Pulmonary fibrosis: pathogenesis and therapeutic strategies

Jianhai Wang , Kuan Li , De Hao , Xue Li , Yu Zhu , Hongzhi Yu , Huaiyong Chen

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e744

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e744 DOI: 10.1002/mco2.744
REVIEW

Pulmonary fibrosis: pathogenesis and therapeutic strategies

Author information +
History +
PDF

Abstract

Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.

Keywords

biomarkers / endothelium / epithelium / immune cells / microbiome

Cite this article

Download citation ▾
Jianhai Wang, Kuan Li, De Hao, Xue Li, Yu Zhu, Hongzhi Yu, Huaiyong Chen. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm, 2024, 5(10): e744 DOI:10.1002/mco2.744

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selman M, Pardo A. When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur Respir J. 2021; 58(3): 2004507.

[2]

Maher TM, Bendstrup E, Dron L, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021; 22(1): 197.

[3]

Podolanczuk AJ, Thomson CC, Remy-Jardin M, et al. Idiopathic pulmonary fibrosis: state of the art for 2023. Eur Respir J. 2023; 61(4): 2200957.

[4]

Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ. 2022; 377: e066354.

[5]

Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol. 2023; 14: 1205948.

[6]

Bjorklund F, Ekstrom M. Adverse effects, smoking, alcohol consumption, and quality of life during long-term oxygen therapy: a nationwide study. Ann Am Thorac Soc. 2022; 19(10): 1677-1686.

[7]

Zhu J, Zhou D, Wang J, et al. A causal atlas on comorbidities in idiopathic pulmonary fibrosis: a bidirectional mendelian randomization study. Chest. 2023; 164(2): 429-440.

[8]

Jiang AG. Viral infection and idiopathic pulmonary fibrosis risk: still need more evidence. Chest. 2020; 157(6): 1687-1688.

[9]

Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MS. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med. 2023; 29(12): 1076-1087.

[10]

Wang J, Li X, Chen H. Organoid models in lung regeneration and cancer. Cancer Lett. 2020; 475: 129-135.

[11]

Parimon T, Chen P, Stripp BR, et al. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol. 2023; 325(2): C483-C495.

[12]

Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci. 2020; 21(7): 2269.

[13]

Gandhi S, Tonelli R, Murray M, Samarelli AV, Spagnolo P. Environmental causes of idiopathic pulmonary fibrosis. Int J Mol Sci. 2023; 24(22): 16481.

[14]

Cui F, Sun Y, Xie J, et al. Air pollutants, genetic susceptibility and risk of incident idiopathic pulmonary fibrosis. Eur Respir J. 2023; 61(2): 2200777.

[15]

Andersson M, Blanc PD, Toren K, Jarvholm B. Smoking, occupational exposures, and idiopathic pulmonary fibrosis among Swedish construction workers. Am J Ind Med. 2021; 64(4): 251-257.

[16]

Reynolds CJ, Sisodia R, Barber C, et al. What role for asbestos in idiopathic pulmonary fibrosis? Findings from the IPF job exposures case-control study. Occup Environ Med. 2023; 80(2): 97-103.

[17]

Gandhi SA, Min B, Fazio JC, et al. The impact of occupational exposures on the risk of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Ann Am Thorac Soc; 2024: 486-498.

[18]

Conti S, Harari S, Caminati A, et al. The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy. Eur Respir J. 2018; 51(1): 1700397.

[19]

Yue D, Zhang Q, Zhang J, et al. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. Environ Int. 2023; 171: 107706.

[20]

Shen H, Zheng R, Du M, Christiani DC. Environmental pollutants exposure-derived extracellular vesicles: crucial players in respiratory disorders. Thorax. 2024; 79(7): 680-691.

[21]

Douglas D, Keating L, Strykowski R, et al. Tobacco smoking is associated with combined pulmonary fibrosis and emphysema and worse outcomes in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol. 2023; 325(2): L233-L243.

[22]

Zhu J, Zhou D, Yu M, Li Y. Appraising the causal role of smoking in idiopathic pulmonary fibrosis: a Mendelian randomization study. Thorax. 2024; 79(2): 179-181.

[23]

Zhang Y, Huang W, Zheng Z, et al. Cigarette smoke-inactivated SIRT1 promotes autophagy-dependent senescence of alveolar epithelial type 2 cells to induce pulmonary fibrosis. Free Radic Biol Med. 2021; 166: 116-127.

[24]

Chen L, Sun R, Lei C, Xu Z, Song Y, Deng Z. Alcohol-mediated susceptibility to lung fibrosis is associated with group 2 innate lymphoid cells in mice. Front Immunol. 2023; 14: 1178498.

[25]

Zou X, Huang Z, Zhan Z, et al. The alcohol extracts of Sceptridium ternatum (Thunb.) Lyon exert anti-pulmonary fibrosis effect through targeting SETDB1/STAT3/p-STAT3 signaling. J Ethnopharmacol. 2023; 313: 116520.

[26]

Leuschner G, Klotsche J, Kreuter M, et al. Idiopathic pulmonary fibrosis in elderly patients: analysis of the INSIGHTS-IPF observational study. Front Med (Lausanne). 2020; 7: 601279.

[27]

Han MK, Murray S, Fell CD, et al. Sex differences in physiological progression of idiopathic pulmonary fibrosis. Eur Respir J. 2008; 31(6): 1183-1188.

[28]

Sese L, Nunes H, Cottin V, et al. Gender differences in idiopathic pulmonary fibrosis: are men and women equal?. Front Med (Lausanne). 2021; 8: 713698.

[29]

Reynolds CJ, Del Greco MF, Allen RJ, et al. The causal relationship between gastro-oesophageal reflux disease and idiopathic pulmonary fibrosis: a bidirectional two-sample Mendelian randomisation study. Eur Respir J. 2023; 61(5): 2201585.

[30]

Huang WJ, Tang XX. Virus infection induced pulmonary fibrosis. J Transl Med. 2021; 19(1): 496.

[31]

Wu J, Chen L, Qin C, et al. CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct Target Ther. 2022; 7(1): 382.

[32]

Sheng G, Chen P, Wei Y, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest. 2020; 157(5): 1175-1187.

[33]

Jafarian AH, Mohamadian Roshan N, Ayatollahi H, Omidi AA, Ghaznavi M, Gharib M. Epstein-Barr virus and human herpesvirus 8 in idiopathic pulmonary fibrosis. Iran J Pathol. 2020; 15(1): 30-33.

[34]

Popper H, Stacher-Priehse E, Brcic L, Nerlich A. Lung fibrosis in autoimmune diseases and hypersensitivity: how to separate these from idiopathic pulmonary fibrosis. Rheumatol Int. 2022; 42(8): 1321-1330.

[35]

Moll M, Peljto AL, Kim JS, et al. A polygenic risk score for idiopathic pulmonary fibrosis and interstitial lung abnormalities. Am J Respir Crit Care Med. 2023; 208(7): 791-801.

[36]

Helling BA, Gerber AN, Kadiyala V, et al. Regulation of MUC5B expression in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017; 57(1): 91-99.

[37]

Diaz de Leon A, Cronkhite JT, Katzenstein AL, et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One. 2010; 5(5): e10680.

[38]

van der Vis JJ, van der Smagt JJ, Hennekam FAM, Grutters JC, van Moorsel CHM. Pulmonary fibrosis and a TERT founder mutation with a latency period of 300 years. Chest. 2020; 158(2): 612-619.

[39]

Peljto AL, Blumhagen RZ, Walts AD, et al. Idiopathic pulmonary fibrosis is associated with common genetic variants and limited rare variants. Am J Respir Crit Care Med. 2023; 207(9): 1194-1202.

[40]

Maitra M, Wang Y, Gerard RD, Mendelson CR, Garcia CK. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J Biol Chem. 2010; 285(29): 22103-22113.

[41]

van Moorsel CH, van Oosterhout MF, Barlo NP, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am J Respir Crit Care Med. 2010; 182(11): 1419-14125.

[42]

Wang Y, Kuan PJ, Xing C, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet. 2009; 84(1): 52-59.

[43]

Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu Rev Physiol. 2001; 63: 555-578.

[44]

Zhang D, Adegunsoye A, Oldham JM, et al. Telomere length and immunosuppression in non-idiopathic pulmonary fibrosis interstitial lung disease. Eur Respir J. 2023; 62(5): 2300441.

[45]

Song Z, Yin J, Yao C, et al. Variants in the Toll-interacting protein gene are associated with susceptibility to sepsis in the Chinese Han population. Crit Care. 2011; 15(1): R12.

[46]

Borie R, Cardwell J, Konigsberg IR, et al. Colocalization of gene expression and DNA methylation with genetic risk variants supports functional roles of MUC5B and DSP in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2022; 206(10): 1259-1270.

[47]

Zhou Y, Zhang Y, Zhao R, et al. Integrating RNA-Seq with GWAS reveals a novel SNP in immune-related HLA-DQB1 gene associated with occupational pulmonary fibrosis risk: a multi-stage study. Front Immunol. 2021; 12: 796932.

[48]

Allen RJ, Porte J, Braybrooke R, et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir Med. 2017; 5(11): 869-880.

[49]

Noth I, Zhang Y, Ma SF, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med. 2013; 1(4): 309-317.

[50]

Hollmen M, Laaka A, Partanen JJ, et al. KIF15 missense variant is associated with the early onset of idiopathic pulmonary fibrosis. Respir Res. 2023; 24(1): 240.

[51]

Krauss E, Gehrken G, Drakopanagiotakis F, et al. Clinical characteristics of patients with familial idiopathic pulmonary fibrosis (f-IPF). BMC Pulm Med. 2019; 19(1): 130.

[52]

Zhang D, Povysil G, Newton CA, et al. Genome-wide enrichment of TERT rare variants in idiopathic pulmonary fibrosis patients of latino ancestry. Am J Respir Crit Care Med. 2022; 206(7): 903-905.

[53]

Borie R, Kannengiesser C, Antoniou K, et al. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J. 2023; 61(3): 2201383.

[54]

Duckworth A, Gibbons MA, Allen RJ, et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. Lancet Respir Med. 2021; 9(3): 285-294.

[55]

Chambers RC, Mercer PF. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann Am Thorac Soc; 2015: S16-S20. Suppl 1. Suppl.

[56]

Yao C, Guan X, Carraro G, et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med. 2021; 203(6): 707-717.

[57]

Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune mechanisms of pulmonary fibrosis with bleomycin. Int J Mol Sci. 2023; 24(4): 3149.

[58]

Zhang Y, Wang J. Cellular and molecular mechanisms in idiopathic pulmonary fibrosis. Adv Respir Med. 2023; 91(1): 26-48.

[59]

Burgoyne RA, Fisher AJ, Borthwick LA. The role of epithelial damage in the pulmonary immune response. Cells. 2021; 10(10): 2763.

[60]

Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest. 2023; 133(17): e170499.

[61]

Ushakumary MG, Riccetti M, Perl AT. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration. Stem Cells Transl Med. 2021; 10(7): 1021-1032.

[62]

Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol. 2024; 25(8): 617-638.

[63]

Wang Y, Zhang L, Huang T, et al. The methyl-CpG-binding domain 2 facilitates pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation. Eur Respir J. 2022; 60(3): 2003697.

[64]

Liu X, Geng Y, Liang J, et al. HER2 drives lung fibrosis by activating a metastatic cancer signature in invasive lung fibroblasts. J Exp Med. 2022; 219(10): e20220126.

[65]

Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971; 27(5): 549-550.

[66]

Homps-Legrand M, Crestani B, Mailleux AA. Origins of pathological myofibroblasts in lung fibrosis: insights from lineage tracing mouse models in the single-cell RNA sequencing era. Am J Physiol Lung Cell Mol Physiol. 2023; 324(6): L737-L746.

[67]

Jiang D, Dey T, Liu G. Recent developments in the pathobiology of lung myofibroblasts. Expert Rev Respir Med. 2021; 15(2): 239-247.

[68]

Valenzi E, Bahudhanapati H, Tan J, et al. Single-nucleus chromatin accessibility identifies a critical role for TWIST1 in idiopathic pulmonary fibrosis myofibroblast activity. Eur Respir J. 2023; 62(1).

[69]

Fortier SM, Walker NM, Penke LR, et al. MAPK phosphatase 1 inhibition of p38alpha within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest. 2024; 134(10).

[70]

Vaccaro C, Brody JS. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec. 1978; 192(4): 467-479.

[71]

Schipke J, Kuhlmann S, Hegermann J, et al. Lipofibroblasts in structurally normal, fibrotic, and emphysematous human lungs. Am J Respir Crit Care Med. 2021; 204(2): 227-230.

[72]

El Agha E, Moiseenko A, Kheirollahi V, et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell. 2017; 20(2): 261-273.

[73]

Zhang Y, Fu J, Li C, et al. Omentin-1 induces mechanically activated fibroblasts lipogenic differentiation through pkm2/yap/ppargamma pathway to promote lung fibrosis resolution. Cell Mol Life Sci. 2023; 80(10): 308.

[74]

Xie T, Wang Y, Deng N, et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 2018; 22(13): 3625-3640.

[75]

Liu X, Rowan SC, Liang J, et al. Categorization of lung mesenchymal cells in development and fibrosis. iScience. 2021; 24(6): 102551.

[76]

Castranova V, Rabovsky J, Tucker JH, Miles PR. The alveolar type II epithelial cell: a multifunctional pneumocyte. Toxicol Appl Pharmacol. 1988; 93(3): 472-483.

[77]

Toth A, Kannan P, Snowball J, et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun. 2023; 14(1): 8452.

[78]

Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013; 123(7): 3025-3036.

[79]

Liu K, Meng X, Liu Z, et al. Tracing the origin of alveolar stem cells in lung repair and regeneration. Cell. 2024; 187(10): 2428-2445.

[80]

Zhao F, Wang J, Wang Q, et al. Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration. Exp Anim. 2022; 71(3): 316-328.

[81]

Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 2020; 22(8): 934-946.

[82]

Choi J, Park JE, Tsagkogeorga G, et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell. 2020; 27(3): 366-382.

[83]

Li K, Zhang Q, Li L, et al. DJ-1 governs airway progenitor cell/eosinophil interactions to promote allergic inflammation. J Allergy Clin Immunol. 2022; 150(5): 1178-1193. e13.

[84]

Fukumoto J, Soundararajan R, Leung J, et al. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging (Albany NY). 2016; 8(11): 3091-3109.

[85]

Kumar A, Elko E, Bruno SR, et al. Inhibition of PDIA3 in club cells attenuates osteopontin production and lung fibrosis. Thorax. 2022; 77(7): 669-678.

[86]

Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging roles of airway epithelial cells in idiopathic pulmonary fibrosis. Cells. 2022; 11(6).

[87]

Park SY, Hong JY, Lee SY, et al. Club cell-specific role of programmed cell death 5 in pulmonary fibrosis. Nat Commun. 2021; 12(1): 2923.

[88]

Ray S, Chiba N, Yao C, et al. Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Reports. 2016; 7(5): 817-825.

[89]

Bauer JG. Simplified matrix for Class V amalgam restorations. J Prosthet Dent. 1979; 42(2): 231-233.

[90]

Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med. 2014; 20(8): 822-832.

[91]

Hewitt RJ, Puttur F, Gaboriau DCA, et al. Lung extracellular matrix modulates KRT5(+) basal cell activity in pulmonary fibrosis. Nat Commun. 2023; 14(1): 6039.

[92]

Zhou Y, Yang Y, Guo L, et al. Airway basal cells show regionally distinct potential to undergo metaplastic differentiation. Elife. 2022: 11.

[93]

Carraro G, Mulay A, Yao C, et al. Single-cell reconstruction of human basal cell diversity in normal and idiopathic pulmonary fibrosis lungs. Am J Respir Crit Care Med. 2020; 202(11): 1540-1550.

[94]

Heinzelmann K, Hu Q, Hu Y, et al. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. Eur Respir J. 2022; 59(6): 2102373.

[95]

Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res. 2022; 23(1): 122.

[96]

Peng Y, Wang ZN, Xu AR, et al. Mucus hypersecretion and ciliary impairment in conducting airway contribute to alveolar mucus plugging in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 2021; 9: 810842.

[97]

Sari E, He C, Margaroli C. Plasticity towards rigidity: a macrophage conundrum in pulmonary fibrosis. Int J Mol Sci. 2022; 23(19): 11443.

[98]

Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis. Cells. 2021; 10(2): 436.

[99]

Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis. 2023; 28(11-12): 1505-1519.

[100]

Chakarov S, Lim HY, Tan L, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019; 363(6432): eaau0964.

[101]

Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017; 214(8): 2387-2404.

[102]

Watson CK, Schloesser D, Fundel-Clemens K, et al. Antifibrotic drug nintedanib inhibits CSF1R to promote IL-4-associated tissue repair macrophages. Am J Respir Cell Mol Biol. 2023; 68(4): 366-380.

[103]

Reyfman PA, Walter JM, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019; 199(12): 1517-1536.

[104]

Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps—myth or reality?. Clin Sci (Lond). 2023; 137(15): 1067-1093.

[105]

Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol. 2023; 325(4): C1046-C1057.

[106]

Miura S, Iwamoto H, Namba M, et al. High S100A9 level predicts poor survival, and the S100A9 inhibitor paquinimod is a candidate for treating idiopathic pulmonary fibrosis. BMJ Open Respir Res. 2024; 11(1): e001803.

[107]

Yan S, Li M, Liu B, Ma Z, Yang Q. Neutrophil extracellular traps and pulmonary fibrosis: an update. J Inflamm (Lond). 2023; 20(1): 2.

[108]

Leslie J, Millar BJ, Del Carpio Pons A, et al. FPR-1 is an important regulator of neutrophil recruitment and a tissue-specific driver of pulmonary fibrosis. JCI Insight. 2020; 5(4): e125937.

[109]

Ding L, Yang J, Zhang C, Zhang X, Gao P. Neutrophils modulate fibrogenesis in chronic pulmonary diseases. Front Med (Lausanne). 2021; 8: 616200.

[110]

Mutsaers SE, Miles T, Prele CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther. 2023; 252: 108562.

[111]

Xu Y, Lan P, Wang T. The role of immune cells in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas). 2023; 59(11).

[112]

Serezani APM, Pascoalino BD, Bazzano JMR, et al. Multiplatform single-cell analysis identifies immune cell types enhanced in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2022; 67(1): 50-60.

[113]

Roman J, Chiba H. B cells in idiopathic pulmonary fibrosis: targeting immune cells with antifibrotic agents. Am J Respir Cell Mol Biol. 2021; 64(6): 652-654.

[114]

Prele CM, Miles T, Pearce DR, et al. Plasma cell but not CD20-mediated B-cell depletion protects from bleomycin-induced lung fibrosis. Eur Respir J. 2022; 60(5): 2101469.

[115]

Snyder ME, Anderson MR, Benvenuto LJ, et al. Impact of age and telomere length on circulating T cells and rejection risk after lung transplantation for idiopathic pulmonary fibrosis. J Heart Lung Transplant. 2023; 42(12): 1666-1677.

[116]

Wang X, Zhang H, Wang Y, et al. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J. 2023; 42(8): e110597.

[117]

Kagawa K, Sato S, Koyama K, et al. The lymphocyte-specific protein tyrosine kinase-specific inhibitor A-770041 attenuates lung fibrosis via the suppression of TGF-beta production in regulatory T-cells. PLoS One. 2022; 17(10): e0275987.

[118]

Cui G, Shimba A, Jin J, et al. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc Natl Acad Sci USA. 2023; 120(36): e2215941120.

[119]

Nakatsuka Y, Yaku A, Handa T, et al. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur Respir J. 2021; 57(3): 2000018.

[120]

Otaki N, Motomura Y, Terooatea T, et al. Activation of ILC2s through constitutive IFNgamma signaling reduction leads to spontaneous pulmonary fibrosis. Nat Commun. 2023; 14(1): 8120.

[121]

May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest. 2023; 133(18): e172058.

[122]

Wu X, Zhang D, Qiao X, et al. Regulating the cell shift of endothelial cell-like myofibroblasts in pulmonary fibrosis. Eur Respir J. 2023; 61(6): 2201799.

[123]

Yanagihara T, Guignabert C, Kolb MRJ. Endothelial cells in pulmonary fibrosis: more than a bystander. Eur Respir J. 2023; 61(6): 2300407.

[124]

Chen Q, Rehman J, Chan M, et al. Angiocrine sphingosine-1-phosphate activation of S1PR2-YAP signaling axis in alveolar type II cells is essential for lung repair. Cell Rep. 2020; 31(13): 107828.

[125]

Volpe MC, Ciucci G, Zandomenego G, et al. Flt1 produced by lung endothelial cells impairs ATII cell transdifferentiation and repair in pulmonary fibrosis. Cell Death Dis. 2023; 14(7): 437.

[126]

Yanagihara T, Tsubouchi K, Zhou Q, et al. Vascular-parenchymal cross-talk promotes lung fibrosis through BMPR2 signaling. Am J Respir Crit Care Med. 2023; 207(11): 1498-1514.

[127]

Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther. 2024; 9(1): 19.

[128]

Amati F, Stainer A, Mantero M, et al. Lung microbiome in idiopathic pulmonary fibrosis and other interstitial lung diseases. Int J Mol Sci. 2022; 23(2): 977.

[129]

Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023; 21(4): 222-235.

[130]

D’Alessandro-Gabazza CN, Yasuma T, Kobayashi T, et al. Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nat Commun. 2022; 13(1): 1558.

[131]

Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev. 2021; 66: 101235.

[132]

Wu Y, Li Y, Luo Y, et al. Gut microbiome and metabolites: the potential key roles in pulmonary fibrosis. Front Microbiol. 2022; 13: 943791.

[133]

Gong GC, Song SR, Su J. Pulmonary fibrosis alters gut microbiota and associated metabolites in mice: an integrated 16S and metabolomics analysis. Life Sci. 2021; 264: 118616.

[134]

Dong Y, He L, Zhu Z, et al. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol. 2024; 14: 1258246.

[135]

Deng Z, Fan T, Xiao C, et al. TGF-beta signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024; 9(1): 61.

[136]

Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 2022; 17: 515-546.

[137]

Chen Z, Zhang N, Chu HY, et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front Cell Dev Biol. 2020; 8: 593269.

[138]

Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J Exp Med. 2020; 217(3): e20190103.

[139]

Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022; 21(1): 104.

[140]

Shi X, Young CD, Zhou H, Wang X. Transforming growth factor-beta signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 2020; 10(12): 1666.

[141]

Wang Q, Xie Z, Wan N, et al. Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis. Chin Med J (Engl). 2023; 136(11): 1278-1290.

[142]

Kubbara A, Amundson WH, Herman A, Lee AM, Bishop JR, Kim HJ. Genetic variations in idiopathic pulmonary fibrosis and patient response to pirfenidone. Heliyon. 2023; 9(8): e18573.

[143]

Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol. 2021; 4(1): 601.

[144]

Lv Q, Wang J, Xu C, Huang X, Ruan Z, Dai Y. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3beta/beta-catenin and TGF-beta1/Smad2/3 signaling pathways. Mol Med. 2020; 26(1): 49.

[145]

Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt signaling promotes myofibroblast differentiation in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021; 65(5): 489-499.

[146]

Huang G, Liang J, Huang K, et al. Basal cell-derived WNT7A promotes fibrogenesis at the fibrotic niche in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2023; 68(3): 302-313.

[147]

Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today. 2024; 29(7): 103989.

[148]

Noskovicova N, Petrek M, Eickelberg O, Heinzelmann K. Platelet-derived growth factor signaling in the lung. From lung development and disease to clinical studies. Am J Respir Cell Mol Biol. 2015; 52(3): 263-284.

[149]

Zhao F, Zhang YF, Liu YG, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant Proc. 2008; 40(5): 1700-1705.

[150]

Walsh J, Absher M, Kelley J. Variable expression of platelet-derived growth factor family proteins in acute lung injury. Am J Respir Cell Mol Biol. 1993; 9(6): 637-644.

[151]

Shimizu S, Gabazza EC, Taguchi O, et al. Activated protein C inhibits the expression of platelet-derived growth factor in the lung. Am J Respir Crit Care Med. 2003; 167(10): 1416-1426.

[152]

Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023; 22(1): 138.

[153]

Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. 2020; 100(6): 801-811.

[154]

Pei X, Zheng F, Li Y, et al. Niclosamide ethanolamine salt alleviates idiopathic pulmonary fibrosis by modulating the PI3K-mTORC1 pathway. Cells. 2022; 11(3): 346.

[155]

Gokey JJ, Patel SD, Kropski JA. The role of Hippo/YAP signaling in alveolar repair and pulmonary fibrosis. Front Med (Lausanne). 2021; 8: 752316.

[156]

Mia MM, Singh MK. New insights into Hippo/YAP signaling in fibrotic diseases. Cells. 2022; 11(13): 20653.

[157]

Sun M, Sun Y, Feng Z, et al. New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacol Res. 2021; 169: 105635.

[158]

Huang LS, Sudhadevi T, Fu P, et al. Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating Hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts. Int J Mol Sci. 2020; 21(6): 2064.

[159]

Du W, Tang Z, Yang F, Liu X, Dong J. Icariin attenuates bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed Pharmacother. 2021; 143: 112152.

[160]

Yan P, Liu J, Li Z, et al. Glycolysis reprogramming in idiopathic pulmonary fibrosis: unveiling the mystery of lactate in the lung. Int J Mol Sci. 2023; 25(1): 315.

[161]

Wang Y, Wang X, Du C, et al. Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne). 2024; 15: 1379521.

[162]

Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022; 7(1): 95.

[163]

Wang YC, Chen Q, Luo JM, et al. Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med. 2019; 51(3): 1-11.

[164]

Vera L, Garcia-Olloqui P, Petri E, et al. Notch3 deficiency attenuates pulmonary fibrosis and impedes lung-function decline. Am J Respir Cell Mol Biol. 2021; 64(4): 465-476.

[165]

Kato K, Hecker L. NADPH oxidases: pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol. 2020; 33: 101541.

[166]

Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative stress and lung fibrosis: towards an adverse outcome pathway. Int J Mol Sci. 2023; 24(15): 12490.

[167]

Lee JU, Song KS, Hong J, et al. Role of lung ornithine aminotransferase in idiopathic pulmonary fibrosis: regulation of mitochondrial ROS generation and TGF-beta1 activity. Exp Mol Med. 2024; 56(2): 478-490.

[168]

Luo J, Li P, Dong M, et al. SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress. Cell Death Differ. 2024; 31(4): 417-430.

[169]

Hill C, Wang Y. Autophagy in pulmonary fibrosis: friend or foe?. Genes Dis. 2022; 9(6): 1594-1607.

[170]

Li X, Wu J, Sun X, et al. Autophagy reprograms alveolar progenitor cell metabolism in response to lung injury. Stem Cell Reports. 2020; 14(3): 420-432.

[171]

Yue YL, Zhang MY, Liu JY, Fang LJ, Qu YQ. The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies. Ther Adv Respir Dis. 2022; 16: 17534666221140972.

[172]

Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 2024; 12: 1416325.

[173]

Korfei M, Mahavadi P, Guenther A. Targeting histone deacetylases in idiopathic pulmonary fibrosis: a future therapeutic option. Cells. 2022; 11(10): 1626.

[174]

Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm. 2024; 5(5): e546.

[175]

Wijsenbeek M, Swigris JJ, Inoue Y, et al. Effects of nintedanib on symptoms in patients with progressive pulmonary fibrosis. Eur Respir J. 2024; 63(2): 230075.

[176]

Selvarajah B, Plate M, Chambers RC. Pulmonary fibrosis: emerging diagnostic and therapeutic strategies. Mol Aspects Med. 2023; 94: 101227.

[177]

Yoon HY, Lee SH, Ha S, Ryu JS, Song JW. The value of (18)F-FDG PET/CT in evaluating disease severity and prognosis in idiopathic pulmonary fibrosis patients. J Korean Med Sci. 2021; 36(41): e257.

[178]

Rea G, Sverzellati N, Bocchino M, et al. Beyond visual interpretation: quantitative analysis and artificial intelligence in interstitial lung disease diagnosis “expanding horizons in radiology”. Diagnostics (Basel). 2023; 13(14): 2333.

[179]

Capaccione KM, Wang A, Lee SM, et al. Quantifying normal lung in pulmonary fibrosis: cT analysis and correlation with %DLCO. Clin Imaging. 2021; 77: 287-290.

[180]

Khor YH, Farooqi M, Hambly N, et al. Trajectories and prognostic significance of 6-minute walk test parameters in fibrotic interstitial lung disease: a multicenter study. Chest. 2023; 163(2): 345-357.

[181]

Hansen AH, Breisnes HW, Prior TS, et al. A serologically assessed neo-epitope biomarker of cellular fibronectin degradation is related to pulmonary fibrosis. Clin Biochem. 2023; 118: 110599.

[182]

Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: diagnosis, biomarkers and newer treatment protocols. Dis Mon. 2023; 69(7): 101484.

[183]

Clynick B, Corte TJ, Jo HE, et al. Biomarker signatures for progressive idiopathic pulmonary fibrosis. Eur Respir J. 2022; 59(3): 2101181.

[184]

Khan FA, Stewart I, Saini G, Robinson KA, Jenkins RG. A systematic review of blood biomarkers with individual participant data meta-analysis of matrix metalloproteinase-7 in idiopathic pulmonary fibrosis. Eur Respir J. 2022; 59(4): 2101612.

[185]

Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev. 2023; 74: 86-99.

[186]

Yamato H, Kimura K, Fukui E, et al. Periostin secreted by activated fibroblasts in idiopathic pulmonary fibrosis promotes tumorigenesis of non-small cell lung cancer. Sci Rep. 2021; 11(1): 21114.

[187]

Chung C, Kim J, Cho HS, Kim HC. Baseline serum Krebs von den Lungen-6 as a biomarker for the disease progression in idiopathic pulmonary fibrosis. Sci Rep. 2022; 12(1): 8564.

[188]

Adegunsoye A, Alqalyoobi S, Linderholm A, et al. Circulating plasma biomarkers of survival in antifibrotic-treated patients with idiopathic pulmonary fibrosis. Chest. 2020; 158(4): 1526-1534.

[189]

Comes A, Sgalla G, Ielo S, Magri T, Richeldi L. Challenges in the diagnosis of idiopathic pulmonary fibrosis: the importance of a multidisciplinary approach. Expert Rev Respir Med. 2023; 17(4): 1-11.

[190]

Ding D, Luan R, Xue Q, Yang J. Prognostic significance of peripheral blood S100A12, S100A8, and S100A9 concentrations in idiopathic pulmonary fibrosis. Cytokine. 2023; 172: 156387.

[191]

Wu Z, Chen H, Ke S, et al. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis. Sci Rep. 2023; 13(1): 16559.

[192]

Shi X, Chen Y, Shi M, et al. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis. 2024; 23(1): 98.

[193]

Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol. 2020; 62(4): 413-422.

[194]

Molina-Molina M, Shull JG, Vicens-Zygmunt V, et al. Gastrointestinal pirfenidone adverse events in idiopathic pulmonary fibrosis depending on diet: the MADIET clinical trial. Eur Respir J. 2023; 62(4): 2300262.

[195]

Kim JS, Murray S, Yow E, et al. Comparison of pirfenidone and nintedanib: post hoc analysis of the CleanUP-IPF study. Chest. 2024; 165(5): 1163-1173.

[196]

Inoue Y, Kitamura H, Okamoto M, et al. The effect of nintedanib on health-related quality of life in Japanese patients with progressive fibrosing interstitial lung diseases: a subset analysis of the INBUILD trial. Respir Investig. 2024; 62(4): 589-596.

[197]

Deterding R, Young LR, DeBoer EM, et al. Nintedanib in children and adolescents with fibrosing interstitial lung diseases. Eur Respir J. 2023; 61(2): 2201512.

[198]

Matteson EL, Aringer M, Burmester GR, Mueller H, Moros L, Kolb M. Effect of nintedanib in patients with progressive pulmonary fibrosis associated with rheumatoid arthritis: data from the INBUILD trial. Clin Rheumatol. 2023; 42(9): 2311-2319.

[199]

Cottin V, Richeldi L, Rosas I, et al. Nintedanib and immunomodulatory therapies in progressive fibrosing interstitial lung diseases. Respir Res. 2021; 22(1): 84.

[200]

Inoue Y, Suda T, Kitamura H, et al. Efficacy and safety of nintedanib in Japanese patients with progressive fibrosing interstitial lung diseases: subgroup analysis of the randomised, double-blind, placebo-controlled, phase 3 INBUILD trial. Respir Med. 2021; 187: 106574.

[201]

Schmid U, Weber B, Sarr C, Freiwald M. Exposure-safety analyses of nintedanib in patients with chronic fibrosing interstitial lung disease. BMC Pulm Med. 2021; 21(1): 244.

[202]

Kuwana M, Ogura T, Makino S, et al. Nintedanib in patients with systemic sclerosis-associated interstitial lung disease: a Japanese population analysis of the SENSCIS trial. Mod Rheumatol. 2021; 31(1): 141-150.

[203]

Richeldi L, Kolb M, Jouneau S, et al. Efficacy and safety of nintedanib in patients with advanced idiopathic pulmonary fibrosis. BMC Pulm Med. 2020; 20(1): 3.

[204]

Wells AU, Flaherty KR, Brown KK, et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020; 8(5): 453-460.

[205]

Song JW, Ogura T, Inoue Y, et al. Long-term treatment with nintedanib in Asian patients with idiopathic pulmonary fibrosis: results from INPULSIS(R)-ON. Respirology. 2020; 25(4): 410-416.

[206]

Moor CC, Mostard RLM, Grutters JC, et al. Home monitoring in patients with idiopathic pulmonary fibrosis. A randomized controlled trial. Am J Respir Crit Care Med. 2020; 202(3): 393-401.

[207]

Lamb YN. Nintedanib: a review in fibrotic interstitial lung diseases. Drugs. 2021; 81(5): 575-586.

[208]

Flaherty KR, Wells AU, Cottin V, et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 2019; 381(18): 1718-1727.

[209]

Solomon JJ, Danoff SK, Woodhead FA, et al. Safety, tolerability, and efficacy of pirfenidone in patients with rheumatoid arthritis-associated interstitial lung disease: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Respir Med. 2023; 11(1): 87-96.

[210]

Behr J, Prasse A, Kreuter M, et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med. 2021; 9(5): 476-486.

[211]

Kreuter M, Maher TM, Corte TJ, et al. Pirfenidone in unclassifiable interstitial lung disease: a subgroup analysis by concomitant mycophenolate mofetil and/or previous corticosteroid use. Adv Ther. 2022; 39(2): 1081-1095.

[212]

Sakamoto S, Kataoka K, Kondoh Y, et al. Pirfenidone plus inhaled N-acetylcysteine for idiopathic pulmonary fibrosis: a randomised trial. Eur Respir J. 2021; 57(1): 2000348.

[213]

Behr J, Nathan SD, Wuyts WA, et al. Efficacy and safety of sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med. 2021; 9(1): 85-95.

[214]

Blackwell TS, Hewlett JC, Mason WR, et al. A phase I randomized, controlled, clinical trial of valganciclovir in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2021; 18(8): 1291-1297.

[215]

Maher TM, Corte TJ, Fischer A, et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2020; 8(2): 147-157.

[216]

Ikeda K, Chiba H, Nishikiori H, et al. Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan. Respir Res. 2020; 21(1): 316.

[217]

Rajan SK, Cottin V, Dhar R, et al. Progressive pulmonary fibrosis: an expert group consensus statement. Eur Respir J. 2023; 61(3): 2103187.

[218]

Miozzo AP, Watte G, Hetzel GM, et al. Ambulatory oxygen therapy in lung transplantation candidates with idiopathic pulmonary fibrosis referred for pulmonary rehabilitation. J Bras Pneumol. 2023; 49(2): e20220280.

[219]

Sanguanwong N, Jantarangsi N, Ngeyvijit J, Owattanapanich N, Phoophiboon V. Effect of noninvasive respiratory support on interstitial lung disease with acute respiratory failure: a systematic review and meta-analysis. Can J Respir Ther. 2023; 59: 232-244.

[220]

Le Pavec J, Dauriat G, Gazengel P, et al. Lung transplantation for idiopathic pulmonary fibrosis. Presse Med. 2020; 49(2): 104026.

[221]

She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov. 2021; 7(1): 52.

[222]

Jiang A, Liu N, Wang J, et al. The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: friend or foe?. Front Immunol. 2022; 13: 1022228.

[223]

Zhou BW, Liu HM, Xu F, Jia XH. The role of macrophage polarization and cellular crosstalk in the pulmonary fibrotic microenvironment: a review. Cell Commun Signal. 2024; 22(1): 172.

[224]

Deng L, Huang T, Zhang L. T cells in idiopathic pulmonary fibrosis: crucial but controversial. Cell Death Discov. 2023; 9(1): 62.

[225]

Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension—The role of the extracellular matrix as a therapeutic target. Pharmacol Ther. 2023; 247: 108438.

[226]

Richeldi L, Fernandez Perez ER, Costabel U, et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2020; 8(1): 25-33.

[227]

Ding H, Cui Y, Yang J, et al. ROS-responsive microneedles loaded with integrin avbeta6-blocking antibodies for the treatment of pulmonary fibrosis. J Control Release. 2023; 360: 365-375.

[228]

Mendoza FA, Jimenez SA. Serine/threonine kinase inhibition as antifibrotic therapy: transforming growth factor-beta and Rho kinase inhibitors. Rheumatology (Oxford). 2022; 61(4): 1354-1365.

[229]

Higo H, Ohashi K, Tomida S, et al. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res. 2022; 23(1): 20.

[230]

Chulia-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. Int J Mol Sci. 2022; 23(13): 6894.

[231]

Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernandez-Andreu JM, Revert F. The versatility of collagen in pharmacology: targeting collagen, targeting with collagen. Int J Mol Sci. 2024; 25(12): 6523.

[232]

Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol. 2020; 101: 104-110.

[233]

Zhou Q, Yi G, Chang M, et al. Activation of Sirtuin3 by honokiol ameliorates alveolar epithelial cell senescence in experimental silicosis via the cGAS-STING pathway. Redox Biol. 2024; 74: 103224.

[234]

Rehan M, Kurundkar D, Kurundkar AR, et al. Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. Nat Aging. 2021; 1(2): 205-217.

[235]

Guan R, Yuan L, Li J, et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J. 2022; 60(6): 2102307.

[236]

Huang T, Lin R, Su Y, et al. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat Commun. 2023; 14(1): 5781.

[237]

Chung KP, Hsu CL, Fan LC, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019; 10(1): 3390.

[238]

Lu Y, Mu M, RenChen X, et al. 2-Deoxy-D-glucose ameliorates inflammation and fibrosis in a silicosis mouse model by inhibiting hypoxia-inducible factor-1alpha in alveolar macrophages. Ecotoxicol Environ Saf. 2024; 269: 115767.

[239]

Li J, Zhai X, Sun X, Cao S, Yuan Q, Wang J. Metabolic reprogramming of pulmonary fibrosis. Front Pharmacol. 2022; 13: 1031890.

[240]

Huang T, Zhang T, Jiang X, et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv. 2021; 7(40): eabj0534.

[241]

Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol. 2020; 33: 101426.

[242]

Kleele T, Rey T, Winter J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021; 593(7859): 435-439.

[243]

Zhang W, Wang Y, Du Y, et al. Efficacy of alveolar type II epithelial cell transplantation for pulmonary fibrosis: a meta-analysis. Iran J Public Health. 2023; 52(1): 1-9.

[244]

Long Y, Yang B, Lei Q, et al. Targeting senescent alveolar epithelial cells using engineered mesenchymal stem cell-derived extracellular vesicles to treat pulmonary fibrosis. ACS Nano. 2024; 18(9): 7046-7063.

[245]

Lai X, Huang S, Lin S, et al. Mesenchymal stromal cells attenuate alveolar type 2 cells senescence through regulating NAMPT-mediated NAD metabolism. Stem Cell Res Ther. 2022; 13(1): 12.

[246]

Shi C, Chen X, Yin W, Sun Z, Hou J, Han X. Wnt8b regulates myofibroblast differentiation of lung-resident mesenchymal stem cells via the activation of Wnt/beta-catenin signaling in pulmonary fibrogenesis. Differentiation. 2022; 125: 35-44.

[247]

Cheng W, Fan C, Song Q, et al. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol. 2023; 11: 1119606.

[248]

Shi Y, Dong M, Zhou Y, et al. Distal airway stem cells ameliorate bleomycin-induced pulmonary fibrosis in mice. Stem Cell Res Ther. 2019; 10(1): 161.

[249]

Bhattacharyya A, Khan R, Lee JY, et al. Gene therapy with AAV9-SGPL1 in an animal model of lung fibrosis. J Pathol. 2024; 263(1): 22-31.

[250]

Bao R, Wang Q, Yu M, et al. AAV9-HGF cooperating with TGF-beta/Smad inhibitor attenuates silicosis fibrosis via inhibiting ferroptosis. Biomed Pharmacother. 2023; 161: 114537.

[251]

Yan L, Hou C, Liu J, et al. Local administration of liposomal-based Plekhf1 gene therapy attenuates pulmonary fibrosis by modulating macrophage polarization. Sci China Life Sci. 2023; 66(11): 2571-2586.

[252]

Ding L, Tang S, Tang W, et al. Perfluorocarbon nanoemulsions enhance therapeutic siRNA delivery in the treatment of pulmonary fibrosis. Adv Sci (Weinh). 2022; 9(8): e2103676.

[253]

Li Y, Qin W, Liang Q, et al. Bufei huoxue capsule alleviates bleomycin-induced pulmonary fibrosis in mice via TGF-beta1/Smad2/3 signaling. J Ethnopharmacol. 2023; 316: 116733.

[254]

Wang Q, Li W, Hu H, Lu X, Qin S. Monomeric compounds from traditional Chinese medicine: new hopes for drug discovery in pulmonary fibrosis. Biomed Pharmacother. 2023; 159: 114226.

[255]

Zhang Y, Lu P, Qin H, et al. Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: rationale and therapeutic potential. Biomed Pharmacother. 2021; 133: 111072.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/