Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances

Yunxuan Jia , Yupeng Liu , Haitang Yang , Feng Yao

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e734

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e734 DOI: 10.1002/mco2.734
REVIEW

Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances

Author information +
History +
PDF

Abstract

Adenoid cystic carcinoma (ACC) is a malignant tumor primarily originating from the salivary glands, capable of affecting multiple organs. Although ACC typically exhibits slow growth, it is notorious for its propensity for neural invasion, local recurrence, and distant metastasis, making it a particularly challenging cancer to treat. The complexity of ACC’s histological and molecular features poses significant challenges to current treatment modalities, which often show limited effectiveness. Recent advancements in single-cell RNA-sequencing (scRNA-seq) have begun to unravel unprecedented insights into the heterogeneity and subpopulation diversity within ACC, revealing distinct cellular phenotypes and origins. This review delves into the intricate pathological and molecular characteristics of ACC, focusing on recent therapeutic advancements. We particularly emphasize the insights gained from scRNA-seq studies that shed light on the cellular landscape of ACC, underscoring its heterogeneity and pathobiology. Moreover, by integrating analyses from public databases, this review proposes novel perspectives for advancing treatment strategies in ACC. This review contributes to the academic understanding of ACC by proposing novel therapeutic approaches informed by cutting-edge molecular insights, paving the way for more effective, personalized therapeutic approaches for this challenging malignancy.

Keywords

adenoid cystic carcinoma / heterogeneity / molecular pathobiology / single-cellRNA-sequencing / targeted therapy

Cite this article

Download citation ▾
Yunxuan Jia, Yupeng Liu, Haitang Yang, Feng Yao. Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances. MedComm, 2024, 5(9): e734 DOI:10.1002/mco2.734

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mu X, Li Y, He L, et al. Prognostic nomogram for adenoid cystic carcinoma in different anatomic sites. Head Neck. 2021; 43(1): 48-59.

[2]

Yang H, Yao F, Tantai J, Zhao Y, Tan Q, Zhao H. Resected tracheal adenoid cystic carcinoma: improvements in outcome at a single institution. Ann Thorac Surg. 2016; 101(1): 294-300.

[3]

Zamecnik M, Michal M, Curik R. Adenoid cystic carcinoma of the ovary. Arch Pathol Lab Med. 2000; 124(10): 1529-1531.

[4]

Guo XF, Mao T, Gu ZT, Fang WT, Chen WH, Shao JC. Adenoid cystic carcinoma of the esophagus: report of two cases and review of the Chinese literature. Diagn Pathol. 2012; 7: 179.

[5]

Jaso J, Malhotra R. Adenoid cystic carcinoma. Arch Pathol Lab Med. 2011; 135(4): 511-515.

[6]

Lin Q, Fang Z, Sun J, et al. Single-cell transcriptomic analysis of the tumor ecosystem of adenoid cystic carcinoma. Front Oncol. 2022; 12: 1063477.

[7]

Viragova S, Aparicio L, Palmerini P, et al. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J Natl Cancer Inst. 2023; 115(7): 838-852.

[8]

Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020; 18(7): 873-898.

[9]

Skalova A, Hyrcza MD, Leivo I. Update from the 5th edition of the World Health Organization classification of head and neck tumors: salivary glands. Head Neck Pathol. 2022; 16(1): 40-53.

[10]

Lv JJ, Ren M, Cai X, Hu J, Kong JC, Kong YY. Primary cutaneous adenoid cystic carcinoma: a clinicopathologic, immunohistochemical, and fluorescence in-situ hybridisation study of 13 cases. Histopathology. 2022; 80(2): 407-419.

[11]

Coca-Pelaz A, Rodrigo JP, Bradley PJ, et al. Adenoid cystic carcinoma of the head and neck—an update. Oral Oncol. 2015; 51(7): 652-661.

[12]

Szanto PA, Luna MA, Tortoledo ME, White RA. Histologic grading of adenoid cystic carcinoma of the salivary glands. Cancer. 1984; 54(6): 1062-1069.

[13]

Spiro RH, Huvos AG, Strong EW. Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases. Am J Surg. 1974; 128(4): 512-520.

[14]

van Weert S, van der Waal I, Witte BI, Leemans CR, Bloemena E. Histopathological grading of adenoid cystic carcinoma of the head and neck: analysis of currently used grading systems and proposal for a simplified grading scheme. Oral Oncol. 2015; 51(1): 71-76.

[15]

Ikawa H, Koto M, Takagi R, et al. Prognostic factors of adenoid cystic carcinoma of the head and neck in carbon-ion radiotherapy: the impact of histological subtypes. Radiother Oncol. 2017; 123(3): 387-393.

[16]

Xia Y, He X. Adenoid cystic carcinoma with high-grade transformation. Pathology. 2024; 56(1): 136-138.

[17]

Ahlem B, Manel N, Nouha BA, et al. High grade transformation of adenoid cystic carcinoma in the palate: case report with review of literature. Int J Surg Case Rep. 2021; 78: 162-166.

[18]

Santiago AE, Teunissen N, Ricardo BFP, Cândido EB, Furtado RS, Silva Filho ALD. High-grade transformation in adenoid cystic carcinoma of the bartholin gland: case report. Rev Bras Ginecol Obstet. 2021; 43(12): 980-984.

[19]

Hellquist H, Skalova A, Barnes L, et al. Cervical lymph node metastasis in high-grade transformation of head and neck adenoid cystic carcinoma: a collective international review. Adv Ther. 2016; 33(3): 357-368.

[20]

Weissferdt A, Moran CA. Primary thymic adenoid cystic carcinoma with high-grade transformation: a clinicopathological and immunohistochemical analysis of 4 cases. Pathol Res Pract. 2024; 259: 155356.

[21]

Maurya S, Gupta S, Soni A, Kumari N, Rajwanshi A. High-grade transformation in adenoid cystic carcinoma: can it be diagnosed on cytology? A cytohistological correlation. Cytojournal. 2024; 21: 10.

[22]

Liu X, Yang X, Zhan C, Zhang Y, Hou J, Yin X. Perineural invasion in adenoid cystic carcinoma of the salivary glands: where we are and where we need to go. Front Oncol. 2020; 10: 1493.

[23]

Ju J, Li Y, Chai J, et al. The role of perineural invasion on head and neck adenoid cystic carcinoma prognosis: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016; 122(6): 691-701.

[24]

Amit M, Binenbaum Y, Trejo-Leider L, et al. International collaborative validation of intraneural invasion as a prognostic marker in adenoid cystic carcinoma of the head and neck. Head Neck. 2015; 37(7): 1038-1045.

[25]

Nascimento AG, Amaral AL, Prado LA, Kligerman J, Silveira TR. Adenoid cystic carcinoma of salivary glands. A study of 61 cases with clinicopathologic correlation. Cancer. 1986; 57(2): 312-319.

[26]

Spiro RH, Huvos AG, Strong EW. Adenoid cystic carcinoma: factors influencing survival. Am J Surg. 1979; 138(4): 579-583.

[27]

Tang YL, Fan YL, Jiang J, et al. C-kit induces epithelial-mesenchymal transition and contributes to salivary adenoid cystic cancer progression. Oncotarget. 2014; 5(6): 1491-1501.

[28]

Dessauvagie BF, Wood BA. CD117 and CD43 are useful adjuncts in the distinction of adenoid cystic carcinoma from adenoid basal cell carcinoma. Pathology. 2015; 47(2): 130-133.

[29]

Jalayer Naderi N, Ashouri M, Tirgari F, Kharazi Fard MJ, Jafari Z. An immunohistochemical study of CD117 C-kit in adenoid cystic carcinoma and polymorphouse low grade adenocarcinoma salivary gland tumors. Daneshvar Med. 2020; 18(5): 1-8.

[30]

Xia RH, Zhang CY, Wang LZ, et al. Adenoid cystic carcinoma in children and young adults: a clinicopathological study of 12 cases. Oral Dis. 2023; 29(8): 3289-3297.

[31]

Wen QL, Zhu SM, Jiang LH, et al. Expression and prognostic significance of MCM-3 and MCM-7 in salivary adenoid cystic carcinoma. Int J Clin Exp Pathol. 2018; 11(11): 5359-5369.

[32]

Shamloo N, Taghavi N, Ahmadi S, Shalpoush S. Immunohistochemical analysis of proliferating cell nuclear antigen and minichromosome maintenance complex component 7 in benign and malignant salivary gland tumors. Dent Res J (Isfahan). 2022; 19: 17.

[33]

Li Q, Huang P, Zheng C, Wang J, Ge M. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis. Oncotarget. 2017; 8(17): 29458-29473.

[34]

Adderley H, Rack S, Hapuarachi B, et al. The utility of TP53 and PIK3CA mutations as prognostic biomarkers in salivary adenoid cystic carcinoma. Oral Oncol. 2021; 113: 105095.

[35]

Hou H, Jia D, Yan W, et al. KIT/PDGFRA/KDR amplification defines a novel molecular subtype of adenoid cystic carcinoma patients who may benefit from treatment with tyrosine kinase inhibitors. Transl Cancer Res. 2020; 9(8): 4703-4714.

[36]

Wang L, Liang L, Yang T, et al. A pilot clinical study of apatinib plus irinotecan in patients with recurrent high-grade glioma: clinical trial/experimental study. Medicine (Baltimore). 2017; 96(49): e9053.

[37]

Li C, Chen Q, Tian Z, et al. Expression of MIF, Beclin1, and LC3 in human salivary gland adenoid cystic carcinoma and its prognostic value. Medicine (Baltimore). 2019; 98(20): e15402.

[38]

Jiang LC, Huang SY, Zhang DS, et al. Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis. Braz J Med Biol Res. 2014; 47(3): 252-258.

[39]

North JP, McCalmont TH, Fehr A, van Zante A, Stenman G, LeBoit PE. Detection of MYB alterations and other immunohistochemical markers in primary cutaneous adenoid cystic carcinoma. Am J Surg Pathol. 2015; 39(10): 1347-1356.

[40]

Liu X, Wu H, Huang P, Zhang F. JQ1 and PI3K inhibition synergistically reduce salivary adenoid cystic carcinoma malignancy by targeting the c-Myc and EGFR signaling pathways. J Oral Pathol Med. 2019; 48(1): 43-51.

[41]

Yang C, Zhang L, Sanati S. SOX10 is a sensitive marker for breast and salivary gland adenoid cystic carcinoma: immunohistochemical characterization of adenoid cystic carcinomas. Breast Cancer (Auckl). 2019; 13: 1178223419842185.

[42]

Ferrarotto R, Mitani Y, McGrail DJ, et al. Proteogenomic analysis of salivary adenoid cystic carcinomas defines molecular subtypes and identifies therapeutic targets. Clin Cancer Res. 2021; 27(3): 852-864.

[43]

Cordesmeyer R, Laskawi R, Schliephake H, et al. Shallow whole genome sequencing of adenoid cystic carcinomas of the salivary glands identifies specific chromosomal aberrations related to tumor progression. Oral Oncol. 2020; 103: 104615.

[44]

Rettig EM, Talbot CC Jr, Sausen M, et al. Whole-genome sequencing of salivary gland adenoid cystic carcinoma. Cancer Prev Res (Phila). 2016; 9(4): 265-274.

[45]

Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in adenoid cystic carcinoma: current state of knowledge and future directions. Crit Rev Oncol Hematol. 2022; 176: 103745.

[46]

Togashi Y, Dobashi A, Sakata S, et al. MYB and MYBL1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts. Mod Pathol. 2018; 31(6): 934-946.

[47]

Stenman G, Andersson MK, Andrén Y. New tricks from an old oncogene: gene fusion and copy number alterations of MYB in human cancer. Cell Cycle. 2010; 9(15): 2986-2995.

[48]

Cicirò Y, Sala A. MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis. 2021; 10(2): 19.

[49]

Xu LH, Zhao F, Yang WW, et al. MYB promotes the growth and metastasis of salivary adenoid cystic carcinoma. Int J Oncol. 2019; 54(5): 1579-1590.

[50]

Anand S, Vikramdeo KS, Sudan SK, et al. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev. 2024; 43(1): 409-421.

[51]

Hu D, Shao W, Liu L, et al. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int. 2021; 21(1): 653.

[52]

Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in adenoid cystic carcinoma: current state of knowledge and future directions. Crit Rev Oncol/Hematol. 2022; 176: 103745.

[53]

Ueda K, Murase T, Kawakita D, et al. The landscape of MYB/MYBL1-and Peri-MYB/MYBL1-associated rearrangements in adenoid cystic carcinoma. Mod Pathol. 2023; 36(10): 100274.

[54]

Drier Y, Cotton MJ, Williamson KE, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016; 48(3): 265-272.

[55]

Wysocki PT, Izumchenko E, Meir J, Ha PK, Sidransky D, Brait M. Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget. 2016; 7(40): 66239-66254.

[56]

Mitani Y, Liu B, Rao PH, et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res. 2016; 22(3): 725-733.

[57]

Brayer KJ, Frerich CA, Kang H, Ness SA. Recurrent fusions in MYB and MYBL1 define a common, transcription factor-driven oncogenic pathway in salivary gland adenoid cystic carcinoma. Cancer Discov. 2016; 6(2): 176-187.

[58]

Gonda TJ, Ramsay RG. Adenoid cystic carcinoma can be driven by MYB or MYBL1 rearrangements: new insights into MYB and tumor biology. Cancer Discov. 2016; 6(2): 125-127.

[59]

Persson M, Andersson MK, Mitani Y, et al. Rearrangements, expression, and clinical significance of MYB and MYBL1 in adenoid cystic carcinoma: a multi-institutional study. Cancers. 2022; 14(15): 3691.

[60]

Tasoulas J, Schrank TP, Bharambe H, et al. Molecular characterization of the salivary adenoid cystic carcinoma immune landscape by anatomic subsites. Sci Rep. 2024; 14(1): 15821.

[61]

Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer. 2008; 8(7): 523-534.

[62]

Sen P, Ghosh SS. The intricate NOTCH signaling dynamics in therapeutic realms of cancer. ACS Pharmacol Transl Sci. 2023; 6(5): 651-670.

[63]

Fukusumi T, Guo TW, Ren S, et al. Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. Int J Oncol. 2021; 58(2): 226-237.

[64]

Xie J, Lin LS, Huang XY, et al. The NOTCH1-HEY1 pathway regulates self-renewal and epithelial-mesenchymal transition of salivary adenoid cystic carcinoma cells. Int J Biol Sci. 2020; 16(4): 598-610.

[65]

Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting NOTCH in oncology: the path forward. Nat Rev Drug Discov. 2021; 20(2): 125-144.

[66]

Ayaz F, Osborne BA. Non-canonical notch signaling in cancer and immunity. Front Oncol. 2014; 4: 345.

[67]

Ho AS, Ochoa A, Jayakumaran G, et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest. 2019; 129(10): 4276-4289.

[68]

de Sousa LG, Jovanovic K, Ferrarotto R. Metastatic adenoid cystic carcinoma: genomic landscape and emerging treatments. Curr Treat Options Oncol. 2022; 23(8): 1135-1150.

[69]

Zhang Y, Liu X, Zhou CX, Li TJ. NOTCH activation leads to loss of myoepithelial differentiation and poor outcome in solid adenoid cystic carcinoma. Oral Dis. 2020; 26(8): 1677-1686.

[70]

Bell D, Sniegowski MC, Wani K, Prieto V, Esmaeli B. Mutational landscape of lacrimal gland carcinomas and implications for treatment. Head Neck. 2016; 38: E724-E729. Suppl 1(Suppl 1).

[71]

Wetterskog D, Wilkerson PM, Rodrigues DN, et al. Mutation profiling of adenoid cystic carcinomas from multiple anatomical sites identifies mutations in the RAS pathway, but no KIT mutations. Histopathology. 2013; 62(4): 543-550.

[72]

Kar A, Adeniji A, Rao VUS, Ghosh M. Molecular landscape of salivary gland cancers. Oral Oncol. 2020; 104: 104595.

[73]

Romani C, Lorini L, Bozzola A, et al. Functional profiles of curatively treated adenoid cystic carcinoma unveil prognostic features and potentially targetable pathways. Sci Rep. 2023; 13(1): 1809.

[74]

Hanna GJ, Grover P, Elliott A, et al. Molecular profiling and the impact of treatment on outcomes in adenoid cystic carcinoma type I and II. Clin Cancer Res. 2024; 30(10): 2225-2232.

[75]

Chen B, Jiang J, Li T, Jiang H, Liang X, Tang Y. miR-183-5p overexpression orchestrates collective invasion in salivary adenoid cystic carcinoma through the FAT1/YAP1 signaling pathway. Biochemical and Biophysical Research Communications, 2023; 655: 127–137.

[76]

Jurmeister P, Gloss S, Roller R, et al. DNA methylation-based classification of sinonasal tumors. Nat Commun. 2022; 13(1): 7148.

[77]

Agaimy A, Naroditsky I, Ben-Izhak O. Primary high-grade myoepithelial carcinoma of the lung: a study of three cases illustrating frequent SMARCB1-deficiency and review of the literature. Ann Diagn Pathol. 2021; 53: 151759.

[78]

Kobayashi K, Saito Y, Kage H, et al. CDK12 alterations and ARID1A mutations are predictors of poor prognosis and therapeutic targets in high-grade salivary gland carcinoma: analysis of the National Genomic Profiling Database. Jpn J Clin Oncol. 2023; 53(9): 798-807.

[79]

Jagielska B, Sarnowska E, Rusetska N, et al. Advanced adenoid cystic carcinoma (ACC) is featured by SWI/SNF chromatin remodeling complex aberrations. J Cancer Res Clin Oncol. 2019; 145(1): 201-211.

[80]

Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 2020; 36(12): 936-950.

[81]

Ferrarotto R, Sousa LG, Feng L, et al. Phase II clinical trial of axitinib and avelumab in patients with recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol. 2023; 41(15): 2843-2851.

[82]

Huang J, Fehr A, Jäwert F, et al. MYB alternative promoter activity is increased in adenoid cystic carcinoma metastases and is associated with a specific gene expression signature. Oral Oncology. 2024; 151: 106763.

[83]

Rettig EM, Bishop JA, Agrawal N, et al. HEY1 is expressed independent of NOTCH1 and is associated with poor prognosis in head and neck squamous cell carcinoma. Oral Oncol. 2018; 82: 168-175.

[84]

Zhou MJ, Yang JJ, Ma TY, et al. Increased retinoic acid signaling decreases lung metastasis in salivary adenoid cystic carcinoma by inhibiting the noncanonical NOTCH1 pathway. Exp Mol Med. 2023; 55(3): 597-611.

[85]

Zhang Y, Liu X, Zhu L, et al. NOTCH activation promotes bone metastasis via SPARC inhibition in adenoid cystic carcinoma. Oral Dis. 2023.

[86]

Anjum S, Sen S, Pushker N, et al. Prognostic impact of NOTCH1 receptor and clinicopathological high-risk predictors in lacrimal gland adenoid cystic carcinoma. Acta Ophthalmol. 2021; 99(8): e1467-e1473.

[87]

Feeney L, Hapuarachi B, Adderley H, et al. Clinical disease course and survival outcomes following disease recurrence in adenoid cystic carcinoma with and without NOTCH signaling pathway activation. Oral Oncol. 2022; 133: 106028.

[88]

Saida K, Murase T, Ito M, et al. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma. Oncotarget. 2018; 9(24): 17043-17055.

[89]

Ren Y, Hong Y, He W, et al. EGF/EGFR promotes salivary adenoid cystic carcinoma cell malignant neural invasion via activation of PI3K/AKT and MEK/ERK signaling. Curr Cancer Drug Targets. 2022; 22(7): 603-616.

[90]

Ettl T, Schwarz S, Kleinsasser N, Hartmann A, Reichert TE, Driemel O. Overexpression of EGFR and absence of C-KIT expression correlate with poor prognosis in salivary gland carcinomas. Histopathology. 2008; 53(5): 567-577.

[91]

Liu S, Ye D, Xu D, et al. Autocrine epiregulin activates EGFR pathway for lung metastasis via EMT in salivary adenoid cystic carcinoma. Oncotarget. 2016; 7(18): 25251-25263.

[92]

Persson M, Andersson MK, Sahlin PE, et al. Comprehensive molecular characterization of adenoid cystic carcinoma reveals tumor suppressors as novel drivers and prognostic biomarkers. J Pathol. 2023; 261(3): 256-268.

[93]

Sant’Ana MSP, de Cáceres C, Lima LA, et al. Expression of mitochondrial dynamic markers in adenoid cystic carcinoma. J Oral Pathol Med. 2022; 51(8): 702-709.

[94]

Sebastiao APM, Pareja F, Kumar R, et al. Genomic analysis of recurrences and high-grade forms of polymorphous adenocarcinoma. Histopathology. 2019; 75(2): 193-201.

[95]

Persson M, Andren Y, Moskaluk CA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer. 2012; 51(8): 805-817.

[96]

Albers E, Lawrie T, Harrell JH, Yi ES. Tracheobronchial adenoid cystic carcinoma: a clinicopathologic study of 14 cases. Chest. 2004; 125(3): 1160-1165.

[97]

Seethala RR, Hunt JL, Baloch ZW, Livolsi VA, Leon Barnes E. Adenoid cystic carcinoma with high-grade transformation: a report of 11 cases and a review of the literature. Am J Surg Pathol. 2007; 31(11): 1683-1694.

[98]

Costa AF, Altemani A, Vekony H, et al. Genetic profile of adenoid cystic carcinomas (ACC) with high-grade transformation versus solid type. Anal Cell Pathol (Amst). 2010; 33(5): 217-228.

[99]

Parikh AS, Wizel A, Davis D, et al. Single-cell RNA sequencing identifies a paracrine interaction that may drive oncogenic notch signaling in human adenoid cystic carcinoma. Cell Rep. 2022; 41(9): 111743.

[100]

An PG, Wu WJ, Tang YF, Zhang J. Single-cell RNA sequencing reveals the heterogeneity and microenvironment in one adenoid cystic carcinoma sample. Funct Integr Genomics. 2023; 23(2): 155.

[101]

Linxweiler M, Kuo F, Katabi N, et al. The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin Cancer Res. 2020; 26(12): 2859-2870.

[102]

Mosconi C, de Arruda JAA, de Farias ACR, et al. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019; 88: 95-101.

[103]

Tan X, Xu T, Shen W, et al. Primary pulmonary adenoid cystic carcinoma: a clinicopathological study of 64 patients. Thorac Cancer. 2024; 15(5): 386-393.

[104]

Gu B, Chi Y, Wu W, Zhong Y, Zhang J, Zhang J. Prognostic factors of palatal adenoid cystic carcinoma: a single-center analysis of 85 cases. Laryngoscope Investig Otolaryngol. 2024; 9(2): e1236.

[105]

Viragova S, Aparicio L, Palmerini P, et al. Inverse agonists of retinoic acid receptor/retinoid X receptor signaling as lineage-specific antitumor agents against human adenoid cystic carcinoma. J Natl Cancer Inst. 2023; 115(7): 838-852.

[106]

Cantu G. Adenoid cystic carcinoma. An indolent but aggressive tumour. Part B: treatment and prognosis. Acta Otorhinolaryngol Ital. 2021; 41(4): 296-307.

[107]

Zhao L, Zhao Y, Guo J-D, et al. Effective radiotherapy in tracheobronchial adenoid cystic carcinoma with positive surgical margin. Ann Thorac Surg. 2021; 112(5): 1585-1592.

[108]

Choi SH, Yang AJ, Yoon SO, et al. Role of postoperative radiotherapy in resected adenoid cystic carcinoma of the head and neck. Radiat Oncol. 2022; 17(1): 197.

[109]

Chen Y, Zheng ZQ, Chen FP, et al. Role of postoperative radiotherapy in nonmetastatic head and neck adenoid cystic carcinoma. J Natl Compr Canc Netw. 2020; 18(11): 1476-1484.

[110]

Scarpa A, Viola P, Ralli M, et al. Post-operative radiotherapy in adenoid cystic carcinoma of salivary glands versus surgery alone: what is the evidence about survival and local control? A systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2024; 281(2): 563-571.

[111]

Lee JH, Jang JY, Noh JM, Yang K, Pyo H. Dose-escalated radiotherapy for primary tracheobronchial adenoid cystic carcinoma. Cancers (Basel). 2024; 16(11).

[112]

Wu WB, Cai WL, Zou YH, et al. Outcomes of patients in nasopharyngeal adenoid cystic carcinoma in the IMRT era: a single-center experience. BMC Cancer. 2024; 24(1): 576.

[113]

Lee A, Givi B, Osborn VW, Schwartz D, Schreiber D. Patterns of care and survival of adjuvant radiation for major salivary adenoid cystic carcinoma. Laryngoscope. 2017; 127(9): 2057-2062.

[114]

Safdieh J, Givi B, Osborn V, Lederman A, Schwartz D, Schreiber D. Impact of adjuvant radiotherapy for malignant salivary gland tumors. Otolaryngol Head Neck Surg. 2017; 157(6): 988-994.

[115]

Suton P, Luksic I. Prognostic value of elective neck dissection in adenoid cystic carcinoma of head and neck: a meta-analysis: a call for randomized trials and international consensus. Int J Oral Maxillofac Surg. 2021; 50(11): 1403-1407.

[116]

Rodriguez-Russo CA, Junn JC, Yom SS, Bakst RL. Radiation therapy for adenoid cystic carcinoma of the head and neck. Cancers (Basel). 2021; 13(24): 6335.

[117]

Mavrikios A, Goudjil F, Beddok A, et al. Proton therapy and/or helical tomotherapy for locally advanced sinonasal skull base adenoid cystic carcinoma: focus on experience of the Institut Curie and review of literature. Head Neck. 2023; 45(7): 1619-1631.

[118]

Lesueur P, Rapeaud E, De Marzi L, et al. Adenoid cystic carcinoma of the lacrimal gland: high dose adjuvant proton therapy to improve patients outcomes. Front Oncol. 2020; 10: 135.

[119]

Nangia S, Gaikwad U, Noufal MP, et al. Proton therapy for skull-base adenoid cystic carcinomas: a case series and review of literature. J Cancer Res Ther. 2022; 18(3): 629-637.

[120]

Augustin E, Holtzman AL, Dagan R, et al. Long-term outcomes following definitive or adjuvant proton radiotherapy for adenoid cystic carcinoma. Int J Part Ther. 2024; 11: 100008.

[121]

Nikitaki Z, Velalopoulou A, Zanni V, et al. Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med. 2022; 24: e15.

[122]

Jones B. Clinical radiobiology of fast neutron therapy: what was learnt? Front Oncol. 2020; 10: 1537.

[123]

Timoshchuk MA, Dekker P, Hippe DS, et al. The efficacy of neutron radiation therapy in treating salivary gland malignancies. Oral Oncol. 2019; 88: 51-57.

[124]

Aljabab S, Lui A, Wong T, Liao J, Laramore G, Parvathaneni U. A combined neutron and proton regimen for advanced salivary tumors: early clinical experience. Cureus. 2021; 13(5): e14844.

[125]

Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: current status and future perspectives. Cancer Commun (Lond). 2020; 40(9): 406-421.

[126]

Jin WH, Seldon C, Butkus M, Sauerwein W, Giap HB. A review of boron neutron capture therapy: its history and current challenges. Int J Part Ther. 2022; 9(1): 71-82.

[127]

Yura Y, Tada S, Fujita Y, Hamada M. Current treatment, particle radiotherapy, and boron neutron capture therapy for advanced oral cancer in patients. Oral Sci Int. 2019; 16(2): 49-68.

[128]

Hirose K, Konno A, Hiratsuka J, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial. Radiother Oncol. 2021; 155: 182-187.

[129]

Loap P, Vischioni B, Bonora M, et al. Biological rationale and clinical evidence of carbon ion radiation therapy for adenoid cystic carcinoma: a narrative review. Front Oncol. 2021; 11: 789079.

[130]

Chen J, Mao J, Ma N, Wu KL, Lu J, Jiang GL. Definitive carbon ion radiotherapy for tracheobronchial adenoid cystic carcinoma: a preliminary report. BMC Cancer. 2021; 21(1): 734.

[131]

Balosso J, Febvey-Combes O, Iung A, et al. A randomized controlled phase III study comparing hadrontherapy with carbon ions versus conventional radiotherapy—including photon and proton therapy—for the treatment of radioresistant tumors: the ETOILE trial. BMC Cancer. 2022; 22(1): 575.

[132]

Lang K, Adeberg S, Harrabi S, et al. Adenoid cystic Carcinoma and Carbon ion Only irradiation (ACCO): study protocol for a prospective, open, randomized, two-armed, phase II study. BMC Cancer. 2021; 21(1): 812.

[133]

Hu J, Hu W, Gao J, et al. The role of carbon-ion radiotherapy in the treatment of adenoid cystic carcinoma of the nasopharynx. Ann Transl Med. 2022; 10(22): 1198.

[134]

Sokol O, Durante M. Carbon ions for hypoxic tumors: are we making the most of them? Cancers (Basel). 2023; 15(18): 4494.

[135]

Tun AJ, Hoppe BS, Zhao Y, Makey I, Fernandez-Bussy S, Liang X. Radiation therapy for primary adenoid cystic carcinoma of the trachea: photons, protons, or carbon. Int J Part Ther. 2023; 9(4): 302-305.

[136]

Huber PE, Debus J, Latz D, et al. Radiotherapy for advanced adenoid cystic carcinoma: neutrons, photons or mixed beam? Radiother Oncol. 2001; 59(2): 161-167.

[137]

Orlandi E, Iacovelli NA, Bonora M, Cavallo A, Fossati P. Salivary gland. Photon beam and particle radiotherapy: present and future. Oral Oncol. 2016; 60: 146-156.

[138]

Mohan R, Grosshans D. Proton therapy—Present and future. Adv Drug Deliv Rev. 2017; 109: 26-44.

[139]

Wang S, Zhang Z, Miao L, Li Y. Boron neutron capture therapy: current status and challenges. Front Oncol. 2022; 12: 788770.

[140]

Postuma I, Magni C, Marcaccio B, et al. Using the photon isoeffective dose formalism to compare and combine BNCT and CIRT in a head and neck tumour. Sci Rep. 2024; 14(1): 418.

[141]

Airoldi M, Pedani F, Succo G, et al. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer. 2001; 91(3): 541-547.

[142]

Gilbert J, Li Y, Pinto HA, et al. Phase II trial of taxol in salivary gland malignancies (E1394): a trial of the Eastern Cooperative Oncology Group. Head Neck. 2006; 28(3): 197-204.

[143]

Suen JY, Johns ME. Chemotherapy for salivary gland cancer. Laryngoscope. 1982; 92(3): 235-239.

[144]

Hanna GJ, ON A, Cutler JM, et al. A phase II trial of all-trans retinoic acid (ATRA) in advanced adenoid cystic carcinoma. Oral Oncol. 2021; 119: 105366.

[145]

Pham T, Pereira L, Roth S, et al. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: the MYPHISMO study protocol (NCT03287427). Contemp Clin Trials Commun. 2019; 16: 100409.

[146]

Xi S, Soulard P, Li K, et al. Effect of RGT-61159 on inhibition of oncogene c-MYB synthesis and tumor growth inhibition in a broad range of ACC PDX models, at well tolerated doses in rodents and non-human primates. J Clin Oncol. 2024; 42: 6107-6107. 16_suppl.

[147]

Cicirò Y, Ragusa D, Nevado PT, et al. The mitotic checkpoint kinase BUB1 is a direct and actionable target of MYB in adenoid cystic carcinoma. FEBS Lett. 2024; 598(2): 252-265.

[148]

Yusenko MV, Trentmann A, Andersson MK, et al. Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett. 2020; 479: 61-70.

[149]

Yusenko MV, Biyanee A, Frank D, et al. Bcr-TMP, a novel nanomolar-active compound that exhibits both MYB-and microtubule-inhibitory activity. Cancers (Basel). 2021; 14(1): 43.

[150]

Yusenko MV, Biyanee A, Andersson MK, et al. Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett. 2021; 520: 132-142.

[151]

Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023; 62: 102703.

[152]

Nguyen TTT, Zhang Y, Shang E, et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Invest. 2020; 130(7): 3699-3716.

[153]

Gryder BE, Wu L, Woldemichael GM, et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat Commun. 2019; 10(1): 3004.

[154]

Zhang T, Sun B, Zhong C, et al. Targeting histone deacetylase enhances the therapeutic effect of erastin-induced ferroptosis in EGFR-activating mutant lung adenocarcinoma. Transl Lung Cancer Res. 2021; 10(4): 1857-1872.

[155]

Yang H, Zhao L, Gao Y, et al. Pharmacotranscriptomic analysis reveals novel drugs and gene networks regulating ferroptosis in cancer. Cancers (Basel). 2020; 12(11): 3273.

[156]

Slevin NJ, Mais KL, Bruce I. Imatinib with cisplatin in recurrent and/or metastatic salivary adenoid cystic carcinoma: response assessed by FDG-PET scanning. J Clin Oncol. 2004; 22: 5604.

[157]

Pfeffer MR, Talmi Y, Catane R, Symon Z, Yosepovitch A, Levitt M. A phase II study of Imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol. 2007; 43(1): 33-36.

[158]

Hotte SJ, Winquist EW, Lamont E, et al. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: a Princess Margaret Hospital phase II consortium study. J Clin Oncol. 2005; 23(3): 585-590.

[159]

Wong SJ, Karrison T, Hayes DN, et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann Oncol. 2016; 27(2): 318-323.

[160]

Glisson BSBG, Francisco M, Erasmus J, Zinner R, Kies M. Phase II trial of gefitinib in patients with incurable salivary gland cancer. J Clin Oncol. 2005; 23: 5532.

[161]

Locati LD, Bossi P, Perrone F, et al. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: a phase II study. Oral Oncol. 2009; 45(7): 574-578.

[162]

Agulnik M, Cohen EW, Cohen RB, et al. Phase II study of lapatinib in recurrent or metastatic epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non adenoid cystic carcinoma malignant tumors of the salivary glands. J Clin Oncol. 2007; 25(25): 3978-3984.

[163]

van Boxtel W, Uijen MJM, Krens SD, et al. Excessive toxicity of cabozantinib in a phase II study in patients with recurrent and/or metastatic salivary gland cancer. Eur J Cancer. 2022; 161: 128-137.

[164]

Reckamp KL, Frankel PH, Ruel N, et al. Phase II trial of cabozantinib plus erlotinib in patients with advanced epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer with progressive disease on epidermal growth factor receptor tyrosine kinase inhibitor therapy: a california cancer consortium phase II trial (NCI 9303). Front Oncol. 2019; 9: 132.

[165]

Tchekmedyian V, Sherman EJ, Dunn L, et al. Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol. 2019; 37(18): 1529-1537.

[166]

Locati LD, Perrone F, Cortelazzi B, et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: translational analyses and clinical impact. Eur J Cancer. 2016; 69: 158-165.

[167]

Thomson DJ, Silva P, Denton K, et al. Phase II trial of sorafenib in advanced salivary adenoid cystic carcinoma of the head and neck. Head Neck. 2015; 37(2): 182-187.

[168]

Hanna GJ, Ahn MJ, Muzaffar J, et al. A phase II trial of rivoceranib, an oral vascular endothelial growth factor receptor 2 inhibitor, for recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res. 2023; 29(22): 4555-4563.

[169]

Zhu G, Zhang L, Dou S, et al. Apatinib in patients with recurrent or metastatic adenoid cystic carcinoma of the head and neck: a single-arm, phase II prospective study. Ther Adv Med Oncol. 2021; 13: 17588359211013626.

[170]

Lopez-Guerra M, Xargay-Torrent S, Fuentes P, et al. Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells. Oncogene. 2020; 39(6): 1185-1197.

[171]

Di Villeneuve L, Souza IL, Tolentino FDS, Ferrarotto R, Schvartsman G. Salivary gland carcinoma: novel targets to overcome treatment resistance in advanced disease. Front Oncol. 2020; 10: 580141.

[172]

Han J, Ma I, Hendzel MJ, Allalunis-Turner J. The cytotoxicity of gamma-secretase inhibitor I to breast cancer cells is mediated by proteasome inhibition, not by gamma-secretase inhibition. Breast Cancer Res. 2009; 11(4): R57.

[173]

Ferrarotto R, Mishra V, Herz E, et al. AL101, a gamma-secretase inhibitor, has potent antitumor activity against adenoid cystic carcinoma with activated NOTCH signaling. Cell Death Dis. 2022; 13(8): 678.

[174]

Massard C, Azaro A, Soria JC, et al. First-in-human study of LY3039478, an oral NOTCH signaling inhibitor in advanced or metastatic cancer. Ann Oncol. 2018; 29(9): 1911-1917.

[175]

Hanna GJ, Stathis A, Lopez-Miranda E, et al. A phase I study of the Pan-NOTCH inhibitor CB-103 for patients with advanced adenoid cystic carcinoma and other tumors. Cancer Res Commun. 2023; 3(9): 1853-1861.

[176]

Ferrarotto R, Ho A, Wirth LJ, et al. ACCURACY a phase (P) II trial of AL101, a pan-NOTCH inhibitor, in recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) patients (pts) with NOTCH activating mutations (NOTCH act mut): preliminary safety and efficacy data. Ann Oncol. 2019; 30: v465.

[177]

Hanna GJ, Stathis A, Lopez-Miranda E, et al. A phase I study of the Pan-NOTCH inhibitor CB-103 for patients with advanced adenoid cystic carcinoma and other tumors. Cancer Res Commun. 2023; 3(9): 1853-1861.

[178]

Aster JC, Pear WS, Blacklow SC. The varied roles of NOTCH in cancer. Annu Rev Pathol. 2017; 12: 245-275.

[179]

Siu LL, Rasco DW, Vinay SP, et al. (METEOR-1: A phase I study of GSK3326595, a first-in-class protein arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumours. Annals of Oncology, 2019; 30:v159.

[180]

Feustel K, Falchook GS. Protein arginine methyltransferase 5 (PRMT5) inhibitors in oncology clinical trials: a review. J Immunother Precis Oncol. 2022; 5(3): 58-67.

[181]

Demma MJ, Hohn MJ, Sun A, et al. Inhibition of Myc transcriptional activity by a mini-protein based upon Mxd1. FEBS Letters. 2020; 594(10): 1467-1476.

[182]

Kim DW, Oh DY, Shin SH, et al. A multicenter phase II study of everolimus in patients with progressive unresectable adenoid cystic carcinoma. BMC Cancer. 2014; 14: 795.

[183]

Argiris A, Ghebremichael M, Burtness B, Axelrod RS, Deconti RC, Forastiere AA. A phase 2 trial of bortezomib followed by the addition of doxorubicin at progression in patients with recurrent or metastatic adenoid cystic carcinoma of the head and neck: a trial of the Eastern Cooperative Oncology Group (E1303). Cancer. 2011; 117(15): 3374-3382.

[184]

Andersson MK, Afshari MK, Andren Y, Wick MJ, Stenman G. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. J Natl Cancer Inst. 2017; 109(9).

[185]

Savarese T, Abate A, Basnet RM, et al. Cytotoxic effects of targeted agent alone or with chemotherapy in the treatment of adenoid cystic carcinoma: a preclinical study. Sci Rep. 2022; 12(1): 9951.

[186]

Goulart-Filho JAV, Montalli VAM, Passador-Santos F, de Araújo NS, de Araújo VC. Role of apoptotic, autophagic and senescence pathways in minor salivary gland adenoid cystic carcinoma. Diagn Pathol. 2019; 14(1): 14.

[187]

Dastur A, Choi A, Costa C, et al. NOTCH1 represses MCL-1 levels in GSI-resistant T-ALL, making them susceptible to ABT-263. Clin Cancer Res. 2019; 25(1): 312-324.

[188]

Liu Y, Li J, Jiang H, Deng H, Sun H, Liu X. Detection of TROP2: ushering in a new choice in the treatment of patients with special types of invasive breast cancer. J Clin Oncol. 2024; 42: 1106-1106. 16_suppl.

[189]

Villalona-Calero MA, Hanna GJ, Agulnik M, et al. Study update of the oral CDK9 inhibitor KB-0742 in relapsed or refractory transcriptionally addicted advanced solid tumors. J Clin Oncol. 2024; 42: 3102-3102. 16_suppl.

[190]

Carideo Cunniff E, Sato Y, Mai D, et al. TAK-676: a novel stimulator of interferon genes (STING) agonist promoting durable IFN-dependent antitumor immunity in preclinical studies. Cancer Res Commun. 2022; 2(6): 489-502.

[191]

Mosconi C, de Arruda JAA, de Farias ACR, et al. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019; 88: 95-101.

[192]

Cohen RB, Delord JP, Doi T, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of the phase 1b KEYNOTE-028 study. Am J Clin Oncol. 2018; 41(11): 1083-1088.

[193]

Mahmood U, Bang A, Chen YH, et al. A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int J Radiat Oncol Biol Phys. 2021; 109(1): 134-144.

[194]

Ochel HJGG, Röcken C, Wördehoff H. Effects of imatinib mesylate on adenoid cystic carcinomas. Anticancer Res. 2005; 25(5): 3659-3664.

[195]

Slevin NJ, MK BruceI. Imatinib with cisplatin in recurrent and/or metastatic adenoidcystic carcinoma-preliminary results of a phase II study of 18 patients with response assessed by morphological and functional imaging. Eur J Cancer Suppl. 2005; 3: 292-293.

[196]

Lin CH, Yen RF, Jeng YM, Tzen CY, Hsu C, Hong RL. Unexpected rapid progression of metastatic adenoid cystic carcinoma during treatment with imatinib mesylate. Head Neck. 2005; 27(12): 1022-1027.

[197]

Faivre S, Raymond E, Casiraghi O, Temam S, Berthaud P. Imatinib mesylate can induce objective response in progressing, highly expressing KIT adenoid cystic carcinoma of the salivary glands. J Clin Oncol. 2005; 23(25): 6271-6273. author reply 6273–4.

[198]

Guigay JM, Bidault F, Temam S, Janot F, Raymond E, Faivre S. Antitumor activity of imatinib in progressive, highly expressing KIT adenoid cystic carcinoma of the salivary glands: a phase II study. J Clin Oncol. 2007; 25: 6086-6086. 18_suppl.

[199]

Wong SJ, Cohen EEW, Karrison T, et al. A phase II study of dasatanib (BMS 354825) in recurrent or metastatic ckit-expressing adenoid cystic (ACC) and non-ACC malignant salivary glands tumors (MSGT). J Clin Oncol. 2013; 31: 6022-6022. 15_suppl.

[200]

Jakob JA, Kies MS, Glisson BS, et al. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck. 2015; 37(5): 644-649.

[201]

Ho AL, Dunn L, Sherman EJ, et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann Oncol. 2016; 27(10): 1902-1908.

[202]

Locati LD, Cavalieri S, Bergamini C, et al. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck. 2019; 41(10): 3670-3676.

[203]

Chau NG, Hotte SJ, Chen EX, et al. A phase II study of sunitinib in recurrent and/or metastatic adenoid cystic carcinoma (ACC) of the salivary glands: current progress and challenges in evaluating molecularly targeted agents in ACC. Ann Oncol. 2012; 23(6): 1562-1570.

[204]

Dillon PM, Petroni GR, Horton BJ, et al. A phase II study of dovitinib in patients with recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res. 2017; 23(15): 4138-4145.

[205]

Hoover AC, Milhem MM, Anderson CM, et al. Efficacy of nelfinavir as monotherapy in refractory adenoid cystic carcinoma: results of a phase II clinical trial. Head Neck. 2015; 37(5): 722-726.

[206]

Ferrarotto R, Eckhardt G, Patnaik A, et al. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol. 2018; 29(7): 1561-1568.

[207]

Cooper BT, Chmura SJ, Luke JJ, et al. TAK-676 in combination with pembrolizumab after radiation therapy in patients (pts) with advanced non–small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), or squamous-cell carcinoma of the head and neck (SCCHN): phase 1 study design. J Clin Oncol. 2022; 40: TPS2698-TPS2698. 16_suppl.

[208]

Khawaja MRR-u-H, Naqash AR, Schneider R, et al. Safety, pharmacokinetics (PK), pharmacodynamics (PD) and efficacy of KT-253, a targeted protein degrader of MDM2, in patients with relapsed/refractory (R/R) solid tumors, lymphoma, high grade myeloid malignancies and acute lymphoblastic leukemia (ALL). J Clin Oncol. 2024; 42: 3084-3084. 16_suppl.

[209]

Ferrarotto R, Swiecicki PL, Zandberg DP, et al. PRT543, a protein arginine methyltransferase 5 inhibitor, in patients with advanced adenoid cystic carcinoma: an open-label, phase I dose-expansion study. Oral Oncol. 2024; 149: 106634.

[210]

Phuchareon J, Ohta Y, Woo JM, Eisele DW, Tetsu O. Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: aCC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PLoS One. 2009; 4(6): e6040.

[211]

Lassche G, van Boxtel W, Aalders TW, et al. Development and characterization of patient-derived salivary gland cancer organoid cultures. Oral Oncol. 2022; 135: 106186.

[212]

Aizawa Y, Takada K, Aoyama J, et al. Establishment of experimental salivary gland cancer models using organoid culture and patient-derived xenografting. Cell Oncol (Dordr). 2023; 46(2): 409-421.

[213]

Hui Z, Wang B, Liu Z, et al. TGFβ-induced EN1 promotes tumor budding of adenoid cystic carcinoma in patient-derived organoid model. Int J Cancer. 2024; 154(10): 1814-1827.

[214]

Rose AJ, Fleming MM, Francis JC, et al. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol. 2024; 262(1): 37-49.

[215]

Takada K, Aizawa Y, Sano D, et al. Establishment of PDX-derived salivary adenoid cystic carcinoma cell lines using organoid culture method. Int J Cancer. 2021; 148(1): 193-202.

[216]

Cornett A, Athwal HK, Hill E, et al. Serial patient-derived orthotopic xenografting of adenoid cystic carcinomas recapitulates stable expression of phenotypic alterations and innervation. EBioMedicine. 2019; 41: 175-184.

[217]

Capone E, Perrotti V, Cela I, et al. Anti-LGALS3BP antibody-drug conjugate treatment induces durable and potent antitumor response in a preclinical model of adenoid cystic carcinoma. Oral Oncol. 2024; 148: 106635.

[218]

Jia Y, Shi J, Ding B, et al. Photoactive Poly-L-Lysine gel with resveratrol-magnesium metal polyphenol network: A promising strategy for preventing tracheal anastomotic complications following surgery. Materials Today Bio, 2024; 24:100938.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/