Anoikis in cell fate, physiopathology, and therapeutic interventions

Jie Mei , Xue-Yao Jiang , Hui-Xiang Tian , Ding-Chao Rong , Jia-Nan Song , Luozixian Wang , Yuan-Shen Chen , Raymond C. B. Wong , Cheng-Xian Guo , Lian-Sheng Wang , Lei-Yun Wang , Peng-Yuan Wang , Ji-Ye Yin

MedComm ›› 2024, Vol. 5 ›› Issue (10) : e718

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (10) : e718 DOI: 10.1002/mco2.718
REVIEW

Anoikis in cell fate, physiopathology, and therapeutic interventions

Author information +
History +
PDF

Abstract

The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.

Keywords

anoikis / cell death / circulating tumor cells / extracellular matrix / integrin / tumor metastasis

Cite this article

Download citation ▾
Jie Mei, Xue-Yao Jiang, Hui-Xiang Tian, Ding-Chao Rong, Jia-Nan Song, Luozixian Wang, Yuan-Shen Chen, Raymond C. B. Wong, Cheng-Xian Guo, Lian-Sheng Wang, Lei-Yun Wang, Peng-Yuan Wang, Ji-Ye Yin. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm, 2024, 5(10): e718 DOI:10.1002/mco2.718

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park D, Wershof E, Boeing S, et al. Extracellular matrix anisotropy is determined by tfap2c-dependent regulation of cell collisions. Nat Mater. 2020; 19(2): 227-238.

[2]

Long KR, Newland B, Florio M, et al. Extracellular matrix components hapln1, lumican, and collagen i cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron. 2018; 99(4): 702-719.

[3]

Song J, Lokmic Z, Lämmermann T, et al. Extracellular matrix of secondary lymphoid organs impacts on b-cell fate and survival. Proc Natl Acad Sci USA. 2013; 110(31): E2915-E2924.

[4]

Bateman JF, Boot-Handford RP, Lamandé SR. Genetic diseases of connective tissues: cellular and extracellular effects of ecm mutations. Nat Rev Genet. 2009; 10(3): 173-183.

[5]

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012; 11(4): M111-M14647.

[6]

Zhang D, Feng F, Li Q, Wang X, Yao L. Nanopurpurin-based photodynamic therapy destructs extracellular matrix against intractable tumor metastasis. Biomaterials. 2018; 173: 22-33.

[7]

Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994; 124(4): 619-626.

[8]

Macabenta F, Sun H, Stathopoulos A. Bmp-gated cell-cycle progression drives anoikis during mesenchymal collective migration. Dev Cell. 2022; 57(14): 1683-1693.

[9]

Fanfone D, Wu Z, Mammi J, et al. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. eLife. 2022; 11: e73150.

[10]

Alanko J, Mai A, Jacquemet G, et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol. 2015; 17(11): 1412-1421.

[11]

Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25(3): 486-541.

[12]

Adair BD, Xiong J, Yeager M, Arnaout MA. Cryo-em structures of full-length integrin αiibβ3 in native lipids. Nat Commun. 2023; 14(1): 4168.

[13]

Jo MH, Li J, Jaumouillé V, et al. Single-molecule characterization of subtype-specific β1 integrin mechanics. Nat Commun. 2022; 13(1): 7471.

[14]

Hu Q, Bian Q, Rong D, et al. Jak/stat pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 2023; 11: 1110765.

[15]

Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999; 285(5430): 1028-1032.

[16]

Okayama H. Cell cycle control by anchorage signaling. Cell Signal. 2012; 24(8): 1599-1609.

[17]

Dai Y, Zhang X, Ou Y, et al. Anoikis resistance–protagonists of breast cancer cells survive and metastasize after ecm detachment. Cell Commun Signal. 2023; 21(1): 190.

[18]

Chen H, Ma J, Liu J, et al. Lysophosphatidylcholine disrupts cell adhesion and induces anoikis in hepatocytes. Febs Lett. 2022; 596(4): 510-525.

[19]

Jülich D, Cobb G, Melo AM, et al. Cross-scale integrin regulation organizes ecm and tissue topology. Dev Cell. 2015; 34(1): 33-44.

[20]

Mukherjee A, Melamed S, Damouny-Khoury H, et al. Α-catenin links integrin adhesions to f-actin to regulate ecm mechanosensing and rigidity dependence. J Cell Biol. 2022; 221(8): e202102121.

[21]

Antalíková J, Sečová P, Michalková K, Horovská Ľ, Páleníková V, Jankovičová J. Expression of αv integrin and its potential partners in bull reproductive tissues, germ cells and spermatozoa. Int J Biol Macromol. 2022; 209(A): 542-551. Pt.

[22]

Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I. Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA. 2010; 107(22): 10142-10147.

[23]

Dessapt C, Baradez MO, Hayward A, et al. Mechanical forces and tgfbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transplant. 2009; 24(9): 2645-2655.

[24]

Chen S, Zheng Y, Ran X, et al. Integrin αeβ7(+) t cells direct intestinal stem cell fate decisions via adhesion signaling. Cell Res. 2021; 31(12): 1291-1307.

[25]

Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 2022; 21(1): 60-78.

[26]

Kamarajan P, Kapila YL. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of fak and erk. Apoptosis. 2007; 12(12): 2221-2231.

[27]

Hsieh Y, van der Heyde H, Oh E, Guan J, Chang P. Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: an arg-gly-asp-dependent-focal adhesion kinase-caspase-8 axis. Mol Carcinog. 2015; 54(5): 379-392.

[28]

Hall ER, Slack RJ. The effect of divalent metal cations on the αv integrin binding site is ligand and integrin specific. Biomed Pharmacother. 2019; 110: 362-370.

[29]

Halim H, Chanvorachote P. Long-term hydrogen peroxide exposure potentiates anoikis resistance and anchorage-independent growth in lung carcinoma cells. Cell Biol Int. 2012; 36(11): 1055-1066.

[30]

Wang X, Ji L, Wang J, Liu C. Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction. Bioact Mater. 2023; 27: 138-153.

[31]

Li S, Chen Y, Zhang Y, et al. Shear stress promotes anoikis resistance of cancer cells via caveolin-1-dependent extrinsic and intrinsic apoptotic pathways. J Cell Physiol. 2019; 234(4): 3730-3743.

[32]

Kyjacova L, Hubackova S, Krejcikova K, et al. Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, erk signaling-dependent cells. Cell Death Differ. 2015; 22(6): 898-911.

[33]

Supino R, Scovassi AI, Croce AC, et al. Biological effects of a new vacuolar-h, - atpase inhibitor in colon carcinoma cell lines. Ann N Y Acad Sci. 2009; 1171: 606-616.

[34]

Hsu L, Ho Y, Chuang E, et al. Effects of ph on molecular mechanisms of chitosan-integrin interactions and resulting tight-junction disruptions. Biomaterials. 2013; 34(3): 784-793.

[35]

Lee H, Yang W, Hour M, et al. Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis. Eur J Pharmacol. 2010; 648(1-3): 50-58.

[36]

Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of rgd peptides and temperature on the interaction with the αiibβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn. 2022; 40(20): 9701-9712.

[37]

Ishikawa F, Ushida K, Mori K, Shibanuma M. Loss of anchorage primarily induces non-apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling. Cell Death Dis. 2015; 6(1): e1619.

[38]

Sun H, Lagarrigue F, Gingras AR, Fan Z, Ley K, Ginsberg MH. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol. 2018; 217(4): 1453-1465.

[39]

Derouet M, Wu X, May L, et al. Acquisition of anoikis resistance promotes the emergence of oncogenic k-ras mutations in colorectal cancer cells and stimulates their tumorigenicity in vivo. Neoplasia. 2007; 9(7): 536-545.

[40]

Que Z, Yang Y, Liu H, et al. Jinfukang regulates integrin/src pathway and anoikis mediating circulating lung cancer cells migration. J Ethnopharmacol. 2021; 267: 113473.

[41]

Jiang G, Song C, Wang X, et al. The multi-omics analysis identifies a novel cuproptosis-anoikis-related gene signature in prognosis and immune infiltration characterization of lung adenocarcinoma. Heliyon. 2023; 9(3): e14091.

[42]

Liang H, Xiang L, Wu H, Liu Y, Tian W, Zeng J. Anoikis-related long non-coding rna signatures to predict prognosis and small molecular drug response in cervical cancer. Front Pharmacol. 2023; 14: 1135626.

[43]

Guizhen Z, Weiwei Z, Yun W, Guangying C, Yize Z, Zujiang Y. An anoikis-based signature for predicting prognosis in hepatocellular carcinoma with machine learning. Front Pharmacol. 2022; 13: 1096472.

[44]

Xie T, Peng S, Liu S, et al. Multi-cohort validation of ascore: an anoikis-based prognostic signature for predicting disease progression and immunotherapy response in bladder cancer. Mol Cancer. 2024; 23(1): 30.

[45]

Jin L, Chun J, Pan C, et al. The plag1-gdh1 axis promotes anoikis resistance and tumor metastasis through camkk2-ampk signaling in lkb1-deficient lung cancer. Mol Cell. 2018; 69(1): 87-99.

[46]

Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, idh mutation, and immune filtration in glioblastoma. Front Immunol. 2022; 13: 939523.

[47]

Yu X, Cohen DM, Chen CS. Mir-125b is an adhesion-regulated microrna that protects mesenchymal stem cells from anoikis. Stem Cells. 2012; 30(5): 956-964.

[48]

Luchetti F, Mannello F, Canonico B, et al. Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis. Apoptosis. 2004; 9(5): 635-648.

[49]

Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007; 8(5): 215.

[50]

Huang W, Yu D, Wang M, et al. Itgbl1 promotes cell migration and invasion through stimulating the tgf-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020; 53(7): e12836.

[51]

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021; 596(7873): 583-589.

[52]

Varadi M, Bertoni D, Magana P, et al. Alphafold protein structure database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024; 52(D1): D368-D375.

[53]

Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther. 2023; 8(1): 1.

[54]

Tomasello B, Di Mauro MD, Malfa GA, et al. Rapha myr(®), a blend of sulforaphane and myrosinase, exerts antitumor and anoikis-sensitizing effects on human astrocytoma cells modulating sirtuins and dna methylation. Int J Mol Sci. 2020; 21(15): 5328.

[55]

Walsh N, Clynes M, Crown J, O’Donovan N. Alterations in integrin expression modulates invasion of pancreatic cancer cells. J Exp Clin Cancer Res. 2009; 28(1): 140.

[56]

de Sousa Mesquita AP, de Araújo Lopes S, Pernambuco Filho PCA, Nader HB, Lopes CC. Acquisition of anoikis resistance promotes alterations in the ras/erk and pi3k/akt signaling pathways and matrix remodeling in endothelial cells. Apoptosis. 2017; 22(9): 1116-1137.

[57]

Rohwer N, Welzel M, Daskalow K, et al. Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res. 2008; 68(24): 10113-10120.

[58]

Genduso S, Freytag V, Schetler D, et al. Tumor cell integrin β4 and tumor stroma e-/p-selectin cooperatively regulate tumor growth in vivo. J Hematol Oncol. 2023; 16(1): 23.

[59]

Ray U, Jung D, Jin L, et al. Targeting lrrc15 inhibits metastatic dissemination of ovarian cancer. Cancer Res. 2022; 82(6): 1038-1054.

[60]

Aslan B, Monroig P, Hsu M, et al. The znf304-integrin axis protects against anoikis in cancer. Nat Commun. 2015; 6: 7351.

[61]

Wu Y, Zuo J, Ji G, et al. Proapoptotic function of integrin beta(3) in human hepatocellular carcinoma cells. Clin Cancer Res. 2009; 15(1): 60-69.

[62]

Satyavarapu EM, Das R, Mandal C, Mukhopadhyay A, Mandal C. Autophagy-independent induction of lc3b through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis. 2018; 9(10): 934.

[63]

Guha D, Saha T, Bose S, et al. Integrin-egfr interaction regulates anoikis resistance in colon cancer cells. Apoptosis. 2019; 24(11-12): 958-971.

[64]

Konttinen YT, Fuellen G, Bing Y, et al. Sex steroids in sjögren’s syndrome. J Autoimmun. 2012; 39(1-2): 49-56.

[65]

Kozlova NI, Morozevich GE, Gevorkian NM, Berman AE. Implication of integrins α3β1 and α5β1 in invasion and anoikis of sk-mel-147 human melanoma cells: non-canonical functions of protein kinase akt. Aging. 2020; 12(23): 24345-24356.

[66]

Song J, Shen Y, Mou H, et al. Living-dna nanogel appendant enables in situ modulation and quantification of regulation effects on membrane proteins. Acs Appl Bio Mater. 2021; 4(5): 4565-4574.

[67]

Erdreich-Epstein A, Tran LB, Cox OT, et al. Endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 involves ceramide metabolic pathways. Blood. 2005; 105(11): 4353-4361.

[68]

Janes SM, Watt FM. Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol. 2004; 166(3): 419-431.

[69]

Lino RLB, Dos Santos PK, Pisani GFD, Altei WF, Cominetti MR, Selistre-De-Araújo HS. Alphavbeta3 integrin blocking inhibits apoptosis and induces autophagy in murine breast tumor cells. Biochim Biophy Acta Mol Cell Res. 2019; 1866(12): 118536.

[70]

Benoit YD, Larrivée J, Groulx J, Stankova J, Vachon PH, Beaulieu J. Integrin alpha8beta1 confers anoikis susceptibility to human intestinal epithelial crypt cells. Biochem Biophys Res Commun. 2010; 399(3): 434-439.

[71]

Maubant S, Saint-Dizier D, Boutillon M, et al. Blockade of alpha v beta3 and alpha v beta5 integrins by rgd mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood. 2006; 108(9): 3035-3044.

[72]

Haun F, Neumann S, Peintner L, et al. Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin. Nat Commun. 2018; 9(1): 3524.

[73]

Beaulieu J. Integrin α6β4 in colorectal cancer: expression, regulation, functional alterations and use as a biomarker. Cancers (Basel). 2019; 12(1): 41.

[74]

Seifert A, Posern G. Tightly controlled mrtf-a activity regulates epithelial differentiation during formation of mammary acini. Breast Cancer Res. 2017; 19(1): 68.

[75]

Gilmore AP. Anoikis. Cell Death Differ. 2005; 12: 1473-1477. Suppl 2.

[76]

Jenning S, Pham T, Ireland SK, Ruoslahti E, Biliran H. Bit1 in anoikis resistance and tumor metastasis. Cancer Lett. 2013; 333(2): 147-151.

[77]

Brentnall M, Weir DB, Rongvaux A, Marcus AI, Boise LH. Procaspase-3 regulates fibronectin secretion and influences adhesion, migration and survival independently of catalytic function. J Cell Sci. 2014; 127(10): 2217-2226. Pt.

[78]

Nano M, Mondo JA, Harwood J, Balasanyan V, Montell DJ. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023; 120(4): e2078436176.

[79]

Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012; 226(2): 380-393.

[80]

Yu S, Ji H, Dong X, Liu A, Yu J. Fas/fas-l-mediated apoptosis and autophagy of spc-a-1 cells induced by water-soluble polysaccharide from polygala tenuifolia. Int J Biol Macromol. 2020; 150: 449-458.

[81]

Scaffidi C, Fulda S, Srinivasan A, et al. Two cd95 (apo-1/fas) signaling pathways. EMBO J. 1998; 17(6): 1675-1687.

[82]

Mei J, Tian H, Huang H, et al. Ccne1 is a potential target of metformin for tumor suppression of ovarian high-grade serous carcinoma. Cell Cycle. 2023; 22(1): 85-99.

[83]

Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. Iv. Viral multiplication in a stable strain of human malignant epithelial cells (strain hela) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953; 97(5): 695-710.

[84]

Ma H, Jiang S, Du L, et al. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted huvec angiogenesis in vitro. Stem Cell Res Ther. 2021; 12(1): 141.

[85]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-676.

[86]

Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018; 19(11): 671-687.

[87]

Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker’s guide to cancer models. Trends Biotechnol. 2022; 40(11): 1361-1373.

[88]

Song J, Liu K, Mei J, et al. Defined surface physicochemical cues inhibit m1 polarization of human macrophages using colloidal self-assembled patterns. ACS Appl Mater Interfaces. 2023; 15(30): 35832-35846.

[89]

Wang MT, Pang SW. Enhancing nasopharyngeal carcinoma cell separation with selective fibronectin coating and topographical modification on polydimethylsiloxane scaffold platforms. Int J Mol Sci. 2023; 24(15): 12409.

[90]

Pang Z, Pan Z, Ma M, et al. Nanostructured coating of non-crystalline tantalum pentoxide on polyetheretherketone enhances rbms cells/hge cells adhesion. Int J Nanomed. 2021; 16: 725-740.

[91]

Di Claudio F, Muglia CI, Smaldini PL, et al. Use of a collagen membrane to enhance the survival of primary intestinal epithelial cells. J Cell Physiol. 2017; 232(9): 2489-2496.

[92]

Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008; 76(11): 1352-1364.

[93]

Hoshiba T, Nagahara H, Cho C, Tagawa Y, Akaike T. Primary hepatocyte survival on non-integrin-recognizable matrices without the activation of akt signaling. Biomaterials. 2007; 28(6): 1093-1104.

[94]

Casarrubios L, Matesanz MC, Sánchez-Salcedo S, Arcos D, Vallet-Regí M, Portolés MT. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite. J Colloid Interface Sci. 2016; 482: 112-120.

[95]

Alcaide M, Serrano M, Roman J, et al. Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds. J Biomed Mater Res A. 2010; 95(3): 793-800.

[96]

Koroknai V, Patel V, Szász I, Ádány R, Balazs M. Gene expression signature of braf inhibitor resistant melanoma spheroids. Pathol Oncol Res. 2020; 26(4): 2557-2566.

[97]

Ko E, Poon MLS, Park E, Cho Y, Shin JH. Engineering 3d cortical spheroids for an in vitro ischemic stroke model. Acs Biomater Sci Eng. 2021; 7(8): 3845-3860.

[98]

Deng S, Zhu Y, Zhao X, Chen J, Tuan RS, Chan HF. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect. Biofabrication. 2021; 14(1).

[99]

Fiorotto R, Mariotti V, Taleb SA, et al. Cell-matrix interactions control biliary organoid polarity, architecture, and differentiation. Hepatol Commun. 2023; 7(4): e94.

[100]

Krutty JD, Dias AD, Yun J, Murphy WL, Gopalan P. Synthetic, chemically defined polymer-coated microcarriers for the expansion of human mesenchymal stem cells. Macromol Biosci. 2019; 19(2): e1800299.

[101]

Lin X, Zhang K, Wei D, et al. The impact of spaceflight and simulated microgravity on cell adhesion. Int J Mol Sci. 2020; 21(9): 3031.

[102]

Gogola-Mruk J, Tworzydło W, Krawczyk K, Marynowicz W, Ptak A. Visfatin induces ovarian cancer resistance to anoikis by regulating mitochondrial activity. Endocrine. 2023; 80(2): 448-458.

[103]

Kleinschmidt EG, Miller NLG, Ozmadenci D, et al. Rgnef promotes ovarian tumor progression and confers protection from oxidative stress. Oncogene. 2019; 38(36): 6323-6337.

[104]

Dolinschek R, Hingerl J, Benge A, et al. Constitutive activation of integrin αvβ3 contributes to anoikis resistance of ovarian cancer cells. Mol Oncol. 2021; 15(2): 503-522.

[105]

Gao W, Wu D, Wang Y, et al. Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells. Stem Cell Res Ther. 2018; 9(1): 243.

[106]

Smith KA, Dang M, Baker AEG, Fuehrmann T, Fokina A, Shoichet MS. Synthesis of an enzyme-mediated reversible cross-linked hydrogel for cell culture. Biomacromolecules. 2021; 22(12): 5118-5127.

[107]

Wang C, Gong Y, Zhong Y, Yao Y, Su K, Wang D. The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model. Biomaterials. 2009; 30(12): 2259-2269.

[108]

Sun Y, Chi X, Meng H, et al. Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioact Mater. 2021; 6(11): 3987-3998.

[109]

Li X, Li X, Yang J, et al. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small (Weinheim an Der Bergstrasse, Germany). 2023; 19(17): e2207211.

[110]

Capeling MM, Huang S, Childs CJ, et al. Suspension culture promotes serosal mesothelial development in human intestinal organoids. Cell Rep. 2022; 38(7): 110379.

[111]

Ogawa I, Onozato D, Anno S, et al. Suspension culture of human induced pluripotent stem cell-derived intestinal organoids using natural polysaccharides. Biomaterials. 2022; 288: 121696.

[112]

Luo X, Fong ELS, Zhu C, et al. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 2021; 132: 461-472.

[113]

Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007; 4(4): 359-365.

[114]

Qi C, Li Y, Badger P, et al. Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous tgase. Biomaterials. 2017; 126: 1-9.

[115]

Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids. Nature. 2022; 610(7931): 319-326.

[116]

Onion D, Argent RH, Reece-Smith AM, et al. 3-dimensional patient-derived lung cancer assays reveal resistance to standards-of-care promoted by stromal cells but sensitivity to histone deacetylase inhibitors. Mol Cancer Ther. 2016; 15(4): 753-763.

[117]

Weems AD, Welf ES, Driscoll MK, et al. Blebs promote cell survival by assembling oncogenic signalling hubs. Nature. 2023; 615(7952): 517-525.

[118]

Han H, Sung JY, Kim S, et al. Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Lett. 2021; 508: 59-72.

[119]

Nicklin M, Rees RC, Pockley AG, Perry CC. Development of an hydrophobic fluoro-silica surface for studying homotypic cancer cell aggregation-disaggregation as a single dynamic process in vitro. Biomater Sci. 2014; 2(10): 1486-1496.

[120]

Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012; 10(6): 678-684.

[121]

Lau KYC, Rubinstein H, Gantner CW, et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell. 2022; 29(10): 1445-1458.

[122]

Kim DH, Martin JT, Gullbrand SE, et al. Fabrication, maturation, and implantation of composite tissue-engineered total discs formed from native and mesenchymal stem cell combinations. Acta Biomater. 2020; 114: 53-62.

[123]

Kruta M, Sunshine MJ, Chua BA, et al. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell Stem Cell. 2021; 28(11): 1950-1965.

[124]

Zhang X, Cao D, Xu L, et al. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell. 2023; 30(4): 378-395.

[125]

Xu Y, Zhou J, Liu C, et al. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Biomaterials. 2021; 268: 120596.

[126]

Allen DE, Donohue KC, Cadwell CR, et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science. 2022; 376(6600): 1441-1446.

[127]

Yan L, Yang M, Guo H, et al. Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20(9): 1131-1139.

[128]

Simunovic M, Siggia ED, Brivanlou AH. In vitro attachment and symmetry breaking of a human embryo model assembled from primed embryonic stem cells. Cell Stem Cell. 2022; 29(6): 962-972.

[129]

Wang X, Lin G, Martins-Taylor K, Zeng H, Xu R. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem. 2009; 284(49): 34054-34064.

[130]

Krawetz RJ, Li X, Rancourt DE. Human embryonic stem cells: caught between a rock inhibitor and a hard place. Bioessays. 2009; 31(3): 336-343.

[131]

Ohgushi M, Matsumura M, Eiraku M, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell. 2010; 7(2): 225-239.

[132]

Szatmári-Tóth M, Ilmarinen T, Mikhailova A, et al. Human embryonic stem cell-derived retinal pigment epithelium-role in dead cell clearance and inflammation. Int J Mol Sci. 2019; 20(4): 926.

[133]

Wagh V, Meganathan K, Jagtap S, et al. Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev Rep. 2011; 7(3): 506-517.

[134]

Zhang T, Huang X, Liu S, et al. Determining the optimal stage for cryopreservation of human embryonic stem cell-derived retinal pigment epithelial cells. Stem Cell Res Ther. 2022; 13(1): 454.

[135]

Cheng Y, Hsieh ML, Lin C, et al. Combined treatment of human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells regenerate the infarcted heart in mice and non-human primates. Circulation. 2023; 148(18): 1395-1409.

[136]

Kitahata S, Tanaka Y, Hori K, et al. Critical functionality effects from storage temperature on human induced pluripotent stem cell-derived retinal pigment epithelium cell suspensions. Sci Rep. 2019; 9(1): 2891.

[137]

Gapinske L, Clark L, Caro-Rivera LM, Bashir R. Cryopreservation alters tissue structure and improves differentiation of engineered skeletal muscle. Tissue Eng Part A. 2023; 29(21-22): 557-568.

[138]

Gao L, Nath SC, Jiao X, et al. Post-passage rock inhibition induces cytoskeletal aberrations and apoptosis in human embryonic stem cells. Stem Cell Res. 2019; 41: 101641.

[139]

Bouchentouf M, Benabdallah BF, Rousseau J, Schwartz LM, Tremblay JP. Induction of anoikis following myoblast transplantation into scid mouse muscles requires the bit1 and fadd pathways. Am J Transplant. 2007; 7(6): 1491-1505.

[140]

Frisco-Cabanos HL, Watanabe M, Okumura N, et al. Synthetic molecules that protect cells from anoikis and their use in cell transplantation. Angew Chem Int Ed Engl. 2014; 53(42): 11208-11213.

[141]

Li X, Liu X, Tan Y, Tran V, Zhang N, Wen X. Improve the viability of transplanted neural cells with appropriate sized neurospheres coated with mesenchymal stem cells. Med Hypotheses. 2012; 79(2): 274-277.

[142]

Chen H, Pan L, Yang H, et al. Integrin alpha5beta1 suppresses rbmscs anoikis and promotes nitric oxide production. Biomed Pharmacother. 2018; 99: 1-8.

[143]

Chan AT, Karakas MF, Vakrou S, et al. Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. Biomaterials. 2015; 73: 1-11.

[144]

Tan Y, Wang L, Chen G, et al. Hyaluronate supports hesc-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Prolif. 2020; 53(12): e12942.

[145]

Watanabe H, Belyea BC, Paxton RL, et al. Renin cell baroreceptor, a nuclear mechanotransducer central for homeostasis. Circ Res. 2021; 129(2): 262-276.

[146]

Lolo F, Pavón DM, Grande-García A, et al. Caveolae couple mechanical stress to integrin recycling and activation. eLife. 2022; 11: e82348.

[147]

Karoubi G, Ormiston ML, Stewart DJ, Courtman DW. Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells. Biomaterials. 2009; 30(29): 5445-5455.

[148]

Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18(5): 1106-1121.

[149]

Mason JA, Cockfield JA, Pape DJ, et al. Sgk1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep. 2021; 34(11): 108821.

[150]

Ded L, Hwang JY, Miki K, Shi HF, Chung J. 3d in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. eLife. 2020; 9: e62043.

[151]

Shi J, Lai Z, Yang H, et al. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci. 2020; 16(12): 2220-2234.

[152]

Tachibana Y, Sakurai T, Bai H, et al. Rna-seq analysis of equine conceptus transcripts during embryo fixation and capsule disappearance. PLoS One. 2014; 9(12): e114414.

[153]

Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 2021; 184(14): 3702-3716.

[154]

Pontzer H, Yamada Y, Sagayama H, et al. Daily energy expenditure through the human life course. Science. 2021; 373(6556): 808-812.

[155]

Ferreira AC, Hemmer BM, Philippi SM, et al. Neuronal timp2 regulates hippocampus-dependent plasticity and extracellular matrix complexity. Mol Psychiatry. 2023; 28(9): 3943-3954.

[156]

Stearns-Reider KM, D’Amore A, Beezhold K, et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell. 2017; 16(3): 518-528.

[157]

László ZI, Lele Z, Zöldi M, et al. Abhd4-dependent developmental anoikis safeguards the embryonic brain. Nat Commun. 2020; 11(1): 4363.

[158]

Humphreys RC, Krajewska M, Krnacik S, et al. Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development. 1996; 122(12): 4013-4022.

[159]

Boudreau N, Sympson CJ, Werb Z, Bissell MJ. Suppression of ice and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995; 267(5199): 891-893.

[160]

Toivanen R, Mohan A, Shen MM. Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. Stem Cell Rep. 2016; 6(5): 660-667.

[161]

Rayagiri SS, Ranaldi D, Raven A, et al. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun. 2018; 9(1): 1075.

[162]

Chen J, Sun M, Chen C, et al. Construction of a novel anoikis-related prognostic model and analysis of its correlation with infiltration of immune cells in neuroblastoma. Front Immunol. 2023; 14: 1135617.

[163]

Xu Z, Li Y, Li P, et al. Soft substrates promote direct chemical reprogramming of fibroblasts into neurons. Acta Biomater. 2022; 152: 255-272.

[164]

Imamaki R, Ogawa K, Kizuka Y, et al. Glycosylation controls cooperative pecam-vegfr2-β3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene. 2018; 37(31): 4287-4299.

[165]

Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells RW. Bax activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. Mol Neurodegener. 2023; 18(1): 67.

[166]

Yin J, Wang J, Zhang X, et al. A missing piece of the puzzle in pulmonary fibrosis: anoikis resistance promotes fibroblast activation. Cell Biosci. 2022; 12(1): 21.

[167]

Schaschkow A, Sigrist S, Mura C, et al. Glycaemic control in diabetic rats treated with islet transplantation using plasma combined with hydroxypropylmethyl cellulose hydrogel. Acta Biomater. 2020; 102: 259-272.

[168]

Feng M, Ma M, Fu Y, et al. Elevated autocrine edil3 protects hepatocellular carcinoma from anoikis through rgd-mediated integrin activation. Mol Cancer. 2014; 13: 226.

[169]

Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by rgd and gfoger motif modification. Diabetes. 2006; 55(7): 1961-1969.

[170]

Michel J. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol. 2003; 23(12): 2146-2154.

[171]

Sater AP, Rael LT, Tanner AH, et al. Cell death after traumatic brain injury: detrimental role of anoikis in healing. Clin Chim Acta. 2018; 482: 149-154.

[172]

Schonfeld M, Villar MT, Artigues A, Weinman SA, Tikhanovich I. Arginine methylation of integrin alpha-4 prevents fibrosis development in alcohol-associated liver disease. Cell Mol Gastroenterol Hepatol. 2023; 15(1): 39-59.

[173]

Qin L, Chen Z, Yang D, et al. Osteocyte β3 integrin promotes bone mass accrual and force-induced bone formation in mice. J Orthop Translat. 2023; 40: 58-71.

[174]

Zhang H, Hughes CS, Li W, et al. Proteomic screens for suppressors of anoikis identify il1rap as a promising surface target in ewing sarcoma. Cancer Discov. 2021; 11(11): 2884-2903.

[175]

Yu Y, Song Y, Cheng L, et al. Circcemip promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. J Exp Clin Cancer Res. 2022; 41(1): 188.

[176]

Zhou Z, Luo A, Shrivastava I, et al. Regulation of xiap turnover reveals a role for usp11 in promotion of tumorigenesis. Ebiomedicine. 2017; 15: 48-61.

[177]

Lum E, Vigliotti M, Banerjee N, et al. Loss of dok2 induces carboplatin resistance in ovarian cancer via suppression of apoptosis. Gynecol Oncol. 2013; 130(2): 369-376.

[178]

Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014; 46(6): 573-582.

[179]

Zhu Y, Wu S, Yang S, et al. Identification and validation of a novel anoikis-related signature for predicting prognosis and immune landscape in ovarian serous cystadenocarcinoma. Heliyon. 2023; 9(8): e18708.

[180]

Zhou Y, Wang C, Chen Y, et al. A novel risk model based on anoikis: predicting prognosis and immune infiltration in cutaneous melanoma. Front Pharmacol. 2022; 13: 1090857.

[181]

Shi J, Peng B, Zhou X, et al. An anoikis-based gene signature for predicting prognosis in malignant pleural mesothelioma and revealing immune infiltration. J Cancer Res Clin Oncol. 2023; 149(13): 12089-12102.

[182]

Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021; 6(1): 153.

[183]

Wang Y, Zeng Z, Lu J, et al. Cpt1a-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018; 37(46): 6025-6040.

[184]

Ye G, Yang Q, Lei X, et al. Nuclear myh9-induced ctnnb1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics. 2020; 10(17): 7545-7560.

[185]

Yu Y, Liu B, Li X, et al. Atf4/cemip/pkcα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death Dis. 2022; 13(1): 46.

[186]

Yu S, Hu J, Kuang X, et al. Microrna-200a promotes anoikis resistance and metastasis by targeting yap1 in human breast cancer. Clin Cancer Res. 2013; 19(6): 1389-1399.

[187]

Tian T, Lu Y, Lin J, et al. Cpt1a promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis. Redox Biol. 2022; 58: 102544.

[188]

Du L, Han X, Tu B, et al. Cxcr1/akt signaling activation induced by mesenchymal stem cell-derived il-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis. 2018; 9(7): 714.

[189]

Huh HD, Sub Y, Oh J, et al. Reprogramming anchorage dependency by adherent-to-suspension transition promotes metastatic dissemination. Mol Cancer. 2023; 22(1): 63.

[190]

Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022; 185(8): 1356-1372.

[191]

Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3d models. Biochim Biophys Acta Rev Cancer. 2024; 1879(1): 189052.

[192]

Sun T, Zhang Z, Tian L, et al. Dualistic classification of high grade serous ovarian carcinoma has its root in spatial heterogeneity. J Adv Res. 2023; 48: 213-225.

[193]

Izar B, Tirosh I, Stover EH, et al. A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 2020; 26(8): 1271-1279.

[194]

Li Y, Fei H, Lin Q, et al. Zeb2 facilitates peritoneal metastasis by regulating the invasiveness and tumorigenesis of cancer stem-like cells in high-grade serous ovarian cancers. Oncogene. 2021; 40(32): 5131-5141.

[195]

Zink KE, Dean M, Burdette JE, Sanchez LM. Imaging mass spectrometry reveals crosstalk between the fallopian tube and the ovary that drives primary metastasis of ovarian cancer. Acs Cent Sci. 2018; 4(10): 1360-1370.

[196]

Mei J, Tian H, Huang H, et al. Cellular models of development of ovarian high-grade serous carcinoma: a review of cell of origin and mechanisms of carcinogenesis. Cell Prolif. 2021; 54(5): e13029.

[197]

Wheeler LJ, Watson ZL, Qamar L, et al. Cbx2 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer. Oncogenesis. 2018; 7(11): 92.

[198]

Wheeler LJ, Watson ZL, Qamar L, et al. Multi-omic approaches identify metabolic and autophagy regulators important in ovarian cancer dissemination. iScience. 2019; 19: 474-491.

[199]

Gao Q, Yang Z, Xu S, et al. Heterotypic caf-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019; 216(3): 688-703.

[200]

Yin M, Li X, Tan S, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest. 2016; 126(11): 4157-4173.

[201]

Yang J, Zhang Y, Cheng S, et al. Anoikis-related signature predicts prognosis and characterizes immune landscape of ovarian cancer. Cancer Cell Int. 2024; 24(1): 53.

[202]

Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne). 2023; 14: 1193622.

[203]

Que Z, Luo B, Yu P, et al. Polyphyllin vii induces ctc anoikis to inhibit lung cancer metastasis through egfr pathway regulation. Int J Biol Sci. 2023; 19(16): 5204-5217.

[204]

Bose M, Sanders A, De C, et al. Targeting tumor-associated muc1 overcomes anoikis-resistance in pancreatic cancer. Transl Res. 2023; 253: 41-56.

[205]

Li N, Jia X, Wang Z, et al. Characterization of anoikis-based molecular heterogeneity in pancreatic cancer and pancreatic neuroendocrine tumor and its association with tumor immune microenvironment and metabolic remodeling. Front Endocrinol (Lausanne). 2023; 14: 1153909.

[206]

Wang Y, Cheng S, Fleishman JS, et al. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat. 2024; 75: 101099.

[207]

Park SH, Riley PT, Frisch SM. Regulation of anoikis by deleted in breast cancer-1 (dbc1) through nf-κb. Apoptosis. 2013; 18(8): 949-962.

[208]

Kawai H, Kobayashi M, Hiramoto-Yamaki N, Harada K, Negishi M, Katoh H. Ephexin4-mediated promotion of cell migration and anoikis resistance is regulated by serine 897 phosphorylation of epha2. Febs Open Bio. 2013; 3: 78-82.

[209]

Luey BC, May FEB. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type i igf receptor and pi3-kinase/akt pathway. Mol Cancer. 2016; 15: 8.

[210]

Wang L, Zhang Z, Wang L, et al. Tgf-β1/sh2b3 axis regulates anoikis resistance and emt of lung cancer cells by modulating jak2/stat3 and shp2/grb2 signaling pathways. Cell Death Dis. 2022; 13(5): 472.

[211]

Byerly J, Halstead-Nussloch G, Ito K, Katsyv I, Irie HY. Prkcq promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells. Breast Cancer Res. 2016; 18(1): 95.

[212]

Li T, Yu Y, Song Y, et al. Activation of bdnf/trkb pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J. 2020; 34(7): 9087-9101.

[213]

Brown CW, Brodsky AS, Freiman RN. Notch3 overexpression promotes anoikis resistance in epithelial ovarian cancer via upregulation of col4a2. Mol Cancer Res. 2015; 13(1): 78-85.

[214]

Hindupur SK, Balaji SA, Saxena M, et al. Identification of a novel ampk-pea15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res. 2014; 16(4): 420.

[215]

Tan M, Asad M, Heong V, et al. The fzd7-twist1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol. 2019; 13(4): 757-780.

[216]

Doxtater K, Tripathi MK, Sekhri R, et al. Muc13 drives cancer aggressiveness and metastasis through the yap1-dependent pathway. Life Sci Alliance. 2023; 6(12): e202301975.

[217]

Derouet MF, Dakpo E, Wu L, et al. Mir-145 expression enhances integrin expression in sk-gt-4 cell line by down-regulating c-myc expression. Oncotarget. 2018; 9(20): 15198-15207.

[218]

Sun Q, Yang Z, Li P, et al. A novel mirna identified in grsf1 complex drives the metastasis via the pik3r3/akt/nf-κb and timp3/mmp9 pathways in cervical cancer cells. Cell Death Dis. 2019; 10(9): 636.

[219]

Tian H, Lian R, Li Y, et al. Akt-induced lncrna val promotes emt-independent metastasis through diminishing trim16-dependent vimentin degradation. Nat Commun. 2020; 11(1): 5127.

[220]

Song J, Liu Y, Liu F, et al. The 14-3-3σ protein promotes hcc anoikis resistance by inhibiting egfr degradation and thereby activating the egfr-dependent erk1/2 signaling pathway. Theranostics. 2021; 11(3): 996-1015.

[221]

Jang E, Sung JY, Yoo H, et al. Fam188b downregulation sensitizes lung cancer cells to anoikis via egfr downregulation and inhibits tumor metastasis in vivo. Cancers (Basel). 2021; 13(2): 247.

[222]

Netsirisawan P, Chaiyawat P, Chokchaichamnankit D, et al. Decreasing o-glcnacylation affects the malignant transformation of mcf-7 cells via hsp27 expression and its o-glcnac modification. Oncol Rep. 2018; 40(4): 2193-2205.

[223]

Piyush T, Rhodes JM, Yu L. Muc1 o-glycosylation contributes to anoikis resistance in epithelial cancer cells. Cell Death Discov. 2017; 3: 17044.

[224]

Yao X, Pham T, Temple B, et al. Tle1 inhibits anoikis and promotes tumorigenicity in human lung cancer cells through zeb1-mediated e-cadherin repression. Oncotarget. 2017; 8(42): 72235-72249.

[225]

Meng Q, Lu Y, Wei C, et al. Arginine methylation of mthfd1 by prmt5 enhances anoikis resistance and cancer metastasis. Oncogene. 2022; 41(32): 3912-3924.

[226]

Dai Z, Jin S, Luo H, Leng H, Fang J. Lncrna hotair regulates anoikis-resistance capacity and spheroid formation of ovarian cancer cells by recruiting ezh2 and influencing h3k27 methylation. Neoplasma. 2021; 68(3): 509-518.

[227]

Wang S, Liu L, Bao K, et al. Ezh2 contributes to anoikis resistance and promotes epithelial ovarian cancer peritoneal metastasis by regulating m6a. Curr Med Sci. 2023; 43(4): 794-802.

[228]

Wang L, Li C, Wang J, et al. Transformable ecm deprivation system effectively suppresses renal cell carcinoma by reversing anoikis resistance and increasing chemotherapy sensitivity. Adv Mater. 2022; 34(43): e2203518.

[229]

Fonseca I, Horta C, Ribeiro AS, et al. Polo-like kinase 4 (plk4) potentiates anoikis-resistance of p53ko mammary epithelial cells by inducing a hybrid emt phenotype. Cell Death Dis. 2023; 14(2): 133.

[230]

Boese AC, Kang J, Hwang JS, et al. Succinyl-coa ligase adp-forming subunit beta promotes stress granule assembly to regulate redox and drive cancer metastasis. Proc Natl Acad Sci USA. 2023; 120(23): e2077635176.

[231]

Chen X, Xia Q, Sun N, et al. Shear stress enhances anoikis resistance of cancer cells through ros and no suppressed degeneration of caveolin-1. Free Radical Biol Med. 2022; 193(1): 95-107. Pt.

[232]

Dhillon S. Carotegrast methyl: first approval. Drugs. 2022; 82(9): 1011-1016.

[233]

Talamonti M, Spallone G, Di Stefani A, Costanzo A, Chimenti S. Efalizumab. Expert Opin Drug Saf. 2011; 10(2): 239-251.

[234]

Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature. 2024; 630(8016): 493-500.

[235]

Wenta T, Schmidt A, Zhang Q, et al. Disassembly of α6β4-mediated hemidesmosomal adhesions promotes tumorigenesis in pten-negative prostate cancer by targeting plectin to focal adhesions. Oncogene. 2022; 41(30): 3804-3820.

[236]

Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (tnbc): a review. Crit Rev Oncol Hematol. 2019; 140: 17-27.

[237]

Reavis HD, Gysler SM, Mckenney GB, et al. Norepinephrine induces anoikis resistance in high-grade serous ovarian cancer precursor cells. Jci Insight. 2024; 9(5): e170961.

[238]

Gong Z, Chen M, Ren Q, Yue X, Dai Z. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct Target Ther. 2020; 5(1): 12.

[239]

Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ. Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev. 2012; 31(1-2): 397-414.

[240]

Liau S, Jazag A, Ito K, Whang EE. Overexpression of hmga1 promotes anoikis resistance and constitutive akt activation in pancreatic adenocarcinoma cells. Br J Cancer. 2007; 96(6): 993-1000.

[241]

Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005; 115(7): 1765-1776.

[242]

Singh AB, Sharma A, Dhawan P. Claudin-1 expression confers resistance to anoikis in colon cancer cells in a src-dependent manner. Carcinogenesis. 2012; 33(12): 2538-2547.

[243]

Bhat AA, Ahmad R, Uppada SB, Singh AB, Dhawan P. Claudin-1 promotes tnf-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res. 2016; 349(1): 119-127.

[244]

Primeaux M, Liu X, Gowrikumar S, et al. Claudin-1 interacts with epha2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett. 2023; 579: 216479.

[245]

Altschuler J, Stockert JA, Kyprianou N. Non-coding rnas set a new phenotypic frontier in prostate cancer metastasis and resistance. Int J Mol Sci. 2021; 22(4): 2100.

[246]

Wade CA, Kyprianou N. Profiling prostate cancer therapeutic resistance. Int J Mol Sci. 2018; 19(3): 904.

[247]

Zhu C, Teng L, Lai Y, et al. Adipose-derived stem cells promote glycolysis and peritoneal metastasis via tgf-β1/smad3/angptl4 axis in colorectal cancer. Cell Mol Life Sci. 2024; 81(1): 189.

[248]

Heissig B, Salama Y, Osada T, Okumura K, Hattori K. The multifaceted role of plasminogen in cancer. Int J Mol Sci. 2021; 22(5): 2304.

[249]

Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor trkb. Nature. 2004; 430(7003): 1034-1039.

[250]

Kim MS, Lee WS, Jin W. Trkb inhibition of dj-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci. 2023; 80(10): 303.

[251]

Liu T, Li K, Zhang Z, et al. Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via sod1/ros signaling pathway. Am J Chin Med. 2023; 51(2): 425-444.

[252]

Thomas P, Pranatharthi A, Ross C, Srivastava S. Rhoc: a fascinating journey from a cytoskeletal organizer to a cancer stem cell therapeutic target. J Exp Clin Cancer Res. 2019; 38(1): 328.

[253]

Polanco A, Kuang B, Yoon S. Bioprocess technologies that preserve the quality of ipscs. Trends Biotechnol. 2020; 38(10): 1128-1140.

[254]

Rodas-Junco BA, Villicaña C. Dental pulp stem cells: current advances in isolation, expansion and preservation. Tissue Eng Regen Med. 2017; 14(4): 333-347.

[255]

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017; 18(10): 2087.

[256]

Jang S, Jeong JG, Oh TI, Lee E. Biomaterials for cell-surface engineering and their efficacy. J Funct Biomater. 2021; 12(3): 41.

[257]

Newland B, Welzel PB, Newland H, et al. Tackling cell transplantation anoikis: an injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small (Weinheim an Der Bergstrasse, Germany). 2015; 11(38): 5047-5053.

[258]

Zhang J, Tokatlian T, Zhong J, et al. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv Mater. 2011; 23(43): 5098-5103.

[259]

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26(4): 239-257.

[260]

Wang L, Liu X, Li Q, et al. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem. 2023.

[261]

Tian H, Mei J, Cao L, et al. Disruption of iron homeostasis to induce ferroptosis with albumin-encapsulated pt(iv) nanodrug for the treatment of non-small cell lung cancer. Small. 2023; 19(49): e2206688.

[262]

Meng Y, Chen X, Deng G. Disulfidptosis: a new form of regulated cell death for cancer treatment. Mol Biomed. 2023; 4(1): 18.

[263]

Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated tca cycle proteins. Science. 2022; 375(6586): 1254-1261.

[264]

Tang T, Liang H, Wei W, et al. Aloperine targets lysosomes to inhibit late autophagy and induces cell death through apoptosis and paraptosis in glioblastoma. Mol Biomed. 2023; 4(1): 42.

[265]

Sega M, Chignola R. Population ecology of heterotypic tumour cell cultures. Cell Prolif. 2014; 47(5): 476-483.

[266]

Linkous A, Balamatsias D, Snuderl M, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019; 26(12): 3203-3211.

[267]

Platt RJ, Chen S, Zhou Y, et al. Crispr-cas9 knockin mice for genome editing and cancer modeling. Cell. 2014; 159(2): 440-455.

[268]

Lancaster MA, Renner M, Martin C, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; 501(7467): 373-379.

[269]

Mei J, Liu X, Tian H, et al. Tumour organoids and assembloids: patient-derived cancer avatars for immunotherapy. Clin Transl Med. 2024; 14(4): e1656.

[270]

Jensen C, Teng Y. Is it time to start transitioning from 2d to 3d cell culture? Front Mol Biosci. 2020; 7: 33.

[271]

Kim J, Kim HN, Lim K, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials. 2013; 34(30): 7257-7268.

[272]

Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013; 8(10): 1940-1949.

[273]

Loessner D, Meinert C, Kaemmerer E, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc. 2016; 11(4): 727-746.

[274]

Buchheit CL, Weigel KJ, Schafer ZT. Cancer cell survival during detachment from the ecm: multiple barriers to tumour progression. Nat Rev Cancer. 2014; 14(9): 632-641.

[275]

Ren B, Yang J, Wang C, et al. High-resolution hi-c maps highlight multiscale 3d epigenome reprogramming during pancreatic cancer metastasis. J Hematol Oncol. 2021; 14(1): 120.

[276]

Okae H, Toh H, Sato T, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018; 22(1): 50-63.

[277]

Yoshida H, Lareau CA, Ramirez RN, et al. The cis-regulatory atlas of the mouse immune system. Cell. 2019; 176(4): 897-912.

[278]

Guo Q, Chen X, Chen J, et al. Sting promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the nf-κb signaling pathway. Cell Death Dis. 2021; 12(1): 13.

[279]

Khan SU, Fatima K, Malik F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis. 2022; 39(5): 715-726.

[280]

Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. Jci Insight. 2018; 3(12): e99941.

[281]

Guzzo RM, Gibson J, Xu R, Lee FY, Drissi H. Efficient differentiation of human ipsc-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem. 2013; 114(2): 480-490.

[282]

Li Q, Lin H, Du Q, et al. Scalable and physiologically relevant microenvironments for human pluripotent stem cell expansion and differentiation. Biofabrication. 2018; 10(2): 25006.

[283]

Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem. 2017; 59: 244-254.

[284]

Srimasorn S, Kirsch M, Hallmeyer-Ellgner S, Lindemann D, Storch A, Hermann A. Increased neuronal differentiation efficiency in high cell density-derived induced pluripotent stem cells. Stem Cells Int. 2019; 2019: 2018784.

[285]

Saccardi R, Blanquer M, Boieri M, et al. Fully automated washing of cryopreserved peripheral blood stem cells (pbsc): results of a prospective, multicenter, clinical trial. Blood. 2012; 120(21): 3164.

[286]

Elling U, Wimmer RA, Leibbrandt A, et al. A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature. 2017; 550(7674): 114-118.

[287]

Winkel A, Jaimes Y, Melzer C, et al. Cell culture media notably influence properties of human mesenchymal stroma/stem-like cells from different tissues. Cytotherapy. 2020; 22(11): 653-668.

[288]

Saha K, Mei Y, Reisterer CM, et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci USA. 2011; 108(46): 18714-18719.

[289]

Viswanathan P, Ondeck MG, Chirasatitsin S, et al. 3d surface topology guides stem cell adhesion and differentiation. Biomaterials. 2015; 52: 140-147.

[290]

Ekerdt BL, Fuentes CM, Lei Y, et al. Thermoreversible hyaluronic acid-pnipaam hydrogel systems for 3d stem cell culture. Adv Healthc Mater. 2018; 7(12): e1800225.

[291]

Chen W, Villa-Diaz LG, Sun Y, et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. Acs Nano. 2012; 6(5): 4094-4103.

[292]

Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Ferroptosis: the functions of nrf2 in human embryonic stem cells. Cell Signal. 2023; 106: 110654.

[293]

Dekkers MPJ, Barde Y. Developmental biology. Programmed cell death in neuronal development. Science. 2013; 340(6128): 39-41.

[294]

Cai Y, Zhou H, Zhu Y, et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020; 30(7): 574-589.

[295]

Kruyt FAE, Schuringa JJ. Apoptosis and cancer stem cells: implications for apoptosis targeted therapy. Biochem Pharmacol. 2010; 80(4): 423-430.

[296]

Sharma R, Gogoi G, Saikia S, et al. Bmp4 enhances anoikis resistance and chemoresistance of breast cancer cells through canonical bmp signaling. J Cell Commun Signal. 2022; 16(2): 191-205.

[297]

Lim W, Choi JW, Song N, Cho C, Rhee YK, Hong H. Polysaccharide isolated from persimmon leaves (diospyros kaki thunb.) suppresses tgf-β1-induced epithelial-to-mesenchymal transition in a549 cells. Int J Biol Macromol. 2020; 164: 3835-3845.

[298]

Pratelli G, Carlisi D, Di Liberto D, et al. Mcl1 inhibition overcomes the aggressiveness features of triple-negative breast cancer mda-mb-231 cells. Int J Mol Sci. 2023; 24(13): 11149.

[299]

Lee H, Park S, Kim JB, Kim J, Kim H. Entrapped doxorubicin nanoparticles for the treatment of metastatic anoikis-resistant cancer cells. Cancer Lett. 2013; 332(1): 110-119.

[300]

Huerta CT, Ortiz YY, Li Y, et al. Novel gene-modified mesenchymal stem cell therapy reverses impaired wound healing in ischemic limbs. Ann Surg. 2023; 278(3): 383-395.

[301]

Huang D, Cao Y, Yang X, et al. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for alzheimer’s disease. Adv Mater. 2021; 33(13): e2006357.

[302]

Bagó JR, Pegna GJ, Okolie O, Hingtgen SD. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials. 2016; 84: 42-53.

[303]

Qu X, An G, Sui W, et al. Phase 1 study of c-car088, a novel humanized anti-bcma car t-cell therapy in relapsed/refractory multiple myeloma. J Immunother Cancer. 2022; 10(9): e5145.

[304]

He J, Xiong X, Yang H, et al. Defined tumor antigen-specific t cells potentiate personalized tcr-t cell therapy and prediction of immunotherapy response. Cell Res. 2022; 32(6): 530-542.

[305]

van den Berg JH, Heemskerk B, van Rooij N, et al. Tumor infiltrating lymphocytes (til) therapy in metastatic melanoma: boosting of neoantigen-specific t cell reactivity and long-term follow-up. J Immunother Cancer. 2020; 8(2): e848.

[306]

Li X, Xu Z, Du W, et al. Aiolos promotes anchorage independence by silencing p66shc transcription in cancer cells. Cancer Cell. 2014; 25(5): 575-589.

[307]

Hinrichsen F, Hamm J, Westermann M, et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 2021; 33(12): 2355-2366.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/