Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies

Yunuo Yang , Jiaxuan Wu , Wenjun Zhou , Guang Ji , Yanqi Dang

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e752

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e752 DOI: 10.1002/mco2.752
REVIEW

Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies

Author information +
History +
PDF

Abstract

Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.

Keywords

diabetes mellitus / hyperlipidemia / nonalcoholic fatty liver disease / obesity / protein posttranslational modification

Cite this article

Download citation ▾
Yunuo Yang, Jiaxuan Wu, Wenjun Zhou, Guang Ji, Yanqi Dang. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm, 2024, 5(10): e752 DOI:10.1002/mco2.752

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cani PD. Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol. 2019; 15(2): 69-70.

[2]

Garus-Pakowska A. Metabolic diseases—a challenge for public health in the 21st century. Int J Environ Res Public Health. 2023; 20(18): 6789.

[3]

Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019; 157: 107843.

[4]

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018; 17(1): 83.

[5]

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2): 88-98.

[6]

Ghaus S, Ahsan T, Sohail E, Erum U, Aijaz W. Burden of elevated body mass index and its association with non-communicable diseases in patients presenting to an endocrinology clinic. Cureus. 2021; 13(2): e13471.

[7]

Ahmed B, Konje JC. The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol. 2023; 89: 102342.

[8]

Armoon B, Karimy M. Epidemiology of childhood overweight, obesity and their related factors in a sample of preschool children from Central Iran. BMC Pediatr. 2019; 19(1): 159.

[9]

Jebeile H, Kelly AS, O’Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022; 10(5): 351-365.

[10]

Vital signs: prevalence, treatment, and control of high levels of low-density lipoprotein cholesterol–United States, 1999–2002 and 2005–200. MMWR Morb Mortal Wkly Rep. 2011; 60(4): 109-114.

[11]

Godoy-Matos AF, Silva Junior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020; 12: 60.

[12]

Wong VW, Ekstedt M, Wong GL, Hagstrom H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023; 79(3): 842-852.

[13]

Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol. 2019; 70(3): 531-544.

[14]

Rojas YAO, Cuellar CLV, Barron KMA, Arab JP, Miranda AL. Non-alcoholic fatty liver disease prevalence in Latin America: A systematic review and meta-analysis. Ann Hepatol. 2022; 27(6): 100706.

[15]

Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018; 15(1): 11-20.

[16]

Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus—mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021; 18(9): 599-612.

[17]

Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019; 71(4): 793-801.

[18]

Quek J, Chan KE, Wong ZY, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023; 8(1): 20-30.

[19]

Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020; 126(11): 1477-1500.

[20]

Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019; 29(5): 1028-1044.

[21]

Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med. 2023; 29(1): 93.

[22]

Millan-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications—cause and consequence of genome function. Nat Rev Genet. 2022; 23(9): 563-580.

[23]

Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015; 10(1): 95-108.

[24]

Chader GJ, Fletcher RT, O’Brien PJ, Krishna G. Differential phosphorylation by GTP and ATP in isolated rod outer segments of the retina. Biochemistry. 1976; 15(8): 1615-1620.

[25]

Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci. 2012; 367(1602): 2540-2555.

[26]

Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012; 81: 203-229.

[27]

Kliza K, Husnjak K. Resolving the complexity of ubiquitin networks. Front Mol Biosci. 2020; 7: 21.

[28]

Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019; 20(3): 156-174.

[29]

Dai X, Ren T, Zhang Y, Nan N. Methylation multiplicity and its clinical values in cancer. Expert Rev Mol Med. 2021; 23: e2.

[30]

Biggar KK, Li SS-C. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015; 16(1): 5-17.

[31]

Sheng Z, Zhu J, Deng YN, Gao S, Liang S. SUMOylation modification-mediated cell death. Open Biol. 2021; 11(7): 210050.

[32]

Chang HM, Yeh ETH. SUMO: from bench to bedside. Physiol Rev. 2020; 100(4): 1599-1619.

[33]

Sahin U, de Thé H, Lallemand-Breitenbach V. Sumoylation in Physiology, Pathology and Therapy. Cells. 2022; 11(5): 814.

[34]

Eichler J. Protein glycosylation. Curr Biol. 2019; 29(7): R229-R231.

[35]

Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011; 7(1): 58-63.

[36]

Yang Y, Gibson GE. Succinylation links metabolism to protein functions. Neurochem Res. 2019; 44(10): 2346-2359.

[37]

Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011; 146(6): 1016-1028.

[38]

Yu H, Bu C, Liu Y, et al. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair. Sci Adv. 2020; 6(11): eaay4697.

[39]

Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, et al. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech. 2016; 9(6): 633-645.

[40]

Sabari BR, Tang Z, Huang H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015; 58(2): 203-215.

[41]

Fang Y, Xu X, Ding J, et al. Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell. 2021; 28(4): 748-763. e7.

[42]

Jiang G, Li C, Lu M, Lu KA-O, Li HA-O. Protein lysine crotonylation: past, present, perspective. Cell Death Dis. 2021; 12(7): 703.

[43]

Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011; 10(12):

[44]

Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. Int J Biol Sci. 2021; 17(15): 4223-4237.

[45]

Paul BD, Snyder SH. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci. 2015; 40(11): 687-700.

[46]

Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-translational modifications and diabetes. Biomolecules. 2024; 14(3): 310.

[47]

Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013; 9(1): 25-53.

[48]

Rorsman P, Ashcroft FM. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018; 98(1): 117-214.

[49]

DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004; 88(4): 787-835. ix.

[50]

Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018; 19(10): 654-672.

[51]

Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012; 55(10): 2565-2582.

[52]

Siragusa M, Oliveira Justo AF, Malacarne PF, et al. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res. 2021; 117(6): 1546-1556.

[53]

Lv F, Wang Y, Shan D, et al. Blocking MG53(S255) phosphorylation protects diabetic heart from ischemic injury. Circ Res. 2022; 131(12): 962-976.

[54]

Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother. 2022; 146: 112563.

[55]

Vlavcheski F, Baron D, Vlachogiannis IA, MacPherson REK, Tsiani E. Carnosol increases skeletal muscle cell glucose uptake via AMPK-dependent GLUT4 glucose transporter translocation. Int J Mol Sci. 2018; 19(5): 1321.

[56]

Li S, Huang Q, Zhang L, et al. Effect of CAPE-pNO(2) against type 2 diabetes mellitus via the AMPK/GLUT4/GSK3beta/PPARalpha pathway in HFD/STZ-induced diabetic mice. Eur J Pharmacol. 2019; 853: 1-10.

[57]

Jeong HY, Kang JM, Jun HH, et al. Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy. Sci Rep. 2018; 8(1): 8774.

[58]

Jiang P, Ren L, Zhi L, et al. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol Cell. 2021; 81(3): 629-637. e5.

[59]

Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013; 123(11): 4888-4899.

[60]

Dai X, Jiang C, Jiang Q, et al. AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation. Nat Metab. 2023; 5(2): 265-276.

[61]

Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014; 20(11): 1242-1253.

[62]

Liu Z, Wang P, Zhao Y, Po Lai K, Li R. Biomedical importance of the ubiquitin-proteasome system in diabetes and metabolic transdifferentiation of pancreatic duct epithelial cells into β-cells. Gene. 2023; 858: 147191.

[63]

Shruthi K, Reddy SS, Reddy GB. Ubiquitin-proteasome system and ER stress in the retina of diabetic rats. Arch Biochem Biophys. 2017; 627: 10-20.

[64]

Uruno A, Yagishita Y, Yamamoto M. The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys. 2015; 566: 76-84.

[65]

Costes S, Huang CJ, Gurlo T, et al. β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide-induced UCH-L1 deficiency. Diabetes. 2011; 60(1): 227-238.

[66]

Xie SY, Liu SQ, Zhang T, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart. Circulation. 2023; 149(9): 684-706.

[67]

Marfella R, D’Amico M, Esposito K, et al. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes. 2006; 55(3): 622-632.

[68]

Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005; 21(5): 416-433.

[69]

Soutoglou E, Katrakili N, Talianidis I. Acetylation regulates transcription factor activity at multiple levels. Mol Cell. 2000; 5(4): 745-751.

[70]

Párrizas M, Maestro MA, Boj SF, et al. Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol. 2001; 21(9): 3234-3243.

[71]

Gerrish K, Van Velkinburgh Jc Fau - Stein R, Stein R. Conserved transcriptional regulatory domains of the pdx-1 gene. Mol Endocrinol. 2004; 18(3): 533-548.

[72]

Barbacci E, Chalkiadaki A, Masdeu C, et al. HNF1beta/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum Mol Genet. 2004; 13(24): 3139-3149.

[73]

Qiu Y, Guo M Fau-Huang S, Huang S Fau-Stein R, Stein R. Acetylation of the BETA2 transcription factor by p300-associated factor is important in insulin gene expression. J Biol Chem. 2004; 279(11): 9796-9802.

[74]

Gupta P, Sharma G, Lahiri A, Barthwal MK. FOXO3a acetylation regulates PINK1, mitophagy, inflammasome activation in murine palmitate-conditioned and diabetic macrophages. J Leukoc Biol. 2022; 111(3): 611-627.

[75]

Liu M, Liang K, Zhen J, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017; 8(1): 413.

[76]

Zhou C, Zhang Y, Jiao X, Wang G, Wang R, Wu Y. SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats. Reg Anesth Pain Med. 2021; 46(1): 49-56.

[77]

Vahtola E, Louhelainen M, Merasto S, et al. Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens. 2008; 26(2): 334-344.

[78]

Hammer SS, Vieira CP, McFarland D, et al. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia. 2021; 64(7): 1674-1689.

[79]

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434(7029): 113-118.

[80]

Xu J, Li Y, Lou M, et al. Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production. Pharmacol Res. 2018; 136: 62-73.

[81]

Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458(7241): 1056-1060.

[82]

Liao W, Xu N, Zhang H, et al. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Clin Transl Med. 2022; 12(2): e699.

[83]

Watala C, Pluta J, Golanski J, et al. Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. J Mol Med (Berl). 2005; 83(2): 148-158.

[84]

Stamateris RE, Landa-Galvan HV, Sharma RB, et al. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest. 2023; 133(18): e166490.

[85]

Pessoa Rodrigues C, Chatterjee A, Wiese M, et al. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun. 2021; 12(1): 6212.

[86]

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020; 16(7): 377-390.

[87]

Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001; 44(Suppl 2): S14-S21.

[88]

Komers R, Mar D, Denisenko O, Xu B, Oyama TT, Bomsztyk K. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab Invest. 2013; 93(5): 543-552.

[89]

Paneni F, Costantino S, Battista R, et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet. 2015; 8(1): 150-158.

[90]

Kimball AS, Davis FM, denDekker A, et al. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity. 2019; 51(2): 258-271. e5.

[91]

Tu P, Li X, Ma B, et al. Liver histone H3 methylation and acetylation may associate with type 2 diabetes development. J Physiol Biochem. 2015; 71(1): 89-98.

[92]

Agarwal N, Taberner FJ, Rangel Rojas D, et al. SUMOylation of enzymes and ion channels in sensory neurons protects against metabolic dysfunction, neuropathy, and sensory loss in diabetes. Neuron. 2020; 107(6): 1141-1159. e7.

[93]

Wang T, Wu J, Dong W, et al. The MEK inhibitor U0126 ameliorates diabetic cardiomyopathy by restricting XBP1’s phosphorylation dependent SUMOylation. Int J Biol Sci. 2021; 17(12): 2984-2999.

[94]

MacDonald PE. A post-translational balancing act: the good and the bad of SUMOylation in pancreatic islets. Diabetologia. 2018; 61(4): 775-779.

[95]

Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 2019; 593(13): 1598-1615.

[96]

Vlassara H. Chronic diabetic complications and tissue glycosylation. Relevant concern for diabetes-prone black population. Diabetes Care. 1990; 13(11): 1180-1185.

[97]

Memarian E, t Hart LM, Slieker RC, et al. Plasma protein N-glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes. BMJ Open Diabetes Res Care. 2021; 9(1): e002345.

[98]

Singh SS, Naber A, Dotz V, et al. Metformin and statin use associate with plasma protein N-glycosylation in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2020; 8(1): e001230.

[99]

Frizzell N, Lima M, Baynes JW. Succination of proteins in diabetes. Free Radic Res. 2011; 45(1): 101-109.

[100]

Chen Y, Liu Y, Sarker MMR, et al. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydr Polym. 2018; 198: 452-461.

[101]

The L. GBD 2017: a fragile world. Lancet. 2018; 392(10159): 1683.

[102]

Du Y, Cai T, Li T, et al. Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins. Mol Cell Proteomics. 2015; 14(1): 227-236.

[103]

Zou L, Yang Y, Wang Z, et al. Lysine malonylation and its links to metabolism and diseases. Aging Dis. 2023; 14(1): 84-98.

[104]

Nie L, Shuai L, Zhu M, et al. The landscape of histone modifications in a high-fat diet-induced obese (DIO) mouse model. Mol Cell Proteomics. 2017; 16(7): 1324-1334.

[105]

Graham TE, Kahn BB. Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes. Horm Metab Res. 2007; 39(10): 717-721.

[106]

Du K, Murakami S, Sun Y, Kilpatrick CL, Luscher B. DHHC7 palmitoylates glucose transporter 4 (Glut4) and regulates Glut4 membrane translocation. J Biol Chem. 2017; 292(7): 2979-2991.

[107]

Wei X, Yang Z, Rey FE, et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe. 2012; 11(2): 140-152.

[108]

Sun HJ, Xiong SP, Cao X, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 2021; 38: 101813.

[109]

Xie L, Gu Y, Wen M, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 2016; 65(10): 3171-3184.

[110]

Ishizawa K, Wang Q, Li J, et al. Inhibition of sodium glucose cotransporter 2 attenuates the dysregulation of Kelch-Like 3 and NaCl cotransporter in obese diabetic mice. J Am Soc Nephrol. 2019; 30(5): 782-794.

[111]

Schaub JA, AlAkwaa FM, McCown PJ, et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J Clin Invest. 2023; 133(5): e164486.

[112]

Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018; 15: 335-346.

[113]

Koyani CN, Plastira I, Sourij H, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020; 158: 104870.

[114]

Aung MM, Slade K, Freeman LAR, et al. Locally delivered GLP-1 analogues liraglutide and exenatide enhance microvascular perfusion in individuals with and without type 2 diabetes. Diabetologia. 2019; 62(9): 1701-1711.

[115]

Samson SL, Sathyanarayana P, Jogi M, et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia. 2011; 54(12): 3093-100.

[116]

Su K, Yi B, Yao BQ, et al. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol Res. 2020; 156: 104778.

[117]

Koska J, Lopez L, D’Souza K, et al. Effect of liraglutide on dietary lipid-induced insulin resistance in humans. Diabetes Obes Metab. 2018; 20(1): 69-76.

[118]

Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019; 7(10): 776-785.

[119]

Zhu D, Gan S, Liu Y, et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol. 2018; 6(8): 627-636.

[120]

Zhu D, Li X, Ma J, et al. Dorzagliatin in drug-naïve patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med. 2022; 28(5): 965-973.

[121]

Yang W, Zhu D, Gan S, et al. Dorzagliatin add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med. 2022; 28(5): 974-981.

[122]

Zhang Y, Thai K, Jin T, Woo M, Gilbert RE. SIRT1 activation attenuates α cell hyperplasia, hyperglucagonaemia and hyperglycaemia in STZ-diabetic mice. Sci Rep. 2018; 8(1): 13972.

[123]

Gilbert RE, Thai K, Advani SL, et al. SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia. 2015; 58(4): 819-827.

[124]

Toupchian O, Abdollahi S, Salehi-Abargouei A, et al. The effects of resveratrol supplementation on PPARα p16, p53, p21 gene expressions, and sCD163/sTWEAK ratio in patients with type 2 diabetes mellitus: a double-blind controlled randomized trial. Phytother Res. 2021; 35(6): 3205-3213.

[125]

Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444(7117): 337-342.

[126]

Han W, Wang C, Yang Z, et al. SRT1720 retards renal fibrosis via inhibition of HIF1α /GLUT1 in diabetic nephropathy. J Endocrinol. 2019.

[127]

Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8(5): 347-358.

[128]

Jiang J, Au M, Lu K, et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells. 2007; 25(8): 1940-1953.

[129]

Moon HR, Yun JM. Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes. Nutr Res Pract. 2023; 17(1): 164-173.

[130]

Helker CSM, Mullapudi ST, Mueller LM, et al. A whole organism small molecule screen identifies novel regulators of pancreatic endocrine development. Development. 2019; 146(14): dev172569.

[131]

Chen Y, Zhao X, Wu H. Metabolic stress and cardiovascular disease in diabetes mellitus: the role of protein O-GlcNAc modification. Arterioscler Thromb Vasc Biol. 2019; 39(10): 1911-1924.

[132]

Jeon JH, Suh HN, Kim MO, Ryu JM, Han HJ. Glucosamine-induced OGT activation mediates glucose production through cleaved Notch1 and FoxO1, which coordinately contributed to the regulation of maintenance of self-renewal in mouse embryonic stem cells. Stem Cells Dev. 2014; 23(17): 2067-2079.

[133]

Han J, Li E, Chen L, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature. 2015; 524(7564): 243-246.

[134]

Lu B, Bridges D, Yang Y, et al. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity. Diabetes. 2014; 63(9): 2935-2948.

[135]

Chu H, Du C, Yang Y, et al. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway. Toxins (Basel). 2022; 14(12): 833.

[136]

Choi SE, Kwon S, Seok S, et al. Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Mol Cell Biol. 2017; 37(15): e00006.

[137]

Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem. 2011; 286(25): 22227-22234.

[138]

Chang C, Su H, Zhang D, et al. AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell. 2015; 60(6): 930-940.

[139]

Wu D, Qiu Y, Gao X, Yuan XB, Zhai Q. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. PLoS One. 2011; 6(6): e21759.

[140]

Hiraike Y, Saito K, Oguchi M, et al. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc Natl Acad Sci USA. 2023; 120(31): e2308750120.

[141]

Yang X, Liu Q, Li Y, et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte. 2020; 9(1): 484-494.

[142]

Desjardins EM, Smith BK, Day EA, et al. The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids. Proc Natl Acad Sci USA. 2022; 119(48): e2119824119.

[143]

Hwang MS, Baek JH, Song JK, Lee IH, Chun KH. Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases. BMB Rep. 2023; 56(4): 246-251.

[144]

Cederquist CT, Lentucci C, Martinez-Calejman C, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2016; 6(1): 125-137.

[145]

Mukherjee S, Chakraborty M, Msengi EN, et al. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab. 2023; 75: 101767.

[146]

Ai L, Wang X, Chen Z, et al. A20 reduces lipid storage and inflammation in hypertrophic adipocytes via p38 and Akt signaling. Mol Cell Biochem. 2016; 420(1-2): 73-83.

[147]

Ding L, Zhang L, Biswas S, et al. Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling. JCI Insight. 2017; 2(22): e95687.

[148]

Wang Q, Li H, Tajima K, et al. Post-translational control of beige fat biogenesis by PRDM16 stabilization. Nature. 2022; 609(7925): 151-158.

[149]

Kim MS, Baek JH, Lee J, Sivaraman A, Lee K, Chun KH. Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation. Cell Death Dis. 2023; 14(11): 776.

[150]

Iyer A, Fairlie DP, Brown L. Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol. 2012; 90(1): 39-46.

[151]

Qiang L, Wang L, Kon N, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell. 2012; 150(3): 620-632.

[152]

Taghizadeh N, Mohammadi S, Yousefi Z, et al. Assessment of global histone acetylation in pediatric and adolescent obesity: Correlations with SIRT1 expression and metabolic-inflammatory profiles. PLoS One. 2023; 18(10): e0293217.

[153]

Mayoral R, Osborn O, McNelis J, et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol Metab. 2015; 4(5): 378-391.

[154]

Kwon S, Seok S, Yau P, Li X, Kemper B, Kemper JK. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. J Biol Chem. 2017; 292(42): 17312-17323.

[155]

He Y, B’Nai Taub A, Yu L, et al. PPARγ acetylation orchestrates adipose plasticity and metabolic rhythms. Adv Sci (Weinh). 2023; 10(2): e2204190.

[156]

Wang S, Lin Y, Gao L, et al. PPAR-γ integrates obesity and adipocyte clock through epigenetic regulation of Bmal1. Theranostics. 2022; 12(4): 1589-1606.

[157]

He Y, Zhang R, Yu L, et al. PPARγ acetylation in adipocytes exacerbates BAT whitening and worsens age-associated metabolic dysfunction. Cells. 2023; 12(10): 1424.

[158]

Ma QX, Zhu WY, Lu XC, et al. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16. Nat Metab. 2022; 4(1): 106-122.

[159]

Tu R, Liu X, Dong X, et al. Janus kinase 2 (JAK2) methylation and obesity: a Mendelian randomization study. Nutr Metab Cardiovasc Dis. 2021; 31(12): 3484-3491.

[160]

Lee JE, Wang C, Xu S, et al. H3K4 mono-and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife. 2013; 2: e01503.

[161]

Kraus D, Yang Q, Kong D, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014; 508(7495): 258-262.

[162]

Shin HJ, Kim H, Oh S, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016; 534(7608): 553-557.

[163]

Xie H, Wang YH, Liu X, et al. SUMOylation of ERp44 enhances Ero1α ER retention contributing to the pathogenesis of obesity and insulin resistance. Metabolism. 2023; 139: 155351.

[164]

Lee JS, Chae S, Nan J, et al. SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Rep. 2022; 38(8): 110408.

[165]

Zheng Q, Cao Y, Chen Y, et al. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1. J Mol Cell Biol. 2018; 10(3): 258-266.

[166]

Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013; 59(3): 583-594.

[167]

Monden M, Koyama H, Otsuka Y, et al. Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2. Diabetes. 2013; 62(2): 478-489.

[168]

Paone P, Suriano F, Jian C, et al. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes. 2022; 14(1): 2152307.

[169]

Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009; 360(15): 1509-1517.

[170]

Wang G, Meyer JG, Cai W, et al. Regulation of UCP1 and mitochondrial metabolism in brown adipose tissue by reversible succinylation. Mol Cell. 2019; 74(4): 844-857. e7.

[171]

Zhang C, He X, Sheng Y, et al. Allicin regulates energy homeostasis through brown adipose tissue. iScience. 2020; 23(5): 101113.

[172]

Yang L, Lin W, Nugent CA, et al. Lingguizhugan decoction protects against high-fat-diet-induced nonalcoholic fatty liver disease by alleviating oxidative stress and activating cholesterol secretion. Int J Genomics. 2017; 2017: 2790864.

[173]

Tian D, Zeng X, Gong Y, Zheng Y, Zhang J, Wu Z. HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. Cell Signal. 2023; 111: 110875.

[174]

Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013; 19(12): 1649-1654.

[175]

Zhu S, Batushansky A, Jopkiewicz A, et al. Sirt5 deficiency causes posttranslational protein malonylation and dysregulated cellular metabolism in chondrocytes under obesity conditions. Cartilage. 2021; 13(2_suppl): 1185s-1199s.

[176]

Hao JW, Wang J, Guo H, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020; 11(1): 4765.

[177]

Ding Y, Wang H, Geng B, Xu G. Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase/hydrogen sulfide on adipocyte lipolysis. Biochem Biophys Res Commun. 2020; 521(3): 786-790.

[178]

Finlin BS, Memetimin H, Confides AL, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018; 3(15): e121510.

[179]

Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021; 384(11): 989-1002.

[180]

Chen X, Chen S, Li Z, et al. Effect of semaglutide and empagliflozin on cognitive function and hippocampal phosphoproteomic in obese mice. Front Pharmacol. 2023; 14: 975830.

[181]

Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. Jama. 2022; 327(2): 138-150.

[182]

Miranda MX, van Tits LJ, Lohmann C, et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/-mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. 2015; 36(1): 51-59.

[183]

Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011; 14(5): 612-622.

[184]

Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127(6): 1109-1122.

[185]

Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010; 120(12): 4316-4331.

[186]

Chen YY, Hong H, Lei YT, Zou J, Yang YY, He LY. IκB kinase promotes Nrf2 ubiquitination and degradation by phosphorylating cylindromatosis, aggravating oxidative stress injury in obesity-related nephropathy. Mol Med. 2021; 27(1): 137.

[187]

Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 2021; 11: 634780.

[188]

Voisin M, Shrestha E, Rollet C, et al. Inhibiting LXRalpha phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021; 4(1): 420.

[189]

Gage MC, Becares N, Louie R, et al. Disrupting LXRalpha phosphorylation promotes FoxM1 expression and modulates atherosclerosis by inducing macrophage proliferation. Proc Natl Acad Sci USA. 2018; 115(28): E6556-E6565.

[190]

Calderin EP, Zheng JJ, Boyd NL, et al. Exercise-induced specialized proresolving mediators stimulate AMPK phosphorylation to promote mitochondrial respiration in macrophages. Mol Metab. 2022; 66: 101637.

[191]

Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011; 13(4): 376-388.

[192]

Hu HJ, Wang XH, Zhang TQ, et al. PLK1 promotes cholesterol efflux and alleviates atherosclerosis by up-regulating ABCA1 and ABCG1 expression via the AMPK/PPARgamma/LXRalpha pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 2022; 1867(12): 159221.

[193]

Li J, Bollati C, Bartolomei M, et al. Hempseed (Cannabis sativa) peptide H3 (IGFLIIWV) exerts cholesterol-lowering effects in human hepatic cell line. Nutrients. 2022; 14(9): 1804.

[194]

van Loon NM, Ottenhoff R, Kooijman S, et al. Inactivation of the E3 ubiquitin ligase IDOL attenuates diet-induced obesity and metabolic dysfunction in mice. Arterioscler Thromb Vasc Biol. 2018; 38(8): 1785-1795.

[195]

Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor. Science. 2009; 325(5936): 100-104.

[196]

Calkin AC, Lee SD, Kim J, et al. Transgenic expression of dominant-active IDOL in liver causes diet-induced hypercholesterolemia and atherosclerosis in mice. Circ Res. 2014; 115(4): 442-449.

[197]

Adi D, Lu XY, Fu ZY, et al. IDOL G51S variant is associated with high blood cholesterol and increases low-density lipoprotein receptor degradation. Arterioscler Thromb Vasc Biol. 2019; 39(12): 2468-2479.

[198]

Hu Q, Zhang H, Gutiérrez Cortés N, et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res. 2020; 126(4): 456-470.

[199]

Kim H, Mendez R, Chen X, Fang D, Zhang K. Lysine acetylation of CREBH regulates fasting-induced hepatic lipid metabolism. Mol Cell Biol. 2015; 35(24): 4121-4134.

[200]

Zhao Y, Jia X, Yang X, et al. Deacetylation of Caveolin-1 by Sirt6 induces autophagy and retards high glucose-stimulated LDL transcytosis and atherosclerosis formation. Metabolism. 2022; 131: 155162.

[201]

Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013; 54(10): 2745-2753.

[202]

Greißel A, Culmes M, Napieralski R, et al. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb Haemost. 2015; 114(2): 390-402.

[203]

Xiaoling Y, Li Z, ShuQiang L, et al. Hyperhomocysteinemia in ApoE-/-mice leads to overexpression of enhancer of zeste homolog 2 via miR-92a regulation. PLoS One. 2016; 11(12): e0167744.

[204]

Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res. 2021; 117(4): 1033-1045.

[205]

Menni C, Gudelj I, Macdonald-Dunlop E, et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ Res. 2018; 122(11): 1555-1564.

[206]

Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother. 2023; 164: 114931.

[207]

Li H, Du Y, Ji H, et al. Adenosine-rich extract of Ganoderma lucidum: a safe and effective lipid-lowering substance. iScience. 2022; 25(11): 105214.

[208]

Xu R, Yuan W, Wang Z. Advances in glycolysis metabolism of atherosclerosis. J Cardiovasc Transl Res. 2023; 16(2): 476-490.

[209]

Wang Y, Chen L, Zhang M, et al. Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. Atherosclerosis. 2023; 375: 45-58.

[210]

Chen XF, Chen X, Tang X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond). 2020; 134(6): 657-676.

[211]

Bruning U, Morales-Rodriguez F, Kalucka J, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 2018; 28(6): 866-880. e15.

[212]

Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res. 2022; 118(1): 115-129.

[213]

Wang J, Hao JW, Wang X, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 2019; 26(1): 209-221. e5.

[214]

Liu Z, Han Y, Li L, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(-/-) mice. Br J Pharmacol. 2013; 169(8): 1795-1809.

[215]

Kandadi MR, Panzhinskiy E, Roe ND, Nair S, Hu D, Sun A. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim Biophys Acta. 2015; 1852(2): 299-309.

[216]

Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011; 4(203): ra86.

[217]

Yu M, Du H, Wang B, et al. Exogenous H(2)S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 ubiquitylation in diabetic hearts. Aging Dis. 2020; 11(2): 286-300.

[218]

Szarek M, Amarenco P, Callahan A, et al. Atorvastatin reduces first and subsequent vascular events across vascular territories: the SPARCL trial. J Am Coll Cardiol. 2020; 75(17): 2110-2118.

[219]

Kim BK, Hong SJ, Lee YJ, et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): a randomised, open-label, non-inferiority trial. Lancet. 2022; 400(10349): 380-390.

[220]

Lin MC, Hsing CH, Li FA, et al. Rosuvastatin modulates the post-translational acetylome in endothelial cells. Acta Cardiol Sin. 2014; 30(1): 67-73.

[221]

Lee J, Kim Y, Friso S, Choi SW. Epigenetics in non-alcoholic fatty liver disease. Mol Aspects Med. 2017; 54: 78-88.

[222]

Li Y, Xu J, Lu Y, et al. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab. 2021; 33(10): 2004-2020.

[223]

Chen B, Sun L, Zeng G, et al. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature. 2022; 610(7932): 562-568.

[224]

Tan T, Song Z, Li W, et al. Modelling porcine NAFLD by deletion of leptin and defining the role of AMPK in hepatic fibrosis. Cell Biosci. 2023; 13(1): 169.

[225]

Zhao P, Sun X, Chaggan C, et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science. 2020; 367(6478): 652-660.

[226]

Jung TW, Park HS, Choi GH, Kim D, Lee T. β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway. J Biomed Sci. 2018; 25(1): 27.

[227]

Bates J, Vijayakumar A, Ghoshal S, et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol. 2020; 73(4): 896-905.

[228]

Lally JSV, Ghoshal S, DePeralta DK, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 2019; 29(1): 174-182. e5.

[229]

Kawaguchi T, Ueno T, Nogata Y, Hayakawa M, Koga H, Torimura T. Wheat-bran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice. Int J Mol Med. 2017; 39(2): 407-414.

[230]

Vivero A, Ruz M, Rivera M, et al. Zinc supplementation and strength exercise in rats with type 2 diabetes: Akt and PTP1B phosphorylation in nonalcoholic fatty liver. Biol Trace Elem Res. 2021; 199(6): 2215-2224.

[231]

Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192–5p activates macrophages through Rictor/Akt/Forkhead Box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology. 2020; 72(2): 454-469.

[232]

Chi Y, Gong Z, Xin H, Wang Z, Liu Z. Long noncoding RNA lncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway. J Transl Med. 2020; 18(1): 126.

[233]

Xu R, Luo X, Ye X, et al. SIRT1/PGC-1alpha/PPAR-gamma correlate with hypoxia-induced chemoresistance in non-small cell lung cancer. Front Oncol. 2021; 11: 682762.

[234]

Li K, Zhang K, Wang H, et al. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice. Metabolism. 2021; 114: 154349.

[235]

Ning Z, Guo X, Liu X, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun. 2022; 13(1): 2187.

[236]

Zhang Y, Lin S, Peng J, et al. Amelioration of hepatic steatosis by dietary essential amino acid-induced ubiquitination. Mol Cell. 2022; 82(8): 1528-1542.

[237]

Takahashi Y, Shinoda A, Kamada H, Shimizu M, Inoue J, Sato R. Perilipin2 plays a positive role in adipocytes during lipolysis by escaping proteasomal degradation. Sci Rep. 2016; 6: 20975.

[238]

Gao H, Zhou L, Zhong Y, et al. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice. Nat Commun. 2022; 13(1): 1025.

[239]

Zhong Y, Zhou L, Wang H, et al. Kindlin-2 maintains liver homeostasis by regulating GSTP1-OPN-mediated oxidative stress and inflammation in mice. J Biol Chem. 2023:105601.

[240]

Hou T, Tian Y, Cao Z, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol Cell. 2022; 82(21): 4099-4115.

[241]

Ren H, Hu F, Wang D, et al. Sirtuin 2 prevents liver steatosis and metabolic disorders by deacetylation of hepatocyte nuclear factor 4α. Hepatology. 2021; 74(2): 723-740.

[242]

Zhang L, Zhang Z, Li C, et al. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis. Cell Mol Gastroenterol Hepatol. 2021; 11(3): 697-724.

[243]

Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018; 68(2): 280-295.

[244]

Zhang X-J, She Z-G, Wang J, et al. Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Sci Transl Med. 2021; 13(624): eabg8117.

[245]

Wang T, Chen K, Yao W, et al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J Hepatol. 2021; 74(5): 1038-1052.

[246]

Xie D, Zhao H, Lu J, et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling. Am J Physiol Endocrinol Metab. 2021; 320(6): E1032-E1043.

[247]

He A, Chen X, Tan M, et al. Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell. 2020; 79(1): 30-42. e4.

[248]

Yang X, Sun D, Xiang H, et al. Hepatocyte SH3RF2 deficiency is a key aggravator for NAFLD. Hepatology. 2021; 74(3): 1319-1338.

[249]

Wang S, Zhang C, Hasson D, et al. Epigenetic compensation promotes liver regeneration. Dev Cell. 2019; 50(1): 43-56.e6.

[250]

Yang M, Lin X, Segers F, et al. OXR1A, a coactivator of PRMT5 regulating histone arginine methylation. Cell Rep. 2020; 30(12): 4165-4178. e7.

[251]

Li Z, Zhou Y, Jia K, et al. JMJD4-demethylated RIG-I prevents hepatic steatosis and carcinogenesis. J Hematol Oncol. 2022; 15(1): 161.

[252]

Yan L, Zhang T, Wang K, et al. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun. 2022; 13(1): 7153.

[253]

Liu Y, Dou X, Zhou WY, et al. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk. Hepatology. 2021; 74(4): 1864-1883.

[254]

Zhou J, Cui S, He Q, et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun. 2020; 11(1): 240.

[255]

Hülsmeier AJ, Tobler M, Burda P, Hennet T. Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease. Sci Rep. 2016; 6: 33927.

[256]

Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017; 37(7): 1074-1081.

[257]

Ochoa-Rios S, O’Connor IP, Kent LN, et al. Imaging mass spectrometry reveals alterations in N-linked glycosylation that are associated with histopathological changes in nonalcoholic steatohepatitis in mouse and human. Mol Cell Proteomics. 2022; 21(5): 100225.

[258]

Zhang N, Wang Y, Zhang J, et al. N-glycosylation of CREBH improves lipid metabolism and attenuates lipotoxicity in NAFLD by modulating PPARα and SCD-1. Faseb J. 2020; 34(11): 15338-15363.

[259]

Cheng Y, Hou T, Ping J, Chen G, Chen J. Quantitative succinylome analysis in the liver of non-alcoholic fatty liver disease rat model. Proteome Sci. 2016; 14: 3.

[260]

Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021; 398(10308): 1359-1376.

[261]

Chen XF, Ji S. Sorafenib attenuates fibrotic hepatic injury through mediating lysine crotonylation. Drug Des Devel Ther. 2022; 16: 2133-2144.

[262]

Gao R, Li Y, Xu Z, et al. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology. 2023; 78(6): 1800-1815.

[263]

Zhang X-J, Ji Y-Y, Cheng X, et al. A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med. 2021; 13(624): eabg8116.

[264]

Cao H, Cai Q, Guo W, et al. Malonylation of Acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Rep. 2023; 42(4): 112319.

[265]

Zhao L, Zhang C, Luo X, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis. J Hepatol. 2018; 69(3): 705-717.

[266]

Nguyen TTP, Kim DY, Im SS, Jeon TI. Impairment of ULK1 sulfhydration-mediated lipophagy by SREBF1/SREBP-1c in hepatic steatosis. Autophagy. 2021; 17(12): 4489-4490.

[267]

Nguyen TTP, Kim DY, Lee YG, et al. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell. 2021; 81(18): 3820-3832. e7.

[268]

Xu W, Cui C, Cui C, et al. Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor. Hepatology. 2022; 76(6): 1794-1810.

[269]

Zhao S, Song T, Gu Y, et al. Hydrogen sulfide alleviates liver injury through the S-sulfhydrated-Kelch-like ECH-associated protein 1/nuclear erythroid 2-related factor 2/low-density lipoprotein receptor-related protein 1 pathway. Hepatology. 2021; 73(1): 282-302.

[270]

Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol. 2023; 79(5): 1317-1331.

[271]

Appelman MD, van der Veen SW, van Mil SWC. Post-translational modifications of FXR; implications for cholestasis and obesity-related disorders. Front Endocrinol (Lausanne). 2021; 12: 729828.

[272]

Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology. 2020; 72(1): 58-71.

[273]

Alkhouri N, Lawitz E, Noureddin M, DeFronzo R, Shulman GI. GS-0976 (Firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020; 29(2): 135-141.

[274]

Lee DE, Lee SJ, Kim SJ, Lee HS, Kwon OS. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients. 2019; 11(11): 2702.

[275]

Rahmani S, Asgary S, Askari G, et al. Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother Res. 2016; 30(9): 1540-1548.

[276]

Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 2021; 22(2): 818.

[277]

Huang Q, Wang T, Yang L, Wang HY. Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int J Mol Sci. 2017; 18(5): 1063.

[278]

Dai S, Hong Y, Xu J, Lin Y, Si Q, Gu X. Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. Biomed Pharmacother. 2018; 100: 93-100.

[279]

Huang R, Guo F, Li Y, et al. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis. Phytomedicine. 2021; 92: 153739.

[280]

Huang HM, Fan SJ, Zhou XR, et al. Histone deacetylase inhibitor givinostat attenuates nonalcoholic steatohepatitis and liver fibrosis. Acta Pharmacol Sin. 2022; 43(4): 941-953.

[281]

Wang YG, Xu L, Wang T, et al. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol. 2015; 21(27): 8326-8339.

[282]

McGreal SR, Bhushan B, Walesky C, et al. Modulation of O-GlcNAc levels in the liver impacts acetaminophen-induced liver injury by affecting protein adduct formation and glutathione synthesis. Toxicol Sci. 2018; 162(2): 599-610.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/