PDF
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine–biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Keywords
drug delivery system
/
fibrosis
/
liver cirrhosis
/
nanomedicine
/
therapeutics
Cite this article
Download citation ▾
Zihe Dong, Yeying Wang, Weilin Jin.
Liver cirrhosis: molecular mechanisms and therapeutic interventions.
MedComm, 2024, 5(10): e721 DOI:10.1002/mco2.721
| [1] |
Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis. Lancet. 2021; 398(10308): 1359-1376.
|
| [2] |
de Franchis R, Bosch J, Garcia-Tsao G, Reiberger T, Ripoll C. Baveno VII—renewing consensus in portal hypertension. J Hepatol. 2022; 76(4): 959-974.
|
| [3] |
Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis—aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023; 20(6): 388-398.
|
| [4] |
Fang K, Yang Q, Lin Y, et al. Global cirrhosis prevalence trends and attributable risk factors-an ecological study using data from 1990–2019. Liver Int. 2022; 42(12): 2791-2799.
|
| [5] |
Kaplan DE, Bosch J, Ripoll C, et al. AASLD practice guidance on risk stratification and management of portal hypertension and varices in cirrhosis. Hepatology. 2023; 75(5): 1180-1211.
|
| [6] |
European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018; 69(2): 406-460.
|
| [7] |
Wang Q, Zhao H, Deng Y, et al. Validation of Baveno VII criteria for recompensation in entecavir-treated patients with hepatitis B-related decompensated cirrhosis. J Hepatol. 2022; 77(6): 1564-1572.
|
| [8] |
Feng G, Valenti L, Wong VW, et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2024; 21(1): 46-56.
|
| [9] |
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020; 587(7835): 555-566.
|
| [10] |
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. Mol Biomed. 2022; 3(1): 23.
|
| [11] |
Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023; 23(4): 236-250.
|
| [12] |
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut–liver axis: pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol. 2024; 71: 101859.
|
| [13] |
Adir O, Poley M, Chen G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater. 2020; 32(13): e1901989.
|
| [14] |
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Application of nano-delivery systems in lymph nodes for tumor immunotherapy. Nanomicro Lett. 2023; 15(1): 145.
|
| [15] |
Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano. 2017; 11(3): 2313-2381.
|
| [16] |
Zhang Y, Wang L, Shao J, et al. Nano-calcipotriol as a potent anti-hepatic fibrosis agent. MedComm. 2023; 4(5): e354.
|
| [17] |
Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 2019; 16(7): 395-410.
|
| [18] |
Bhattacharya M, Ramachandran P. Immunology of human fibrosis. Nat Immunol. 2023; 24(9): 1423-1433.
|
| [19] |
Cheng S, Zou Y, Zhang M, et al. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm. 2023; 4(5): e378.
|
| [20] |
Che Z, Zhou Z, Li SQ, et al. ROS/RNS as molecular signatures of chronic liver diseases. Trends Mol Med. 2023; 29(11): 951-967.
|
| [21] |
Khomich O, Ivanov AV, Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells. 2019; 9(1): 24.
|
| [22] |
Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 2021; 33(2): 242-257.
|
| [23] |
Wang S, Friedman SL. Hepatic fibrosis: a convergent response to liver injury that is reversible. J Hepatol. 2020; 73(1): 210-211.
|
| [24] |
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021; 18(3): 151-166.
|
| [25] |
Örmeci N. Endothelins and liver cirrhosis. Portal Hypertens Cirrhosis. 2022; 1(1): 66-72.
|
| [26] |
Arroyo N, Villamayor L, Díaz I, et al. GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight. 2021; 6(23): e150059.
|
| [27] |
Martí-Rodrigo A, Alegre F, Moragrega ÁB, et al. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut. 2020; 69(5): 920-932.
|
| [28] |
Gao J, Wei B, de Assuncao TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020; 73(5): 1144-1154.
|
| [29] |
Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif. 2022; 55(1): e13158.
|
| [30] |
Mitra A, Satelli A, Yan J, et al. IL-30 (IL27p28) attenuates liver fibrosis through inducing NKG2D-rae1 interaction between NKT and activated hepatic stellate cells in mice. Hepatology. 2014; 60(6): 2027-2039.
|
| [31] |
Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. γδT cells suppress liver fibrosis via strong cytolysis and enhanced NK cell-mediated cytotoxicity against hepatic stellate cells. Front Immunol. 2019; 10: 477.
|
| [32] |
Zhou Y, Zhang L, Ma Y, et al. Secretome of senescent hepatic stellate cells favors malignant transformation from nonalcoholic steatohepatitis-fibrotic progression to hepatocellular carcinoma. Theranostics. 2023; 13(13): 4430-4448.
|
| [33] |
Gola A, Dorrington MG, Speranza E, et al. Commensal-driven immune zonation of the liver promotes host defence. Nature. 2021; 589(7840): 131-136.
|
| [34] |
Duan JL, Ruan B, Yan XC, et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology. 2018; 68(2): 677-690.
|
| [35] |
Duan JL, Ruan B, Song P, et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology. 2022; 75(3): 584-599.
|
| [36] |
Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, Francés R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol. 2021; 18(6): 411-431.
|
| [37] |
Poisson J, Lemoinne S, Boulanger C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017; 66(1): 212-227.
|
| [38] |
Hwang JH, Heo W, Park JI, et al. Endothelial TAZ inhibits capillarization of liver sinusoidal endothelium and damage-induced liver fibrosis via nitric oxide production. Theranostics. 2023; 13(12): 4182-4196.
|
| [39] |
García-Pagán JC, Gracia-Sancho J, Bosch J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J Hepatol. 2012; 57(2): 458-461.
|
| [40] |
Wu X, Shu L, Zhang Z, et al. Adipocyte fatty acid binding protein promotes the onset and progression of liver fibrosis via mediating the crosstalk between liver sinusoidal endothelial cells and hepatic stellate cells. Adv Sci (Weinh). 2021; 8(11): e2003721.
|
| [41] |
Liao Y, Zhou C, Duan Y, et al. Liver sinusoidal endothelial S1pr2 regulates experimental liver fibrosis through YAP/TGF-β signaling pathway. FASEB J. 2023; 37(5): e22905.
|
| [42] |
Rui L, Lin JD. Reprogramming of hepatic metabolism and microenvironment in nonalcoholic steatohepatitis. Annu Rev Nutr. 2022; 42: 91-113.
|
| [43] |
Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol. 2021; 74(1): 156-167.
|
| [44] |
An P, Wei LL, Zhao S, et al. Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat Commun. 2020; 11(1): 2362.
|
| [45] |
Zhu J, Luo Z, Pan Y, et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes. J Cell Physiol. 2019; 234(6): 9698-9710.
|
| [46] |
Tsay HC, Yuan Q, Balakrishnan A, et al. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. J Hepatol. 2019; 70(4): 722-734.
|
| [47] |
Wan S, Liu X, Sun R, et al. Activated hepatic stellate cell-derived Bmp-1 induces liver fibrosis via mediating hepatocyte epithelial-mesenchymal transition. Cell Death Dis. 2024; 15(1): 41.
|
| [48] |
Dai S, Liu F, Qin Z, et al. Kupffer cells promote T-cell hepatitis by producing CXCL10 and limiting liver sinusoidal endothelial cell permeability. Theranostics. 2020; 10(16): 7163-7177.
|
| [49] |
Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017; 66(6): 1300-1312.
|
| [50] |
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014; 20(8): 857-869.
|
| [51] |
Rao J, Wang H, Ni M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut. 2022; 71(12): 2539-2550.
|
| [52] |
Qing J, Ren Y, Zhang Y, et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis. J Hepatol. 2022; 76(2): 394-406.
|
| [53] |
Cai B, Dongiovanni P, Corey KE, et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2020; 31(2): 406-421. e407.
|
| [54] |
Zhang J, Liu Y, Chen H, et al. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization. Cell Death Dis. 2022; 13(4): 411.
|
| [55] |
Song P, Duan JL, Ding J, et al. Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm. 2023; 4(5): e346.
|
| [56] |
Bai J, Liu F. The Yin-Yang functions of macrophages in metabolic disorders. Life Med. 2022; 1(3): 319-332.
|
| [57] |
Ma PF, Gao CC, Yi J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 2017; 67(4): 770-779.
|
| [58] |
Bernsmeier C, van der Merwe S, Périanin A. Innate immune cells in cirrhosis. J Hepatol. 2020; 73(1): 186-201.
|
| [59] |
Zhang L, Zhao C, Dai W, et al. Disruption of cholangiocyte-B cell crosstalk by blocking the CXCL12–CXCR4 axis alleviates liver fibrosis. Cell Mol Life Sci. 2023; 80(12): 379.
|
| [60] |
Wu KJ, Qian QF, Zhou JR, et al. Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov. 2023; 9(1): 53.
|
| [61] |
Sun R, Xiang Z, Wu B. T cells and liver fibrosis. Portal Hypertens Cirrhosis. 2022; 1(2): 125-132.
|
| [62] |
Xu D, Fu J, Jin L, et al. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol. 2006; 177(1): 739-747.
|
| [63] |
Tapper EB, Ufere NN, Huang DQ, Loomba R. Review article: current and emerging therapies for the management of cirrhosis and its complications. Alimentary Pharmacol Therap. 2022; 55(9): 1099-1115.
|
| [64] |
Lucey MR, Furuya KN, Foley DP. Liver transplantation. N Engl J Med. 2023; 389(20): 1888-1900.
|
| [65] |
Kjaergaard M, Lindvig KP, Thorhauge KH, et al. Screening for fibrosis promotes lifestyle changes: a prospective cohort study in 4796 individuals. Clin Gastroenterol Hepatol. 2023; 22(5): 1037-1047. e1039.
|
| [66] |
van Dam RM, Hu FB, Willett WC. Coffee, caffeine, and health. N Engl J Med. 2020; 383(4): 369-378.
|
| [67] |
Mokhtare M, Abdi A, Sadeghian AM, et al. Investigation about the correlation between the severity of metabolic-associated fatty liver disease and adherence to the Mediterranean diet. Clin Nutr ESPEN. 2023; 58: 221-227.
|
| [68] |
Kositamongkol C, Kanchanasurakit S, Auttamalang C, et al. Coffee consumption and non-alcoholic fatty liver disease: an umbrella review and a systematic review and meta-analysis. Front Pharmacol. 2021; 12: 786596.
|
| [69] |
Kim D, Konyn P, Cholankeril G, Ahmed A. Physical activity is associated with nonalcoholic fatty liver disease and significant fibrosis measured by FibroScan. Clin Gastroenterol Hepatol. 2022; 20(6): e1438-e1455.
|
| [70] |
Lin FP, Bloomer PM, Grubbs RK, et al. Low daily step count is associated with a high risk of hospital admission and death in community-dwelling patients with cirrhosis. Clin Gastroenterol Hepatol. 2022; 20(8): 1813-1820. e1812.
|
| [71] |
de Souza SLB, Mota GAF, Gregolin CS, et al. Exercise training attenuates cirrhotic cardiomyopathy. J Cardiovasc Transl Res. 2021; 14(4): 674-684.
|
| [72] |
Madrigal Pharmaceuticals. FDA Approves First Treatment for Patients with Liver Scarring Due to Fatty Liver Disease. https://ir.madrigalpharma.com/. Published March 14, 2024.
|
| [73] |
Sun Z, Guo Y, Xu X, et al. Hydronidone induces apoptosis in activated hepatic stellate cells through endoplasmic reticulum stress-associated mitochondrial apoptotic pathway. J Gastroenterol Hepatol. 2024; 39(8): 1695-1703.
|
| [74] |
Xu X, Guo Y, Luo X, et al. Hydronidone ameliorates liver fibrosis by inhibiting activation of hepatic stellate cells via Smad7-mediated degradation of TGFβRI. Liver Int. 2023; 43(11): 2523-2537.
|
| [75] |
Vairappan B, Wright G, Sundhar M, Ravikumar TS. Candesartan cilexetil ameliorates NOSTRIN-NO dependent portal hypertension in cirrhosis and ACLF. Eur J Pharmacol. 2023; 958: 176010.
|
| [76] |
Gracia-Sancho J, Manicardi N, Ortega-Ribera M, et al. Emricasan ameliorates portal hypertension and liver fibrosis in cirrhotic rats through a hepatocyte-mediated paracrine mechanism. Hepatol Commun. 2019; 3(7): 987-1000.
|
| [77] |
Yoon YC, Fang Z, Lee JE, et al. Selonsertib inhibits liver fibrosis via downregulation of ASK1/MAPK pathway of hepatic stellate cells. Biomol Ther (Seoul). 2020; 28(6): 527-536.
|
| [78] |
Guo Y, Zhao C, Dai W, et al. C-C motif chemokine receptor 2 inhibition reduces liver fibrosis by restoring the immune cell landscape. Int J Biol Sci. 2023; 19(8): 2572-2587.
|
| [79] |
Chen X, Wang Z, Han S, et al. Targeting SYK of monocyte-derived macrophages regulates liver fibrosis via crosstalking with Erk/Hif1α and remodeling liver inflammatory environment. Cell Death Dis. 2021; 12(12): 1123.
|
| [80] |
Wang X, Wang L, Geng L, Tanaka N, Ye B. Resmetirom ameliorates NASH-model mice by suppressing STAT3 and NF-κB signaling pathways in an RGS5-dependent manner. Int J Mol Sci. 2023; 24(6): 5843.
|
| [81] |
Azizsoltani A, Hatami B, Zali MR, et al. Obeticholic acid-loaded exosomes attenuate liver fibrosis through dual targeting of the FXR signaling pathway and ECM remodeling. Biomed Pharmacother. 2023; 168: 115777.
|
| [82] |
Xi Y, Li Y, Xu P, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021; 7(36): eabg9241.
|
| [83] |
Xu G, Ma T, Zhou C, et al. Combination of pirfenidone and andrographolide ameliorates hepatic stellate cell activation and liver fibrosis by mediating TGF-β/Smad signaling pathway. Anal Cell Pathol (Amst). 2024; 2024: 2751280.
|
| [84] |
Ghoreshi ZA, Kabirifar R, Khodarahmi A, Karimollah A, Moradi A. The preventive effect of atorvastatin on liver fibrosis in the bile duct ligation rats via antioxidant activity and down-regulation of Rac1 and NOX1. Iran J Basic Med Sci. 2020; 23(1): 30-35.
|
| [85] |
Uschner FE, Ranabhat G, Choi SS, et al. Statins activate the canonical hedgehog-signaling and aggravate non-cirrhotic portal hypertension, but inhibit the non-canonical hedgehog signaling and cirrhotic portal hypertension. Sci Rep. 2015; 5: 14573.
|
| [86] |
Zhao ZM, Zhu CW, Huang JQ, et al. Efficacy and safety of Fuzheng Huayu tablet on persistent advanced liver fibrosis following 2 years entecavir treatment: a single arm clinical objective performance criteria trial. J Ethnopharmacol. 2022; 298: 115599.
|
| [87] |
Liu YQ, Zhang C, Li JW, et al. An-Luo-Hua-Xian pill improves the regression of liver fibrosis in chronic hepatitis b patients treated with entecavir. J Clin Transl Hepatol. 2023; 11(2): 304-313.
|
| [88] |
Rong G, Chen Y, Yu Z, et al. Synergistic effect of Biejia-Ruangan on fibrosis regression in patients with chronic hepatitis B treated with entecavir: a multicenter, randomized, double-blind, placebo-controlled trial. J Infect Dis. 2022; 225(6): 1091-1099.
|
| [89] |
Hui D, Liu L, Bian Y, et al. Traditional Chinese medicine targets on hepatic stellate cells for the treatment of hepatic fibrosis: a mechanistic review. Portal Hypertens Cirrhosis. 2023; 2(1): 16-31.
|
| [90] |
Wu L, Zhang Q, Mo W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep. 2017; 7(1): 9289.
|
| [91] |
Gan F, Liu Q, Liu Y, et al. Lycium barbarum polysaccharides improve CCl(4)-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in Wistar rats. Life Sci. 2018; 192: 205-212.
|
| [92] |
Tao YY, Yan XC, Zhou T, et al. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis. BMC Complement Altern Med. 2014; 14: 449.
|
| [93] |
Zhang M, Liu HL, Huang K, et al. Fuzheng Huayu recipe prevented and treated CCl4-induced mice liver fibrosis through regulating polarization and chemotaxis of intrahepatic macrophages via CCL2 and CX3CL1. Evid Based Complement Alternat Med. 2020; 2020: 8591892.
|
| [94] |
Shen B, Deng L, Liu Y, et al. Effects of novel Fufang Biejia Ruangan Tablets with sheep placenta as substitute for Hominis Placenta on CCl(4)-induced liver fibrosis. Chin Herb Med. 2022; 14(1): 104-110.
|
| [95] |
Tan XH, Li CQ, Zou SR, et al. Inhibitory effect of anluohuaxianwan on experimental hepatic fibrosis in rats. Zhonghua Gan Zang Bing Za Zhi. 2010; 18(1): 9-12.
|
| [96] |
Lu W, Gao YH, Wang ZZ, et al. Effects of Anluohuaxianwan on transforming growth factor-β1 and related signaling pathways in rats with carbon tetrachloride-induced liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 2017; 25(4): 257-262.
|
| [97] |
Cai FF, Wu R, Song YN, et al. Yinchenhao decoction alleviates liver fibrosis by regulating bile acid metabolism and TGF-β/Smad/ERK signalling pathway. Sci Rep. 2018; 8(1): 15367.
|
| [98] |
Wang B, Sun MY, Long AH, et al. Yin-Chen-Hao-Tang alleviates biliary obstructive cirrhosis in rats by inhibiting biliary epithelial cell proliferation and activation. Pharmacogn Mag. 2015; 11(42): 417-425.
|
| [99] |
Li J, Hu R, Xu S, et al. Xiaochaihutang attenuates liver fibrosis by activation of Nrf2 pathway in rats. Biomed Pharmacother. 2017; 96: 847-853.
|
| [100] |
Zhang LJ, Sun MY, Ning BB, et al. Xiayuxue Decoction ([symbols; see text]) attenuates hepatic stellate cell activation and sinusoidal endothelium defenestration in CCl4-induced fibrotic liver of mice. Chin J Integr Med. 2014; 20(7): 516-523.
|
| [101] |
Xu Y, Fan WW, Xu W, et al. Yiguanjian decoction enhances fetal liver stem/progenitor cell-mediated repair of liver cirrhosis through regulation of macrophage activation state. World J Gastroenterol. 2018; 24(42): 4759-4772.
|
| [102] |
Zhou Y, Wu R, Cai FF, et al. Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology analysis. J Ethnopharmacol. 2021; 264: 113021.
|
| [103] |
Zhao Y, Zhao M, Zhang Y, et al. Bile acids metabolism involved in the beneficial effects of Danggui Shaoyao San via gut microbiota in the treatment of CCl(4) induced hepatic fibrosis. J Ethnopharmacol. 2024; 319(3): 117383.
|
| [104] |
Kou M, Huang L, Yang J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022; 13(7): 580.
|
| [105] |
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther. 2022; 13(1): 356.
|
| [106] |
Wu CX, Wang D, Cai Y, Luo AR, Sun H. Effect of autologous bone marrow stem cell therapy in patients with liver cirrhosis: a meta-analysis. J Clin Transl Hepatol. 2019; 7(3): 238-248.
|
| [107] |
Chen B, Pang L, Cao H, et al. Autologous stem cell transplantation for patients with viral hepatitis-induced liver cirrhosis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2019; 31(10): 1283-1291.
|
| [108] |
Newsome PN, Fox R, King AL, et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2018; 3(1): 25-36.
|
| [109] |
Li Y, Wu J, Liu R, Zhang Y, Li X. Extracellular vesicles: catching the light of intercellular communication in fibrotic liver diseases. Theranostics. 2022; 12(16): 6955-6971.
|
| [110] |
van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022; 23(5): 369-382.
|
| [111] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977.
|
| [112] |
Yadav P, Singh SK, Rajput S, et al. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: current perspectives and future challenges. Pharmacol Ther. 2024; 253: 108563.
|
| [113] |
Rong X, Liu J, Yao X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019; 10(1): 98.
|
| [114] |
Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther. 2020; 11(1): 37.
|
| [115] |
Zhang S, Jiang L, Hu H, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sci. 2020; 246: 117401.
|
| [116] |
Feng J, Xiu Q, Huang Y, et al. Plant-derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. Adv Mater. 2023; 35(24): e2207826.
|
| [117] |
Cao M, Diao N, Cai X, et al. Plant exosome nanovesicles (PENs): green delivery platforms. Mater Horiz. 2023; 10(10): 3879-3894.
|
| [118] |
Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe. 2018; 24(5): 637-652.
|
| [119] |
Kim J, Zhang S, Zhu Y, Wang R, Wang J. Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. J Ginseng Res. 2023; 47(5): 627-637.
|
| [120] |
Zhao WJ, Bian YP, Wang QH, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022; 43(3): 645-658.
|
| [121] |
He W, Zheng S, Zhang H, et al. Plant-derived vesicle-like nanoparticles: clinical application exploration and challenges. Int J Nanomed. 2023; 18: 5671-5683.
|
| [122] |
Zhuang X, Deng ZB, Mu J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015; 4: 28713.
|
| [123] |
Zhao X, Yin F, Fu L, et al. Garlic-derived exosome-like nanovesicles as a hepatoprotective agent alleviating acute liver failure by inhibiting CCR2/CCR5 signaling and inflammation. Biomater Adv. 2023; 154: 213592.
|
| [124] |
Liu B, Lu Y, Chen X, et al. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients. 2020; 12(2): 477.
|
| [125] |
Zhang L, He F, Gao L, et al. Engineering exosome-like nanovesicles derived from asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile. Int J Nanomedicine. 2021; 16: 1575-1586.
|
| [126] |
Tajik T, Baghaei K, Moghadam VE, Farrokhi N, Salami SA. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma. Biomed Pharmacother. 2022; 152: 113209.
|
| [127] |
Teng Y, Mu J, Hu X, et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget. 2016; 7(18): 25683-25697.
|
| [128] |
Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 2023; 31(12): 1206-1224.
|
| [129] |
Doré E, Boilard E. Bacterial extracellular vesicles and their interplay with the immune system. Pharmacol Ther. 2023; 247: 108443.
|
| [130] |
Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm. 2023; 4(6): e420.
|
| [131] |
Jiang M, Li F, Liu Y, et al. Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology. 2023; 77(4): 1164-1180.
|
| [132] |
Natsui K, Tsuchiya A, Imamiya R, et al. Escherichia coli-derived outer-membrane vesicles induce immune activation and progression of cirrhosis in mice and humans. Liver Int. 2023; 43(5): 1126-1140.
|
| [133] |
Tilg H, Adolph TE, Trauner M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022; 34(11): 1700-1718.
|
| [134] |
Zhao X, Amevor FK, Xue X, et al. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology. 2023; 21(1): 121.
|
| [135] |
Luther DC, Huang R, Jeon T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020; 156: 188-213.
|
| [136] |
Ribera J, Vilches C, Sanz V, et al. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia. ACS Nano. 2021; 15(4): 7547-7562.
|
| [137] |
Varlamova EG, Goltyaev MV, Rogachev VV, et al. Antifibrotic effect of selenium-containing nanoparticles on a model of TAA-induced liver fibrosis. Cells. 2023; 12(23): 2723.
|
| [138] |
Kurniawan DW, Booijink R, Pater L, et al. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release. 2020; 328: 640-652.
|
| [139] |
Boey A, Leong SQ, Bhave S, Ho HK. Cerium oxide nanoparticles alleviate hepatic fibrosis phenotypes in vitro. Int J Mol Sci. 2021; 22(21): 11777.
|
| [140] |
Peng F, Tee JK, Setyawati MI, et al. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl Mater Interfaces. 2018; 10(38): 31938-31946.
|
| [141] |
Moreno-Lanceta A, Medrano-Bosch M, Fundora Y, et al. RNF41 orchestrates macrophage-driven fibrosis resolution and hepatic regeneration. Sci Transl Med. 2023; 15(704): eabq6225.
|
| [142] |
Tran HT, Vong LB, Nishikawa Y, Nagasaki Y. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy. J Control Release. 2022; 345: 880-891.
|
| [143] |
Xu Y, Chen J, Jiang W, et al. Multiplexing nanodrug ameliorates liver fibrosis via ROS elimination and inflammation suppression. Small. 2022; 18(3): e2102848.
|
| [144] |
Balachandran YL, Wang W, Yang H, et al. Heterogeneous iron oxide/dysprosium oxide nanoparticles target liver for precise magnetic resonance imaging of liver fibrosis. ACS Nano. 2022; 16(4): 5647-5659.
|
| [145] |
Chen H, Wu Z, Ke J, et al. Fabricating ultralow-power-excitable lanthanide-doped inorganic nanoparticles with anomalous thermo-enhanced photoluminescence behavior. Sci Chin Mater. 2022; 65(10): 2793-2801.
|
| [146] |
Liu L, Shi J, Peng S, et al. Biodegradable near-infrared-IIb lanthanide-doped inorganic nanoparticles with red up-conversion luminescence for bioimaging and photodynamic therapy. Sci Chin Mater. 2023; 66(7): 2893-2901.
|
| [147] |
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev. 2023; 52(6): 2031-2081.
|
| [148] |
Uzhytchak M, Lunova M, Smolková B, et al. Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells. Nanoscale Adv. 2023; 5(16): 4250-4268.
|
| [149] |
Liang Q, Ma Y, Wang F, et al. Ferritinophagy was involved in long-term SiNPs exposure induced ferroptosis and liver fibrosis. Nanotoxicology. 2023; 17(2): 157-175.
|
| [150] |
Liang Q, Sun M, Ma Y, et al. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. Chemosphere. 2023; 311(1): 136955.
|
| [151] |
Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater. 2023; 8(4): 282-300.
|
| [152] |
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021; 15(11): 16982-17015.
|
| [153] |
Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021; 20(2): 101-124.
|
| [154] |
Zhou JE, Sun L, Liu L, et al. Hepatic macrophage targeted siRNA lipid nanoparticles treat non-alcoholic steatohepatitis. J Control Release. 2022; 343: 175-186.
|
| [155] |
Han X, Gong N, Xue L, et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun. 2023; 14(1): 75.
|
| [156] |
Zhang J, Shen H, Xu J, et al. Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities. ACS Nano. 2020; 14(5): 6305-6322.
|
| [157] |
Qiao JB, Fan QQ, Zhang CL, et al. Hyperbranched lipoid-based lipid nanoparticles for bidirectional regulation of collagen accumulation in liver fibrosis. J Control Release. 2020; 321: 629-640.
|
| [158] |
Zhang LF, Deng WQ, Huang QW, et al. Vicious cycle-breaking lipid nanoparticles remodeling multicellular crosstalk to reverse liver fibrosis. Adv Mater. 2024; 36(16): e2311474.
|
| [159] |
Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol. 2023; 20(11): 739-754.
|
| [160] |
Mendes BB, Conniot J, Avital A, et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers. 2022; 2: 24.
|
| [161] |
Xiang L, Wang X, Jiao Q, et al. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles. Acta Biomater. 2023; 168: 497-514.
|
| [162] |
Wang J, Pan W, Wang Y, et al. Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis. Drug Deliv. 2018; 25(1): 1-11.
|
| [163] |
Tan X, Hao Y, Ma N, et al. M6P-modified solid lipid nanoparticles loaded with matrine for the treatment of fibrotic liver. Drug Deliv. 2023; 30(1): 2219432.
|
| [164] |
Qin S, Du X, Wang K, et al. Vitamin A-modified ZIF-8 lipid nanoparticles for the therapy of liver fibrosis. Int J Pharm. 2023; 642: 123167.
|
| [165] |
Mahdinloo S, Hemmati S, Valizadeh H, et al. Synthesis and preparation of vitamin A coupled butein-loaded solid lipid nanoparticles for liver fibrosis therapy in rats. Int J Pharm. 2022; 625: 122063.
|
| [166] |
Lin L, Cai M, Deng S, et al. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid. Nanomedicine. 2017; 13(7): 2329-2339.
|
| [167] |
Wang X, Zhang W, Zeng S, Wang L, Wang B. Collagenase type I and probucol-loaded nanoparticles penetrate the extracellular matrix to target hepatic stellate cells for hepatic fibrosis therapy. Acta Biomater. 2024; 175: 262-278.
|
| [168] |
Huang J, Huang H, Wang Y, et al. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials. 2023; 299: 122134.
|
| [169] |
Xiang L, Wang X, Shao Y, et al. Folate decoration supports the targeting of camptothecin micelles against activated hepatic stellate cells and the suppression of fibrogenesis. ACS Appl Mater Interfaces. 2023; 15(1): 2030-2042.
|
| [170] |
Li F, Cheng Z, Sun J, et al. The combination of sinusoidal perfusion enhancement and apoptosis inhibition by riociguat plus a galactose-PEGylated bilirubin multiplexing nanomedicine ameliorates liver fibrosis progression. Nano Lett. 2023; 23(10): 4126-4135.
|
| [171] |
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev. 2020; 156: 214-235.
|
| [172] |
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021; 6(1): 53.
|
| [173] |
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials. 2023; 296: 122065.
|
| [174] |
Chen H, Cai J, Wang J, et al. Targeting Nestin(+) hepatic stellate cells ameliorates liver fibrosis by facilitating TβRI degradation. J Hepatol. 2021; 74(5): 1176-1187.
|
| [175] |
Shan W, Wang C, Chen H, Ren L. Rational design of virus-like particles for nanomedicine. Accounts Mater Res. 2023; 4(10): 814-826.
|
| [176] |
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-engineered hydrogels for anti-inflammation and skin regeneration. Nanomicro Lett. 2024; 16(1): 110.
|
| [177] |
Zhang Q, Xu D, Guo Q, et al. Theranostic quercetin nanoparticle for treatment of hepatic fibrosis. Bioconjug Chem. 2019; 30(11): 2939-2946.
|
| [178] |
Wang Z, Tian X, Wang C, et al. Transforming one organ into another to overcome challenges in tissue engineering. Portal Hypertens Cirrhosis. 2022; 1(2): 116-124.
|
| [179] |
Hu Z, Han Y, Liu Y, et al. CREBZF as a key regulator of STAT3 pathway in the control of liver regeneration in mice. Hepatology. 2020; 71(4): 1421-1436.
|
| [180] |
Liu C, Wang L, Xu M, et al. Reprogramming the spleen into a functioning ‘liver’ in vivo. Gut. 2022; 71(11): 2325-2336.
|
| [181] |
Ma Z, Tian X, Yu S, et al. Liver fibrosis amelioration by macrophage-biomimetic polydopamine nanoparticles via synergistically alleviating inflammation and scavenging ROS. Mol Pharm. 2024; 21(6): 3040-3052.
|
| [182] |
Fu L, Zhang Y, Farokhzad RA, et al. ‘Passive’ nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev. 2023; 52(21): 7579-7601.
|
| [183] |
Xia S, Liu Z, Cai J, et al. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release. 2023; 355: 54-67.
|
| [184] |
Hu J, Liu Y, Du Y, Peng X, Liu Z. Cellular organelles as drug carriers for disease treatment. J Control Release. 2023; 363: 114-135.
|
| [185] |
Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020; 159: 332-343.
|
| [186] |
Wan T, Zhong J, Pan Q, et al. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv. 2022; 8(37): eabp9435.
|
| [187] |
Zhang G, Huang X, Xiu H, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles. 2020; 10(2): e12030.
|
| [188] |
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021; 16(7): 748-759.
|
| [189] |
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021; 11(7): 3183-3195.
|
| [190] |
Lin Y, Yan M, Bai Z, et al. Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy. J Nanobiotechnology. 2022; 20(1): 432.
|
| [191] |
Luo J, Zhang Z, Zeng Y, Dong Y, Ma L. Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis. Carbohydr Polym. 2021; 263: 117964.
|
| [192] |
Niu X, Meng Y, Cui J, et al. Hepatic stellate cell-and liver microbiome-specific delivery system for dihydrotanshinone I to ameliorate liver fibrosis. ACS Nano. 2023; 17(23): 23608-23625.
|
| [193] |
Sahyon HA, El-Shafai NM, El-Mehasseb I, et al. The anti-toxic effect of the date palm fruit extract loaded on chitosan nanoparticles against CCl(4)-induced liver fibrosis in a mouse model. Int J Biol Macromol. 2023; 235: 123804.
|
| [194] |
Li A, Li D, Gu Y, et al. Plant-derived nanovesicles. Acta Pharm Sin B. 2023; 13(8): 3300-3320.
|
| [195] |
Yang W, Yang X, Zhu L, et al. Nanozymes: activity origin, catalytic mechanism, and biological application. Coordination Chem Rev. 2021; 448: 214170.
|
| [196] |
Wei H, Gao L, Fan K, et al. Nanozymes: a clear definition with fuzzy edges. Nano Today. 2021; 40: 101269.
|
| [197] |
Zandieh M, Liu J. Nanozymes: definition, activity, and mechanisms. Adv Mater. 2023; 36(10): e2211041.
|
| [198] |
Jing H, Ren Y, Zhou Y, et al. Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity. Acta Pharm Sin B. 2023; 13(12): 5030-5047.
|
| [199] |
Lu Q, Zhou Y, Xu M, et al. Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J Control Release. 2022; 341: 247-260.
|
| [200] |
Tapper EB, Parikh ND. Diagnosis and management of cirrhosis and its complications: a review. JAMA. 2023; 329(18): 1589-1602.
|
| [201] |
Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol. 2006(176 pt 1): 107-144.
|
| [202] |
Luo S, Yang Y, Zhao T, et al. Albumin-based silibinin nanocrystals targeting activated hepatic stellate cells for liver fibrosis therapy. ACS Appl Mater Interfaces. 2023; 15(6): 7747-7758.
|
| [203] |
Gu L, Zhao C, Wang Y, et al. Senescence of hepatic stellate cells by specific delivery of manganese for limiting liver fibrosis. Nano Lett. 2024; 24(4): 1062-1073.
|
| [204] |
DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology. 2015; 61(5): 1740-1746.
|
| [205] |
Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol. 2015; 5(4): 1751-1774.
|
| [206] |
Li F, Zhao Y, Cheng Z, et al. Restoration of sinusoid fenestrae followed by targeted nanoassembly delivery of an anti-fibrotic agent improves treatment efficacy in liver fibrosis. Adv Mater. 2023; 35(17): e2212206.
|
| [207] |
Lyu C, Kong W, Liu Z, et al. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat Biomed Eng. 2023; 7(11): 1437-1454.
|
| [208] |
Liu L, Yu H, Zhao H, et al. Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast cross talk in fibrosis expansion. Proc Natl Acad Sci U S A. 2020; 117(20): 10832-10838.
|
| [209] |
Zhao P, Sun T, Lyu C, et al. Scar-degrading endothelial cells as a treatment for advanced liver fibrosis. Adv Sci (Weinh). 2023; 10(4): e2203315.
|
| [210] |
Fan QQ, Zhang CL, Qiao JB, et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials. 2020; 230: 119616.
|
| [211] |
Zhang LF, Wang XH, Zhang CL, et al. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano. 2022; 16(9): 14029-14042.
|
| [212] |
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater. 2021; 6(9): 766-783.
|
| [213] |
Rees P, Wills JW, Brown MR, Barnes CM, Summers HD. The origin of heterogeneous nanoparticle uptake by cells. Nat Commun. 2019; 10(1): 2341.
|
| [214] |
Cao M, Chen C. Bioavailability of nanomaterials: bridging the gap between nanostructures and their bioactivity. Natl Sci Rev. 2022; 9(10): nwac119.
|
| [215] |
Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano. 2017; 11(12): 11773-11776.
|
| [216] |
Xu M, Qi Y, Liu G, et al. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano. 2023; 17(21): 20825-20849.
|
| [217] |
Tang H, Zhang Y, Yang T, et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat Nanotechnol. 2023; 18(9): 1067-1077.
|
| [218] |
Bijsterbosch MK, Rump ET, De Vrueh RL, et al. Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res. 2000; 28(14): 2717-2725.
|
| [219] |
Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007; 25(10): 1149-1157.
|
| [220] |
Kim KR, Kim J, Back JH, Lee JE, Ahn DR. Cholesterol-mediated seeding of protein corona on DNA nanostructures for targeted delivery of oligonucleotide therapeutics to treat liver fibrosis. ACS Nano. 2022; 16(5): 7331-7343.
|
| [221] |
Hajipour MJ, Aghaverdi H, Serpooshan V, et al. Sex as an important factor in nanomedicine. Nat Commun. 2021; 12(1): 2984.
|
| [222] |
Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci. 2014; 2(9): 1210-1221.
|
| [223] |
Wang Y, Deng W, Lee D, et al. Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics. Nat Nanotechnol. 2023; 19: 255-263.
|
| [224] |
Ngo W, Ahmed S, Blackadar C, et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev. 2022; 185: 114238.
|
| [225] |
Li J, Chen C, Xia T. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications. Adv Mater. 2022; 34(11): e2106456.
|
| [226] |
Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells—gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018; 15(9): 555-567.
|
| [227] |
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007; 2(8): 469-478.
|
| [228] |
Cabral H, Li J, Miyata K, Kataoka K. Controlling the biodistribution and clearance of nanomedicines. Nat Rev Bioeng. 2023; 2: 214-232.
|
| [229] |
Wang S, Zhang J, Zhou H, et al. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release. 2023; 360: 15-43.
|
RIGHTS & PERMISSIONS
2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.