Mechanisms of radiation-induced tissue damage and response

Lin Zhou , Jiaojiao Zhu , Yuhao Liu , Ping-Kun Zhou , Yongqing Gu

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e725

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e725 DOI: 10.1002/mco2.725
REVIEW

Mechanisms of radiation-induced tissue damage and response

Author information +
History +
PDF

Abstract

Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.

Keywords

mechanisms / radiation-induced tissue injury / single-cell sequencing / therapeutic target

Cite this article

Download citation ▾
Lin Zhou, Jiaojiao Zhu, Yuhao Liu, Ping-Kun Zhou, Yongqing Gu. Mechanisms of radiation-induced tissue damage and response. MedComm, 2024, 5(10): e725 DOI:10.1002/mco2.725

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhen W, Weichselbaum R, Lin W. Nanoparticle-mediated radiotherapy remodels the tumor microenvironment to enhance antitumor efficacy. Adv Mater. 2023; 35(21): e2206370.

[2]

Jianming W, Chun-Yuan C, Xue Y, et al. p53 suppresses MHC class II presentation by intestinal epithelium to protect against radiation-induced gastrointestinal syndrome. Nat Commun. 2024; 15(1): 137.

[3]

Dongxiao Z, Danni Z, Jiang O, et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 2022; 13(1): 1413.

[4]

Alexandra DD, Denisa G, Khayrullo S, et al. A novel mouse model of radiation-induced cardiac injury reveals biological and radiological biomarkers of cardiac dysfunction with potential clinical relevance. Clin Cancer Res. 2021; 27(8): 2266-2276.

[5]

Justin BM, David RS-P, Lisa AR, et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med. 2010; 1(3): 3ra7.

[6]

Molykutty JA, Shannon M, Michelle AB, et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med. 2021; 19(1): 336.

[7]

Hee Jung Y, HyeSook Y, Ki Moon S, et al. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochem Pharmacol. 2011; 82(5): 524-534.

[8]

Chunxiang C, Ran W, Shubei W, et al. Elucidating the changes in the heterogeneity and function of radiation-induced cardiac macrophages using single-cell RNA sequencing. Front Immunol. 2024; 15: 1363278.

[9]

Ashrakt HA, Eman MM, Riham SS, Ebtehal E-D. Neuroprotective effects of saxagliptin against radiation-induced cognitive impairment: Insights on Akt/CREB/SIRT1/BDNF signaling pathway. Toxicol Appl Pharmacol. 2024; 489: 116994.

[10]

Joshua AM, Elizabeth AK, Michael JB, et al. Exogenous APN protects normal tissues from radiation-induced oxidative damage and fibrosis in mice and prostate cancer patients with higher levels of APN have less radiation-induced toxicities. Redox Biol. 2024; 73: 103219.

[11]

Xinyi T, Junsong G, Chenglu G, et al. Ergothioneine-sodium hyaluronate dressing: a promising approach for protecting against radiation-induced skin injury. ACS Appl Mater Interfaces. 2024; 16(23): 29917-29929.

[12]

Matthew AC, Terrence ER, M Suprada R, et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut. 2011; 61(6): 829-838.

[13]

Rheinallt MJ, Valerie MS, Huixia W, et al. Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity. Gut. 2011; 60(5): 648-657.

[14]

Wenlin D, Shuyu E, Ryoko T, et al. The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury. Gastroenterology. 2007; 132(5): 1834-1851.

[15]

Casmir T, Jessica AB, Izumi H, et al. Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro Oncol. 2019; 21(4): 474-485.

[16]

Deborah EC, Uma S, Jason AH, et al. Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst. 2013; 105(19): 1474-1484.

[17]

Lijian S, Wei F, Hongliang L, et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a-and Arf-independent manner. Blood. 2014; 123(20): 3105-3115.

[18]

Yan-Gang L, Ji-Kuai C, Zi-Teng Z, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017; 8(2): e2579.

[19]

Kai X, Ge S, Yuhao W, et al. Mitigating radiation-induced brain injury via NLRP3/NLRC4/Caspase-1 pyroptosis pathway: Efficacy of memantine and hydrogen-rich water. Biomed Pharmacother. 2024; 177: 116978.

[20]

Wan Z, Qiheng W, Xiaonan Z, et al. NLRP3 promotes radiation-induced brain injury by regulating microglial pyroptosis. Neuropathol Appl Neurobiol. 2024; 50(3): e12992.

[21]

Charlotte EB, Carter BK, Nicholas A, et al. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov. 2024; 10(1): 313.

[22]

Tao L, Qunfang Y, Haiping Z, et al. Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury. Biomaterials. 2021; 277: 121103.

[23]

Congshu H, Liangliang Z, Pan S, et al. Cannabidiol mitigates radiation-induced intestine ferroptosis via facilitating the heterodimerization of RUNX3 with CBFβ thereby promoting transactivation of GPX4. Free Radic Biol Med. 2024; 222: 288-303.

[24]

Sandra C-A, Juliette S, Thomas D, et al. An interactive murine single-cell atlas of the lung responses to radiation injury. Nat Commun. 2023; 14(1): 2445.

[25]

Ziyan Y, Jiaojiao Z, Yuhao L, et al. DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med. 2024; 14(5): e1690.

[26]

Ping W, Ziyan Y, Ping-Kun Z, Yongqing G. The promising therapeutic approaches for radiation-induced pulmonary fibrosis: targeting radiation-induced mesenchymal transition of alveolar type II epithelial cells. Int J Mol Sci. 2022; 23(23): 15014.

[27]

Nagane M, Yasui H, Kuppusamy P, Yamashita T, Inanami O. DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases. J Radiat Res. 2021; 62(4): 564-573.

[28]

Young-Woong K, Tatiana VB. Oxidative stress in angiogenesis and vascular disease. Blood. 2013; 123(5): 625-631.

[29]

Jingming R, Tong Z, Zhouxuan W, Lu L, Saijun F. Amelioration of gamma irradiation-induced salivary gland damage in mice using melatonin. J Pineal Res. 2023; 75(2): e12897.

[30]

Ahram K, Chiaki Y, Chitho PF, Babita S, Yukio N. Antioxidant nanomedicine significantly enhances the survival benefit of radiation cancer therapy by mitigating oxidative stress-induced side effects. Small. 2021; 17(21): e2008210.

[31]

Hang L, Shuya Z, Mian J, et al. Biomodified extracellular vesicles remodel the intestinal microenvironment to overcome radiation enteritis. ACS Nano. 2023; 17(14): 14079-14098.

[32]

Zhang R, Xie K, Lian Y, Hong S, Zhu Y. Dexmedetomidine ameliorates x-ray-induced myocardial injury via alleviating cardiomyocyte apoptosis and autophagy. BMC Cardiovasc Disord. 2024; 24(1): 323.

[33]

Wang B, Zhang Y, Niu H, et al. METTL3-mediated STING upregulation and activation in kupffer cells contribute to radiation-induced liver disease via pyroptosis. Int J Radiat Oncol Biol Phys. 2024; 119(1): 219-233.

[34]

Zhang M, Lan H, Peng S, et al. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol. 2023; 122: 110616.

[35]

Nag D, Bhanja P, Riha R, et al. Auranofin protects intestine against radiation injury by modulating p53/p21 pathway and radiosensitizes human colon tumor. Clin Cancer Res. 2019; 25(15): 4791-4807.

[36]

Wei L, Leibowitz B, Wang X, et al. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice. J Clin Investig. 2016; 126(11): 4076-4087.

[37]

John GM, Gareth-Rhys J, Sonia SE, et al. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol. 2023; 8(89): eadd4374.

[38]

Marco C, Ya-Yuan F, Paola V, et al. A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury. Nat Commun. 2023; 14(1): 5411.

[39]

Ilias M, Jordi G, Josep R. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab. 2023; 34(8): 489-501.

[40]

Chang X, Zheng Y, Xu K. Single-cell RNA sequencing: technological progress and biomedical application in cancer research. Mol Biotechnol. 2024; 66(7): 1497-1519.

[41]

Shiyi T, Yun Z, Shengmei H, Tengfei Z, Xiaojing H. Single cell RNA-sequencing in uveal melanoma: advances in heterogeneity, tumor microenvironment and immunotherapy. Front Immunol. 2024; 15: 1427348.

[42]

Zheng Y, Yang X. Spatial RNA sequencing methods show high resolution of single cell in cancer metastasis and the formation of tumor microenvironment. Biosci Rep. 2023; 43(2): BSR20221680.

[43]

Wang C, Yu Q, Song T, et al. The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. Signal Transduct Target ther. 2022; 7(1): 289.

[44]

Wang S, Sun ST, Zhang XY, et al. The evolution of single-cell RNA sequencing technology and application: progress and perspectives. Int J Mol Sci. 2023; 24(3): 2943.

[45]

Zhao J, Shi Y, Cao G. The application of single-cell RNA sequencing in the inflammatory tumor microenvironment. Biomolecules. 2023; 13(2): 344.

[46]

Kim YS, Choi J, Lee SH. Single-cell and spatial sequencing application in pathology. J Pathol Transl Med. 2023; 57(1): 43-51.

[47]

Deng G, Zhang X, Chen Y, et al. Single-cell transcriptome sequencing reveals heterogeneity of gastric cancer: progress and prospects. Front Oncol. 2023; 13: 1074268.

[48]

David AS-D, Elena AR, Hannah S, Andreas W. Comparative single-cell transcriptomics reveals novel genes involved in bivalve embryonic shell formation and questions ontogenetic homology of molluscan shell types. Front Cell Dev Biol. 2022; 10: 883755.

[49]

Jindong X, Anli Y, Qianwen L, et al. Single-cell RNA sequencing elucidated the landscape of breast cancer brain metastases and identified ILF2 as a potential therapeutic target. Cell Prolif. 2024:e13697.

[50]

E Keats S, Daniel CG, Zhaohui M, et al. Single-nucleus multi-omics of Parkinson’s disease reveals a glutamatergic neuronal subtype susceptible to gene dysregulation via alteration of transcriptional networks. Acta Neuropathol Commun. 2024; 12(1): 111.

[51]

Moyuan Q, Huining Z, Xianxian H, et al. Single-cell RNA sequencing reveals transcriptional landscape of neutrophils and highlights the role of TREM-1 in EAE. Neurol Neuroimmunol Neuroinflamm. 2024; 11(5): e200278..

[52]

Oliver PS, Saba A, Ashraful H. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol. 2024; 88: 102443.

[53]

Anna-Mari S, Viola P, Ilse E, et al. Temporal alterations in CD8+ T cells during the progression from stage 1 to stage 3 type 1 diabetes. Diabetes. 2024;(0):db240159.

[54]

Lucas R, Janine EM, Bertrand E, et al. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol. 2024; 25(8): 1474-1488.

[55]

Welles R, Joshua KS, Fiorella S, et al. Identification of intracellular bacteria from multiple single-cell RNA-seq platforms using CSI-microbes. Sci Adv. 2024; 10(27): eadj7402.

[56]

Gabriela Rapozo G, Giovanna Resk M, Cristiane Esteves T, et al. Single-cell resolution characterization of myeloid-derived cell states with implication in cancer outcome. Nat Commun. 2024; 15(1): 5694.

[57]

Xiao-Bo H, Qiang H, Mei-Chen J, et al. KLHL21 suppresses gastric tumourigenesis via maintaining STAT3 signalling equilibrium in stomach homoeostasis. Gut. 2024;(0).

[58]

Zhanxian S, Chan X, Bowen D, Qian Z, Ming Y, Yuchen H. Single-cell transcriptome analysis reveals two subtypes of tumor cells of sclerosing pneumocytoma with distinct molecular features and clinical implications. Mod Pathol. 2024; 37(9): 100560.

[59]

Samuel WK, Colette Matysiak M, Erica ML, et al. Primary nasal influenza infection rewires tissue-scale memory response dynamics. Immunity. 2024; 57(8): 1955-1974.

[60]

Rui-Xue H, Ping-Kun Z. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020; 5(1): 60.

[61]

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutag. 2017; 58(5): 235-263.

[62]

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017; 168(4): 644-656.

[63]

Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021; 6(1): 254.

[64]

Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006; 12(9): 440-450.

[65]

Li CY. Non-canonical roles of apoptotic and DNA double-strand break repair factors in mediating cellular response to ionizing radiation. Int J Radiat Biol. 2023; 99(6): 915-924.

[66]

Roobol SJ, van den Bent I, van Cappellen WA, et al. Comparison of high-and low-LET radiation-induced DNA double-strand break processing in living cells. Int J Mol Sci. 2020; 21(18): 6602.

[67]

Hu B, Jin C, Li HB, et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science. 2016; 354(6313): 765-768.

[68]

Wood RD, Doublié S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair (Amst). 2016; 44: 22-32.

[69]

Villalobos MJ, Betti CJ, Vaughan AT. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR. Methods Mol Biol. 2006; 314: 109-121.

[70]

Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004; 73: 39-85.

[71]

Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009; 11(8): 973-979.

[72]

Noda A, Hirai Y, Hamasaki K, Mitani H, Nakamura N, Kodama Y. Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells. J Cell Sci. 2012; 125(Pt 22): 5280-5287.

[73]

Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res. 2011; 52(2): 115-125.

[74]

Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 2013; 5(2): a012559.

[75]

Hagen U. Current aspects on the radiation induced base damage in DNA. Radiat Environ Biophys. 1986; 25(4): 261-71.

[76]

Nakano T, Xu X, Salem AMH, Shoulkamy MI, Ide H. Radiation-induced DNA-protein cross-links: mechanisms and biological significance. Free Radic Biol Med. 2017; 107: 136-145.

[77]

Anderson CJ, Talmane L, Luft J, et al. Strand-resolved mutagenicity of DNA damage and repair. Nature. 2024; 630(8017): 744-751.

[78]

Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol. 2024; 239(4): e31187.

[79]

Sokhansanj BA. DNA base excision repair nanosystem engineering: model development. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2005; 2005: 7588-7590.

[80]

Anuranjani BM. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol. 2014; 2: 832-846.

[81]

Ide H, Nakano T, Salem AMH, Shoulkamy MI. DNA-protein cross-links: Formidable challenges to maintaining genome integrity. DNA Repair (Amst). 2018; 71: 190-197.

[82]

Caldecott K, Jeggo P. Cross-sensitivity of gamma-ray-sensitive hamster mutants to cross-linking agents. Mutat Res. 1991; 255(2): 111-121.

[83]

Painter RB. DNA damage and repair in eukaryotic cells. Genetics. 1974; 78(1): 139-148.

[84]

Richardson ME, Siemann DW. DNA damage in cyclophosphamide-resistant tumor cells: the role of glutathione. Cancer Res. 1995; 55(8): 1691-1695.

[85]

Probin V, Wang Y, Zhou D. Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med. 2007; 42(12): 1858-1865.

[86]

Badie S, Carlos AR, Folio C, et al. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. Embo J. 2015; 34(3): 410-424.

[87]

Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA. WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun. 2016; 7: 13785.

[88]

Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011; 12(2): 90-103.

[89]

Paull TT, Gellert M. The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell. 1998; 1(7): 969-979.

[90]

Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma. 2018; 127(2): 187-214.

[91]

Chen H, Lisby M, Symington LS. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell. 2013; 50(4): 589-600.

[92]

Shah SS, Hartono S, Piazza A, et al. Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length. Elife. 2020; 9: e59112.

[93]

Frock RL, Sadeghi C, Meng J, Wang JL. DNA end joining: G0-ing to the core. Biomolecules. 2021; 11(10): 1487.

[94]

Bao K, Ma Y, Li Y, et al. A di-acetyl-decorated chromatin signature couples liquid condensation to suppress DNA end synapsis. Mol Cell. 2024; 84(7): 1206-1223. e15.

[95]

Liu W, Miao C, Zhang S, et al. VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther. 2021; 6(1): 322.

[96]

Dibitetto D, Marshall S, Sanchi A, et al. DNA-PKcs promotes fork reversal and chemoresistance. Mol Cell. 2022; 82(20): 3932-3942.e6.

[97]

Dylgjeri E, Knudsen KE. DNA-PKcs: a targetable protumorigenic protein kinase. Cancer Res. 2022; 82(4): 523-533.

[98]

Chang HH, Watanabe G, Lieber MR. Unifying the DNA end-processing roles of the artemis nuclease: Ku-dependent artemis resection at blunt DNA ends. J Biol Chem. 2015; 290(40): 24036-24050.

[99]

Guo M, Wang Y, Tang Y, et al. Mechanism of genome instability mediated by human DNA polymerase mu misincorporation. Nat Commun. 2021; 12(1): 3759.

[100]

Dianov GL, Hübscher U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 2013; 41(6): 3483-3490.

[101]

Kijas AW, Lim YC, Bolderson E, et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res. 2015; 43(17): 8352-8367.

[102]

Schermerhorn KM, Delaney S. A chemical and kinetic perspective on base excision repair of DNA. Acc Chem Res. 2014; 47(4): 1238-1246.

[103]

Stratigopoulou M, van Dam TP, Guikema JEJ. Base excision repair in the immune system: small DNA lesions with big consequences. Front Immunol. 2020; 11: 1084.

[104]

Gohil D, Sarker AH, Roy R. Base excision repair: mechanisms and impact in biology, disease, and medicine. Int J Mol Sci. 2023; 24(18): 14186.

[105]

Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. DNA damage-induced RNAPII degradation and its consequences in gene expression. Genes (Basel). 2022; 13(11): 1951.

[106]

Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014; 15(7): 465-481.

[107]

Yu S, Evans K, van Eijk P, et al. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin. Genome Res. 2016; 26(10): 1376-1387.

[108]

Huang Y, Gu L, Li GM. Heat shock protein DNAJA2 regulates transcription-coupled repair by triggering CSB degradation via chaperone-mediated autophagy. Cell Discov. 2023; 9(1): 107.

[109]

Marinus MG. DNA mismatch repair. EcoSal Plus. 2012; 5(1).

[110]

Ahmad M, Tuteja R. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite. Mutat Res. 2014; 770: 54-60.

[111]

Olave MC, Graham RP. Mismatch repair deficiency: The what, how and why it is important. Genes Chromosomes Cancer. 2022; 61(6): 314-321.

[112]

Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 2016; 38: 94-101.

[113]

Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006; 7(5): 335-346.

[114]

Nie Q, Huan X, Kang J, et al. MG149 inhibits MOF-mediated p53 acetylation to attenuate X-ray radiation-induced apoptosis in H9c2 cells. Radiat Res. 2022; 198(6): 590-598.

[115]

Jia M, Qin D, Zhao C, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020; 21(7): 727-735.

[116]

Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus domesticus. Biochem Biophys Res Commun. 2022; 629: 61-70.

[117]

Muhammad W, Zhu J, Zhai Z, et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater. 2022; 148: 258-270.

[118]

Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022; 22(5): 280-297.

[119]

Fu ZJ, Wang ZY, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020; 36: 101671.

[120]

Guidarelli A, Fiorani M, Cerioni L, Scotti M, Cantoni O. Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition. BioFactors (Oxford, England). 2017; 43(5): 673-684.

[121]

Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med. 2022; 179: 133-143.

[122]

Liu Z, Wang X, Li J, et al. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway. Chem Biol Interact. 2023; 382: 110602.

[123]

Matic I. The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: implications for antimicrobial and cancer therapy. Curr Genet. 2018; 64(3): 567-569.

[124]

Kim GJ, Chandrasekaran K, Morgan WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis. 2006; 21(6): 361-367.

[125]

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014; 94(3): 909-950.

[126]

He Z, Zhang C, Liang JX, Zheng FF, Qi XY, Gao F. Targeting mitochondrial oxidative stress: potential neuroprotective therapy for spinal cord injury. J Integr Neurosci. 2023; 22(6): 153.

[127]

Li Y, Chen H, Yang Q, et al. Increased Drp1 promotes autophagy and ESCC progression by mtDNA stress mediated cGAS-STING pathway. J Exp Clin Cancer Res. 2022; 41(1): 76.

[128]

Gao L, González-Rodríguez P, Ortega-Sáenz P, López-Barneo J. Redox signaling in acute oxygen sensing. Redox Biol. 2017; 12: 908-915.

[129]

Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA. 2015; 112(9): 2817-2822.

[130]

Feng Z, Qin Y, Huo F, et al. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(1): 166287.

[131]

Sugiyama A, Sun J. Immunochemical detection of lipid hydroperoxide-and aldehyde-modified proteins in diseases. Subcell Biochem. 2014; 77: 115-125.

[132]

Ellgaard L, Sevier CS, Bulleid NJ. How are proteins reduced in the endoplasmic reticulum? Trends Biochem Sci. 2018; 43(1): 32-43.

[133]

Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017; 16(1): 79.

[134]

Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019; 70(6): 809-824.

[135]

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24(10): R453-R462.

[136]

Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020; 38(2): 167-197.

[137]

Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med. 2010; 31(1): 29-59.

[138]

Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020; 37: 101799.

[139]

Zhang Y, Xu R, Wu J, et al. Nanopore-related cellular death through cytoskeleton depolymerization by drug-induced ROS. Talanta. 2024; 268(Pt 2):125355.

[140]

Sharma N, Nagaraj C, Nagy BM, et al. RGS5 determines neutrophil migration in the acute inflammatory phase of bleomycin-induced lung injury. Int J Mol Sci. 2021; 22(17): 9342.

[141]

Koudstaal T, Wijsenbeek MS. Idiopathic pulmonary fibrosis. Presse Med. 2023; 52(3): 104166.

[142]

Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, Muñoz-Montaño W, Nuñez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med. 2021; 21(1): 9.

[143]

Verma S, Dutta A, Dahiya A, Kalra N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. Phytomedicine. 2022; 99: 154004.

[144]

Vanden Berghe T, Demon D, Bogaert P, et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med. 2014; 189(3): 282-291.

[145]

Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017; 277(1): 61-75.

[146]

Yang H, Wang H, Ren J, Chen Q, Chen ZJ. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 2017; 114(23): E4612-e4620.

[147]

Calveley VL, Jelveh S, Langan A, et al. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res. 2010; 173(5): 602-611.

[148]

Choi YY, Kim A, Lee Y, et al. The miR-126-5p and miR-212-3p in the extracellular vesicles activate monocytes in the early stage of radiation-induced vascular inflammation implicated in atherosclerosis. J Extracell Vesicles. 2023; 12(5): e12325.

[149]

Okubo M, Kioi M, Nakashima H, et al. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation. Sci Rep. 2016; 6: 27548.

[150]

Elovic AE, Ohyama H, Sauty A, et al. IL-4-dependent regulation of TGF-alpha and TGF-beta1 expression in human eosinophils. J Immunol. 1998; 160(12): 6121-6127.

[151]

Su L, Dong Y, Wang Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis. Cell Death Dis. 2021; 12(6): 527.

[152]

Liu Y, Kors L, Butter LM, et al. NLRX1 prevents M2 macrophage polarization and excessive renal fibrosis in chronic obstructive nephropathy. Cells. 2023; 13(1): 23.

[153]

Zhang Y, Zhu L, Hong J, Chen C. Extracellular matrix of early pulmonary fibrosis modifies the polarization of alveolar macrophage. Int Immunopharmacol. 2022; 111: 109179.

[154]

Hou J, Shi J, Chen L, et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal. 2018; 16(1): 89.

[155]

Kuwano K. Epithelial cell apoptosis and lung remodeling. Cell Mol Immunol. 2007; 4(6): 419-429.

[156]

Muzio M. Signalling by proteolysis: death receptors induce apoptosis. Int J Clin Lab Res. 1998; 28(3): 141-147.

[157]

Liu T, Zhang Y, Zhao H, Wu Q, Xin J, Pan Q. Mycoplasma hyopneumoniae inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization. Infect Immun. 2024:e0005124.

[158]

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011; 147(4): 742-758.

[159]

Fernet M, Mégnin-Chanet F, Hall J, Favaudon V. Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radiosensitivity. DNA Repair (Amst). 2010; 9(1): 48-57.

[160]

Praveen K, Saxena N. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation. Radiat Res. 2013; 179(6): 725-736.

[161]

Hara S, Nakashima S, Kiyono T, et al. p53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death Differ. 2004; 11(8): 853-861.

[162]

Son B, Kwon T, Lee S, et al. CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress-and ROS-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol. 2017; 313(5): L916-L929.

[163]

Luo M, Chen L, Zheng J, et al. Mitigation of radiation-induced pulmonary fibrosis by small-molecule dye IR-780. Free Radic Biol Med. 2021; 164: 417-428.

[164]

MS D’A . Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019; 43(6): 582-592.

[165]

Lin J, Kumari S, Kim C, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016; 540(7631): 124-128.

[166]

Yang D, Liang Y, Zhao S, et al. ZBP1 mediates interferon-induced necroptosis. Cell Mol Immunol. 2020; 17(4): 356-368.

[167]

Deng XX, Li SS, Sun FY. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis. 2019; 10(4): 807-817.

[168]

Xu Y, Tu W, Sun D, et al. Nrf2 alleviates radiation-induced rectal injury by inhibiting of necroptosis. Biochem Biophys Res Commun. 2021; 554: 49-55.

[169]

Yu S, Yang H, Guo X, Sun Y. Klotho attenuates angiotensin II-induced cardiotoxicity through suppression of necroptosis and oxidative stress. Mol Med Rep. 2021; 23(1): 66.

[170]

Ning J, Chen L, Zeng Y, et al. The scheme, and regulative mechanism of pyroptosis, ferroptosis, and necroptosis in radiation injury. Int J Biol Sci. 2024; 20(5): 1871-1883.

[171]

Zhang S, Xie Y, Yan F, et al. Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis. Autophagy. 2022; 18(9): 2229-2245.

[172]

Kaushal GP, Shah SV. Autophagy in acute kidney injury. Kidney Int. 2016; 89(4): 779-791.

[173]

Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. Embo J. 2021; 40(19): e108863.

[174]

Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221(1): 3-12.

[175]

Chaurasia M, Bhatt AN, Das A, Dwarakanath BS, Sharma K. Radiation-induced autophagy: mechanisms and consequences. Free Radic Res. 2016; 50(3): 273-290.

[176]

Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. 2022; 69(1): 248-264.

[177]

Sun Q, Fan W, Zhong Q. Regulation of Beclin 1 in autophagy. Autophagy. 2009; 5(5): 713-716.

[178]

Zijian G, Yixuan F, Yuan G, et al. “Abraxane-Like” radiosensitizer for in situ oral cancer therapy. Adv Sci (Weinh). 2024;(0):e2309569.

[179]

Guanglin S, Fanghao C, Liangzhong L, et al. Liposomal sodium clodronate mitigates radiation-induced lung injury through macrophage depletion. Transl Oncol. 2024; 47: 102029.

[180]

Mitchell W, Kirsty M, Joan B, et al. Metabolic profiling of murine radiation-induced lung injury with Raman spectroscopy and comparative machine learning. Analyst. 2024; 149(10): 2864-2876.

[181]

Indira M, Kim DR, Hannelore G, Wilfried DN, Hubert T, Jan VM. Predicting risk of radiation-induced lung injury. J Thorac Oncol. 2007; 2(9): 864-874.

[182]

Nili Y, Kamila US-L, Yu-Qing L, et al. Metformin effects on brain development following cranial irradiation in a mouse model. Neuro Oncol. 2021; 23(9): 1523-1536.

[183]

Queeny D, Amanda J, Amy MW, et al. A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nat Commun. 2023; 14(1): 6506.

[184]

Fa L, Runting L, Wen-Jun T, et al. An update on antioxidative stress therapy research for early brain injury after subarachnoid hemorrhage. Front Aging Neurosci. 2021; 13: 772036.

[185]

Zhezhi D, Minping L, Junjie G, et al. Low serum 25-hydroxyvitamin D3 levels and late delayed radiation-induced brain injury in patients with nasopharyngeal carcinoma: A case-control study. Brain Behav. 2020; 10(12): e01892.

[186]

Masaki N, Hironobu Y, Periannan K, Tadashi Y, Osamu I. DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases. J Radiat Res. 2021; 62(4): 564-573.

[187]

Eunkyung L, Sung YE, Susan HS, et al. Association between polymorphisms in DNA damage repair genes and radiation therapy-induced early adverse skin reactions in a breast cancer population: a polygenic risk score approach. Int J Radiat Oncol Biol Phys. 2020; 106(5): 948-957.

[188]

Tsutomu S, Takahito A, Momoka N, Megumi S, Kenji K, Akira U. Mechanism of turnover or persistence of radiation-induced myofibroblast in vitro. Cell Cycle. 2020; 19(23): 3375-3385.

[189]

Dietrich A, Serge C, Sudhir C, et al. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol. 2019; 96(3): 297-323.

[190]

Nicolò C, Roman B, Marco D. An agent-based model of radiation-induced lung fibrosis. Int J Mol Sci. 2022; 23(22): 13920.

[191]

Zujian F, Yumin Z, Chunfang Y, et al. Bioinspired and inflammation-modulatory glycopeptide hydrogels for radiation-induced chronic skin injury repair. Adv Healthc Mater. 2022; 12(1): e2201671.

[192]

Junxuan Y, Hui G, Xinfeng W, et al. The transcription factor GATA3 positively regulates NRP1 to promote radiation-induced pulmonary fibrosis. Int J Biol Macromol. 2024; 262: 130052.

[193]

Na L, Kejun L, Wenyue Z, et al. Small extracellular vesicles from irradiated lung epithelial cells promote the activation of fibroblasts in pulmonary fibrosis. Int J Radiat Biol. 2023; 100(2): 268-280.

[194]

Yanwei Z, Lihua Z, Jinsheng H, Chun C. Extracellular matrix of early pulmonary fibrosis modifies the polarization of alveolar macrophage. Int Immunopharmacol. 2022; 111: 109179.

[195]

Jinxiu L, Lixin F, Yunpan L, et al. A single-cell chromatin accessibility dataset of human primed and naïve pluripotent stem cell-derived teratoma. Sci Data. 2024; 11(1): 725.

[196]

Snehal N, Elisia DT, Zhengfeng L, et al. Single-nucleus multiomic analysis of Beckwith-Wiedemann syndrome liver reveals PPARA signaling enrichment and metabolic dysfunction. bioRxiv. 2024;(0).

[197]

Christian M, Jingyuan Z, Trevor MN, Justin WW. Single-cell proteomics differentiates Arabidopsis root cell types. New Phytol. 2024;(0).

[198]

Sung-Huan Y, Shiau-Ching C, Pei-Shan W, et al. Quantification quality control emerges as a crucial factor to enhance single-cell proteomics data analysis. Mol Cell Proteomics. 2024; 23(5): 100768.

[199]

Raman S, Kok Siong A, Mengwei L, Yahui L, Jingjing L, Jinmiao C. ezSingleCell: an integrated one-stop single-cell and spatial omics analysis platform for bench scientists. Nat Commun. 2024; 15(1): 5600.

[200]

Ying G, Bin-Bin Y, Shuai L, Han-Ying L, Shi-Ting H. Research trends of radiation induced temporal lobe injury in patients with nasopharyngeal carcinoma from 2000 to 2022: a bibliometric analysis. Radiat Oncol. 2023; 18(1): 151.

[201]

Sherif GS, Michael CL, Lawrence RK, Kristin JR, Brandi RP. Recognition and management of the long-term effects of cranial radiation. Curr Treat Options Oncol. 2023; 24(7): 880-891.

[202]

Nikolai VG, Juliann GK. Brain damage and patterns of neurovascular disorder after ionizing irradiation. complications in radiotherapy and radiation combined injury. Radiat Res. 2021; 196(1): 1-16.

[203]

Rübe CE, Raid S, Palm J, Rübe C. Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy. Cancers. 2023; 15(11): 2999.

[204]

Wenjing Y, Chao C, Xiaolong J, et al. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after (60)Co irradiation. Cell Biol Int. 2024; 48(5): 695-711.

[205]

Claudia ER, Silvia R, Jan P, Christian R. Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy. Cancers (Basel). 2023; 15(11): 2999.

[206]

Jinlong W, Zhiming S, Huanhuan W, et al. Research progress on mechanism and dosimetry of brainstem injury induced by intensity-modulated radiotherapy, proton therapy, and heavy ion radiotherapy. Eur Radiol. 2020; 30(9): 5011-5020.

[207]

Tamas K, Anna U, Rafal G, et al. Whole brain irradiation-induced endothelial dysfunction in the mouse brain. Geroscience. 2023; 46(1): 531-541.

[208]

Alanna GS, Claire LW, Roger P, Giuseppe L, Nicholas JCK. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol. 2021; 143(2): 179-224.

[209]

Wei H, Takashi U, Kai Z, et al. Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget. 2016; 7(50): 82305-82323.

[210]

Zhou G, Xu Y, He B, et al. Ionizing radiation modulates vascular endothelial growth factor expression through STAT3 signaling pathway in rat neonatal primary astrocyte cultures. Brain Behav. 2020; 10(4): e01529.

[211]

Yafeng W, Kai Z, Tao L, et al. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis. 2017; 8(3): e2694.

[212]

Yafeng W, Kai Z, Tao L, et al. Selective neural deletion of the Atg7 gene reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain by ameliorating oligodendrocyte progenitor cell loss. Front Cell Neurosci. 2019; 13(0): 241.

[213]

Sabirzhanov B, Makarevich O, Barrett JP, et al. Irradiation-induced upregulation of miR-711 inhibits DNA repair and promotes neurodegeneration pathways. Int J Mol Sci. 2020; 21(15): 5239.

[214]

Xiao M, Li X, Wang L, et al. Skin wound following irradiation aggravates radiation-induced brain injury in a mouse model. Int J Mol Sci. 2023; 24(13): 10701.

[215]

Xu X, Huang H, Tu Y, et al. Celecoxib alleviates radiation-induced brain injury in rats by maintaining the integrity of blood-brain barrier. Dose Response. 2021; 19(2): 15593258211024393.

[216]

Wu Q, Fang Y, Huang X, et al. Role of orai3-mediated store-operated calcium entry in radiation-induced brain microvascular endothelial cell injury. Int J Mol Sci. 2023; 24(7): 6818.

[217]

Jinping C, Nils K, Ross N, Huma S, Yamei T, David A. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 2018; 136(4): 507-523.

[218]

Zoé S, Claudia ER. Region-specific effects of fractionated low-dose versus single-dose radiation on hippocampal neurogenesis and neuroinflammation. Cancers (Basel). 2022; 14(22): 5477.

[219]

Rachel NA, Linda JM-B, Ann MP, et al. Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates. Radiat Res. 2017; 187(5): 599-611.

[220]

Susanna R, Marta A-M, Kelly MF, William L, Ryan AF, John RF. Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton-associated protein). Cancer Res. 2008; 68(23): 9763-9770.

[221]

Xiaorong D, Ming L, Guodong H, et al. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol. 2014; 91(3): 224-239.

[222]

Jun X, Ji-Hua D, Guo-Dong H, Xiao-Fei Q, Gang W, Xiao-Rong D. NF-κB signaling modulates radiation-induced microglial activation. Oncol Rep. 2014; 31(6): 2555-2560.

[223]

Zhang Z, Jiang J, He Y, et al. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation. 2022; 19(1): 231.

[224]

Ke Z, Kejia L, Yu S, et al. A synthetic steroid 5α-androst-3β 5, 6β-triol alleviates radiation-induced brain injury in mice via inhibiting GBP5/NF-κB/NLRP3 signal axis. Mol Neurobiol. 2024; 61(7): 4074-4089.

[225]

Leavitt RJ, Acharya MM, Baulch JE, Limoli CL. Extracellular vesicle–derived miR-124 resolves radiation-induced brain injury. Cancer Res. 2020; 80(19): 4266-4277.

[226]

Heo J, Kim K, Woo S, et al. Stromal cell-derived factor 1 protects brain vascular endothelial cells from radiation-induced brain damage. Cells. 2019; 8(10): 1230.

[227]

Gulej R, Nyúl-Tóth Á, Ahire C, et al. Elimination of senescent cells by treatment with Navitoclax/ABT263 reverses whole brain irradiation-induced blood-brain barrier disruption in the mouse brain. Geroscience. 2023; 45(5): 2983-3002.

[228]

Osman AM, Sun Y, Burns TC, et al. Radiation triggers a dynamic sequence of transient microglial alterations in juvenile brain. Cell Rep. 2020; 31(9): 107699.

[229]

Shi Z, Yu P, Lin W-J, et al. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes. Neuron. 2023; 111(5): 696-710. e9.

[230]

Bensemmane L, Milliat F, Treton X, Linard C. Systemically delivered adipose stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome by immunomodulating the inflammatory response through a CD11b cell-dependent mechanism. Stem Cell Res Ther. 2023; 14(1): 325.

[231]

Zheng C, Niu M, Kong Y, et al. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnol. 2024; 22(1): 303.

[232]

Araujo IK, Muñoz-Guglielmetti D, Mollà M. Radiation-induced damage in the lower gastrointestinal tract: Clinical presentation, diagnostic tests and treatment options. Best Pract Res Clin Gastroenterol. 2020; 48-49:101707.

[233]

Li-Wei X, Shang C, Hai-Yan L, et al. Microbiota-derived I3A protects the intestine against radiation injury by activating AhR/IL-10/Wnt signaling and enhancing the abundance of probiotics. Gut Microbes. 2024; 16(1): 2347722.

[234]

Satoshi Y, Monowar A, Atsushi M, Max B, Ping W. DAMPs and radiation injury. Front Immunol. 2024; 15: 1353990.

[235]

Li H, Jiang M, Zhao S-y, et al. Exosomes are involved in total body irradiation-induced intestinal injury in mice. Acta Pharmacol Sin. 2021; 42(7): 1111-1123.

[236]

Wang Y, Su P, Zhuo Z, et al. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun. 2023; 643: 111-120.

[237]

Wang M, Dong Y, Wu J, et al. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci. 2020; 261: 118463.

[238]

Ji Q, Fu S, Zuo H, et al. ACSL4 is essential for radiation-induced intestinal injury by initiating ferroptosis. Cell Death Discov. 2022; 8(1): 332.

[239]

Ziqiao Y, Bofeng Y, Yuguo W, et al. Therapeutic mechanism of Liangxue-Guyuan-Yishen decoction on intestinal stem cells and tight junction proteins in gastrointestinal acute radiation syndrome rats. J Radiat Res. 2023; 64(6): 880-892.

[240]

Qinglian H, Haowen Z, Rui X, et al. Lacticaseibacillus casei ATCC334 ameliorates radiation-induced intestinal injury in rats by targeting microbes and metabolites. Mol Nutr Food Res. 2022; 67(1): e2200337.

[241]

Xia P, Yang Y, Liu R, et al. FG-4592 alleviates radiation-induced intestinal injury by facilitating recovery of intestinal stem cell and reducing damage of intestinal epithelial. Toxicol Lett. 2022; 357: 1-10.

[242]

Tirado FR, Bhanja P, Castro-Nallar E, Olea XD, Salamanca C, Saha S. Radiation-induced toxicity in rectal epithelial stem cell contributes to acute radiation injury in rectum. Stem Cell Res Ther. 2021; 12(1): 63.

[243]

Chen F, Zhang Y, Hu S, et al. TIGAR/AP-1 axis accelerates the division of Lgr5– reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation. Cell Death Dis. 2020; 11(7): 501.

[244]

Lin Y, Xia P, Cao F, et al. Protective effects of activated vitamin D receptor on radiation-induced intestinal injury. J Cell Mol Med. 2022; 27(2): 246-258.

[245]

Sadeghi H, Bagheri H, Shekarchi B, Javadi A, Najafi M. Mitigation of radiation-induced gastrointestinal system injury by melatonin: a histopathological study. Curr Drug Res Rev. 2020; 12(1): 72-79.

[246]

Li M, Lang Y, Gu MM, et al. Vanillin derivative VND3207 activates DNA-PKcs conferring protection against radiation-induced intestinal epithelial cells injury in vitro and in vivo. Toxicol Appl Pharmacol. 2020; 387: 114855.

[247]

Ding W, Lu Y, Zhou A, et al. Mast1 mediates radiation-induced gastric injury via the P38 MAPK pathway. Exp Cell Res. 2021; 409(2): 112913.

[248]

Leonetti D, Estéphan H, Ripoche N, et al. Secretion of acid sphingomyelinase and ceramide by endothelial cells contributes to radiation-induced intestinal toxicity. Cancer Res. 2020; 80(12): 2651-2662.

[249]

Usunier B, Brossard C, L’Homme B, et al. HGF and TSG-6 released by mesenchymal stem cells attenuate colon radiation-induced fibrosis. Int J Mol Sci. 2021; 22(4): 1790.

[250]

Jiao Y, Xu J, Song B, et al. Interferon regulatory factor 1-triggered free ubiquitin protects the intestines against radiation-induced injury via CXCR4/FGF2 signaling. MedComm. 2022; 3(3): e168.

[251]

Huang S, Huang Y, Lin W, et al. Sitagliptin alleviates radiation-induced intestinal injury by activating NRF2-antioxidant axis, mitigating NLRP3 inflammasome activation, and reversing gut microbiota disorder. Oxid Med Cell Longev. 2022; 2022: 2586305.

[252]

Huang P, Xue J. Long noncoding RNA FOXD2AS1 regulates the tumorigenesis and progression of breast cancer via the S100 calcium binding protein A1/Hippo signaling pathway. Int J Mol Med. 2020; 46(4): 1477-1489.

[253]

Zhao Z, Cheng W, Qu W, Wang K. Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner. Biomed Pharmacother. 2020; 124: 109855.

[254]

Zhao Z, Cheng W, Qu W, Shao G, Liu S. Antibiotic alleviates radiation-induced intestinal injury by remodeling microbiota, reducing inflammation, and inhibiting fibrosis. ACS Omega. 2020; 5(6): 2967-2977.

[255]

Kim A, Seong KM, Choi YY, Shim S, Park S, Lee SS. Inhibition of EphA2 by dasatinib suppresses radiation-induced intestinal injury. Int J Mol Sci. 2020; 21(23): 9096.

[256]

Hu J, Ji Q, Chen F, et al. CXCR2 is essential for radiation-induced intestinal injury by initiating neutrophil infiltration. J Immunol Res. 2022; 2022: 7966089.

[257]

Han X, Chen Y, Zhang N, et al. Single-cell mechanistic studies of radiation-mediated bystander effects. Front Immunol. 2022; 13: 849341.

[258]

Mondini M, Guipaud O, François A, Mathieu N, Deutsch É, Milliat F. Interactions endothélium vasculaire – cellules immunitaires : un point de contrôle clef des lésions digestives radio-induites. Cancer/Radiothérapie. 2023; 27(6-7): 643-647.

[259]

Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021; 184(3): 810-826. e23.

[260]

Yan KS, Gevaert O, Zheng GXY, et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 2017; 21(1): 78-90. e6.

[261]

Feng X, Lu H, Yue J, et al. Loss of Setd4 delays radiation-induced thymic lymphoma in mice. DNA Repair. 2020; 86: 102754.

[262]

Qu M, Xiong L, Lyu Y, et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 2021; 31(3): 259-271.

[263]

Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov. 2021; 7(1): 244.

[264]

Luxun Y, Haiying R, Yaru Y, et al. Mitochondrial targeted cerium oxide nanoclusters for radiation protection and promoting hematopoiesis. Int J Nanomedicine. 2024; 19: 6463-6483.

[265]

Rania AG, Esraa MS, Maha MA. Ferulic acid protects against gamma-radiation induced liver injury via regulating JAK/STAT/Nrf2 pathways. Arch Biochem Biophys. 2024; 753: 109895.

[266]

Biao W, Yang Z, Hao N, et al. METTL3-mediated STING upregulation and activation in Kupffer cells contribute to radiation-induced liver disease via pyroptosis. Int J Radiat Oncol Biol Phys. 2023; 119(1): 219-233.

[267]

Du S, Chen G, Yuan B, et al. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury. Cell Mol Immunol. 2020; 18(7): 1718-1728.

[268]

Chen G, Zhao Q, Yuan B, et al. ALKBH5-modified HMGB1-STING activation contributes to radiation induced liver disease via innate immune response. IntJ Radiat Oncol Biol Phys. 2021; 111(2): 491-501.

[269]

Chen Y, Zhou P, Deng Y, et al. ALKBH5-mediated m6A demethylation of TIRAP mRNA promotes radiation-induced liver fibrosis and decreases radiosensitivity of hepatocellular carcinoma. Clin Transl Med. 2023; 13(2): e1198.

[270]

Li W, Jiang L, Lu X, Liu X, Ling M. Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway. BMC Complement Med Ther. 2021; 21(1): 10.

[271]

Cousins MM, Morris E, Maurino C, et al. TNFR1 and the TNFα axis as a targetable mediator of liver injury from stereotactic body radiation therapy. Transl Oncol. 2021; 14(1): 100950.

[272]

Damm R, Pech M, Haag F, et al. TNF-α indicates radiation-induced liver injury after interstitial high dose-rate brachytherapy. In Vivo. 2022; 36(5): 2265-2274.

[273]

Song Q, Datta S, Liang X, et al. Type I interferon signaling facilitates resolution of acute liver injury by priming macrophage polarization. Cell Mol Immunol. 2023; 20(2): 143-157.

[274]

Roy S, Salerno KE, Citrin DE. Biology of radiation-induced lung injury. Semin Radiat Oncol. 2021; 31(2): 155-161.

[275]

Li Y, Shen Z, Jiang X, et al. Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J Exp Clin Cancer Res. 2022; 41(1): 128.

[276]

Feng Y, Yuan P, Guo H, et al. METTL3 mediates epithelial–mesenchymal transition by modulating FOXO1 mRNA N6-methyladenosine-dependent YTHDF2 binding: a novel mechanism of radiation-induced lung injury. Adv Sci. 2023; 10(17): e2204784.

[277]

Kim J-Y, Jeon S, Yoo YJ, et al. The Hsp27-mediated IkBα-NFκB signaling axis promotes radiation-induced lung fibrosis. Clin Cancer Res. 2019; 25(17): 5364-5375.

[278]

Liang X, Yan Z, Wang P, et al. Irradiation activates MZF1 to inhibit miR-541-5p expression and promote epithelial-mesenchymal transition (EMT) in radiation-induced pulmonary fibrosis (RIPF) by upregulating slug. Int J Mol Sci. 2021; 22(21): 11309.

[279]

Hong ZY, Li S, Liu X, et al. Blocking C-Raf alleviated high-dose small-volume radiation-induced epithelial mesenchymal transition in mice lung. Sci Rep. 2020; 10(1): 11158.

[280]

Dongwei G, Junwei M, Xi C, et al. Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials. 2018; 184(0): 10-19.

[281]

Fuqiang C, Wenna Z, Chenghong D, Zihan C, Jie D, Meijuan Z. Bleomycin induces senescence and repression of DNA repair via downregulation of Rad51. Mol Med. 2024; 30(1): 54.

[282]

Xinrui R, Dong Z, Huilin D, et al. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res. 2023; 24(1): 25.

[283]

An N, Li Z, Yan X, et al. Inhibition of Rac1 attenuates radiation-induced lung injury while suppresses lung tumor in mice. Cell Death Discov. 2022; 8(1): 26.

[284]

Shenghui Z, Jiaojiao Z, Ping-Kun Z, Yongqing G. Alveolar type 2 epithelial cell senescence and radiation-induced pulmonary fibrosis. Front Cell Dev Biol. 2022; 10: 999600.

[285]

Yang Z, Zongjuan L, Weifeng H, et al. STING-dependent sensing of self-DNA driving pyroptosis contributes to radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2023; 117(4): 928-941.

[286]

Hao L, Xiaoming L, Huan L, et al. ACT001 Ameliorates ionizing radiation-induced lung injury by inhibiting NLRP3 inflammasome pathway. Biomed Pharmacother. 2023; 163: 114808.

[287]

Li X, Chen J, Yuan S, Zhuang X, Qiao T. Activation of the P62-Keap1-NRF2 pathway protects against ferroptosis in radiation-induced lung injury. Oxid Med Cell Longev. 2022; 2022: 8973509.

[288]

Park SH, Kim JY, Kim JM, et al. PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep. 2020; 10(1): 16112.

[289]

Arora A, Bhuria V, Singh S, et al. Amifostine analog, DRDE-30, alleviates radiation induced lung damage by attenuating inflammation and fibrosis. Life Sci. 2022; 298: 120518.

[290]

Beach TA, Finkelstein JN, Chang PY. Epithelial responses in radiation-induced lung injury (RILI) allow chronic inflammation and fibrogenesis. Radiat Res. 2023; 199(5): 439-451.

[291]

Wang L-K, Wu T-J, Hong J-H, et al. Radiation induces pulmonary fibrosis by promoting the fibrogenic differentiation of alveolar stem cells. Stem Cells Int. 2020; 2020: 1-12.

[292]

Rao X, Zhou D, Deng H, et al. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res. 2023; 24(1): 25.

[293]

Garcia AN, Casanova NG, Valera DG, et al. Involvement of eNAMPT/TLR4 signaling in murine radiation pneumonitis: protection by eNAMPT neutralization. Transl Res. 2022; 239: 44-57.

[294]

Garcia AN, Casanova NG, Kempf CL, et al. eNAMPT is a novel damage-associated molecular pattern protein that contributes to the severity of radiation-induced lung fibrosis. Am J Respir Cell Mol Biol. 2022; 66(5): 497-509.

[295]

Zhou P, Chen L, Yan D, et al. Early variations in lymphocytes and T lymphocyte subsets are associated with radiation pneumonitis in lung cancer patients and experimental mice received thoracic irradiation. Cancer Med. 2020; 9(10): 3437-3444.

[296]

Berg J, Halvorsen AR, Bengtson M-B, et al. Circulating T cell activation and exhaustion markers are associated with radiation pneumonitis and poor survival in non-small-cell lung cancer. Front Immunol. 2022; 13: 875152.

[297]

Zhai D, Huang J, Hu Y, et al. Ionizing radiation-induced tumor cell-derived microparticles prevent lung metastasis by remodeling the pulmonary immune microenvironment. Int J Radiat Oncol Biol Phys. 2022; 114(3): 502-515.

[298]

Chung EJ, Kwon S, Reedy JL, et al. IGF-1 receptor signaling regulates type II pneumocyte senescence and resulting macrophage polarization in lung fibrosis. Int J Radiat Oncol Biol Phys. 2021; 110(2): 526-538.

[299]

Su L, Dong Y, Wang Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis. Cell Death Dis. 2021; 12(6): 527.

[300]

Ying H, Fang M, Hang QQ, Chen Y, Qian X, Chen M. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway. J Cell Mol Med. 2021; 25(18): 8662-8675.

[301]

Zhen S, Qiang R, Lu J, Tuo X, Yang X, Li X. TGF-β1-based CRISPR/Cas9 gene therapy attenuates radiation-induced lung injury. Curr Gene Ther. 2021; 22(1): 59-65.

[302]

Xu Y, Zhai D, Goto S, Zhang X, Jingu K, Li TS. Nicaraven mitigates radiation-induced lung injury by downregulating the NF-κB and TGF-β/Smad pathways to suppress the inflammatory response. J Radiat Res. 2022; 63(2): 158-165.

[303]

Guo X, Du L, Ma N, et al. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med. 2022; 20(1): 597.

[304]

Minxiao Y, Ye Y, Li M, et al. Inhibition of TGFβ1 activation prevents radiation-induced lung fibrosis. Clin Transl Med. 2024; 14(1): e1546.

[305]

Ziyan Y, Xingkun A, Xinxin L, et al. Transcriptional inhibition of miR-486-3p by BCL6 upregulates Snail and induces epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis. Respir Res. 2022; 23(1): 104.

[306]

Ruyan W, Siqi L, Shuaichen M, et al. NR2F2 alleviates pulmonary fibrosis by inhibition of epithelial cell senescence. Respir Res. 2024; 25(1): 154.

[307]

Jinmei C, Caihong W, Xiaoxian P, et al. Glycyrrhetinic acid mitigates radiation-induced pulmonary fibrosis via inhibiting the secretion of TGF-β1 by Treg cells. Int J Radiat Oncol Biol Phys. 2023; 118(1): 218-230.

[308]

Kaiser AM, Gatto A, Hanson KJ, et al. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature. 2023; 619(7971): 851-859.

[309]

Chen S, Li K, Zhong X, et al. Sox9-expressing cells promote regeneration after radiation-induced lung injury via the PI3K/AKT pathway. Stem Cell Res Ther. 2021; 12(1): 3981.

[310]

Xin L, Liu C, Liu Y, et al. SIKs suppress tumor function and regulate drug resistance in breast cancer. Am J Cancer Res. 2021; 11(7): 3537-3557.

[311]

Sun Z, Lou Y, Hu X, et al. Single-cell sequencing analysis fibrosis provides insights into the pathobiological cell types and cytokines of radiation-induced pulmonary fibrosis. BMC Pulm Med. 2023; 23(1): 149.

[312]

Yang M, Fan Q, Hei TK, et al. Single-cell transcriptome analysis of radiation pneumonitis mice. Antioxidants. 2022; 11(8): 1457.

[313]

Wu F, Zhang Z, Wang M, et al. Cellular atlas of senescent lineages in radiation-or immunotherapy-induced lung injury by single-cell RNA-sequencing analysis. Int J Radiat Oncol Biol Phys. 2023; 116(5): 1175-1189.

[314]

Fouillade C, Curras-Alonso S, Giuranno L, et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res. 2020; 26(6): 1497-1506.

[315]

Iddins CJ, DiCarlo AL, Ervin MD, Herrera-Reyes E, Goans RE. Cutaneous and local radiation injuries. J Radiol Protect. 2022; 42(1).

[316]

Qiu Y, Gao Y, Yu D, et al. Genome-wide analysis reveals zinc transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-β signaling pathway. J Investig Dermatol. 2020; 140(1): 94-102. e7.

[317]

de Semir D, Bezrookove V, Nosrati M, et al. Nuclear receptor coactivator NCOA3 regulates UV radiation–induced DNA damage and melanoma susceptibility. Cancer Res. 2021; 81(11): 2956-2969.

[318]

Wu T, Gao J, Liu W, et al. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling. Toxicol Appl Pharmacol. 2021; 418: 115495.

[319]

Xue J, Yu C, Tang Y, et al. NF-E2-related factor 2 (Nrf2) ameliorates radiation-induced skin injury. Front Oncol. 2021; 11: 680058.

[320]

Jia H, Mo W, Hong M, et al. Interferon-α inducible protein 6 (IFI6) confers protection against ionizing radiation in skin cells. J Dermatol Sci. 2020; 100(2): 139-147.

[321]

Yao C, Zhou Y, Wang H, et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res Ther. 2021; 12(1): 447.

[322]

Huang B, An L, Su W, Yan T, Zhang H, Yu D-J. Exploring the alterations and function of skin microbiome mediated by ionizing radiation injury. Front Cell Infect Microbiol. 2022; 12: 1029592.

[323]

Mo W, Xu W, Hong M, et al. Proteomic and miRNA profiling of radon-induced skin damage in mice: FASN regulated by miRNAs. J Radiat Res. 2022; 63(5): 706-718.

[324]

Soto LA, Casey KM, Wang J, et al. FLASH irradiation results in reduced severe skin toxicity compared to conventional-dose-rate irradiation. Radiat Res. 2020; 194(6): 618-624.

[325]

Chen X, Qin W, Wang L, Jin Y, Tu J, Yuan X. Autophagy gene Atg7 regulates the development of radiation-induced skin injury and fibrosis of skin. Skin Res Technol. 2023; 29(6): e13337.

[326]

Tian X, Guo J, Gu C, et al. Ergothioneine-sodium hyaluronate dressing: a promising approach for protecting against radiation-induced skin injury. ACS Appl Mater Interfaces. 2024; 16(23): 29917-29929.

[327]

Tewary G, Freyter B, Al-Razaq MA, et al. Immunomodulatory effects of histone variant H2A.J in ionizing radiation dermatitis. Int J Radiat Oncol Biol Phys. 2024; 118(3): 801-816.

[328]

Richardson BN, Lin J, Buchwald ZS, Bai J. Skin microbiome and treatment-related skin toxicities in patients with cancer: a mini-review. Front Oncol. 2022; 12: 924849.

[329]

Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as drivers of immune dysregulation in autoimmune diseases with skin manifestations. J Invest Dermatol. 2022; 142(3 Pt B): 823-833.

[330]

Rübe C, Freyter B, Tewary G, Roemer K, Hecht M, Rübe C. Radiation dermatitis: radiation-induced effects on the structural and immunological barrier function of the epidermis. Int J Mol Sci. 2024; 25(6): 3320.

[331]

Paldor M, Levkovitch-Siany O, Eidelshtein D, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022; 14(8): e15653.

[332]

Tu W, Tang S, Yan T, et al. Integrative multi-omic analysis of radiation-induced skin injury reveals the alteration of fatty acid metabolism in early response of ionizing radiation. J Dermatol Sci. 2022; 108(3): 178-186.

[333]

Guo X, Osouli S, Shahripour RB. Review of cerebral radiotherapy-induced vasculopathy in pediatric and adult patients. Adv Biol. 2023; 7(10): e2300179.

[334]

El-Sabbagh W, Fadel N, El-Hazek R, Osman A, Ramadan L. Ubiquinol attenuates γ-radiation induced coronary and aortic changes via PDGF/p38 MAPK/ICAM-1 related pathway. Sci Rep. 2023; 13(1): 22959.

[335]

Zheng X, Liu Z, Bin Y, et al. Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB/CTCF/p16 pathway. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(3): 166994.

[336]

Kameni L, Januszyk M, Berry C, et al. A review of radiation-induced vascular injury and clinical impact. Ann Plast Surg. 2024; 92(2): 181-185.

[337]

Benadjaoud MA, Soysouvanh F, Tarlet G, et al. Deciphering the dynamic molecular program of radiation-induced endothelial senescence. Int J Radiat Oncol Biol Phys. 2022; 112(4): 975-985.

[338]

Nguyen HQ, Belkacemi Y, Mann C, et al. Human CCR6+ Th17 lymphocytes are highly sensitive to radiation-induced senescence and are a potential target for prevention of radiation-induced toxicity. Int J Radiat Oncol Biol Phys. 2020; 108(1): 314-325.

[339]

Li X, Cui W, Hull L, Wang L, Yu T, Xiao M. IL-18 binding protein (IL-18BP) as a novel radiation countermeasure after radiation exposure in mice. Sci Rep. 2020; 10(1): 18674.

[340]

Koutroumpakis E, Deswal A, Yusuf SW, et al. Radiation-induced cardiovascular disease: mechanisms, prevention, and treatment. Curr Oncol Rep. 2022; 24(5): 543-553.

[341]

Zeng Z, Xu P, He Y, et al. Acetylation of Atp5f1c mediates cardiomyocyte senescence via metabolic dysfunction in radiation-induced heart damage. Oxidat Med Cell Longev. 2022; 2022: 1-16.

[342]

Shaghaghi Z, Farzipour S, Jalali F, Alvandi M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc Hematol Agents Med Chem. 2023; 21(1): 2-9.

[343]

Chen Z, Wang B, Dong J, et al. Gut microbiota-derived l-histidine/imidazole propionate axis fights against the radiation-induced cardiopulmonary injury. Int J Mol Sci. 2021; 22(21): 11436.

[344]

Zhang T, He R, Ding X, et al. Fullerenols mitigate radiation-induced myocardial injury. Adv Healthc Mater. 2023; 12(29): e2300819.

[345]

Li Z, Zhou Z, Tian S, et al. RPRM deletion preserves hematopoietic regeneration by promoting EGFR-dependent DNA repair and hematopoietic stem cell proliferation post ionizing radiation. Cell Biol Int. 2022; 46(12): 2158-2172.

[346]

Hua G, Wen Z, Dafei X, et al. Cytosolic release of mitochondrial DNA and associated cGAS signaling mediates radiation-induced hematopoietic injury of mice. Int J Mol Sci. 2023; 24(4): 4020.

[347]

Zhang L, Luo H, Ni H-M, et al. Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Rep. 2022; 17(6): 1428-1441.

[348]

Chugh RM, Bhanja P, Olea XD, et al. Human peripheral blood mononucleocyte derived myeloid committed progenitor cells mitigate H-ARS by exosomal paracrine signal. Int J Mol Sci. 2022; 23(10): 5498.

[349]

Groves AM, Paris N, Hernady E, et al. Prevention of radiation-induced bladder injury: a murine study using captopril. Int J Radiat Oncol Biol Phys. 2023; 115(4): 972-982.

[350]

Leavitt RJ, Acharya MM, Baulch JE, Limoli CL. Extracellular vesicle-derived miR-124 resolves radiation-induced brain injury. Cancer Res. 2020; 80(19): 4266-4277.

[351]

Huang P, Xue J. Long non-coding RNA FOXD2-AS1 regulates the tumorigenesis and progression of breast cancer via the S100 calcium binding protein A1/Hippo signaling pathway. Int J Mol Med. 2020; 46(4): 1477-1489.

[352]

Luan H, Yang J, Wang Y, et al. rhTPO ameliorates radiation-induced long-term hematopoietic stem cell injury in mice. Molecules. 2023; 28(4): 1953.

[353]

Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM. A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells. 2007; 25(10): 2419-2429.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/