Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells

Fei Gao , Mauricio Campos Mora , Michael Constantinides , Loïs Coënon , Caroline Multrier , Loïc Vaillant , Julien Peyroux , Tianxiang Zhang , Martin Villalba

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e740

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e740 DOI: 10.1002/mco2.740
ORIGINAL ARTICLE

Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells

Author information +
History +
PDF

Abstract

Natural killer (NK) cells are candidates for adoptive cell therapy, and the protocols for their activation and expansion profoundly influence their function and fate. The complexity of NK cell origin and feeder cell cues impacts the heterogeneity of expanded NK (eNK) cells. To explore this, we compared the phenotype and function of peripheral blood-derived NK (PB-NK) and umbilical cord blood-derived NK (UCB-NK) cells activated by common feeder cell lines, including K562, PLH, and 221.AEH. After first encounter, most PB-NK cells showed degranulation independently of cytokines production. Meanwhile, most UCB-NK cells did both. We observed that each feeder cell line uniquely influenced the activation, expansion, and ultimate fate of PB eNK and UCB eNK cells, determining whether they became cytokine producers or killer cells. In addition, they also affected the functional performance of NK cell subsets after expansion, that is, expanded conventional NK (ecNK) and expanded FcRγ NK (eg-NK) cells. Hence, the regulation of eNK cell function largely depends on the NK cell source and the chosen expansion system. These results underscore the significance of selecting feeder cells for NK cell expansion from various sources, notably for customized adoptive cell therapies to yield cytokine-producing or cytotoxic eNK cells.

Keywords

cytokine-producing / cytotoxicity / expanded conventionalNK (ecNK) cells / expanded FcRγ– NK (eg-NK) cells / expanded NK (eNK) cells / feeder cells

Cite this article

Download citation ▾
Fei Gao, Mauricio Campos Mora, Michael Constantinides, Loïs Coënon, Caroline Multrier, Loïc Vaillant, Julien Peyroux, Tianxiang Zhang, Martin Villalba. Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells. MedComm, 2024, 5(10): e740 DOI:10.1002/mco2.740

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020; 382(6): 545-553. doi:10.1056/NEJMoa1910607

[2]

Marin D, Li Y, Basar R, et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19(+) B cell tumors: a phase 1/2 trial. Nat Med. 2024; 30(3): 772-784.

[3]

Keener AB. Natural killer cells show their cancer-fighting worth. Nature. 2024; 629(8014): S4-S6.

[4]

Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019; 40(2): 142-158.

[5]

Crinier A, Narni-Mancinelli E, Ugolini S, Vivier E. SnapShot: natural Killer Cells. Cell. 2020; 180(6): 1280-1280. e1.

[6]

Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nat Immunol. 2020; 21(8): 835-847.

[7]

Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010; 115(11): 2167-2176.

[8]

Reefman E, Kay JG, Wood SM, et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 2010; 184(9): 4852-4862.

[9]

Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukocyte Biol. 2019; 105(6): 1319-1329.

[10]

Tesi B, Schlums H, Cichocki F, Bryceson YT. Epigenetic regulation of adaptive NK cell diversification. Trends Immunol. 2016; 37(7): 451-461.

[11]

Hwang I, Zhang T, Scott JM, et al. Identification of human NK cells that are deficient for signaling adaptor FcRgamma and specialized for antibody-dependent immune functions. Int Immunol. 2012; 24(12): 793-802.

[12]

Zhang T, Scott JM, Hwang I, Kim S. Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRgamma deficiency. J Immunol. 2013; 190(4): 1402-1406.

[13]

Lee J, Zhang T, Hwang I, et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity. 2015; 42(3): 431-442.

[14]

Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015; 42(3): 443-456.

[15]

Lopez-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: facts and open issues. Semin Immunol. 2023; 65: 101706.

[16]

Liu LL, Landskron J, Ask EH, et al. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. 2016; 15(5): 1088-1099.

[17]

Bigley AB, Spade S, Agha NH, et al. FcepsilonRIgamma-negative NK cells persist in vivo and enhance efficacy of therapeutic monoclonal antibodies in multiple myeloma. Blood Adv. 2021; 5(15): 3021-3031.

[18]

Forrest C, Chase TJG, Cuff AO, et al. Control of human cytomegalovirus replication by liver resident natural killer cells. Nat Commun. 2023; 14(1): 1409.

[19]

Ataya M, Redondo-Pachon D, Llinas-Mallol L, et al. Long-term evolution of the adaptive NKG2C(+) NK cell response to cytomegalovirus infection in kidney transplantation: an insight on the diversity of host-pathogen interaction. J Immunol. 2021; 207(7): 1882-1890.

[20]

Ataya M, Redondo-Pachon D, Llinas-Mallol L, et al. Pretransplant adaptive NKG2C+ NK cells protect against cytomegalovirus infection in kidney transplant recipients. Am J Transplant. 2020; 20(3): 663-676.

[21]

Semmes EC, Hurst JH, Walsh KM, Permar SR. Cytomegalovirus as an immunomodulator across the lifespan. Curr Opin Virol. 2020; 44: 112-120.

[22]

Zuhair M, Smit GSA, Wallis G, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019; 29(3): e2034.

[23]

Baek HJ, Kim DW, Phan MT, et al. Comparison of FcRgamma-deficient and CD57+ natural killer cells between cord blood and adult blood in the cytomegalovirus-endemic Korean population. Ann Lab Med. 2015; 35(4): 423-428.

[24]

Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Micro. 2021; 19(12): 759-773.

[25]

Britt WJ. Congenital human cytomegalovirus infection and the enigma of maternal immunity. J Virol. 2017; 91(15): e02392.

[26]

Okpoluaefe S, Ismail IS, Mohamed R, Hassan N. Adaptive natural killer cell expression in response to cytomegalovirus infection in blood and solid cancer. Heliyon. 2024; 10(11): e32622.

[27]

Gao F, Mora MC, Constantinides M, et al. g-NK cells from umbilical cord blood are phenotypically and functionally different than g-NK cells from peripheral blood. Oncoimmunology. 2023; 12(1): 2283353.

[28]

Billadeau DD, Leibson PJ. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest. 2002; 109(2): 161-168.

[29]

Sabry M, Tsirogianni M, Bakhsh IA, et al. Leukemic priming of resting NK cells is killer Ig-like receptor independent but requires CD15-mediated CD2 ligation and natural cytotoxicity receptors. J Immunol. 2011; 187(12): 6227-6234.

[30]

Sabry M, Zubiak A, Hood SP, et al. Tumor-and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One. 2019; 14(6): e0218674.

[31]

Smith DM, Schafer JR, Tullius B, Witkam L, Paust S. Natural killer cells for antiviral therapy. Sci Transl Med. 2023; 15(677): eabl5278.

[32]

Laskowski TJ, Biederstadt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022; 22(10): 557-575.

[33]

Phan MT, Lee SH, Kim SK, Cho D. Expansion of NK cells using genetically engineered K562 feeder cells. Methods Mol Biol. 2016; 1441: 167-174.

[34]

Granzin M, Wagner J, Kohl U, Cerwenka A, Huppert V, Ullrich E. Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol. 2017; 8: 458.

[35]

Hassold N, Seystahl K, Kempf K, et al. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer. 2012; 131(6): E916-E927.

[36]

Kweon S, Phan MT, Chun S, et al. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front Immunol. 2019; 10: 879.

[37]

Thangaraj JL, Phan MT, Kweon S, et al. Expansion of cytotoxic natural killer cells in multiple myeloma patients using K562 cells expressing OX40 ligand and membrane-bound IL-18 and IL-21. Cancer Immunol Immunother. 2021; 71(3): 613-625.

[38]

Yang Y, Badeti S, Tseng HC, et al. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol Ther Methods Clin Dev. 2020; 18: 428-445.

[39]

Jost S, Lucar O, Lee E, et al. Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Sci Immunol. 2023; 8(90): eadi3974.

[40]

Hammer Q, Ruckert T, Borst EM, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol. 2018; 19(5): 453-463.

[41]

Haroun-Izquierdo A, Vincenti M, Netskar H, et al. Adaptive single-KIR(+)NKG2C(+) NK cells expanded from select superdonors show potent missing-self reactivity and efficiently control HLA-mismatched acute myeloid leukemia. J Immunother Cancer. 2022; 10(11): e005577.

[42]

Liu LL, Beziat V, Oei VYS, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017; 5(8): 654-665.

[43]

Phan MT, Kim J, Koh SK, et al. Selective expansion of NKG2C+ adaptive NK cells using K562 cells expressing HLA-E. Int J Mol Sci. 2022; 23(16): 9426.

[44]

Sanchez-Martinez D, Allende-Vega N, Orecchioni S, et al. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors. Theranostics. 2018; 8(14): 3856-3869.

[45]

Reina-Ortiz C, Constantinides M, Fayd-Herbe-de-Maudave A, et al. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology. 2020; 10(1): 1853314.

[46]

Perez VM, Selitsky SR, Yao B, Bigley A, Kim S, Frohlich MW. FcϵRIγ-negative NK cells and association with improved outcomes in trastuzumab-treated patients. J Clin Oncol. 2023; 41(16_suppl): e12538-e12538.

[47]

Katano I, Nishime C, Ito R, et al. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse. Sci Rep. 2017; 7(1): 17230.

[48]

Mark C, Czerwinski T, Roessner S, et al. Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells. Nat Commun. 2020; 11(1): 5224.

[49]

Berjis A, Muthumani D, Aguilar OA, et al. Pretreatment with IL-15 and IL-18 rescues natural killer cells from granzyme B-mediated apoptosis after cryopreservation. Nat Commun. 2024; 15(1): 3937.

[50]

Sivonen M, Sirvio KA, Wojciechowski S, et al. Cytokines impact natural killer cell phenotype and functionality against glioblastoma in vitro. Front Immunol. 2023; 14: 1227064.

[51]

Kurago ZB, Lutz CT, Smith KD, Colonna M. NK cell natural cytotoxicity and IFN-gamma production are not always coordinately regulated: engagement of DX9 KIR+ NK cells by HLA-B7 variants and target cells. J Immunol. 1998; 160(4): 1573-1580.

[52]

Lisovsky I, Isitman G, Bruneau J, Bernard NF. Functional analysis of NK cell subsets activated by 721.221 and K562 HLA-null cells. J Leukocyte Biol. 2015; 97(4): 761-767.

[53]

Tremblay-McLean A, Coenraads S, Kiani Z, Dupuy FP, Bernard NF. Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function. BMC Immunol. 2019; 20(1): 8.

[54]

Hait WN, Choudhury S, Srimatkandada S, Murren JR. Sensitivity of K562 human chronic myelogenous leukemia blast cells transfected with a human multidrug resistance cDNA to cytotoxic drugs and differentiating agents. J Clin Invest. 1993; 91(5): 2207-2215.

[55]

Bergmann M, Gross HJ, Abdelatty F, Moller P, Jaeken J, Schwartz-Albiez R. Abnormal surface expression of sialoglycans on B lymphocyte cell lines from patients with carbohydrate deficient glycoprotein syndrome I A (CDGS I A). Glycobiology. 1998; 8(10): 963-972.

[56]

Hendricks DW, Balfour HH Jr, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL. Cutting edge: nKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol. 2014; 192(10): 4492-4496.

[57]

Bigley AB, Rezvani K, Shah N, et al. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin Exp Immunol. 2016; 185(2): 239-251.

[58]

Quatrini L, Molfetta R, Zitti B, et al. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal. 2015; 8(400): ra108.

[59]

Ogasawara K, Hamerman JA, Hsin H, et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity. 2003; 18(1): 41-51.

[60]

McCann FE, Eissmann P, Onfelt B, Leung R, Davis DM. The activating NKG2D ligand MHC class I-related chain A transfers from target cells to NK cells in a manner that allows functional consequences. J Immunol. 2007; 178(6): 3418-3426.

[61]

Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001; 22(11): 633-640.

[62]

Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000; 165(4): 1847-1853.

[63]

Anft M, Netter P, Urlaub D, Prager I, Schaffner S, Watzl C. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell Mol Immunol. 2019; 17(4): 347-355.

[64]

Moore GL, Chen H, Karki S, Lazar GA. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. mAbs. 2010; 2(2): 181-189.

[65]

Jewett A, Kos J, Kaur K, et al. Natural killer cells: diverse functions in tumor immunity and defects in pre-neoplastic and neoplastic stages of tumorigenesis. Mol Ther Oncolytics. 2020; 16: 41-52.

[66]

Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-gamma in tumor progression and regression: a review. Biomark Res. 2020; 8: 49.

[67]

Fayd’herbe De Maudave A, Leconet W, Toupet K, et al. Intra-articular delivery of full-length antibodies through the use of an in situ forming depot. J Control Release. 2022; 341: 578-590.

[68]

Allende-Vega N, Marco Brualla J, Falvo P, et al. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Sci Rep. 2022; 12(1): 1341.

[69]

Belkahla S, Brualla JM, Fayd’herbe de Maudave A, et al. The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep. 2022; 12(1): 3234.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/