Partial reduction of interleukin-33 signaling improves senescence and renal injury in diabetic nephropathy

Li Chen , Chao Gao , Xingzhu Yin , Li Mo , Xueer Cheng , Huimin Chen , Chunjie Jiang , Bangfu Wu , Ying Zhao , Hongxia Li , Yanyan Li , Jiansha Li , Liangkai Chen , Qianchun Deng , Ping Yao , Yuhan Tang

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e742

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e742 DOI: 10.1002/mco2.742
ORIGINAL ARTICLE

Partial reduction of interleukin-33 signaling improves senescence and renal injury in diabetic nephropathy

Author information +
History +
PDF

Abstract

Diabetic nephropathy (DN) is a frequent and costly complication of diabetes with limited understandings of mechanisms and therapies. Emerging evidence points to the important roles of interleukin-33 (IL-33) in acute kidney injury, yet its contribution to DN is still unclear. We here found a ubiquitous increase of IL-33 and its receptor (ST2) in murine models and patients with DN. Surprisingly, both IL-33 and ST2 knockdown aggravated renal lesions in DN, while overexpression of IL-33 also exacerbated the condition. Further population-based analyses revealed a positive correlation of IL-33 expression with renal dysfunction in DN patients. Individuals with high IL-33 expression-related polygenic risk score had a higher DN risk. These findings confirmed the harmful effects of IL-33 on DN. Conversely, endogenous and exogenous partial reduction of IL-33 signaling conferred renoprotective effects in vivo and in vitro. Mechanistically, IL-33 induced senescence by regulating cell cycle factors in HK-2 cells, and accordingly senescence led to renal cell damage through the secretion of senescence-related secretory phenotype (SASP) including IL-33 and prostaglandins. Together, elevated IL-33 accelerates cellular senescence to drive DN possibly by SASP production, while a partial blockage improves renal injury and senescence. Our findings pinpoint a possible and new avenue for DN interventions.

Keywords

cellular senescence / diabetic nephropathy / interleukin-33 / senescence-related secretory phenotype

Cite this article

Download citation ▾
Li Chen, Chao Gao, Xingzhu Yin, Li Mo, Xueer Cheng, Huimin Chen, Chunjie Jiang, Bangfu Wu, Ying Zhao, Hongxia Li, Yanyan Li, Jiansha Li, Liangkai Chen, Qianchun Deng, Ping Yao, Yuhan Tang. Partial reduction of interleukin-33 signaling improves senescence and renal injury in diabetic nephropathy. MedComm, 2024, 5(11): e742 DOI:10.1002/mco2.742

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao R, Tian H, Zhang Y, et al. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm. 2023; 4(3): e283.

[2]

Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022; 102(2): 248-260.

[3]

DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol. 2021; 17(5): 319-334.

[4]

Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018; 281(1): 154-168.

[5]

Li T, Zhang Z, Bartolacci JG, et al. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. J Clin Invest. 2020; 130(10): 5397-5412.

[6]

Lin Y, Xiao L, Cai Q, et al. The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit. Sci Immunol. 2021; 6(61).

[7]

Wu MX, Wang SH, Xie Y, et al. Interleukin-33 alleviates diabetic cardiomyopathy through regulation of endoplasmic reticulum stress and autophagy via insulin-like growth factor-binding protein 3. J Cell Physiol. 2021; 236(6): 4403-4419.

[8]

He Z, Song Y, Yi Y, et al. Blockade of IL-33 signalling attenuates osteoarthritis. Clin Transl Immunol. 2020; 9(10): e1185.

[9]

Yang F, Zhu P, Duan L, Yang L, Wang J. IL-33 and kidney disease (Review). Mol Med Rep. 2016; 13(1): 3-8.

[10]

Cao Q, Wang Y, Niu Z, et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury. J Am Soc Nephrol. 2018; 29(3): 961-976.

[11]

Akcay A, Nguyen Q, He Z, et al. IL-33 exacerbates acute kidney injury. J Am Soc Nephrol. 2011; 22(11): 2057-2067.

[12]

Ferhat M, Robin A, Giraud S, et al. Endogenous IL-33 contributes to kidney ischemia-reperfusion injury as an alarmin. J Am Soc Nephrol. 2018; 29(4): 1272-1288.

[13]

Tonacci A, Quattrocchi P, Gangemi S. IL33/ST2 axis in diabetic kidney disease: a literature review. Medicina (Kaunas). 2019; 55(2).

[14]

Fang Y, Chen B, Gong AY, et al. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int. 2021; 100(5): 1037-1053.

[15]

Chen L, Mei G, Jiang C, et al. Carbon monoxide alleviates senescence in diabetic nephropathy by improving autophagy. Cell Prolif. 2021; 54(6): e13052.

[16]

Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530(7589): 184-189.

[17]

Al-Douahji M, Brugarolas J, Brown PA, Stehman-Breen CO, Alpers CE, Shankland SJ. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int. 1999; 56(5): 1691-1699.

[18]

Wolf G, Schanze A, Stahl RA, Shankland SJ, Amann K. p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency. Kidney Int. 2005; 68(4): 1583-1589.

[19]

Xu L, Wei C, Chen Y, et al. IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection. Nat Commun. 2022; 13(1): 6881.

[20]

Yamagishi R, Kamachi F, Nakamura M, et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol. 2022; 7(72): eabl7209.

[21]

Goldberg EL, Shchukina I, Youm YH, et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 2021; 33(11): 2277-2287.e5.

[22]

Wang D, Li Y, Wang N, et al. 1α 25-Dihydroxyvitamin D(3) prevents renal oxidative damage via the PARP1/SIRT1/NOX4 pathway in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2020; 318(3): E343-e356.

[23]

Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020; 32(3): 404-419.e6.

[24]

Allegra A, Innao V, Tartarisco G, et al. The ST2/interleukin-33 axis in hematologic malignancies: the IL-33 paradox. Int J Mol Sci. 2019; 20(20).

[25]

Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy. Oxid Med Cell Long. 2019; 2019: 7495629.

[26]

Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020; 34(23-24): 1565-1576.

[27]

Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015; 349(6255): aaa5612.

[28]

Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017; 21: 21-28.

[29]

Wang T, Huang S, He C. Senescent cells: a therapeutic target for osteoporosis. Cell Prolif. 2022:e13323.

[30]

Elsherbiny NM, Said E, Atef H, Zaitone SA. Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression. Chem Biol Interact. 2020; 315: 108897.

[31]

Sehnine M, Ferhat M, Sena S, et al. IL-33 receptor ST2 deficiency attenuates renal ischaemia-reperfusion injury in euglycaemic, but not streptozotocin-induced hyperglycaemic mice. Diabetes Metab. 2018; 44(1): 55-60.

[32]

Liu T, Jin YQ, Wang Q, et al. IL-33/ST2L signaling alleviates diabetic nephropathy by regulating endoplasmic reticulum stress and apoptosis. BMC Nephrology. 2023; 24(1): 361.

[33]

Dwyer GK, D’Cruz LM, Turnquist HR. Emerging functions of IL-33 in homeostasis and immunity. Annu Rev Immunol. 2022; 40: 15-43.

[34]

de Oliveira MFA, Talvani A, Rocha-Vieira E. IL-33 in obesity: where do we go from here?. Inflamm Res. 2019; 68(3): 185-194.

[35]

Rabe KF, Celli BR, Wechsler ME, et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med. 2021; 9(11): 1288-1298.

[36]

Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med. 2021; 385(18): 1656-1668.

[37]

Tan XY, Jing HY, Ma YR. Interleukin-33/suppression of tumorigenicity 2 in renal fibrosis: emerging roles in prognosis and treatment. Front Physiol. 2021; 12: 792897.

[38]

Hofherr A, Liarte Marin E, Musial B, et al. Inhibition of interleukin-33 to reduce glomerular endothelial inflammation in diabetic kidney disease. Kidney Int Rep. 2024; 9(6): 1876-1891.

[39]

Fang Y, Zhao L, Xiao H, et al. IL-33 acts as a foe to MIA PaCa-2 pancreatic cancer. Med Oncol. 2017; 34(2): 23.

[40]

Tominaga S, Tago K, Tsuda H, Komine M. Dual function of IL-33 on proliferation of NIH-3T3 cells. Cytokine. 2015; 72(1): 105-108.

[41]

Wang S, Zhao G, Zhao S, Qiao Y, Yang H. The effects of interleukin-33 (IL-33) on osteosarcoma cell viability, apoptosis, and epithelial-mesenchymal transition are mediated through the PI3K/AKT pathway. Med Sci Monit. 2020; 26: e920766.

[42]

Nayki C, Nayki U, Kulhan M, et al. The effect of diabetes on ovaries in a rat model: the role of interleukin-33 and apoptosis. Gynecol Endocrinol. 2017; 33(9): 708-711.

[43]

Shelite TR, Liang Y, Wang H, et al. IL-33-dependent endothelial activation contributes to apoptosis and renal injury in orientia tsutsugamushi-infected mice. PLoS NeglTrop Dis. 2016; 10(3): e0004467.

[44]

Xiao L, Luo G, Li H, Yao P, Tang Y. Dietary iron overload mitigates atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice: role of dysregulated hepatic fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2021; 1866(10): 159004.

[45]

Wu Z, Wu B, Lv X, et al. Serumal lipidomics reveals the anti-inflammatory effect of flax lignans and sinapic acid in high-fat-diet-fed mice. J Agric Food Chem. 2021; 69(32): 9111-9123.

[46]

Chen L, Wu B, Mo L, et al. Associations between biological ageing and the risk of, genetic susceptibility to, and life expectancy associated with rheumatoid arthritis: a secondary analysis of two observational studies. Lancet Healthy Longev. 2024; 5(1): e45-e55.

[47]

Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018; 562(7726): 203-209.

[48]

Wu Y, Xiong T, Tan X, Chen L. Frailty and risk of microvascular complications in patients with type 2 diabetes: a population-based cohort study. BMC Med. 2022; 20(1): 473.

[49]

Cui F, Sun Y, Xie J, et al. Air pollutants, genetic susceptibility and risk of incident idiopathic pulmonary fibrosis. Eur Respir J. 2022.

[50]

Yurekten O, Payne T, Tejera N, et al. MetaboLights: open data repository for metabolomics. Nucleic Acids Res. 2023; 52(D1): D640-D646.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/