The role of ubiquitination in health and disease

Yan Liao , Wangzheqi Zhang , Yang Liu , Chenglong Zhu , Zui Zou

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e736

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e736 DOI: 10.1002/mco2.736
REVIEW

The role of ubiquitination in health and disease

Author information +
History +
PDF

Abstract

Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.

Keywords

protein degradation / protein homeostasis / ubiquitin / ubiquitination

Cite this article

Download citation ▾
Yan Liao, Wangzheqi Zhang, Yang Liu, Chenglong Zhu, Zui Zou. The role of ubiquitination in health and disease. MedComm, 2024, 5(10): e736 DOI:10.1002/mco2.736

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wilkinson KD. Ubiquitin: a nobel protein. Cell. 2004; 119(6): 741-745.

[2]

Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005; 6(1): 79-87.

[3]

Wang X, Pattison JS, Su H. Posttranslational modification and quality control. Circ Res. 2013; 112(2): 367-381.

[4]

Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023; 24(4): 273-287.

[5]

Ikeda F, Crosetto N, Dikic I. What determines the specificity and outcomes of ubiquitin signaling? Cell. 2010; 143(5): 677-681.

[6]

Schlesinger DH, Goldstein G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature. 1975; 255(5507): 423-424.

[7]

Wilkinson KD, Audhya TK. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J Biol Chem. 1981; 256(17): 9235-9241.

[8]

Kiel C, Serrano L. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J Mol Biol. 2006; 355(4): 821-844.

[9]

Kumar D, Sharma A, Sharma L. A comprehensive review of Alzheimer’s association with related proteins: pathological role and therapeutic significance. Curr Neuropharmacol. 2020; 18(8): 674-695.

[10]

Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev. 2013; 93(3): 1289-1315.

[11]

Vertegaal ACO. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem Rev. 2011; 111(12): 7923-7940.

[12]

Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016; 18(6): 579-586.

[13]

Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012; 81: 203-229.

[14]

Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020; 5(1): 11.

[15]

Wang T, Wang J. K63-linked polyubiquitination of IRF1: an essential step in the IL-1 signaling cascade. Cell Mol Immunol. 2014; 11(5): 407-409.

[16]

Hrdinka M, Gyrd-Hansen M. The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol Cell. 2017; 68(2): 265-280.

[17]

Zhang H, Jin X, Huang H. Deregulation of SPOP in cancer. Cancer Res. 2023; 83(4): 489-499.

[18]

Engelender S. Ubiquitination of alpha-synuclein and autophagy in Parkinson’s disease. Autophagy. 2008; 4(3): 372-374.

[19]

Srivastava A, McGrath B, Bielas SL. Histone H2A monoubiquitination in neurodevelopmental disorders. Trends Genet. 2017; 33(8): 566-578.

[20]

Humphreys LM, Smith P, Chen Z, Fouad S, D’Angiolella V. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ. 2021; 28(2): 522-537.

[21]

Rahman S, Wolberger C. Breaking the K48-chain: linking ubiquitin beyond protein degradation. Nat Struct Mol Biol. 2024; 31(2): 216-218.

[22]

Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ. 2017; 24(7): 1153-1159.

[23]

Buneeva O, Medvedev A. Atypical ubiquitination and Parkinson’s disease. Int J Mol Sci. 2022; 23(7): 3705.

[24]

Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 2017; 42(11): 873-886.

[25]

Kulathu Y, Komander D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012; 13(8): 508-523.

[26]

Lindsten K, de Vrij FMS, Verhoef LGGC, et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol. 2002; 157(3): 417-427.

[27]

Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature. 2011; 471(7340): 633-636.

[28]

Scaglione KM, Basrur V, Ashraf NS, et al. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J Biol Chem. 2013; 288(26): 18784-18788.

[29]

Tokunaga F, Sichi S, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol. 2009; 11(2): 123-132.

[30]

Kienle SM, Schneider T, Stuber K, et al. Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function. Nat Commun. 2022; 13(1): 5435.

[31]

Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016; 26(4): 399-422.

[32]

Bhogaraju S, Kalayil S, Liu Y, et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell. 2016; 167(6): 1636-1649. e13.

[33]

Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009; 10(5): 319-331.

[34]

Budhidarmo R, Nakatani Y, Day CL. RINGs hold the key to ubiquitin transfer. Trends Biochem Sci. 2012; 37(2): 58-65.

[35]

Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell. 2008; 134(2): 268-278.

[36]

Jaremko M, Jaremko Ł, Nowakowski M, et al. NMR structural studies of the first catalytic half-domain of ubiquitin activating enzyme. J Struct Biol. 2014; 185(1): 69-78.

[37]

Yuan L, Lv Z, Adams MJ, Olsen SK. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun. 2021; 12(1): 2370.

[38]

Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997; 16(18): 5509-5519.

[39]

Lv Z, Yuan L, Atkison JH, Aldana-Masangkay G, Chen Y, Olsen SK. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. J Biol Chem. 2017; 292(29): 12089-12099.

[40]

Olsen SK, Lima CD. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell. 2013; 49(5): 884-896.

[41]

Ye Y, Rape M. Building ubiquitin chains: e2 enzymes at work. Nat Rev Mol Cell Biol. 2009; 10(11): 755-764.

[42]

Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. E2 enzymes: more than just middle men. Cell Res. 2016; 26(4): 423-440.

[43]

McGinty RK, Henrici RC, Tan S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature. 2014; 514(7524): 591-596.

[44]

Pruneda JN, Smith FD, Daurie A, et al. E2˜Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO J. 2014; 33(5): 437-449.

[45]

Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature. 2010; 463(7283): 906-912.

[46]

Wiener R, DiBello AT, Lombardi PM, et al. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol. 2013; 20(9): 1033-1039.

[47]

Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017; 86: 129-157.

[48]

Malynn BA, Ma A. Ubiquitin makes its mark on immune regulation. Immunity. 2010; 33(6): 843-852.

[49]

Yuan L, Lv Z, Atkison JH, Olsen SK. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat Commun. 2017; 8(1): 211.

[50]

Qiu J, Sheedlo MJ, Yu K, et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 2016; 533(7601): 120-124.

[51]

Zhang R, Shi S. The role of NEDD4 related HECT-type E3 ubiquitin ligases in defective autophagy in cancer cells: molecular mechanisms and therapeutic perspectives. Mol Med. 2023; 29: 34.

[52]

Wang XS, Cotton TR, Trevelyan SJ, et al. The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Nat Commun. 2023; 14(1): 168.

[53]

Pao KC, Wood NT, Knebel A, et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature. 2018; 556(7701): 381-385.

[54]

Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature. 2011; 474(7349): 105-108.

[55]

Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008; 133(4): 653-665.

[56]

Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014; 21(4): 301-307.

[57]

Sherpa D, Chrustowicz J, Schulman BA. How the ends signal the end: regulation by E3 ubiquitin ligases recognizing protein termini. Mol Cell. 2022; 82(8): 1424-1438.

[58]

Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017; 86: 123-128.

[59]

Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009; 33(3): 275-286.

[60]

Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022; 82(1): 15-29.

[61]

Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018; 17(1): 57-78.

[62]

Liu F, Zhuang W, Song B, et al. MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade. Cell Mol Immunol. 2023; 20(10): 1186-1202.

[63]

Wang Y, Shi M, Feng H, et al. Structural insights into non-canonical ubiquitination catalyzed by SidE. Cell. 2018; 173(5): 1231-1243. e16.

[64]

Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019; 20(6): 338-352.

[65]

Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009; 10(8): 550-563.

[66]

Rape M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 2018; 19(1): 59-70.

[67]

Hicke L, Schubert HL, Hill CP. Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 2005; 6(8): 610-621.

[68]

Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 2012; 81: 291-322.

[69]

Dikic I, Wakatsuki S, Walters KJ. Ubiquitin binding domains — from structures to functions. Nat Rev Mol Cell Biol. 2009; 10(10): 659-671.

[70]

Wu K, DeVita RJ, Pan ZQ. Monoubiquitination empowers ubiquitin chain elongation. J Biol Chem. 2024; 300(3): 105753.

[71]

Crosas B, Hanna J, Kirkpatrick DS, et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell. 2006; 127(7): 1401-1413.

[72]

Harper JW, Schulman BA. Structural complexity in ubiquitin recognition. Cell. 2006; 124(6): 1133-1136.

[73]

Raasi S, Varadan R, Fushman D, Pickart CM. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol. 2005; 12(8): 708-714.

[74]

Di Fiore PP, Polo S, Hofmann K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol. 2003; 4(6): 491-497.

[75]

Liang RY, Chen L, Ko BT, et al. Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain. J Mol Biol. 2014; 426(24): 4049-4060.

[76]

Isasa M, Katz EJ, Kim W, et al. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell. 2010; 38(5): 733-745.

[77]

Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL. S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J. 2009; 28(13): 1867-1877.

[78]

Fishbain S, Prakash S, Herrig A, Elsasser S, Matouschek A. Rad23 escapes degradation because it lacks a proteasome initiation region. Nat Commun. 2011; 2: 192.

[79]

Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023; 24(3): 167-185.

[80]

Peng H, Yang J, Li G, et al. Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res. 2017; 27(5): 657-674.

[81]

You Z, Jiang WX, Qin LY, et al. Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress. Nat Commun. 2019; 10(1): 5792.

[82]

Turco E, Savova A, Gere F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat Commun. 2021; 12(1): 5212.

[83]

Clague MJ, Urbé S. Ubiquitin: same molecule, different degradation pathways. Cell. 2010; 143(5): 682-685.

[84]

Pickart CM. Back to the future with ubiquitin. Cell. 2004; 116(2): 181-190.

[85]

Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell. 2009; 33(4): 517-527.

[86]

Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci USA. 1979; 76(7): 3107-3110.

[87]

Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018; 87: 697-724.

[88]

Samant RS, Livingston CM, Sontag EM, Frydman J. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature. 2018; 563(7731): 407-411.

[89]

Kleijnen MF, Roelofs J, Park S, et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol. 2007; 14(12): 1180-1188.

[90]

Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017; 169(5): 792-806.

[91]

Bard JAM, Bashore C, Dong KC, Martin A. The 26S proteasome utilizes a kinetic gateway to prioritize substrate degradation. Cell. 2019; 177(2): 286-298. e15.

[92]

Deshmukh FK, Ben-Nissan G, Olshina MA, et al. Allosteric regulation of the 20S proteasome by the catalytic core regulators (CCRs) family. Nat Commun. 2023; 14(1): 3126.

[93]

Lu A, Pfeffer SR. A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol. 2014; 24(7): 389-399.

[94]

Betegon M, Brodsky JL. Unlocking the door for ERAD. Nat Cell Biol. 2020; 22(3): 263-265.

[95]

Chino H, Mizushima N. ER-Phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 2020; 30(5): 384-398.

[96]

Ji CH, Kim HY, Heo AJ, et al. The N-Degron pathway mediates ER-phagy. Mol Cell. 2019; 75(5): 1058-1072. e9.

[97]

Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 2013; 84(1): 25-33.

[98]

Chung KP, Zeng Y, Jiang L. COPII paralogs in plants: functional redundancy or diversity? Trends Plant Sci. 2016; 21(9): 758-769.

[99]

Jin L, Pahuja KB, Wickliffe KE, et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature. 2012; 482(7386): 495-500.

[100]

Piper RC, Lehner PJ. Endosomal transport via ubiquitination. Trends Cell Biol. 2011; 21(11): 647-655.

[101]

Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, André B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol. 2010; 20(4): 196-204.

[102]

Litterman N, Ikeuchi Y, Gallardo G, et al. An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol. 2011; 9(5): e1001060.

[103]

Zhang ZD, Li HX, Gan H, et al. RNF115 inhibits the post-ER trafficking of TLRs and TLRs-mediated immune responses by catalyzing K11-linked ubiquitination of RAB1A and RAB13. Adv Sci (Weinh). 2022; 9(16): e2105391.

[104]

Hegazi S, Cheng AH, Krupp JJ, et al. UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat Commun. 2022; 13(1): 1594.

[105]

Goswami R, Gupta A, Bednova O, et al. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev. 2024; 53(1): 204-226.

[106]

Wang YE, Park A, Lake M, et al. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog. 2010; 6(11): e1001186.

[107]

Chan WM, Poon RYC. The p53 Isoform Deltap53 lacks intrinsic transcriptional activity and reveals the critical role of nuclear import in dominant-negative activity. Cancer Res. 2007; 67(5): 1959-1969.

[108]

Khosravi B, LaClair KD, Riemenschneider H, et al. Cell-to-cell transmission of C9orf72 poly-(Gly-Ala) triggers key features of ALS/FTD. EMBO J. 2020; 39(8): e102811.

[109]

Zheng Z, Zeng X, Zhu Y, et al. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol Cancer. 2024; 23(1): 4.

[110]

Vogel K, Bläske T, Nagel MK, et al. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nat Commun. 2022; 13(1): 6897.

[111]

Zhang L, Xiao X, Arnold PR, Li XC. Transcriptional and epigenetic regulation of immune tolerance: roles of the NF-κB family members. Cell Mol Immunol. 2019; 16(4): 315-323.

[112]

Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature. 2009; 458(7237): 430-437.

[113]

Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017; 17(9): 545-558.

[114]

Liu Z, Mar KB, Hanners NW, et al. A NIK–SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature. 2019; 568(7751): 249-253.

[115]

Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007; 8(6): 584-591.

[116]

Ruland J. Return to homeostasis: downregulation of NF-κB responses. Nat Immunol. 2011; 12(8): 709-714.

[117]

Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer. 2017; 1868(2): 456-483.

[118]

Xu X, Zheng L, Yuan Q, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018; 6: 2.

[119]

Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012; 488(7413): 665-669.

[120]

Ng VH, Spencer Z, Neitzel LR, et al. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat Commun. 2023; 14(1): 6173.

[121]

Dominguez-Brauer C, Hao Z, Elia AJ, et al. Mule regulates the intestinal stem cell niche via the Wnt pathway and targets EphB3 for proteasomal and lysosomal degradation. Cell Stem Cell. 2016; 19(2): 205-216.

[122]

Fan Y, Huo X, Guo B, et al. Cullin 4b-RING ubiquitin ligase targets IRGM1 to regulate Wnt signaling and intestinal homeostasis. Cell Death Differ. 2022; 29(9): 1673-1688.

[123]

Chitalia VC, Foy RL, Bachschmid MM, et al. Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol. 2008; 10(10): 1208-1216.

[124]

Tsuchiya H, Burana D, Ohtake F, et al. Ub-ProT reveals global length and composition of protein ubiquitylation in cells. Nat Commun. 2018; 9(1): 524.

[125]

Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J. 2004; 23(16): 3270-3281.

[126]

Inagi R, Ishimoto Y, Nangaku M. Proteostasis in endoplasmic reticulum–new mechanisms in kidney disease. Nat Rev Nephrol. 2014; 10(7): 369-378.

[127]

You K, Wang L, Chou CH, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science. 2021; 371(6524): eabb6896.

[128]

Tawo R, Pokrzywa W, Kevei É, et al. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover. Cell. 2017; 169(3): 470-482. e13.

[129]

Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol. 2023; 24(11): 797-815.

[130]

Pessa JC, Joutsen J, Sistonen L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol Cell. 2024; 84(1): 80-93.

[131]

Henning RH, Brundel BJJM. Proteostasis in cardiac health and disease. Nat Rev Cardiol. 2017; 14(11): 637-653.

[132]

El Ayadi A, Stieren ES, Barral JM, Boehning D. Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688. Proc Natl Acad Sci USA. 2012; 109(33): 13416-13421.

[133]

Rane NS, Kang SW, Chakrabarti O, Feigenbaum L, Hegde RS. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev Cell. 2008; 15(3): 359-370.

[134]

Leznicki P, High S. SGTA antagonizes BAG6-mediated protein triage. Proc Natl Acad Sci USA. 2012; 109(47): 19214-19219.

[135]

Xu Y, Anderson DE, Ye Y. The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation. Cell Discov. 2016; 2: 16040.

[136]

Avci D, Lemberg MK. Clipping or extracting: two ways to membrane protein degradation. Trends Cell Biol. 2015; 25(10): 611-622.

[137]

Liu G, Rogers J, Murphy CT, Rongo C. EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J. 2011; 30(15): 2990-3003.

[138]

Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016; 26(1): 52-64.

[139]

Zhao W, Steinfeld JB, Liang F, et al. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017; 550(7676): 360-365.

[140]

Hu Q, Botuyan MV, Zhao D, Cui G, Mer E, Mer G. Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Nature. 2021; 596(7872): 438-443.

[141]

Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 2020; 21(5): 284-299.

[142]

Becker JR, Clifford G, Bonnet C, Groth A, Wilson MD, Chapman JR. BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature. 2021; 596(7872): 433-437.

[143]

Qiu L, Xu W, Lu X, et al. The HDAC6-RNF168 axis regulates H2A/H2A.X ubiquitination to enable double-strand break repair. Nucleic Acids Res. 2023; 51(17): 9166-9182.

[144]

Nowsheen S, Aziz K, Aziz A, et al. L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nat Cell Biol. 2018; 20(4): 455-464.

[145]

Luo K, Deng M, Li Y, et al. CDK-mediated RNF4 phosphorylation regulates homologous recombination in S-phase. Nucleic Acids Res. 2015; 43(11): 5465-5475.

[146]

Jeong E, Lee SG, Kim HS, et al. Structural basis of the fanconi anemia-associated mutations within the FANCA and FANCG complex. Nucleic Acids Res. 2020; 48(6): 3328-3342.

[147]

Longerich S, Kwon Y, Tsai MS, Hlaing AS, Kupfer GM, Sung P. Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA. Nucleic Acids Res. 2014; 42(9): 5657-5670.

[148]

Alcón P, Shakeel S, Chen ZA, Rappsilber J, Patel KJ, Passmore LA. FANCD2-FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat Struct Mol Biol. 2020; 27(3): 240-248.

[149]

Rego MA, Kolling FW, Vuono EA, Mauro M, Howlett NG. Regulation of the Fanconi anemia pathway by a CUE ubiquitin-binding domain in the FANCD2 protein. Blood. 2012; 120(10): 2109-2117.

[150]

Williams SA, Longerich S, Sung P, Vaziri C, Kupfer GM. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood. 2011; 117(19): 5078-5087.

[151]

Nakazawa Y, Sasaki K, Mitsutake N, et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet. 2012; 44(5): 586-592.

[152]

Nakazawa Y, Hara Y, Oka Y, et al. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell. 2020; 180(6): 1228-1244. e24.

[153]

Essawy M, Chesner L, Alshareef D, Ji S, Tretyakova N, Campbell C. Ubiquitin signaling and the proteasome drive human DNA-protein crosslink repair. Nucleic Acids Research. 2023; 51(22): 12174-12184.

[154]

Chitale S, Richly H. DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair. Nucleic Acids Res. 2017; 45(10): 5901-5912.

[155]

Sun X, Tang H, Chen Y, et al. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. Nat Cancer. 2023; 4(5): 716-733.

[156]

Rona G, Miwatani-Minter B, Zhang Q, et al. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell. 2024; 84(7): 1224-1242.

[157]

Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2021; 28(2): 427-438.

[158]

Zhang S, Chang L, Alfieri C, et al. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature. 2016; 533(7602): 260-264.

[159]

Fujimitsu K, Grimaldi M, Yamano H. Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science. 2016; 352(6289): 1121-1124.

[160]

Hein JB, Nilsson J. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry. Nat Commun. 2016; 7: 10975.

[161]

Zhou CJ, Wang XY, Dong YH, et al. CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I. Nat Commun. 2022; 13(1): 7732.

[162]

Izawa D, Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 2015; 517(7536): 631-634.

[163]

Hellmuth S, Gómez-H L, Pendás AM, Stemmann O. Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2. Nature. 2020; 580(7804): 536-541.

[164]

Tischer T, Hörmanseder E, Mayer TU. The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science. 2012; 338(6106): 520-524.

[165]

Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020; 5(1): 209.

[166]

Gong Y, Zack TI, Morris LGT, et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet. 2014; 46(6): 588-594.

[167]

Alao JP, Stavropoulou AV, Lam EWF, Coombes RC, Vigushin DM. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol Cancer. 2006; 5: 8.

[168]

Barr AR, Cooper S, Heldt FS, et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat Commun. 2017; 8: 14728.

[169]

Hume S, Grou CP, Lascaux P, et al. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Commun. 2021; 12(1): 6959.

[170]

Li J, D’Angiolella V, Seeley ES, et al. USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature. 2013; 495(7440): 255-259.

[171]

Tang D, Xiang Y, De Renzis S, et al. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nat Commun. 2011; 2: 501.

[172]

Chen NP, Aretz J, Fässler R. CDK1-cyclin-B1-induced kindlin degradation drives focal adhesion disassembly at mitotic entry. Nat Cell Biol. 2022; 24(5): 723-736.

[173]

Sakaue-Sawano A, Yo M, Komatsu N, et al. Genetically encoded tools for optical dissection of the mammalian cell cycle. Mol Cell. 2017; 68(3): 626-640.

[174]

Yang M, Chen T, Li X, et al. K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8(+) T cell activation. Nat Immunol. 2015; 16(12): 1253-1262.

[175]

Aki D, Li H, Zhang W, et al. The E3 ligases Itch and WWP2 cooperate to limit TH2 differentiation by enhancing signaling through the TCR. Nat Immunol. 2018; 19(7): 766-775.

[176]

Park Y, Jin HS, Lopez J, et al. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol. 2016; 17(3): 286-296.

[177]

Shih YC, Chen HF, Wu CY, et al. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Nat Commun. 2024; 15(1): 532.

[178]

Dufner A, Kisser A, Niendorf S, et al. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat Immunol. 2015; 16(9): 950-960.

[179]

Chen S, Yun F, Yao Y, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018; 215(11): 2850-2867.

[180]

O’Leary CE, Riling CR, Spruce LA, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016; 7: 11226.

[181]

Li X, Gadzinsky A, Gong L, et al. Cbl ubiquitin ligases control B cell exit from the germinal-center reaction. Immunity. 2018; 48(3): 530-541. e6.

[182]

Ramkumar C, Cui H, Kong Y, Jones SN, Gerstein RM, Zhang H. Smurf2 suppresses B-cell proliferation and lymphomagenesis by mediating ubiquitination and degradation of YY1. Nat Commun. 2013; 4: 2598.

[183]

Moser EK, Roof J, Dybas JM, et al. The E3 ubiquitin ligase Itch restricts antigen-driven B cell responses. J Exp Med. 2019; 216(9): 2170-2183.

[184]

Bannard O, McGowan SJ, Ersching J, et al. Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. J Exp Med. 2016; 213(6): 993-1009.

[185]

Karin M, Gallagher E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev. 2009; 228(1): 225-240.

[186]

Pertel T, Hausmann S, Morger D, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011; 472(7343): 361-365.

[187]

Chakraborty A, Diefenbacher ME, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015; 6: 6782.

[188]

Oh YT, Yue P, Sun SY. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Commun Signal. 2017; 15(1): 18.

[189]

Yuan J, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol. 2024; 25(5): 379-395.

[190]

Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 2023; 19(5): 337-350.

[191]

Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016; 535(7610): 153-158.

[192]

Song H, Zhao C, Yu Z, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun. 2020; 11(1): 6042.

[193]

Zhao W, Shi CS, Harrison K, et al. AKT regulates NLRP3 inflammasome activation by phosphorylating NLRP3 serine 5. J Immunol. 2020; 205(8): 2255-2264.

[194]

Zhu Y, Zhang J, Yao X, et al. Ubiquitinated gasdermin D mediates arsenic-induced pyroptosis and hepatic insulin resistance in rat liver. Food Chem Toxicol. 2022; 160: 112771.

[195]

Vijayaraj SL, Feltham R, Rashidi M, et al. The ubiquitylation of IL-1β limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nat Commun. 2021; 12(1): 2713.

[196]

Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol. 2009; 49: 73-96.

[197]

Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009; 458(7237): 438-444.

[198]

Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014; 20(11): 1242-1253.

[199]

Dewson G, Eichhorn PJA, Komander D. Deubiquitinases in cancer. Nat Rev Cancer. 2023; 23(12): 842-862.

[200]

Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel). 2020; 12(6): 1579.

[201]

Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci. 2020; 21(11): 3904.

[202]

Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020; 19(1): 146.

[203]

Flügel D, Görlach A, Kietzmann T. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α. Blood. 2012; 119(5): 1292-1301.

[204]

Gonzalez-Pecchi V, Kwan AK, Doyle S, Ivanov AA, Du Y, Fu H. NSD3S stabilizes MYC through hindering its interaction with FBXW7. J Mol Cell Biol. 2020; 12(6): 438-447.

[205]

Mao JH, Kim IJ, Wu D, et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 2008; 321(5895): 1499-1502.

[206]

Cui D, Xiong X, Shu J, Dai X, Sun Y, Zhao Y. FBXW7 confers radiation survival by targeting p53 for degradation. Cell Rep. 2020; 30(2): 497-509. e4.

[207]

Ekambaram P, Lee JYL, Hubel NE, et al. The CARMA3-Bcl10-MALT1 signalosome drives NFκB activation and promotes aggressiveness in angiotensin II receptor-positive breast cancer. Cancer Res. 2018; 78(5): 1225-1240.

[208]

Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol Life Sci. 2020; 77(8): 1483-1495.

[209]

Koo J, Yue P, Deng X, Khuri FR, Sun SY. mTOR complex 2 stabilizes Mcl-1 protein by suppressing its glycogen synthase kinase 3-dependent and SCF-FBXW7-mediated degradation. Mol Cell Biol. 2015; 35(13): 2344-2355.

[210]

Zou H, Chen H, Zhou Z, Wan Y, Liu Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett. 2019; 467: 19-28.

[211]

Mai H, Zhou B, Liu L, et al. Molecular pattern of lncRNAs in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019; 38(1): 198.

[212]

Ju LG, Zhu Y, Long QY, et al. SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ. 2019; 26(6): 1156-1168.

[213]

Migita K, Takayama T, Matsumoto S, et al. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer. Gastric Cancer. 2014; 17(4): 601-609.

[214]

Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019; 44(12): 1057-1075.

[215]

Zhang Q, Huang H, Liu A, et al. Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of β-catenin in cancer stem-like cells. EBioMedicine. 2019; 42: 397-407.

[216]

Han S, Wang R, Zhang Y, et al. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int J Biol Sci. 2022; 18(6): 2292-2303.

[217]

Lim SO, Li CW, Xia W, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016; 30(6): 925-939.

[218]

Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep. 2018; 8(1): 2039.

[219]

Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020; 10(9): 94.

[220]

Berenson JR. Hematology: bortezomib in newly diagnosed multiple myeloma. Nat Rev Clin Oncol. 2009; 6(5): 255-256.

[221]

Jana NR, Dikshit P, Goswami A, Nukina N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004; 279(12): 11680-11685.

[222]

Ma YS, Wang XF, Yu F, et al. Inhibition of USP14 and UCH37 deubiquitinating activity by b-AP15 as a potential therapy for tumors with p53 deficiency. Signal Transduct Target Ther. 2020; 5(1): 30.

[223]

Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol. 2021; 48: 102194.

[224]

Das DS, Das A, Ray A, et al. Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple myeloma cells. Clin Cancer Res. 2017; 23(15): 4280-4289.

[225]

Mistry H, Hsieh G, Buhrlage SJ, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013; 12(12): 2651-2662.

[226]

Liang Q, Dexheimer TS, Zhang P, et al. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol. 2014; 10(4): 298-304.

[227]

Davis MI, Pragani R, Fox JT, et al. Small molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem. 2016; 291(47): 24628-24640.

[228]

Magiera K, Tomala M, Kubica K, et al. Lithocholic acid hydroxyamide destabilizes cyclin D1 and induces G0/G1 arrest by inhibiting deubiquitinase USP2a. Cell Chem Biol. 2017; 24(4): 458-470. e18.

[229]

Yang J, Xu P, Han L, et al. Cutting edge: ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt. J Immunol. 2015; 194(9): 4094-4097.

[230]

Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 2010; 70(22): 9265-9276.

[231]

Okada K, Ye YQ, Taniguchi K, et al. Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett. 2013; 23(15): 4328-4331.

[232]

Wang S, Juan J, Zhang Z, et al. Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis. 2017; 8(9): e3058.

[233]

Colland F, Formstecher E, Jacq X, et al. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther. 2009; 8(8): 2286-2295.

[234]

Gavory G, O’Dowd CR, Helm MD, et al. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol. 2018; 14(2): 118-125.

[235]

Di Lello P, Pastor R, Murray JM, et al. Discovery of small-molecule inhibitors of ubiquitin specific protease 7 (USP7) using integrated NMR and in silico techniques. J Med Chem. 2017; 60(24): 10056-10070.

[236]

Jing B, Liu M, Yang L, et al. Characterization of naturally occurring pentacyclic triterpenes as novel inhibitors of deubiquitinating protease USP7 with anticancer activity in vitro. Acta Pharmacol Sin. 2018; 39(3): 492-498.

[237]

Kategaya L, Di Lello P, Rougé L, et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature. 2017; 550(7677): 534-538.

[238]

Turnbull AP, Ioannidis S, Krajewski WW, et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 2017; 550(7677): 481-486.

[239]

Weinstock J, Wu J, Cao P, et al. Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med Chem Lett. 2012; 3(10): 789-792.

[240]

Byun S, Lee SY, Lee J, et al. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin Cancer Res. 2013; 19(14): 3894-3904.

[241]

Peterson LF, Sun H, Liu Y, et al. Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood. 2015; 125(23): 3588-3597.

[242]

Burkhart RA, Peng Y, Norris ZA, et al. Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol Cancer Res. 2013; 11(8): 901-911.

[243]

Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010; 467(7312): 179-184.

[244]

Jiang L, Sun Y, Wang J, et al. Proteasomal cysteine deubiquitinase inhibitor b-AP15 suppresses migration and induces apoptosis in diffuse large B cell lymphoma. J Exp Clin Cancer Res. 2019; 38(1): 453.

[245]

Boselli M, Lee BH, Robert J, et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem. 2017; 292(47): 19209-19225.

[246]

Moghadami AA, Aboutalebi Vand Beilankouhi E, Kalantary-Charvadeh A, et al. Inhibition of USP14 induces ER stress-mediated autophagy without apoptosis in lung cancer cell line A549. Cell Stress Chaperones. 2020; 25(6): 909-917.

[247]

Perez C, Li J, Parlati F, et al. Discovery of an inhibitor of the proteasome subunit Rpn11. J Med Chem. 2017; 60(4): 1343-1361.

[248]

Wrigley JD, Gavory G, Simpson I, et al. Identification and characterization of dual inhibitors of the USP25/28 deubiquitinating enzyme subfamily. ACS Chem Biol. 2017; 12(12): 3113-3125.

[249]

Rusilowicz-Jones EV, Jardine J, Kallinos A, et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance. 2020; 3(8): e202000768.

[250]

Li J, Yakushi T, Parlati F, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017; 13(5): 486-493.

[251]

Song Y, Li S, Ray A, et al. Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene. 2017; 36(40): 5631-5638.

[252]

Grethe C, Schmidt M, Kipka GM, et al. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun. 2022; 13(1): 5950.

[253]

Liu S, González-Prieto R, Zhang M, et al. Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 2020; 26(6): 1460-1473.

[254]

Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004; 10: S10-S17. Suppl.

[255]

Galves M, Rathi R, Prag G, Ashkenazi A. Ubiquitin signaling and degradation of aggregate-prone proteins. Trends Biochem Sci. 2019; 44(10): 872-884.

[256]

Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci. 2014; 7: 72.

[257]

Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017; 9(7): a028035.

[258]

Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging. 2008; 29(11): 1607-1618.

[259]

Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 2004; 14(1): 95-104.

[260]

Liang Y, Zhong G, Ren M, et al. The role of ubiquitin-proteasome system and mitophagy in the pathogenesis of Parkinson’s disease. Neuromolecular Med. 2023; 25(4): 471-488.

[261]

Ross JM, Olson L, Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin?. Int J Mol Sci. 2015; 16(8): 19458-19476.

[262]

Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013; 51: 35-42.

[263]

Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 2011; 12: 301-325.

[264]

Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011; 14(10): 1929-1938.

[265]

Todi SV, Paulson HL. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 2011; 34(7): 370-382.

[266]

Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009; 2(5-6): 231-237.

[267]

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365(9468): 1415-1428.

[268]

Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018; 20(2): 12.

[269]

Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. 2017; 113(4): 389-398.

[270]

Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017; 174(20): 3496-3513.

[271]

Kitamura H. Ubiquitin-specific proteases (USPs) and metabolic disorders. Int J Mol Sci. 2023; 24(4): 3219.

[272]

Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med. 2023; 29(1): 93.

[273]

Yu K, Mo D, Wu M, et al. Activating transcription factor 4 regulates adipocyte differentiation via altering the coordinate expression of CCATT/enhancer binding protein β and peroxisome proliferator-activated receptor γ. FEBS J. 2014; 281(10): 2399-2409.

[274]

Petersmann A, Müller-Wieland D, Müller UA, et al. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2019; 127(S 01): S1-S7.

[275]

Cortez JT, Montauti E, Shifrut E, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature. 2020; 582(7812): 416-420.

[276]

Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 2018; 19(3): 730.

[277]

Santin I, Moore F, Grieco FA, Marchetti P, Brancolini C, Eizirik DL. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis. 2012; 3(11): e419.

[278]

Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020; 126(11): 1549-1564.

[279]

Hirata Y, Nomura K, Senga Y, et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight. 2019; 4(4): e124952.

[280]

Kumar R, Mehta D, Mishra N, Nayak D, Sunil S. Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. Int J Mol Sci. 2020; 22(1): 323.

[281]

Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe. 2009; 5(6): 559-570.

[282]

Rytkönen A, Holden DW. Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe. 2007; 1(1): 13-22.

[283]

Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo ZQ, Das C. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci USA. 2015; 112(49): 15090-15095.

[284]

Ren J, Yu P, Liu S, et al. Deubiquitylating enzymes in cancer and immunity. Adv Sci (Weinh). 2023; 10(36): e2303807.

[285]

Szulc NA, Stefaniak F, Piechota M, et al. DEGRONOPEDIA: a web server for proteome-wide inspection of degrons. Nucleic Acids Res. 2024;52(W1):W221-W232.

[286]

Gou Y, Liu D, Chen M, et al. GPS-SUMO 2.0: an updated online service for the prediction of SUMOylation sites and SUMO-interacting motifs. Nucleic Acids Res. 2024;2(W1):W238-W247.

[287]

Li F, Hu Q, Zhang X, et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun. 2022; 13(1): 7133.

[288]

Guan X, Wang Y, Yu W, et al. Blocking ubiquitin-specific protease 7 induces ferroptosis in gastric cancer via targeting stearoyl-CoA desaturase. Adv Sci (Weinh). 2024; 11(18): e2307899.

[289]

Landgren O, Hultcrantz M, Diamond B, et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN nonrandomized clinical trial. JAMA Oncol. 2021; 7(6): 862-868.

[290]

Wang Q, Lin Z, Wang Z, et al. RARγ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood. 2022; 139(1): 59-72.

[291]

Mostafaei F, Hemmati S, Valizadeh H, et al. Enhanced intracellular accumulation and cytotoxicity of bortezomib against liver cancer cells using N-stearyl lactobionamide surface modified solid lipid nanoparticles. Int J Pharm. 2024; 649: 123635.

[292]

Kim Y, Kim W, Song Y, et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci USA. 2017; 114(18): 4691-4696.

[293]

Spel L, Nieuwenhuis J, Haarsma R, et al. Nedd4-binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Cancer Res. 2018; 78(23): 6621-6631.

[294]

Bonacci T, Suzuki A, Grant GD, et al. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J. 2018; 37(16): e98701.

[295]

Pareja F, Ferraro DA, Rubin C, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene. 2012; 31(43): 4599-4608.

[296]

Wang B, Jie Z, Joo D, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017; 545(7654): 365-369.

[297]

Ge F, Chen W, Qin J, et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget. 2015; 6(25): 21369-21378.

[298]

Zhang S, Hong Z, Chai Y, et al. CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochem Biophys Res Commun. 2017; 488(1): 101-108.

[299]

Huang M, Xiong H, Luo D, Xu B, Liu H. CSN5 upregulates glycolysis to promote hepatocellular carcinoma metastasis via stabilizing the HK2 protein. Exp Cell Res. 2020; 388(2): 111876.

[300]

Yuan L, Lv Y, Li H, et al. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 2015; 17(9): 1169-1181.

[301]

Pu Q, Lv YR, Dong K, Geng WW, Gao HD. Tumor suppressor OTUD3 induces growth inhibition and apoptosis by directly deubiquitinating and stabilizing p53 in invasive breast carcinoma cells. BMC Cancer. 2020; 20(1): 583.

[302]

Zhou F, Pan Y, Wei Y, et al. Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress. Clin Cancer Res. 2017; 23(15): 4450-4461.

[303]

Li J, Li Y, Wang B, Ma Y, Chen P. CSN5/Jab1 facilitates non-small cell lung cancer cell growth through stabilizing survivin. Biochem Biophys Res Commun. 2018; 500(2): 132-138.

[304]

Hou J, Deng Q, Zhou J, et al. CSN6 controls the proliferation and metastasis of glioblastoma by CHIP-mediated degradation of EGFR. Oncogene. 2017; 36(8): 1134-1144.

[305]

Su L, Guo W, Lou L, et al. EGFR-ERK pathway regulates CSN6 to contribute to PD-L1 expression in glioblastoma. Mol Carcinog. 2020; 59(5): 520-532.

[306]

Wicks SJ, Haros K, Maillard M, et al. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene. 2005; 24(54): 8080-8084.

[307]

Iwakami Y, Yokoyama S, Watanabe K, Hayakawa Y. STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem Biophys Res Commun. 2018; 507(1-4): 484-488.

[308]

Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fässler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 2006; 125(4): 665-677.

[309]

Brummelkamp TR, Nijman SMB, Dirac AMG. Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003; 424(6950): 797-801.

[310]

Fernández-Majada V, Welz PS, Ermolaeva MA, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016; 7: 12508.

[311]

Tauriello DVF, Haegebarth A, Kuper I, et al. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell. 2010; 37(5): 607-619.

[312]

Massoumi R, Kuphal S, Hellerbrand C, et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med. 2009; 206(1): 221-232.

[313]

Miliani de Marval P, Lutfeali S, Jin JY, Leshin B, Selim MA, Zhang JY. CYLD inhibits tumorigenesis and metastasis by blocking JNK/AP1 signaling at multiple levels. Cancer Prev Res (Phila). 2011; 4(6): 851-859.

[314]

de Jel MM, Schott M, Lamm S, Neuhuber W, Kuphal S, Bosserhoff AK. Loss of CYLD accelerates melanoma development and progression in the Tg(Grm1) melanoma mouse model. Oncogenesis. 2019; 8(10): 56.

[315]

Liu X, Zhang X, Peng Z, et al. Deubiquitylase OTUD6B governs pVHL stability in an enzyme-independent manner and suppresses hepatocellular carcinoma metastasis. Adv Sci (Weinh). 2020; 7(8): 1902040.

[316]

Xu Z, Pei L, Wang L, Zhang F, Hu X, Gui Y. Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene. 2014; 33(22): 2836-2845.

[317]

Anta B, Martín-Rodríguez C, Gomis-Perez C, et al. Ubiquitin-specific protease 36 (USP36) controls neuronal precursor cell-expressed developmentally down-regulated 4-2 (Nedd4-2) actions over the neurotrophin receptor TrkA and potassium voltage-gated channels 7.2/3 (Kv7.2/3). J Biol Chem. 2016; 291(36): 19132-19145.

[318]

Bai P, Virág L. Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett. 2012; 586(21): 3771-3777.

[319]

Basic M, Hertel A, Bajdzienko J, et al. The deubiquitinase USP11 is a versatile and conserved regulator of autophagy. J Biol Chem. 2021; 297(5): 101263.

[320]

Ceriani M, Amigoni L, D’Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res. 2015; 333(1): 49-59.

[321]

Fang X, Zhou W, Wu Q, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 2017; 214(1): 245-267.

[322]

Huang TT, Nijman SMB, Mirchandani KD, et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006; 8(4): 339-347.

[323]

Kon N, Zhong J, Kobayashi Y, et al. Roles of HAUSP-mediated p53 regulation in central nervous system development. Cell Death Differ. 2011; 18(8): 1366-1375.

[324]

Liu X, Hebron M, Shi W, Lonskaya I, Moussa CEH. Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet. 2019; 28(4): 548-560.

[325]

Vaden JH, Bhattacharyya BJ, Chen PC, et al. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener. 2015; 10: 3.

[326]

Yeates EFA, Tesco G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem. 2016; 291(30): 15753-15766.

[327]

Yuasa-Kawada J, Kinoshita-Kawada M, Wu G, Rao Y, Wu JY. Midline crossing and slit responsiveness of commissural axons require USP33. Nat Neurosci. 2009; 12(9): 1087-1089.

[328]

Abbracchio MP, Cattabeni F. Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci. 1999; 890: 79-92.

[329]

Alexopoulou Z, Lang J, Perrett RM, et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci USA. 2016; 113(32): E4688-4697.

[330]

Bello AI, Goswami R, Brown SL, et al. Deubiquitinases in neurodegeneration. Cells. 2022; 11(3): 556.

[331]

Bernardi KM, Williams JM, Inoue T, Schultz A, Tsai B. A deubiquitinase negatively regulates retro-translocation of nonubiquitinated substrates. Mol Biol Cell. 2013; 24(22): 3545-3556.

[332]

Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014; 510(7505): 370-375.

[333]

Dupont S, Mamidi A, Cordenonsi M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 2009; 136(1): 123-135.

[334]

Gong B, Cao Z, Zheng P, et al. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell. 2006; 126(4): 775-788.

[335]

Hong S, Kim SJ, Ka S, Choi I, Kang S. USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Mol Cell Neurosci. 2002; 20(2): 298-306.

[336]

Matsumoto M, Yada M, Hatakeyama S, et al. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 2004; 23(3): 659-669.

[337]

Schimmack G, Schorpp K, Kutzner K, et al. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB. Elife. 2017; 6: e22416.

[338]

Schulz S, Chachami G, Kozaczkiewicz L, et al. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 2012; 13(10): 930-938.

[339]

Tanji K, Mori F, Miki Y, et al. YOD1 attenuates neurogenic proteotoxicity through its deubiquitinating activity. Neurobiol Dis. 2018; 112: 14-23.

[340]

Wilson SM, Bhattacharyya B, Rachel RA, et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet. 2002; 32(3): 420-425.

[341]

Margolin DH, Kousi M, Chan YM, et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med. 2013; 368(21): 1992-2003.

[342]

Sano Y, Furuta A, Setsuie R, et al. Photoreceptor cell apoptosis in the retinal degeneration of Uchl3-deficient mice. Am J Pathol. 2006; 169(1): 132-141.

[343]

Suzuki S, Tamai K, Watanabe M, et al. AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochem Biophys Res Commun. 2011; 408(4): 582-588.

[344]

Tao BB, He H, Hua SX, et al. Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci. 2013; 20(5): 717-720.

[345]

Tsou WL, Burr AA, Ouyang M, Blount JR, Scaglione KM, Todi SV. Ubiquitination regulates the neuroprotective function of the deubiquitinase ataxin-3 in vivo. J Biol Chem. 2013; 288(48): 34460-34469.

[346]

Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science. 2002; 298(5593): 611-615.

[347]

Wang Q, Li L, Ye Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol. 2006; 174(7): 963-971.

[348]

Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. 2002; 419(6905): 403-407.

[349]

Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol. 2006; 8(9): 994-1002.

[350]

Bolton J, Montastier E, Carayol J, et al. Molecular biomarkers for weight control in obese individuals subjected to a multiphase dietary intervention. J Clin Endocrinol Metab. 2017; 102(8): 2751-2761.

[351]

Coyne ES, Bédard N, Gong YJ, Faraj M, Tchernof A, Wing SS. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice. Diabetologia. 2019; 62(1): 136-146.

[352]

Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020; 588(7838): 479-484.

[353]

Yang H, Seo SG, Shin SH, et al. 3, 3’-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol Nutr Food Res. 2017; 61(10).

[354]

Liu B, Jiang S, Li M, et al. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nat Commun. 2018; 9(1): 4770.

[355]

Molusky MM, Li S, Ma D, Yu L, Lin JD. Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes. 2012; 61(5): 1025-1035.

[356]

An S, Zhao LP, Shen LJ, et al. USP18 protects against hepatic steatosis and insulin resistance through its deubiquitinating activity. Hepatology. 2017; 66(6): 1866-1884.

[357]

Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of deubiquitinase USP1 blocks pancreatic β-cell apoptosis by inhibiting DNA damage response. iScience. 2018; 1: 72-86.

[358]

Kim A, Koo JH, Jin X, et al. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes. J Cachexia Sarcopenia Muscle. 2021; 12(6): 1669-1689.

[359]

Berthouze M, Venkataramanan V, Li Y, Shenoy SK. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J. 2009; 28(12): 1684-1696.

[360]

Elumalai S, Karunakaran U, Moon JS, Won KC. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: prevention by Teneligliptin. Free Radic Biol Med. 2020; 160: 618-629.

[361]

Forand A, Koumakis E, Rousseau A, et al. Disruption of the phosphate transporter pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep. 2016; 16(10): 2736-2748.

[362]

Hashimoto M, Fujimoto M, Konno K, et al. Ubiquitin-specific protease 2 in the ventromedial hypothalamus modifies blood glucose levels by controlling sympathetic nervous activation. J Neurosci. 2022; 42(23): 4607-4618.

[363]

Kitamura H, Kimura S, Shimamoto Y, et al. Ubiquitin-specific protease 2–69 in macrophages potentially modulates metainflammation. FASEB J. 2013; 27(12): 4940-4953.

[364]

Niu Y, Jiang H, Yin H, et al. Hepatokine ERAP1 disturbs skeletal muscle insulin sensitivity via inhibiting USP33-Mediated ADRB2 deubiquitination. Diabetes. 2022; 71(5): 921-933.

[365]

Wang P, Zhang RY, Song J, et al. Loss of AMP-activated protein kinase-α2 impairs the insulin-sensitizing effect of calorie restriction in skeletal muscle. Diabetes. 2012; 61(5): 1051-1061.

[366]

Zhao Y, Wang F, Gao L, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of metabolic dysfunctions in nonalcoholic fatty liver disease in mice. Hepatology. 2018; 68(3): 897-917.

[367]

Lin X, Xiang H, Luo G. Targeting estrogen receptor α for degradation with PROTACs: a promising approach to overcome endocrine resistance. Eur J Med Chem. 2020; 206: 112689.

[368]

Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol. 2020; 13(1): 50.

[369]

Yasukawa T, Tsutsui A, Tomomori-Sato C, et al. NRBP1-containing CRL2/CRL4A regulates amyloid β production by targeting BRI2 and BRI3 for degradation. Cell Rep. 2020; 30(10): 3478-3491. e6.

[370]

Zhang XW, Feng N, Liu YC, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. Sci Adv. 2022; 8(32): eabo0789.

[371]

Dagar G, Kumar R, Yadav KK, Singh M, Pandita TK. Ubiquitination and deubiquitination: implications on cancer therapy. Biochim Biophys Acta Gene Regul Mech. 2023; 1866(4): 194979.

[372]

Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett. 2016; 379(2): 245-252.

[373]

Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016; 26(4): 484-498.

[374]

Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 2010; 17(1): 86-92.

[375]

Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol. 2024; 21(2): 106-120.

[376]

Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011; 8(1): 25-37.

[377]

Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008; 105(10): 3933-3938.

[378]

Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004; 10(12): 1321-1328.

[379]

Ding Q, Zhang Z, Liu JJ, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013; 56(14): 5979-5983.

[380]

Hao Z, Huang S. E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci (Landmark Ed). 2015; 20(3): 474-490.

[381]

Li C, Du L, Ren Y, et al. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J Exp Clin Cancer Res. 2019; 38(1): 76.

[382]

Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022; 21(3): 181-200.

[383]

Tiwari S, Singh A, Gupta P, Singh S. UBA52 is crucial in HSP90 ubiquitylation and neurodegenerative signaling during early phase of Parkinson’s disease. Cells. 2022; 11(23): 3770.

[384]

Colland F. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans. 2010; 38: 137-143. Pt 1.

[385]

Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus. Science. 2004; 306(5698): 1037-1040.

[386]

Kelsall IR, McCrory EH, Xu Y, et al. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO J. 2022; 41(8): e109700.

[387]

Sakamaki JI, Mizushima N. Ubiquitination of non-protein substrates. Trends Cell Biol. 2023; 33(11): 991-1003.

[388]

Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol. 2024; 223(5): e202311171.

[389]

Chang HM, Yeh ETH. SUMO: from bench to bedside. Physiol Rev. 2020; 100(4): 1599-1619.

[390]

Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022; 23(11): 715-731.

[391]

Li C, McManus FP, Plutoni C. Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun. 2020; 11(1): 834.

[392]

Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017; 17(3): 184-197.

[393]

Skaug B, Chen ZJ. Emerging role of ISG15 in antiviral immunity. Cell. 2010; 143(2): 187-190.

[394]

Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol. 2023; 16(1): 87.

[395]

Palek M, Palkova N, consortium CZECANCA, Kleiblova P, Kleibl Z, Macurek L, consortium CZECANCA. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res. 2024; 52(13): 7687-7703.

[396]

Wong YC, Holzbaur ELF. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy. 2015; 11(2): 422-424.

[397]

Liao YC, Pang S, Li WP, et al. COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites. Dev Cell. 2024; 59(11): 1410-1424. e4.

[398]

González A, Covarrubias-Pinto A, Bhaskara RM, et al. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature. 2023; 618(7964): 394-401.

[399]

Offensperger F, Tin G, Duran-Frigola M, et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science. 2024; 384(6694): eadk5864.

[400]

Xu S, Wu Y, Chen Q, et al. hSSB1 regulates both the stability and the transcriptional activity of p53. Cell Res. 2013; 23(3): 423-435.

[401]

Mao Z, Sang MM, Chen C, Zhu WT, Gong YS, Pei DS. CSN6 promotes the migration and invasion of cervical cancer cells by inhibiting autophagic degradation of cathepsin L. Int J Biol Sci. 2019; 15(6): 1310-1324.

[402]

Yan K, Li L, Wang X, et al. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J Cell Biol. 2015; 210(2): 209-224.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/