[56]

Ascierto PA, Ferrucci PF, Fisher R, et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med. 2019; 25(6): 941-946.

[57]

Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017; 377(14): 1345-1356.

[58]

Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018; 19(5): 672-681.

[59]

Liu X, Chai Y, Li J, et al. Autoantibody response to a novel tumor-associated antigen p90/CIP2A in breast cancer immunodiagnosis. Tumour Biol. 2014; 35(3): 2661-2667.

[60]

Mäkelä E, Pavic K, Varila T, et al. Discovery of a novel CIP2A variant (NOCIVA) with clinical relevance in predicting TKI resistance in myeloid leukemias. Clin Cancer Res. 2021; 27(10): 2848-2860.

[61]

Lowery FJ, Yu D. Brain metastasis: unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer. 2017; 1867(1): 49-57.

[62]

Liu K, Jiang L, Shi Y, et al. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ. 2022; 29(9): 1834-1849.

[63]

Chien W, Sun QY, Lee KL, et al. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol. 2015; 9(4): 889-905.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/