Lymphatic-specific methyltransferase-like 3-mediated m6A modification drives vascular patterning through prostaglandin metabolism reprogramming

Lianjun Shi , Shuting Lu , Xue Han , Fan Ye , Xiumiao Li , Ziran Zhang , Qin Jiang , Biao Yan

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e728

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e728 DOI: 10.1002/mco2.728
ORIGINAL ARTICLE

Lymphatic-specific methyltransferase-like 3-mediated m6A modification drives vascular patterning through prostaglandin metabolism reprogramming

Author information +
History +
PDF

Abstract

Lymphangiogenesis plays a pivotal role in the pathogenesis of various vascular disorders, including ocular vascular diseases and cancers. Deregulation of N6-methyladenosine (m6A) modification has been identified as a key contributor to human diseases. However, the specific involvement of m6A modification in lymphatic remodeling remains poorly understood. In this study, we demonstrate that inflammatory stimulation and corneal sutures induce elevated levels of methyltransferase-like 3 (METTL3)-mediated m6A modification. METTL3 knockdown inhibits lymphatic endothelial viability, proliferation, migration, and tube formation in vitro. METTL3 knockdown attenuates corneal sutures-induced lymphangiogenesis and intratumoral lymphangiogenesis initiated by subcutaneous grafts, consequently restraining corneal neovascularization, tumor growth, and tumor neovascularization in vivo. Mechanistically, METTL3 knockdown upregulates prostaglandin–endoperoxide synthase 2 expression through an m6A–YTHDF2-dependent pathway, enhancing the synthesis of cyclopentenone prostaglandins (CyPGs). Aberrant CyPG production in lymphatic endothelial cells impairs mitochondrial oxidative phosphorylation, contributing to pathological lymphangiogenesis. Moreover, selective inhibition of METTL3 with STM2457 reduces m6A levels in lymphatic endothelial cells, effectively suppressing pathological lymphangiogenesis. This study provides compelling evidence that lymphatic-specific METTL3 plays a critical role in vascular patterning through prostaglandin metabolism reprogramming. Thus, METTL3 emerges as a promising target for treating lymphangiogenesis-related diseases.

Keywords

corneal neovascularization / lymphangiogenesis / m6A modification / METTL3 / prostaglandin metabolism

Cite this article

Download citation ▾
Lianjun Shi, Shuting Lu, Xue Han, Fan Ye, Xiumiao Li, Ziran Zhang, Qin Jiang, Biao Yan. Lymphatic-specific methyltransferase-like 3-mediated m6A modification drives vascular patterning through prostaglandin metabolism reprogramming. MedComm, 2024, 5(10): e728 DOI:10.1002/mco2.728

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001; 50(1-2): 3-20.

[2]

Zarkada G, Chen X, Zhou X, et al. Chylomicrons regulate lacteal permeability and intestinal lipid absorption. Circ Res. 2023; 133(4): 333-349.

[3]

Zhang F, Zarkada G, Han J, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018; 361(6402): 599-603.

[4]

Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 2017; 31(16): 1615-1634.

[5]

Tanabe K, Wada J, Sato Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol. 2020; 16(5): 289-303.

[6]

Roy S, Banerjee P, Ekser B, et al. Targeting lymphangiogenesis and lymph node metastasis in liver cancer. Am J Pathol. 2021; 191(12): 2052-2063.

[7]

Zhong W, Montana M, Santosa SM, et al. Angiogenesis and lymphangiogenesis in corneal transplantation—a review. Surv Ophthalmol. 2018; 63(4): 453-479.

[8]

Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010; 140(4): 460-476.

[9]

Norrmén C, Tammela T, Petrova TV, Alitalo K. Biological basis of therapeutic lymphangiogenesis. Circulation. 2011; 123(12): 1335-1351.

[10]

Huang J, Yin P. Structural insights into N6-methyladenosine (m6A) modification in the transcriptome. Genom Proteom Bioinf. 2018; 16(2): 85-98.

[11]

Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019; 20(10): 608-624.

[12]

Wang S, Sun C, Li J, et al. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett. 2017; 408: 112-120.

[13]

Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and neurological diseases. Mol Neurobiol. 2022; 59(3): 1925-1937.

[14]

Shafik AM, Zhang F, Guo Z, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 2021; 22: 1-19.

[15]

Osaki T, Serrano JC, Kamm RD. Cooperative effects of vascular angiogenesis and lymphangiogenesis. Regen Eng Transl Med. 2018; 4: 120-132.

[16]

Varricchi G, Loffredo S, Galdiero MR, et al. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018; 53: 152-160.

[17]

Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011; 17(11): 1371-1380.

[18]

Patel SP, Dana R. Corneal lymphangiogenesis: implications in immunity. Semin Ophthalmol. 2009; 24(3): 135-138.

[19]

Liao S, von der Weid P-Y. Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis. 2014; 17: 325-334.

[20]

Eelen G, de Zeeuw P, Treps L, et al. Endothelial cell metabolism. Physiol Rev. 2018; 98(1): 3-58.

[21]

Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011; 31(5): 986-1000.

[22]

Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol. 2001; 64(4): 327-363.

[23]

Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev. 2001; 21(3): 185-210.

[24]

Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003; 57(3-4): 145-155.

[25]

Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006; 3(3): 187-197.

[26]

Dai D, Wang H, Zhu L, et al. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 2018; 9(2): 124.

[27]

Zheng HX, Zhang XS, Sui N. Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnol Adv. 2020; 45: 107656.

[28]

Karthiya R, Khandelia P. m6A RNA methylation: ramifications for gene expression and human health. Mol Biotechnol. 2020; 62(10): 467-484.

[29]

Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021; 6(1): 74.

[30]

Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018; 28(6): 616-624.

[31]

Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020; 19(1): 1-18.

[32]

Cursiefen C, Rummelt C, Jünemann A, et al. Absence of blood and lymphatic vessels in the developing human cornea. Cornea. 2006; 25(6): 722-726.

[33]

Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 2012; 64: 353-365.

[34]

Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene. 2012; 31(42): 4499-4508.

[35]

Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014; 14(3): 159-172.

[36]

Tammela T, Sage J. Investigating tumor heterogeneity in mouse models. Annu Rev Cancer Biol. 2020; 4: 99-119.

[37]

Stacker SA, Achen MG, Jussila L, et al. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002; 2(8): 573-583.

[38]

Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015; 34: 1-10.

[39]

Brüne B, Dehne N, Grossmann N, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal. 2013; 19(6): 595-637.

[40]

Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008; 103: 398-406.

[41]

Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017; 482(3): 419-425.

[42]

Diez-Dacal B, Perez-Sala D. A-class prostaglandins: early findings and new perspectives for overcoming tumor chemoresistance. Cancer Lett. 2012; 320(2): 150-157.

[43]

Scavelli C, Weber E, Aglianò M, et al. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat. 2004; 204(6): 433-449.

[44]

Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 2018; 19(2): 63-80.

[45]

Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006; 12(2): 225-229.

[46]

Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002; 53(1): 35-57.

[47]

Cursiefen C, Cao J, Chen L, et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci. 2004; 45(8): 2666-2673.

[48]

Clahsen T, Hadrian K, Notara M, et al. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res. 2023; 96: 101157.

[49]

Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011; 17(11): 1371-1380.

[50]

Brakenhielm E, Alitalo K. Cardiac lymphatics in health and disease. Nat Rev Cardiol. 2019; 16(1): 56-68.

[51]

Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018; 21(10): 1380-1391.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/