Krüppel-like factors family in health and disease

Tingwen Xiang , Chuan Yang , Zihan Deng , Dong Sun , Fei Luo , Yueqi Chen

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e723

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e723 DOI: 10.1002/mco2.723
REVIEW

Krüppel-like factors family in health and disease

Author information +
History +
PDF

Abstract

Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.

Keywords

bone destruction diseases / bone homeostasis / energy metabolism / epigenetic modification / Krüppel-like factors (KLFs) / systemic diseases

Cite this article

Download citation ▾
Tingwen Xiang, Chuan Yang, Zihan Deng, Dong Sun, Fei Luo, Yueqi Chen. Krüppel-like factors family in health and disease. MedComm, 2024, 5(9): e723 DOI:10.1002/mco2.723

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993; 13(5): 2776-2786.

[2]

Subramaniam M, Hawse JR, Rajamannan NM, Ingle JN, Spelsberg TC. Functional role of KLF10 in multiple disease processes. Biofactors. 2010; 36(1): 8-18.

[3]

Xie W, Li L, Zheng XL, Yin WD, Tang CK. The role of Krüppel-like factor 14 in the pathogenesis of atherosclerosis. Atherosclerosis. 2017; 263: 352-360.

[4]

Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005; 96(5): e48-e57.

[5]

Alder JK, Georgantas RW, 3rd, Hildreth RL, et al. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol. 2008; 180(8): 5645-5652.

[6]

Zhang Y, Lei CQ, Hu YH, et al. Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem. 2014; 289(18): 12876-12885.

[7]

Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother. 2023; 162: 114661.

[8]

Moore DL, Apara A, Goldberg JL. Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci. 2011; 47(4): 233-243.

[9]

Xiang T, Deng Z, Yang C, et al. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res. 2023; 196: 106943.

[10]

Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021; 39(1): 19-26.

[11]

Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep. 2014; 12(1): 115-120.

[12]

Sharma A, Sharma L, Goyal R. Molecular signaling pathways and essential metabolic elements in bone remodeling: an implication of therapeutic targets for bone diseases. Curr Drug Targets. 2021; 22(1): 77-104.

[13]

Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021; 80(4): 413-422.

[14]

Hong S, Huh JE, Lee SY, Shim JK, Rhee SG, Jeong W. TRP14 inhibits osteoclast differentiation via its catalytic activity. Mol Cell Biol. 2014; 34(18): 3515-3524.

[15]

Wang B, Dong Y, Tian Z, Chen Y, Dong S. The role of dendritic cells derived osteoclasts in bone destruction diseases. Genes Dis. 2021; 8(4): 401-411.

[16]

Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006; 99(5): 1233-1239.

[17]

Chen Y, Tan J, Yang C, et al. Dynamic chromatin accessibility landscapes of osteoblast differentiation and mineralization. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(2): 166938.

[18]

Ikebuchi Y, Aoki S, Honma M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018; 561(7722): 195-200.

[19]

Wang L, Liang Y, Zhou X, et al. Nrf2 differentially regulates osteoclast and osteoblast differentiation for bone homeostasis. Biochem Biophys Res Commun. 2023; 674: 19-26.

[20]

Ibarretxe G, Aurrekoetxea M, Crende O, et al. Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular junctions during the bell stage of tooth development. Cell Tissue Res. 2012; 350(1): 95-107.

[21]

Wang H, Han J, Dmitrii G, Ning K, Zhang XA. KLF transcription factors in bone diseases. J Cell Mol Med. 2024; 28(8): e18278.

[22]

Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene. 2024; 895: 148027.

[23]

Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). Dev Comp Immunol. 2014; 46(2): 364-372.

[24]

Jeon H, Waku T, Azami T, et al. Comprehensive identification of Krüppel-like factor family members contributing to the self-renewal of mouse embryonic stem cells and cellular reprogramming. PLoS One. 2016; 11(3): e0150715.

[25]

McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010; 90(4): 1337-1381.

[26]

Yerra VG, Drosatos K. Specificity proteins (SP) and Krüppel-like factors (KLF) in liver physiology and pathology. Int J Mol Sci. 2023; 24(5): 4682.

[27]

Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine. 2019; 40: 743-750.

[28]

Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal. 2022; 93: 110308.

[29]

Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem. 2007; 282(47): 33994-4002.

[30]

Li D, Yea S, Dolios G, et al. Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res. 2005; 65(20): 9216-9225.

[31]

Miyamoto S, Suzuki T, Muto S, et al. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol. 2003; 23(23): 8528-8541.

[32]

Song A, Patel A, Thamatrakoln K, et al. Functional domains and DNA-binding sequences of RFLAT-1/KLF13, a Krüppel-like transcription factor of activated T lymphocytes. J Biol Chem. 2002; 277(33): 30055-30065.

[33]

Zhang W, Bieker JJ. Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA. 1998; 95(17): 9855-9860.

[34]

Schuierer M, Hilger-Eversheim K, Dobner T, et al. Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional corepressor CtBP1. J Biol Chem. 2001; 276(30): 27944-27949.

[35]

Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. Embo J. 1998; 17(17): 5129-5140.

[36]

van Vliet J, Turner J, Crossley M. Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res. 2000; 28(9): 1955-1962.

[37]

Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R. A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol. 2001; 21(15): 5041-5049.

[38]

Sue N, Jack BH, Eaton SA, et al. Targeted disruption of the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol. 2008; 28(12): 3967-3978.

[39]

Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol. 2007; 39(9): 1593-1607.

[40]

Guo P, Dong XY, Zhang X, et al. Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. J Biol Chem. 2009; 284(10): 6071-6078.

[41]

Cunliffe VT. Eloquent silence: developmental functions of Class I histone deacetylases. Curr Opin Genet Dev. 2008; 18(5): 404-410.

[42]

Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell. 1999; 99(5): 447-450.

[43]

Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology. 2017; 152(8): 1845-1875.

[44]

Kaczynski J, Cook T, Urrutia R. Sp1-and Krüppel-like transcription factors. Genome Biol. 2003; 4(2): 206.

[45]

Hawse JR, Cicek M, Grygo SB, et al. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS One. 2011; 6(4): e19429.

[46]

Miao X, Wu X, Shi W. MicroRNA-346 regulates neural stem cell proliferation and differentiation by targeting KLF4. Am J Transl Res. 2017; 9(12): 5400-5410.

[47]

Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA-29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep. 2020; 22(2): 1008-1016.

[48]

Huang X, Wang C, Zhou X, et al. Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neurosci Ther. 2020; 26(9): 940-951.

[49]

Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability. Science. 2009; 326(5950): 298-301.

[50]

Huang T, Yin J, Ren S, Zhang X. Protective effects of KLF4 on blood-brain barrier and oxidative stress after cerebral ischemia-reperfusion in rats through the Nrf2/Trx1 pathway. Cytokine. 2023; 169: 156288.

[51]

Laub F, Lei L, Sumiyoshi H, et al. Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol. 2005; 25(13): 5699-5711.

[52]

Lei L, Zhou J, Lin L, Parada LF. Brn3a and Klf7 cooperate to control TrkA expression in sensory neurons. Dev Biol. 2006; 300(2): 758-769.

[53]

Tsai MY, Lu YF, Liu YH, et al. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development. Dev Neurobiol. 2015; 75(9): 908-926.

[54]

Yi R, Chen B, Zhao J, et al. Krüppel-like factor 8 ameliorates Alzheimer’s disease by activating β-catenin. J Mol Neurosci. 2014; 52(2): 231-241.

[55]

Scobie KN, Hall BJ, Wilke SA, et al. Krüppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci. 2009; 29(31): 9875-9887.

[56]

Otteson DC, Liu Y, Lai H, et al. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci. 2004; 45(8): 2522-2530.

[57]

Wu W, Geng P, Zhu J, et al. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact. 2019; 305: 105-111.

[58]

Boon RA, Fledderus JO, Volger OL, et al. KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol. 2007; 27(3): 532-539.

[59]

Yoshida T, Hayashi M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb. 2014; 21(5): 402-413.

[60]

Liu H, Wang H, Ma J, Qiao Z, Zhang L, Ge G. MicroRNA-146a-3p/HDAC1/KLF5/IKBα signal axis modulates plaque formation of atherosclerosis mice. Life Sci. 2021; 284: 119615.

[61]

Zheng B, Zheng CY, Zhang Y, et al. Regulatory crosstalk between KLF5, miR-29a and Fbw7/CDC4 cooperatively promotes atherosclerotic development. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(2): 374-386.

[62]

Suzuki T, Sawaki D, Aizawa K, et al. Kruppel-like factor 5 shows proliferation-specific roles in vascular remodeling, direct stimulation of cell growth, and inhibition of apoptosis. J Biol Chem. 2009; 284(14): 9549-9557.

[63]

Suzuki T, Nishi T, Nagino T, et al. Functional interaction between the transcription factor Krüppel-like factor 5 and poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J Biol Chem. 2007; 282(13): 9895-9901.

[64]

Xie W, Li L, Gong D, et al. Krüppel-like factor 14 inhibits atherosclerosis via mir-27a-mediated down-regulation of lipoprotein lipase expression in vivo. Atherosclerosis. 2019; 289: 143-161.

[65]

Hu W, Lu H, Zhang J, et al. Krüppel-like factor 14, a coronary artery disease associated transcription factor, inhibits endothelial inflammation via NF-κB signaling pathway. Atherosclerosis. 2018; 278: 39-48.

[66]

Lavallée G, Andelfinger G, Nadeau M, et al. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. Embo j. 2006; 25(21): 5201-5213.

[67]

Cruz-Topete D, He B, Xu X, Cidlowski JA. Krüppel-like factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death. J Biol Chem. 2016; 291(37): 19374-19386.

[68]

Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017; 39(3): 569-578.

[69]

Napoli C, Benincasa G, Donatelli F, Ambrosio G. Precision medicine in distinct heart failure phenotypes: Focus on clinical epigenetics. Am Heart J. 2020; 224: 113-128.

[70]

Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: underlying mechanisms and therapeutic implications. J Mol Cell Cardiol. 2019; 129: 193-196.

[71]

Yu Y, Ma J, Xiao Y, et al. KLF15 is an essential negative regulatory factor for the cardiac remodeling response to pressure overload. Cardiology. 2015; 130(3): 143-152.

[72]

Chandran RR, Xie Y, Gallardo-Vara E, et al. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nat Commun. 2021; 12(1): 7179.

[73]

Herta T, Bhattacharyya A, Rosolowski M, et al. Krueppel-like factor 4 expression in phagocytes regulates early inflammatory response and disease severity in pneumococcal pneumonia. Front Immunol. 2021; 12: 726135.

[74]

Zou XZ, Gong ZC, Liu T, et al. Involvement of epithelial-mesenchymal transition afforded by activation of LOX-1/TGF-β1/KLF6 signaling pathway in diabetic pulmonary fibrosis. Pulm Pharmacol Ther. 2017; 44: 70-77.

[75]

Han X, Wu W, Wang S. Krüppel-like factor 15 counteracts endoplasmic reticulum stress and suppresses lung fibroblast proliferation and extracellular matrix accumulation. Tissue Cell. 2023; 84: 102183.

[76]

Niu R, Tang Y, Xi Y, Jiang D. High expression of Krüppel-like factor 7 indicates unfavorable clinical outcomes in patients with lung adenocarcinoma. J Surg Res. 2020; 250: 216-223.

[77]

Qu R, Liu J, Feng L, et al. Down-regulation of KLF9 ameliorates LPS-caused acute lung injury and inflammation in mice via reducing GSDMD expression. Autoimmunity. 2022; 55(8): 587-596.

[78]

Gracia-Sancho J, Russo L, García-Calderó H, García-Pagán JC, García-Cardeña G, Bosch J. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut. 2011; 60(4): 517-524.

[79]

Chen JL, Lu XJ, Zou KL, Ye K. Krüppel-like factor 2 promotes liver steatosis through upregulation of CD36. J Lipid Res. 2014; 55(1): 32-40.

[80]

Li J, Yu D, He C, et al. KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy. Cell Death Dis. 2023; 14(7): 393.

[81]

Nie HZ, Zhou YW, Yu XH, et al. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability. Acta Pharmacol Sin. 2024; 45(6): 1189-1200.

[82]

Sangodkar J, Shi J, DiFeo A, et al. Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer. 2009; 45(4): 666-676.

[83]

Zhang N, Zhang J, Shuai L, et al. Krüppel-like factor 4 negatively regulates β-catenin expression and inhibits the proliferation, invasion and metastasis of gastric cancer. Int J Oncol. 2012; 40(6): 2038-2048.

[84]

Chia NY, Deng N, Das K, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015; 64(5): 707-719.

[85]

Zhang H, Liu L, Wang Y, et al. KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol. 2013; 139(6): 1033-1042.

[86]

Reeves HL, Narla G, Ogunbiyi O, et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology. 2004; 126(4): 1090-1103.

[87]

Brown AR, Simmen RC, Raj VR, Van TT, MacLeod SL, Simmen FA. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015; 36(9): 946-955.

[88]

Chen ZY, Shie JL, Tseng CC. Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. J Biol Chem. 2002; 277(48): 46831-46839.

[89]

Guo L, He P, No YR, Yun CC. Krüppel-like factor 5 incorporates into the β-catenin/TCF complex in response to LPA in colon cancer cells. Cell Signal. 2015; 27(5): 961-968.

[90]

Guan G, Qin T, Zhao LL, Jin P. Genetic and functional analyses of the novel KLF11 Pro193Thr variant in a three-generation family with MODY7. Horm Metab Res. 2023; 55(2): 136-141.

[91]

Cao S, Fernandez-Zapico ME, Jin D, et al. KLF11-mediated repression antagonizes Sp1/sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling. J Biol Chem. 2005; 280(3): 1901-1910.

[92]

Yang Q, Civelek M. Transcription factor KLF14 and metabolic syndrome. Front Cardiovasc Med. 2020; 7: 91.

[93]

Zhang J, Hashmi S, Cheema F, et al. Regulation of lipoprotein assembly, secretion and fatty acid β-oxidation by Krüppel-like transcription factor, klf-3. J Mol Biol. 2013; 425(15): 2641-2655.

[94]

Nagare T, Sakaue H, Matsumoto M, et al. Overexpression of KLF15 transcription factor in adipocytes of mice results in down-regulation of SCD1 protein expression in adipocytes and consequent enhancement of glucose-induced insulin secretion. J Biol Chem. 2011; 286(43): 37458-37469.

[95]

Nabatame Y, Hosooka T, Aoki C, et al. Kruppel-like factor 15 regulates fuel switching between glucose and fatty acids in brown adipocytes. J Diabetes Investig. 2021; 12(7): 1144-1151.

[96]

Suzuki N, Kanai A, Suzuki Y, Ogino H, Ochi H. Adrenergic receptor signaling induced by Klf15, a regulator of regeneration enhancer, promotes kidney reconstruction. Proc Natl Acad Sci USA. 2022; 119(33): e2204338119.

[97]

Ding L, Ding Y, Kong X, et al. Dysregulation of Krüppel-like factor 12 in the development of endometrial cancer. Gynecol Oncol. 2019; 152(1): 177-184.

[98]

Zhang Y, Yan J, Pan X. miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Pflugers Arch. 2019; 471(8): 1055-1063.

[99]

Pabona JM, Zeng Z, Simmen FA, Simmen RC. Functional differentiation of uterine stromal cells involves cross-regulation between bone morphogenetic protein 2 and Kruppel-like factor (KLF) family members KLF9 and KLF13. Endocrinology. 2010; 151(7): 3396-406.

[100]

Huang Y, Wang Z, Li B, Ke L, Xiong Y, Zhang Y. Loss of KLF15 impairs endometrial receptivity by inhibiting EMT in endometriosis. J Endocrinol. 2024; 261(2): e230319.

[101]

Zheng Y, Tabbaa ZM, Khan Z, et al. Epigenetic regulation of uterine biology by transcription factor KLF11 via posttranslational histone deacetylation of cytochrome p450 metabolic enzymes. Endocrinology. 2014; 155(11): 4507-4520.

[102]

Daftary GS, Zheng Y, Tabbaa ZM, et al. A novel role of the Sp/KLF transcription factor KLF11 in arresting progression of endometriosis. PLoS One. 2013; 8(3): e60165.

[103]

Pabona JM, Simmen FA, Nikiforov MA, et al. Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012; 97(3): E376-E392.

[104]

Huang C, Jiang Y, Zhou J, et al. Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reprod Biol Endocrinol. 2017; 15(1): 25.

[105]

Daftary GS, Lomberk GA, Buttar NS, et al. Detailed structural-functional analysis of the Krüppel-like factor 16 (KLF16) transcription factor reveals novel mechanisms for silencing Sp/KLF sites involved in metabolism and endocrinology. J Biol Chem. 2012; 287(10): 7010-7025.

[106]

Rodriguez I. Drosophila TIEG is a modulator of different signalling pathways involved in wing patterning and cell proliferation. PLoS One. 2011; 6(4): e18418.

[107]

Hou Z, Wang Z, Tao Y, et al. KLF2 regulates osteoblast differentiation by targeting of Runx2. Lab Invest. 2019; 99(2): 271-280.

[108]

Gao JY, Yu XQ, Wang JQ. [KLF5 modulates proliferation and osteogenic differentiation of human periodontal ligament cells subjected to cyclic tensile stress]. Shanghai Kou Qiang Yi Xue. 2018; 27(1): 28-33.

[109]

Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. KLF4 promoted odontoblastic differentiation of mouse dental papilla cells via regulation of DMP1. J Cell Physiol. 2013; 228(10): 2076-2085.

[110]

Kim I, Kim JH, Kim K, Seong S, Kim N. The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation. BMB Rep. 2019; 52(7): 469-474.

[111]

Yu R, Han H, Chu S, et al. CUL4B orchestrates mesenchymal stem cell commitment by epigenetically repressing KLF4 and C/EBPδ. Bone Res. 2023; 11(1): 29.

[112]

Kim JH, Kim K, Youn BU, et al. Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts. J Cell Biol. 2014; 204(6): 1063-1074.

[113]

Weng J, Wu J, Chen W, Fan H, Liu H. KLF14 inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells by downregulating WNT3A. Am J Transl Res. 2020; 12(8): 4445-4455.

[114]

Yang Y, Su Y, Wang D, et al. Tanshinol rescues the impaired bone formation elicited by glucocorticoid involved in KLF15 pathway. Oxid Med Cell Longev. 2016; 2016: 1092746.

[115]

Yang YJ, Zhu Z, Wang DT, et al. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin. 2018; 39(4): 633-641.

[116]

Zhao G, Luo WD, Yuan Y, et al. LINC02381, a sponge of miR-21, weakens osteogenic differentiation of hUC-MSCs through KLF12-mediated Wnt4 transcriptional repression. J Bone Miner Metab. 2022; 40(1): 66-80.

[117]

Abe M, Saeki N, Ikeda Y, Ohba S. Kruppel-like factors in skeletal physiology and pathologies. Int J Mol Sci. 2022; 23(23): 15174.

[118]

Das M, Lu J, Joseph M, et al. Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis. Curr Mol Med. 2012; 12(2): 113-125.

[119]

Laha D, Deb M, Das H. KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy. 2019; 15(12): 2063-2075.

[120]

Cicek M, Vrabel A, Sturchio C, et al. TGF-β inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways. PLoS One. 2011; 6(3): e17522.

[121]

Chen C, Hu F, Miao S, et al. Transcription factor KLF7 promotes osteoclast differentiation by suppressing HO-1. Front Genet. 2022; 13: 798433.

[122]

Song Z, Lian X, Wang Y, Xiang Y, Li G. KLF15 regulates in vitro chondrogenic differentiation of human mesenchymal stem cells by targeting SOX9. Biochem Biophys Res Commun. 2017; 493(2): 1082-1088.

[123]

Michikami I, Fukushi T, Tanaka M, et al. Krüppel-like factor 4 regulates membranous and endochondral ossification. Exp Cell Res. 2012; 318(4): 311-325.

[124]

Yu SM, Kim SJ. Kruppel-like factor 4 (KLF-4) plays a crucial role in simvastatin (SVT)-induced differentiation of rabbit articular chondrocytes. Biochem Biophys Res Commun. 2018; 501(3): 814-819.

[125]

Han Y, Yu SM, Shah FH, Kim SJ. Subversive molecular role of Krüppel-like factor 5 in extracellular matrix degradation and chondrocyte dedifferentiation. Funct Integr Genomics. 2022; 22(6): 1307-1313.

[126]

Shinoda Y, Ogata N, Higashikawa A, et al. Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9. J Biol Chem. 2008; 283(36): 24682-24689.

[127]

Ma Y, Peng T, Yao X, Sun C, Wang X. KLF2 reduces dexamethasone-induced injury to growth plate chondrocytes by inhibiting the Runx2-mediated PI3K/AKT and ERK signalling pathways. Autoimmunity. 2023; 56(1): 1-7.

[128]

Kawata M, Teramura T, Ordoukhanian P, et al. Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis. 2022.

[129]

Xu L, Zheng L, Wang Z, et al. TNF-α-induced SOX5 upregulation is involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells through KLF4 signal pathway. Mol Cells. 2018; 41(6): 575-581.

[130]

Wang B, Ye Y, Yang X, et al. SIRT2-dependent IDH1 deacetylation inhibits colorectal cancer and liver metastases. EMBO Rep. 2020; 21(4): e48183.

[131]

Shang J, Lin N, Peng R, et al. Inhibition of Klf10 attenuates oxidative stress-induced senescence of chondrocytes via modulating mitophagy. Molecules. 2023; 28(3): 924.

[132]

Han F, Jiang H, Qu W, Rui YJ. KLF11 protects chondrocytes via inhibiting p38 MAPK signaling pathway. Eur Rev Med Pharmacol Sci. 2020; 24(12): 6505-6516.

[133]

Li Y, Zhao M, Xiao W. KLF15 regulates the expression of MMP-3 in human chondrocytes. J Interferon Cytokine Res. 2018; 38(8): 356-362.

[134]

Wang C, Wang Z, He M, et al. Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci USA. 2020; 117(32): 19425-19434.

[135]

Ahmed M, Gaffen SL. IL-17 inhibits adipogenesis in part via C/EBPα PPARγ and Krüppel-like factors. Cytokine. 2013; 61(3): 898-905.

[136]

Chougule A, Baroi S, Czernik PJ, et al. Osteocytes contribute via nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism. Front Endocrinol (Lausanne). 2023; 14: 1145467.

[137]

Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. Prog Biophys Mol Biol. 2023; 179: 26-37.

[138]

Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol. 2020; 42(10): 1010428320965284.

[139]

Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol. 2000; 279(4): C1220-C1229.

[140]

Esen E, Lee SY, Wice BM, Long F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J Bone Miner Res. 2015; 30(11): 1959-1968.

[141]

Schilling K, Brown E, Zhang X. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone. 2022; 154: 116257.

[142]

Liu JM, Rosen CJ, Ducy P, Kousteni S, Karsenty G. Regulation of glucose handling by the skeleton: insights from mouse and human studies. Diabetes. 2016; 65(11): 3225-3232.

[143]

Thomas DM, Rogers SD, Ng KW, Best JD. Dexamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in UMR 106-01, a clonal osteogenic sarcoma cell line. J Mol Endocrinol. 1996; 17(1): 7-17.

[144]

Thomas DM, Maher F, Rogers SD, Best JD. Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun. 1996; 218(3): 789-793.

[145]

Li Z, Frey JL, Wong GW, et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology. 2016; 157(11): 4094-4103.

[146]

Wei J, Shimazu J, Makinistoglu MP, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell. 2015; 161(7): 1576-1591.

[147]

Da W, Tao L, Zhu Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol. 2021; 12: 675385.

[148]

Gray S, Feinberg MW, Hull S, et al. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002; 277(37): 34322-34328.

[149]

Yang M, Ren Y, Lin Z, et al. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell Signal. 2015; 27(11): 2201-2208.

[150]

Cutarelli A, Marini M, Tancredi V, et al. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells. Dev Growth Differ. 2016; 58(4): 400-408.

[151]

Stovall KE, Tran TDN, Suantawee T, et al. Adenosine triphosphate enhances osteoblast differentiation of rat dental pulp stem cells via the PLC-IP(3) pathway and intracellular Ca (2+) signaling. J Cell Physiol. 2020; 235(2): 1723-1732.

[152]

Riddle RC, Taylor AF, Rogers JR, Donahue HJ. ATP release mediates fluid flow-induced proliferation of human bone marrow stromal cells. J Bone Miner Res. 2007; 22(4): 589-600.

[153]

Ishii KA, Fumoto T, Iwai K, et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009; 15(3): 259-266.

[154]

Bae S, Lee MJ, Mun SH, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest. 2017; 127(7): 2555-2568.

[155]

Ellenrieder V. TGFbeta regulated gene expression by Smads and Sp1/KLF-like transcription factors in cancer. Anticancer Res. 2008; 28(3a): 1531-1539.

[156]

Hinoi E, Fujimori S, Takemori A, Yoneda Y. Cell death by pyruvate deficiency in proliferative cultured calvarial osteoblasts. Biochem Biophys Res Commun. 2002; 294(5): 1177-1183.

[157]

Moriguchi N, Hinoi E, Tsuchihashi Y, et al. Cytoprotection by pyruvate through an anti-oxidative mechanism in cultured rat calvarial osteoblasts. Histol Histopathol. 2006; 21(9): 969-977.

[158]

Singh K, Krug L, Basu A, et al. Alpha-ketoglutarate curbs differentiation and induces cell death in mesenchymal stromal precursors with mitochondrial dysfunction. Stem Cells. 2017; 35(7): 1704-1718.

[159]

Wang B, Wang H, Li Y, Song L. Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids Health Dis. 2022; 21(1): 5.

[160]

Kim H, Oh B, Park-Min KH. Regulation of osteoclast differentiation and activity by lipid metabolism. Cells. 2021; 10(1): 89.

[161]

Xiong Z, Luo P, Zhou J, Tan M. 15-Deoxy-Δ(12, 14)-prostaglandin J(2) as a potential regulator of bone metabolism via PPARγ-dependent and independent pathways: a review. Drug Des Dev Ther. 2019; 13: 1879-1888.

[162]

Boeyens JC, Deepak V, Chua WH, Kruger MC, Joubert AM, Coetzee M. Effects of ω3-and ω6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: a comparative in vitro study. Nutrients. 2014; 6(7): 2584-2601.

[163]

Drosatos-Tampakaki Z, Drosatos K, Siegelin Y, et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res. 2014; 29(5): 1183-1195.

[164]

Sakata S, Hayashi S, Fujishiro T, et al. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid. J Orthop Res. 2015; 33(3): 359-365.

[165]

Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J. 1996; 320(Pt 2): 345-357.

[166]

Tunstall RJ, Mehan KA, Wadley GD, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2002; 283(1): E66-E72.

[167]

Yu A, Xu Y, Hogstrand C, et al. Klf4-Sirt3/Pparα-Lcad pathway contributes to high phosphate-induced lipid degradation. Cell Commun Signal. 2023; 21(1): 5.

[168]

Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res. 2016; 118(2): 241-253.

[169]

Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021; 18(12): 809-823.

[170]

Oishi Y, Manabe I, Tobe K, et al. SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med. 2008; 14(6): 656-666.

[171]

Fan L, Sweet DR, Fan EK, et al. Transcription factors KLF15 and PPARδ cooperatively orchestrate genome-wide regulation of lipid metabolism in skeletal muscle. J Biol Chem. 2022; 298(6): 101926.

[172]

Bihuniak JD, Insogna KL. The effects of dietary protein and amino acids on skeletal metabolism. Mol Cell Endocrinol. 2015; 410: 78-86.

[173]

Conigrave AD, Brown EM, Rizzoli R. Dietary protein and bone health: roles of amino acid-sensing receptors in the control of calcium metabolism and bone homeostasis. Annu Rev Nutr. 2008; 28: 131-155.

[174]

Oishi Y, Manabe I. Krüppel-like factors in metabolic homeostasis and cardiometabolic disease. Front Cardiovasc Med. 2018; 5: 69.

[175]

Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes. 2010; 59(7): 1608-1615.

[176]

Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab. 2007; 5(4): 305-312.

[177]

Go M, Shin E, Jang SY, Nam M, Hwang GS, Lee SY. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp Mol Med. 2022; 54(6): 825-833.

[178]

Huh JE, Choi JY, Shin YO, et al. Arginine enhances osteoblastogenesis and inhibits adipogenesis through the regulation of Wnt and NFATc signaling in human mesenchymal stem cells. Int J Mol Sci. 2014; 15(7): 13010-13029.

[179]

Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003; 60(1): 6-20.

[180]

Yamada M, Watanabe J, Ueno T, Ogawa T, Egusa H. Cytoprotective preconditioning of osteoblast-like cells with N-acetyl-L-cysteine for bone regeneration in cell therapy. Int J Mol Sci. 2019; 20(20): 5199.

[181]

Watanabe J, Yamada M, Niibe K, et al. Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials. 2018; 185: 25-38.

[182]

Soares MPR, Silva DP, Uehara IA, et al. The use of apocynin inhibits osteoclastogenesis. Cell Biol Int. 2019; 43(5): 466-475.

[183]

Karner CM, Esen E, Okunade AL, Patterson BW, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015; 125(2): 551-562.

[184]

Dong Z, Yang C, Tan J, Dou C, Chen Y. Modulation of SIRT6 activity acts as an emerging therapeutic implication for pathological disorders in the skeletal system. Genes Dis. 2023; 10(3): 864-876.

[185]

Visconti VV, Cariati I, Fittipaldi S, et al. DNA methylation signatures of bone metabolism in osteoporosis and osteoarthritis aging-related diseases: an updated review. Int J Mol Sci. 2021; 22(8): 4244.

[186]

Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet. 2022; 38(7): 676-707.

[187]

Oton-Gonzalez L, Mazziotta C, Iaquinta MR, et al. Genetics and epigenetics of bone remodeling and metabolic bone diseases. Int J Mol Sci. 2022; 23(3): 1500.

[188]

Kang MI, Kim HS, Jung YC, et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem. 2007; 102(1): 224-239.

[189]

Chen JR, Zhang J, Lazarenko OP, et al. Inhibition of fetal bone development through epigenetic down-regulation of HoxA10 in obese rats fed high-fat diet. Faseb j. 2012; 26(3): 1131-1141.

[190]

Nishikawa K, Iwamoto Y, Kobayashi Y, et al. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med. 2015; 21(3): 281-287.

[191]

Li L, Wang H, Chen X, et al. Oxidative stress-induced hypermethylation of KLF5 promoter mediated by DNMT3B impairs osteogenesis by diminishing the interaction with β-catenin. Antioxid Redox Signal. 2021; 35(1): 1-20.

[192]

de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370(Pt 3): 737-749.

[193]

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000; 403(6765): 41-45.

[194]

Sharma G, Sultana A, Abdullah KM, et al. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol. 2024; 154(Pt C): 275-285.

[195]

Vrtačnik P, Marc J, Ostanek B. Epigenetic mechanisms in bone. Clin Chem Lab Med. 2014; 52(5): 589-608.

[196]

Kim HJ, Park JW, Lee KH, et al. Plant homeodomain finger protein 2 promotes bone formation by demethylating and activating Runx2 for osteoblast differentiation. Cell Res. 2014; 24(10): 1231-1249.

[197]

Cao X, He W, Rong K, et al. DZNep promotes mouse bone defect healing via enhancing both osteogenesis and osteoclastogenesis. Stem Cell Res Ther. 2021; 12(1): 605.

[198]

Maity J, Deb M, Greene C, Das H. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol. 2020; 36: 101622.

[199]

Zheng QF, Wang HM, Wang ZF, et al. Reprogramming of histone methylation controls the differentiation of monocytes into macrophages. Febs J. 2017; 284(9): 1309-1323.

[200]

Freitag M, Selker EU. Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev. 2005; 15(2): 191-199.

[201]

Das M, Deb M, Laha D, et al. Myeloid Krüppel-like factor 2 critically regulates K/BxN serum-induced arthritis. Cells. 2019; 8(8): 908.

[202]

Tao H, Lin H, Sun Z, et al. Klf4 promotes dentinogenesis and odontoblastic differentiation via modulation of TGF-β signaling pathway and interaction with histone acetylation. J Bone Miner Res. 2019; 34(8): 1502-1516.

[203]

Wang Y, Wu J, Chen H, et al. Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. Sci Adv. 2021; 7(5): eabe3445.

[204]

Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021; 14(4): dmm047662.

[205]

Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 2021; 1875(1): 188491.

[206]

Calin GA. Being small and intronic: miRNAs that count! Cancer Res. 2021; 81(5): 1212-1213.

[207]

Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016; 590(1): 185-192.

[208]

Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem. 2017; 292(26): 11021-11033.

[209]

You M, Zhang L, Zhang X, Fu Y, Dong X. MicroRNA-197-3p inhibits the osteogenic differentiation in osteoporosis by down-regulating KLF 10. Clin Interv Aging. 2021; 16: 107-117.

[210]

Zhu E, Zhang J, Zhou J, Yuan H, Zhao W, Wang B. miR-20a-5p promotes adipogenic differentiation of murine bone marrow stromal cells via targeting Kruppel-like factor 3. J Mol Endocrinol. 2018; 60(3): 225-237.

[211]

Sun Y, Cao L, Lin JT, Yuan Y, Cao ZL, Jia JD. Upregulated miRNA-1236-3p in osteosarcoma inhibits cell proliferation and induces apoptosis via targeting KLF8. Eur Rev Med Pharmacol Sci. 2019; 23(14): 6053-6061.

[212]

Cao H, Wahlestedt C, Kapranov P. Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls. Trends Genet. 2018; 34(9): 704-721.

[213]

Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022; 82(12): 2252-2266.

[214]

Yang M, Guo Q, Peng H, et al. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J Exp Med. 2019; 216(8): 1944-1964.

[215]

Chen Y, Guo H, Li L, et al. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 15 (SNHG15) alleviates osteoarthritis progression by regulation of extracellular matrix homeostasis. Med Sci Monit. 2020; 26: e923868.

[216]

Huang Y, Chen D, Yan Z, et al. LncRNA MEG3 protects chondrocytes from IL-1β-induced inflammation via regulating miR-9-5p/KLF4 axis. Front Physiol. 2021; 12: 617654.

[217]

Zhao J, Su Y, Jiao J, et al. Identification of lncRNA and mRNA biomarkers in osteoarthritic degenerative meniscus by weighted gene coexpression network and competing endogenous RNA network analysis. Biomed Res Int. 2020; 2020: 2123787.

[218]

Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022; 19(3): 188-206.

[219]

Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020; 98(1): 87-97.

[220]

Jin D, Wu X, Yu H, et al. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res. 2018; 10(5): 1498-1510.

[221]

Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta. 2021; 523: 120-130.

[222]

Yang Y, Yujiao W, Fang W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 2020; 53(1): 40.

[223]

Wang KF, Shi ZW, Dong DM. CircATRNL1 protects against osteoarthritis by targeting miR-153-3p and KLF5. Int Immunopharmacol. 2021; 96: 107704.

[224]

Li B, Ding T, Chen H, et al. CircStrn3 targeting microRNA-9-5p is involved in the regulation of cartilage degeneration and subchondral bone remodelling in osteoarthritis. Bone Joint Res. 2023; 12(1): 33-45.

[225]

You M, Ai Z, Zeng J, Fu Y, Zhang L, Wu X. Bone mesenchymal stem cells (BMSCs)-derived exosomal microRNA-21-5p regulates Kruppel-like factor 3 (KLF3) to promote osteoblast proliferation in vitro. Bioengineered. 2022; 13(5): 11933-11944.

[226]

Chen C, Mao X, Cheng C, et al. miR-135a reduces osteosarcoma pulmonary metastasis by targeting both BMI1 and KLF4. Front Oncol. 2021; 11: 620295.

[227]

Jin Y, Yang L, Li X. MicroRNA-652 promotes cell proliferation and osteosarcoma invasion by directly targeting KLF9. Exp Ther Med. 2020; 20(4): 2953-2960.

[228]

Peng N, Miao Z, Wang L, Liu B, Wang G, Guo X. MiR-378 promotes the cell proliferation of osteosarcoma through down-regulating the expression of Kruppel-like factor 9. Biochem Cell Biol. 2018; 96(5): 515-521.

[229]

Luo A, Liu H, Huang C. KLF5-induced miR-487a augments the progression of osteosarcoma cells by targeting NKX3-1 in vitro. Oncol Lett. 2022; 24(2): 258.

[230]

Zhang L, Yang P, Liu Q, et al. KLF8 promotes cancer stem cell-like phenotypes in osteosarcoma through miR-429-SOX2 signaling. Neoplasma. 2020; 67(3): 519-527.

[231]

Ruan J, Zheng L, Hu N, et al. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch Biochem Biophys. 2018; 646: 128-136.

[232]

Huang A, Jin S, Han W, et al. Long noncoding RNA KCNQ1OT1 contributes to tumor growth and activates Wnt/β-catenin signaling in osteosarcoma by targeting the miR-3666/KLF7 axis. Int J Mol Med. 2021; 47(1): 387-396.

[233]

Zheng S, Qian Z, Jiang F, et al. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am J Transl Res. 2019; 11(7): 4126-4138.

[234]

Lai X, Song Y, Tian J. CircCDK14 ameliorates interleukin-1β-induced chondrocyte damage by the miR-1183/KLF5 pathway in osteoarthritis. Autoimmunity. 2022; 55(6): 408-417.

[235]

Chen Q, Zhou H, Rong W. Circular RNA_0078767 upregulates Kruppel-like factor 9 expression by targeting microRNA-889, thereby inhibiting the progression of osteosarcoma. Bioengineered. 2022; 13(6): 14313-14328.

[236]

Zhao QH, Lin LP, Guo YX, et al. Matrix metalloproteinase-13, NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis. Exp Ther Med. 2020; 19(6): 3620-3626.

[237]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393(10182): 1745-1759.

[238]

Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev. 2022; 79: 101641.

[239]

Gao X, Jiang S, Du Z, Ke A, Liang Q, Li X. KLF2 protects against osteoarthritis by repressing oxidative response through activation of Nrf2/ARE signaling in vitro and in vivo. Oxid Med Cell Long. 2019; 2019: 8564681.

[240]

Sun X, Huang H, Pan X, et al. EGR1 promotes the cartilage degeneration and hypertrophy by activating the Krüppel-like factor 5 and β-catenin signaling. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(9): 2490-2503.

[241]

Zheng L, Lu H, Li H, Xu X, Wang D. KLF10 is upregulated in osteoarthritis and inhibits chondrocyte proliferation and migration by upregulating Acvr1 and suppressing inhbb expression. Acta Histochem. 2020; 122(3): 151528.

[242]

Langdahl BL. Overview of treatment approaches to osteoporosis. Br J Pharmacol. 2021; 178(9): 1891-1906.

[243]

Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012; 41(3): 475-486.

[244]

Chen Y, Yang C, Dai Q, Tan J, Dou C, Luo F. Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner. J Nanobiotechnology. 2023; 21(1): 125.

[245]

Memon A, Lee WK. KLF10 as a tumor suppressor gene and its TGF-β signaling. Cancers (Basel). 2018; 10(6): 161.

[246]

Yerges LM, Klei L, Cauley JA, et al. Candidate gene analysis of femoral neck trabecular and cortical volumetric bone mineral density in older men. J Bone Miner Res. 2010; 25(2): 330–338.

[247]

Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009; 44(1): 87-101.

[248]

Yu S, Guo J, Sun Z, et al. BMP2-dependent gene regulatory network analysis reveals Klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis. 2021; 12(2): 197.

[249]

Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014; 507(7492): 323-328.

[250]

Ferguson JL, Turner SP. Bone cancer: diagnosis and treatment principles. Am Fam Physician. 2018; 98(4): 205-213.

[251]

Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci. 2021; 78(23): 7161-7183.

[252]

Whitburn J, Edwards CM. Metabolism in the tumour-bone microenvironment. Curr Osteoporos Rep. 2021; 19(5): 494-499.

[253]

Orzechowska-Licari EJ, LaComb JF, Mojumdar A, Bialkowska AB. SP and KLF transcription factors in cancer metabolism. Int J Mol Sci. 2022; 23(17): 9956.

[254]

Lu Y, Qin H, Jiang B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021; 522: 1-13.

[255]

Qi XT, Li YL, Zhang YQ, et al. KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol Sin. 2019; 40(4): 546-555.

[256]

DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat. 2009; 12(1-2): 1-7.

[257]

Jianwei Z, Enzhong B, Fan L, Jian L, Ning A. Effects of Kruppel-like factor 6 on osteosarcoma cell biological behavior. Tumour Biol. 2013; 34(2): 1097-1105.

[258]

Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018; 33(12): 2099-2113.

[259]

Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: function, regulation and clinical relevance. Biomed Pharmacother. 2020; 123: 109778.

[260]

Kang Y. Dissecting tumor-stromal interactions in breast cancer bone metastasis. Endocrinol Metab (Seoul). 2016; 31(2): 206-212.

[261]

Narla G, DiFeo A, Fernandez Y, et al. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest. 2008; 118(8): 2711-2721.

[262]

Xi J, Zhang B, Luo F, Liu J, Yang T. Quercetin protects neuroblastoma SH-SY5Y cells against oxidative stress by inhibiting expression of Krüppel-like factor 4. Neurosci Lett. 2012; 527(2): 115-120.

[263]

Li Y, Xian M, Yang B, Ying M, He Q. Inhibition of KLF4 by statins reverses adriamycin-induced metastasis and cancer stemness in osteosarcoma cells. Stem Cell Rep. 2017; 8(6): 1617-1629.

[264]

Kawata M, McClatchy DB, Diedrich JK, et al. Mocetinostat activates Krüppel-like factor 4 and protects against tissue destruction and inflammation in osteoarthritis. JCI insight. 2023; 8(17): e170513.

[265]

Yin KJ, Fan Y, Hamblin M, et al. KLF11 mediates PPARγ cerebrovascular protection in ischaemic stroke. Brain. 2013; 136(Pt 4): 1274-1287.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

391

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/