Role of N6-methyladenosine RNA modification in cancer

Yi Qu , Nannan Gao , Shengwei Zhang , Limin Gao , Bing He , Chao Wang , Chunli Gong , Qiuyue Shi , Zhibin Li , Shiming Yang , Yufeng Xiao

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e715

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e715 DOI: 10.1002/mco2.715
REVIEW

Role of N6-methyladenosine RNA modification in cancer

Author information +
History +
PDF

Abstract

N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.

Keywords

cancer / immunity / m6A / microorganism / posttranslational modification / programmed cell death

Cite this article

Download citation ▾
Yi Qu, Nannan Gao, Shengwei Zhang, Limin Gao, Bing He, Chao Wang, Chunli Gong, Qiuyue Shi, Zhibin Li, Shiming Yang, Yufeng Xiao. Role of N6-methyladenosine RNA modification in cancer. MedComm, 2024, 5(9): e715 DOI:10.1002/mco2.715

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73(1): 17-48.

[2]

Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to nowadays: a brief history of epigenetics. Int J Mol Sci. 2020; 21(20): 7571.

[3]

Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022; 23(6): 325-341.

[4]

R Desrosiers KF, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974; 71(10): 3971-3975.

[5]

Gan L, Zhao Y, Fu Y, Chen Q. The potential role of m6A modifications on immune cells and immunotherapy. Biomed Pharmacother. 2023; 160: 114343.

[6]

Liu J, Dou X, Chen C, et al. N 6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science (New York, NY). 2020; 367(6477): 580-586.

[7]

Chen X-Y, Zhang J, Zhu J-S. The role of m6A RNA methylation in human cancer. Mol Cancer. 2019; 18(1): 103.

[8]

Wu S, Zhang S, Wu X, Zhou X. m6A RNA methylation in cardiovascular diseases. Mol Ther. 2020; 28(10): 2111-2119.

[9]

Wu S, Li XF, Wu YY, Yin SQ, Huang C, Li J. N(6) - Methyladenosine and rheumatoid arthritis: a comprehensive review. Front Immunol. 2021; 12: 731842.

[10]

Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother. 2023; 162: 114583.

[11]

Chen J, Fang Y, Xu Y, Sun H. Role of m6A modification in female infertility and reproductive system diseases. Int J Biol Sci. 2022; 18(9): 3592-3604.

[12]

Zhang Y, Chen W, Zheng X, et al. Regulatory role and mechanism of m(6)A RNA modification in human metabolic diseases. Mol Ther Oncolytics. 2021; 22: 52-63.

[13]

Lu Y, Yuan X, Wang M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol. 2022; 15(1): 47.

[14]

Chi C, Du Y, Ye J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014; 4(11): 1072-1084.

[15]

Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021; 11(13): 6370-6392.

[16]

Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015; 12(9): 527-540.

[17]

Robert HE, Markus S. Cell-free DNA as a biomarker in cancer. Extracell Vesicles Circ Nucl Acids. 2022; 3(3): 195-215.

[18]

Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021; 326(9): 851-862.

[19]

Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020; 70(2): 86-104.

[20]

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020; 17(8): 807-821.

[21]

Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol. 2022; 15(1): 17.

[22]

O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019; 16(3): 151-167.

[23]

Oerum S, Meynier V, Catala M, Tisne C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021; 49(13): 7239-7255.

[24]

Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2): 93-95.

[25]

Zhou KI, Pan T. Structures of the m(6)A methyltransferase complex: two subunits with distinct but coordinated roles. Mol Cell. 2016; 63(2): 183-185.

[26]

Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2): 177-189.

[27]

van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019; 47(15): 7719-7733.

[28]

Wang Z, He J, Bach DH, et al. Induction of m(6)A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022; 41(1): 4.

[29]

Liu Z, Chen Y, Shen T. Evidence based on an integrative analysis of multi-omics data on METTL7A as a molecular marker in pan-cancer. Biomolecules. 2023; 13(2): 195.

[30]

Song H, Liu D, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022; 21(1): 43.

[31]

Luo C, Wang S, Shan W, et al. A whole exon screening-based score model predicts prognosis and immune checkpoint inhibitor therapy effects in low-grade glioma. Front Immunol. 2022; 13: 909189.

[32]

Ruszkowska A. METTL16, methyltransferase-like protein 16: current insights into structure and function. Int J Mol Sci. 2021; 22(4): 2176.

[33]

Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdiscip Rev RNA. 2022; 13(2): e1681.

[34]

Zhang X, Li MJ, Xia L, Zhang H. The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ. 2022; 10: e14334.

[35]

Zhang C, Sun Q, Zhang X, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond). 2022; 42(7): 609-626.

[36]

Wang X, Tian L, Li Y, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. J Exp Clin Cancer Res. 2021; 40(1): 80.

[37]

Ma H, Wang X, Cai J, et al. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019; 15(1): 88-94.

[38]

Wen J, Lv R, Ma H, et al. Zc3h13 Regulates Nuclear RNA m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol Cell. 2018; 69(6): 1028-1038.

[39]

Zhao W, Li J, Ma Q, et al. N6-methyladenosine modification participates in neoplastic immunoregulation and tumorigenesis. J Cell Physiol. 2022; 237(7): 2729-2739.

[40]

Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019; 18(1): 142.

[41]

Li J, Gregory RI. Mining for METTL3 inhibitors to suppress cancer. Nat Struct Mol Biol. 2021; 28(6): 460-462.

[42]

Wang N, Huo X, Zhang B, et al. METTL3-mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer. Front Oncol. 2022; 12: 861807.

[43]

Zhou D, Tang W, Xu Y, et al. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol. 2021; 15(8): 2172-2184.

[44]

Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12): 885-887.

[45]

Lan N, Lu Y, Zhang Y, et al. FTO—a common genetic basis for obesity and cancer. Front Genet. 2020; 11: 559138.

[46]

Azzam SK, Alsafar H, Sajini AA. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int J Mol Sci. 2022; 23(7): 3800.

[47]

Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022; 15(1): 8.

[48]

Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature. 2002; 419(6903): 174-178.

[49]

Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020; 20: 347.

[50]

Wu Y, Wang Z, Han L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther. 2022; 30(7): 2603-2617.

[51]

Tsuchiya K, Yoshimura K, Inoue Y, et al. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology. 2021; 10(1): 1962656.

[52]

Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020; 48(7): 3816-3831.

[53]

Chang G, Shi L, Ye Y, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020; 38(6): 857-871.

[54]

Chen D, Cheung H, Lau HC, Yu J, Wong CC. N(6)-Methyladenosine RNA-binding protein YTHDF1 in gastrointestinal cancers: function, molecular mechanism and clinical implication. Cancers (Basel). 2022; 14(14): 3489.

[55]

Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016; 61(4): 507-519.

[56]

Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017; 27(9): 1115-1127.

[57]

Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 2021; 21(1): 99.

[58]

Zhang N, Shen Y, Li H, et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability. Exp Mol Med. 2022; 54(2): 194-205.

[59]

Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018; 20(3): 285-295.

[60]

Jiang F, Tang X, Tang C, et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol. 2021; 14(1): 54.

[61]

Liu H, Li D, Sun L, et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol Cancer. 2022; 21(1): 74.

[62]

Wu R, Li A, Sun B, et al. A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019; 29(1): 23-41.

[63]

Cai Z, Xu H, Bai G, et al. ELAVL1 promotes prostate cancer progression by interacting with other m6A regulators. Front Oncol. 2022; 12: 939784.

[64]

Zhang F, Kang Y, Wang M, et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum Mol Genet. 2018; 27(22): 3936-3950.

[65]

Chen H, Yu Y, Yang M, et al. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci. 2022; 12(1): 19.

[66]

Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell. 2020; 181(7): 1582-1595.

[67]

Fu Y, Zhuang X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol. 2020; 16(9): 955-963.

[68]

Zou Z, Sepich-Poore C, Zhou X, Wei J, He C. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 2023; 24(1): 17.

[69]

Riggs CL, Kedersha N, Ivanov P, Anderson P. Mammalian stress granules and P bodies at a glance. J Cell Sci. 2020; 133(16): jcs242487.

[70]

Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017: 6.

[71]

Widagdo J, Anggono V, Wong JJ. The multifaceted effects of YTHDC1-mediated nuclear m(6)A recognition. Trends Genet. 2022; 38(4): 325-332.

[72]

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015; 162(6): 1299-1308.

[73]

Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. 2019; 365(6454): eaav0758.

[74]

Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015; 518(7540): 560-564.

[75]

Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional Pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell. 2019; 76(1): 70-81.

[76]

Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019; 18(1): 127.

[77]

Hu Y, Gao Q, Ma S, et al. FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m(6)A-dependent manner. Cell Death Dis. 2022; 13(11): 941.

[78]

Wang J, Wang Z, Inuzuka H, Wei W, Liu J. PRMT1 methylates METTL14 to modulate its oncogenic function. Neoplasia. 2023; 42: 100912.

[79]

Wang Y, Wang C, Guan X, et al. PRMT3-mediated arginine methylation of METTL14 promotes malignant progression and treatment resistance in endometrial carcinoma. Adv Sci (Weinh). 2023; 10(36): e2303812.

[80]

Jia Y, Yu X, Liu R, et al. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis. 2023; 14(8): 512.

[81]

Han X, Ren C, Jiang A, et al. Arginine methylation of ALKBH5 by PRMT6 promotes breast tumorigenesis via LDHA-mediated glycolysis. Front Med. 2024; 18(2): 344-356.

[82]

Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: a proteomics perspective. J Proteomics. 2017; 150: 297-309.

[83]

Li Y, He X, Lu X, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022; 13(1): 6350.

[84]

Zhang G, Huang R, Zhao H, et al. ACAT1-mediated METTL3 acetylation inhibits cell migration and invasion in triple negative breast cancer. Genes Immun. 2023; 24(2): 99-107.

[85]

Yang Y, Qian Cai Q, Sheng Fu L, Wei Dong Y, Fan F, Zhong Wu X. Reduced N6-methyladenosine mediated by METTL3 acetylation promotes MTF1 expression and hepatocellular carcinoma cell growth. Chem Biodivers. 2022; 19(11): e202200333.

[86]

Wang X, Ding Y, Li R, et al. N(6)-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice. Nat Commun. 2023; 14(1): 1185.

[87]

Zhang X-L, Chen X-H, Xu B, et al. K235 acetylation couples with PSPC1 to regulate the m6A demethylation activity of ALKBH5 and tumorigenesis. Nat Commun. 2023; 14(1): 3815.

[88]

Latifkar A, Wang F, Mullmann JJ, et al. IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci USA. 2022; 119(45): e2200477119.

[89]

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018; 38: 1-11.

[90]

Zhou Y, Lin F, Wan T, et al. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM. Theranostics. 2021; 11(12): 5926-5938.

[91]

Sun Y, Chen Y, Peng T. A bioorthogonal chemical reporter for the detection and identification of protein lactylation. Chem Sci. 2022; 13(20): 6019-6027.

[92]

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574(7779): 575-580.

[93]

Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021; 22(1): 85.

[94]

Wang P, Xie D, Xiao T, et al. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J Hazard Mater. 2023; 461: 132582.

[95]

Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022; 82(9): 1660-1677.

[96]

Sun L, Zhang Y, Yang B, et al. Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 2023; 14(1): 6523.

[97]

Leestemaker Y, Ovaa H. Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol. 2017; 26: 25-31.

[98]

Swatek KN, Usher JL, Kueck AF, et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature. 2019; 572(7770): 533-537.

[99]

Martinez-Ferriz A, Ferrando A, Fathinajafabadi A, Farras R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol. 2022; 132: 146-154.

[100]

Wei J, Harada BT, Lu D, et al. HRD1-mediated METTL14 degradation regulates m(6)A mRNA modification to suppress ER proteotoxic liver disease. Mol Cell. 2021; 81(24): 5052-5065.

[101]

Ruan DY, Li T, Wang YN, et al. FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene. 2021; 40(33): 5168-5181.

[102]

Liang W, Liu H, Zeng Z, et al. KRT17 promotes T-lymphocyte infiltration through the YTHDF2-CXCL10 axis in colorectal cancer. Cancer Immunol Res. 2023; 11(7): 875-894.

[103]

Li B, Zhu L, Lu C, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021; 12(1): 295.

[104]

Lin XT, Yu HQ, Fang L, et al. Elevated FBXO45 promotes liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1 upregulation. Elife. 2021: 10.

[105]

Yao B, Zhang Q, Yang Z, et al. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m(6)A-modified CREB1 mRNA. Mol Cancer. 2022; 21(1): 140.

[106]

Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019; 18(1): 174.

[107]

Shi J, Zhang Q, Yin X, et al. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci. 2023; 19(2): 449-464.

[108]

Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018; 52(4): 1081-1094.

[109]

Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 2021; 49(10): 5779-5797.

[110]

Sugiokto FG, Saiada F, Zhang K, Li R. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. bioRxiv. 2023.

[111]

Hou G, Zhao X, Li L, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021; 49(5): 2859-2877.

[112]

Liu X, Liu J, Xiao W, et al. SIRT1 regulates N(6) - methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation. Hepatology. 2020; 72(6): 2029-2050.

[113]

Du Y, Hou G, Zhang H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018; 46(10): 5195-5208.

[114]

Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation: implications in cancer. Protein J. 2017; 36(1): 1-6.

[115]

Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell. 2022; 82(12): 2190-2200.

[116]

Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev. 2022; 51(13): 5691-5730.

[117]

Sun HL, Zhu AC, Gao Y, et al. Stabilization of ERK-Phosphorylated METTL3 by USP5 increases m(6)A methylation. Mol Cell. 2020; 80(4): 633-647.

[118]

Perez-Pepe M, Desotell AW, Li H, et al. 7SK methylation by METTL3 promotes transcriptional activity. Sci Adv. 2023; 9(19): eade7500.

[119]

Ou B, Liu Y, Yang X, Xu X, Yan Y, Zhang J. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis. 2021; 12(8): 737.

[120]

Chen J, Wei X, Wang X, et al. TBK1-METTL3 axis facilitates antiviral immunity. Cell Rep. 2022; 38(7): 110373.

[121]

Fang R, Chen X, Zhang S, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021; 12(1): 177.

[122]

Chang YH, Weng CL, Lin KI. O-GlcNAcylation and its role in the immune system. J Biomed Sci. 2020; 27(1): 57.

[123]

Yang Y, Yan Y, Yin J, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023; 8(1): 63.

[124]

Li J, Ahmad M, Sang L, et al. O-GlcNAcylation promotes the cytosolic localization of the m(6)A reader YTHDF1 and colorectal cancer tumorigenesis. J Biol Chem. 2023; 299(6): 104738.

[125]

Deng S, Zhang J, Su J, et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet. 2022; 54(9): 1427-1437.

[126]

Li R, Zhao H, Huang X, et al. Super-enhancer RNA m6A promotes local chromatin accessibility and oncogene transcription in pancreatic ductal adenocarcinoma. Nat Genet. 2023; 55(12): 2224-2234.

[127]

Yao L, Li T, Teng Y, et al. ALKHB5-demethylated lncRNA SNHG15 promotes myeloma tumorigenicity by increasing chromatin accessibility and recruiting H3K36me3 modifier SETD2. Am J Physiol Cell Physiol. 2024; 326(3): C684-C697.

[128]

Sun X, Bai C, Li H, et al. PARP1 modulates METTL3 promoter chromatin accessibility and associated LPAR5 RNA m6A methylation to control cancer cell radiosensitivity. Mol Ther. 2023; 31(9): 2633-2650.

[129]

Wang J, Li Y, Wang P, et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 2020; 27(1): 81-97.

[130]

Li F, Chen S, Yu J, et al. Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med. 2021; 11(9): e553.

[131]

Tang B, Yan R, Zhu J, et al. Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types. Int J Biol Sci. 2022; 18(1): 180-198.

[132]

Zhang Q, Tan Y, Zhang J, et al. Pyroptosis-related signature predicts prognosis and immunotherapy efficacy in muscle-invasive bladder cancer. Front Immunol. 2022; 13: 782982.

[133]

Hu B, Gao J, Shi J, et al. Necroptosis throws novel insights on patient classification and treatment strategies for hepatocellular carcinoma. Front Immunol. 2022; 13: 970117.

[134]

Woodle ES, Kulkarni S. Programmed cell death. Transplantation. 1998; 66(6): 681-691.

[135]

Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J. 2021; 40(19): e108863.

[136]

Lorincz P, Juhasz G. Autophagosome-lysosome fusion. J Mol Biol. 2020; 432(8): 2462-2482.

[137]

Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Dev Cell. 2021; 56(7): 906-918.

[138]

Hao W, Dian M, Zhou Y, et al. Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun. 2022; 13(1): 5845.

[139]

Chen X, Wang J, Tahir M, et al. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell Biosci. 2021; 11(1): 147.

[140]

Shen M, Li Y, Wang Y, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021; 47: 102151.

[141]

Li Q, Ni Y, Zhang L, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021; 6(1): 76.

[142]

Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 2022; 21(1): 109.

[143]

Zhang Z, Zhu H, Hu J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 2021; 12(2): 219.

[144]

Li G, Deng L, Huang N, et al. m6A mRNA methylation regulates LKB1 to promote autophagy of hepatoblastoma cells through upregulated phosphorylation of AMPK. Genes. 2021; 12(11): 1747.

[145]

Xu Y, Zhou J, Li L, et al. FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability. Int J Biol Sci. 2022; 18(15): 5943-5962.

[146]

Liu Z, Zou H, Dang Q, et al. Biological and pharmacological roles of m(6)A modifications in cancer drug resistance. Mol Cancer. 2022; 21(1): 220.

[147]

Jo H, Shim K, Jeoung D. Roles of RNA methylations in cancer progression, autophagy, and anticancer drug resistance. Int J Mol Sci. 2023; 24(4): 4225.

[148]

Paramasivam A, Priyadharsini JV. RNA N6-methyladenosine: a new player in autophagy-mediated anti-cancer drug resistance. Br J Cancer. 2021; 124(10): 1621-1622.

[149]

Zhang Y, Gao LX, Wang W, Zhang T, Dong FY, Ding WP. M(6) A demethylase fat mass and obesity-associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1. Cancer Sci. 2022; 113(9): 3085-3096.

[150]

Sun Y, Shen W, Hu S, et al. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. J Exp Clin Cancer Res. 2023; 42(1): 65.

[151]

Yang L, Yan B, Qu L, et al. IGF2BP3 regulates TMA7-mediated autophagy and cisplatin resistance in laryngeal cancer via m6A RNA methylation. Int J Biol Sci. 2023; 19(5): 1382-1400.

[152]

Lin Z, Niu Y, Wan A, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 2020; 39(12): e103181.

[153]

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.

[154]

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021; 31(2): 107-125.

[155]

Li J, Cao F, Yin H-l, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020; 11(2): 88.

[156]

Liu L, He J, Sun G, et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022; 12(5): e778.

[157]

Xu Y, Lv D, Yan C, et al. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int. 2022; 22(1): 11.

[158]

Ji FH, Fu XH, Li GQ, He Q, Qiu XG. FTO prevents thyroid cancer progression by SLC7A11 m6A methylation in a ferroptosis-dependent manner. Front Endocrinol (Lausanne). 2022; 13: 857765.

[159]

Luo J, Yu H, Yuan Z, Ye T, Hu B. ALKBH5 decreases SLC7A11 expression by erasing m6A modification and promotes the ferroptosis of colorectal cancer cells. Clin Transl Oncol. 2023; 25(7): 2265-2276.

[160]

Li W, Huang G, Wei J, Cao H, Jiang G. ALKBH5 inhibits thyroid cancer progression by promoting ferroptosis through TIAM1-Nrf2/HO-1 axis. Mol Cell Biochem. 2023; 478(4): 729-741.

[161]

Sun S, Gao T, Pang B, et al. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m(6)A-dependent manner. Cell Death Dis. 2022; 13(1): 73.

[162]

Ye F, Wu J, Zhang F. METTL16 epigenetically enhances GPX4 expression via m6A modification to promote breast cancer progression by inhibiting ferroptosis. Biochem Biophys Res Commun. 2023; 638: 1-6.

[163]

Wang S, Wang Y, Li Q, Zeng K, Li X, Feng X. RUNX1-IT1 favors breast cancer carcinogenesis through regulation of IGF2BP1/GPX4 axis. Discov Oncol. 2023; 14(1): 42.

[164]

Shen H, Geng Z, Nie X, Liu T. Erianin induces ferroptosis of renal cancer stem cells via promoting ALOX12/P53 mRNA N6-methyladenosine modification. J Cancer. 2023; 14(3): 367-378.

[165]

Zou Y, Zheng S, Xie X, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022; 13(1): 2672.

[166]

Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019; 569(7755): 270-274.

[167]

Kui XY, Gao Y, Liu XS, et al. Comprehensive analysis of SLC17A9 and its prognostic value in hepatocellular carcinoma. Front Oncol. 2022; 12: 809847.

[168]

Li J, Tian X, Nie Y, et al. BTBD10 is a prognostic biomarker correlated with immune infiltration in hepatocellular carcinoma. Front Mol Biosci. 2021; 8: 762541.

[169]

Wang Y, Jin P, Wang X. N(6)-methyladenosine regulator YTHDF1 represses the CD8 + T cell-mediated antitumor immunity and ferroptosis in prostate cancer via m(6)A/PD-L1 manner. Apoptosis. 2023.

[170]

Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany N Y). 2020; 12(9): 8137-8150.

[171]

Zhang S, Guan X, Liu W, et al. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Cell Death Discov. 2022; 8(1): 244.

[172]

Dai J, Qu T, Yin D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer. Cell Death Dis. 2023; 14(5): 312.

[173]

Wu L, Liu G, He YW, Chen R, Wu ZY. Identification of a pyroptosis-associated long non-coding RNA signature for predicting the immune status and prognosis in skin cutaneous melanoma. Eur Rev Med Pharmacol Sci. 2021; 25(18): 5597-5609.

[174]

Zhang L, Chu XF, Xu JW, Yao XY, Zhang HQ, Guo YW. Identification and exploration of the pyroptosis-related molecular subtypes of breast cancer by bioinformatics and machine learning. Am J Transl Res. 2022; 14(9): 6521-6535.

[175]

Lu Z, Tang F, Li Z, et al. Prognosis risk model based on pyroptosis-related lncRNAs for bladder cancer. Dis Markers. 2022; 2022: 7931393.

[176]

Yang P, Yang W, Wei Z, Li Y, Yang Y, Wang J. Novel targets for gastric cancer: the tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed Pharmacother. 2023; 163: 114883.

[177]

Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer. 2023; 22(1): 46.

[178]

Liu XS, Zeng J, Zhang YH, et al. DARS2 is a prognostic biomarker and correlated with immune infiltrates and cuproptosis in lung adenocarcinoma. Am J Cancer Res. 2023; 13(3): 818-834.

[179]

Gao C, Kong N, Zhang F, Zhou L, Xu M, Wu L. Development and validation of the potential biomarkers based on m6A-related lncRNAs for the predictions of overall survival in the lung adenocarcinoma and differential analysis with cuproptosis. BMC Bioinformatics. 2022; 23(1): 327.

[180]

Shen L, He Y, Fang C, et al. Cuproptosis-associated genes and immune microenvironment characterization in breast cancer. Medicine (Baltimore). 2022; 101(50): e32301.

[181]

Peng X, Zhu J, Liu S, et al. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma. Front Immunol. 2022; 13: 990790.

[182]

Qin H, Sheng W, Zhang G, et al. Comprehensive analysis of cuproptosis-related prognostic gene signature and tumor immune microenvironment in HCC. Front Genet. 2023; 14: 1094793.

[183]

Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023; 25(3): 404-414.

[184]

Zheng T, Liu Q, Xing F, Zeng C, Wang W. Disulfidptosis: a new form of programmed cell death. J Exp Clin Cancer Res. 2023; 42(1): 137.

[185]

Yan Y, Teng H, Hang Q, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun. 2023; 14(1): 3673.

[186]

Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023; 42(1): 18.

[187]

Yang H, Hu Y, Weng M, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 2022; 37: 91-106.

[188]

Parkin J, Cohen B. An overview of the immune system. Lancet. 2001; 357(9270): 1777-1789.

[189]

Sadighi Akha AA. Aging and the immune system: an overview. J Immunol Methods. 2018; 463: 21-26.

[190]

Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022; 22(4): 209-223.

[191]

Bi J, Tian Z. NK cell dysfunction and checkpoint immunotherapy. Front Immunol. 2019; 10: 1999.

[192]

Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 2022; 13: 946832.

[193]

Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 2023; 23(4): 238-257.

[194]

Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021; 22(13): 6995.

[195]

Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022; 21(11): 799-820.

[196]

Tong J, Wang X, Liu Y, et al. Pooled CRISPR screening identifies m(6)A as a positive regulator of macrophage activation. Sci Adv. 2021; 7(18): eabd4742.

[197]

Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021; 12(1): 1394.

[198]

Wei C, Wang B, Peng D, et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. Front Immunol. 2022; 13: 849592.

[199]

Liu Y, Shi M, He X, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2022; 15(1): 52.

[200]

Qin J, Cui Z, Zhou J, et al. IGF2BP3 drives gallbladder cancer progression by m6A-modified CLDN4 and inducing macrophage immunosuppressive polarization. Transl Oncol. 2023; 37: 101764.

[201]

Zhang Y, Guo J, Zhang L, et al. CircASPH enhances exosomal STING to facilitate M2 macrophage polarization in colorectal cancer. Inflamm Bowel Dis. 2023.

[202]

You Y, Wen D, Zeng L, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022; 18(13): 5001-5018.

[203]

Zeng X, Chen K, Li L, et al. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med. 2022; 184: 135-147.

[204]

Chen J, Zhou Y, Wu M, Yuan Y, Wu W. m6A modification mediates exosomal LINC00657 to trigger breast cancer progression via inducing macrophage M2 polarization. Clin Breast Cancer. 2023; 23(5): 546-560.

[205]

McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest. 2021; 131(6): e143759.

[206]

Luo S, Liao C, Zhang L, et al. METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Rep. 2023; 42(3): 112259.

[207]

He J, Zhou M, Yin J, et al. METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021; 29(5): 1821-1837.

[208]

Ou B, Liu Y, Gao Z, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death Dis. 2022; 13(10): 905.

[209]

Zheng H, Long G, Zheng Y, et al. Glycolysis-related SLC2A1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Cancers (Basel). 2022; 14(21): 5344.

[210]

Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clinical Reviews in Allergy (Immunology). 2021; 61(2): 194-211.

[211]

Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol. 2020; 11: 1749.

[212]

Lodge KM, Cowburn AS, Li W, Condliffe AM. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020; 21(4): 1183.

[213]

Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil. Immunity. 2021; 54(7): 1377-1391.

[214]

Qu M, Chen Z, Qiu Z, et al. Neutrophil extracellular traps-triggered impaired autophagic flux via METTL3 underlies sepsis-associated acute lung injury. Cell Death Discov. 2022; 8(1): 375.

[215]

Wang L, Peng J-L. METTL5 serves as a diagnostic and prognostic biomarker in hepatocellular carcinoma by influencing the immune microenvironment. Sci Rep. 2023; 13(1): 10755.

[216]

Zhang H, Liu J, Zhou Y, et al. Neutrophil extracellular traps mediate m(6)A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci. 2022; 18(8): 3337-3357.

[217]

Demkow U. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers (Basel). 2021; 13(17): 4495.

[218]

Ronchetti L, Boubaker NS, Barba M, Vici P, Gurtner A, Piaggio G. Neutrophil extracellular traps in cancer: not only catching microbes. J Exp Clin Cancer Res. 2021; 40(1): 231.

[219]

Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil extracellular traps (NETs) in cancer metastasis. Cancers (Basel). 2021; 13(23): 6131.

[220]

Poto R, Cristinziano L, Modestino L, et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022; 10(2): 431.

[221]

Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973; 137(5): 1142-1162.

[222]

Galati D, Zanotta S. Dendritic cell and cancer therapy. Int J Mol Sci. 2023; 24(4): 4253.

[223]

Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016; 37(12): 855-865.

[224]

Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019; 566(7743): 270-274.

[225]

Bai X, Wong CC, Pan Y, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer. 2022; 10(2): e003663.

[226]

Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol. 2020; 10: 578963.

[227]

Zhang YH, Zeng J, Liu XS, et al. ECE2 is a prognostic biomarker associated with m6A modification and involved in immune infiltration of lung adenocarcinoma. Front Endocrinol (Lausanne). 2022; 13: 1013238.

[228]

Shi YL, Liu MB, Wu HT, Han Y, He X. GLTP is a potential prognostic biomarker and correlates with immunotherapy efficacy in cervical cancer. Dis Markers. 2022; 2022: 9109365.

[229]

Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ. 2020; 8: e10385.

[230]

Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018; 48(2): 202-213.

[231]

Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8): 486-499.

[232]

Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8(+) T cell differentiation. Nat Rev Immunol. 2018; 18(5): 340-356.

[233]

Chao Y, Li HB, Zhou J. Multiple functions of RNA methylation in T cells: a review. Front Immunol. 2021; 12: 627455.

[234]

Liu Z, Wang T, She Y, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021; 20(1): 105.

[235]

Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022; 21(1): 60.

[236]

Dong L, Chen C, Zhang Y, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021; 39(7): 945-957. e10.

[237]

Chen H, Pan Y, Zhou Q, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022; 163(4): 891-907.

[238]

Bao Y, Zhai J, Chen H, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023; 72(8): 1497-1509.

[239]

Hu Z, Chen G, Zhao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023; 22(1): 55.

[240]

Li T, Tan YT, Chen YX, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut. 2023; 72(3): 501-511.

[241]

Zhang L, Li Y, Zhou L, et al. The m6A reader YTHDF2 promotes bladder cancer progression by suppressing RIG-I-mediated immune response. Cancer Res. 2023; 83(11): 1834-1850.

[242]

Cheng Y, Li L, Wei X, et al. HNRNPC suppresses tumor immune microenvironment by activating Treg cells promoting the progression of prostate cancer. Cancer Sci. 2023; 114(5): 1830-1845.

[243]

Zhang Z, Tan X, Wu R, et al. m6A-mediated upregulation of lncRNA-AC026356.1 promotes cancer stem cell maintenance in lung adenocarcinoma via activating Wnt signaling pathway. Aging. 2023; 15(9): 3538-3548.

[244]

Sattiraju A, Kang S, Giotti B, et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity. 2023.

[245]

Shen X, Zhong J, He J, Han J, Chen N. Identification of m6A modification patterns and development of m6A-hypoxia prognostic signature to characterize tumor microenvironment in triple-negative breast cancer. Front Immunol. 2022; 13: 978092.

[246]

Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions. Cell. 2019; 177(3): 524-540.

[247]

LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008; 112(5): 1570-1580.

[248]

Zheng Z, Zhang L, Cui X-L, et al. Control of early B cell development by the RNA N6-methyladenosine methylation. Cell Rep. 2020; 31(13): 107819.

[249]

Zhao C, Xu G, Zhang X, Ye Y, Cai W, Shao Q. RNA m(6)A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Front Immunol. 2022; 13: 839291.

[250]

Kang X, Chen S, Pan L, et al. Deletion of Mettl3 at the Pro-B stage marginally affects B cell development and profibrogenic activity of B cells in liver fibrosis. J Immunol Res. 2022; 2022: 1-17.

[251]

Grenov A, Hezroni H, Lasman L, Hanna JH, Shulman Z. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep. 2022; 39(5): 110778.

[252]

Han H, Fan G, Song S, et al. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood. 2021; 137(12): 1603-1614.

[253]

Cheng Y, Fu Y, Wang Y, Wang J. The m6A methyltransferase METTL3 is functionally implicated in DLBCL development by regulating m6A modification in PEDF. Front Genet. 2020; 11: 955.

[254]

Meng S, Xia Y, Li M, et al. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep. 2023; 13(1): 8606.

[255]

Chen X, Lu T, Cai Y, et al. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett. 2023; 28(1): 32.

[256]

Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022; 22(10): 557-575.

[257]

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021; 18(2): 85-100.

[258]

Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021; 14(1): 7.

[259]

Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020; 19(1): 120.

[260]

Liu XS, Zhou LM, Yuan LL, et al. NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front Immunol. 2021; 12: 724741.

[261]

Xie H, Shi M, Liu Y, et al. Identification of m6A-and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front Immunol. 2022; 13: 914977.

[262]

Yu H, Wang C, Ke S, et al. Identification of CFHR4 as a potential prognosis biomarker associated with lmmune infiltrates in hepatocellular carcinoma. Front Immunol. 2022; 13: 892750.

[263]

Li Z, Li Y, Zhong W, Huang P. m6A-related lncRNA to develop prognostic signature and predict the immune landscape in bladder cancer. J Oncol. 2021; 2021: 7488188.

[264]

Xu Z, Chen Q, Shu L, Zhang C, Liu W, Wang P. Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer. Front Oncol. 2022; 12: 970367.

[265]

Wang E, Li Y, Ming R, et al. The prognostic value and immune landscapes of a m(6)A/m(5)C/m(1)A-related LncRNAs signature in head and neck squamous cell carcinoma. Front Cell Dev Biol. 2021; 9: 718974.

[266]

Ma S, Yan J, Barr T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med. 2021; 218(8): e20210279.

[267]

Zhu G, Xie J, Kong W, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell. 2020; 183(2): 490-502.

[268]

Song H, Song J, Cheng M, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021; 12(1): 5522.

[269]

Sholl J, Sepich-Poore GD, Knight R, Pradeu T. Redrawing therapeutic boundaries: microbiota and cancer. Trends Cancer. 2022; 8(2): 87-97.

[270]

Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2021; 12(5): 426-435.

[271]

Qiu FS, He JQ, Zhong YS, Guo MY, Yu CH. Implications of m6A methylation and microbiota interaction in non-small cell lung cancer: from basics to therapeutics. Front Cell Infect Microbiol. 2022; 12: 972655.

[272]

Waldum H, Gastritis FossmarkR. Gastric polyps and gastric cancer. Int J Mol Sci. 2021; 22(12): 6548.

[273]

Salvatori S, Marafini I, Laudisi F, Monteleone G, Stolfi C. Helicobacter pylori and gastric cancer: pathogenetic mechanisms. Int J Mol Sci. 2023; 24(3): 2895.

[274]

Li H, Lin J, Cheng S, et al. Comprehensive analysis of differences in N6-methyladenosine RNA methylomes in Helicobacter pylori infection. Front Cell Dev Biol. 2023; 11: 1136096.

[275]

Cheng S, Li H, Chi J, et al. FTO-mediated m(6)A modification promotes malignant transformation of gastric mucosal epithelial cells in chronic Cag A(+) Helicobacter pylori infection. J Cancer Res Clin Oncol. 2023; 149(10): 7327-7340.

[276]

Oster P, Vaillant L, Riva E, et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. 2022; 71(3): 457-466.

[277]

Holokai L, Chakrabarti J, Broda T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection. PLOS Pathogens. 2019; 15(1): e1007468.

[278]

Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019; 17(3): 156-166.

[279]

Alon-Maimon T, Mandelboim O, Bachrach G. Fusobacterium nucleatum and cancer. Periodontol 2000. 2022; 89(1): 166-180.

[280]

Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013; 14(2): 207-215.

[281]

Chen S, Zhang L, Li M, et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat Commun. 2022; 13(1): 1248.

[282]

Xu Q, Lu X, Li J, et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 2022; 113(11): 3787-3800.

[283]

Guo S, Chen F, Li L, et al. Intracellular Fusobacterium nucleatum infection increases METTL3-mediated m6A methylation to promote the metastasis of esophageal squamous cell carcinoma. J Adv Res. 2023.

[284]

Gao Y, Zou T, Xu P, et al. Fusobacterium nucleatum stimulates cell proliferation and promotes PD-L1 expression via IFIT1-related signal in colorectal cancer. Neoplasia. 2023; 35: 100850.

[285]

Hatzakis A, Magiorkinis E, Haida C. HBV virological assessment. J Hepatol. 2006; 44(1): S71-S76. Suppl.

[286]

Murata T, Iwahori S, Okuno Y, et al. N6-methyladenosine modification of hepatitis B virus RNA in the Coding Region of HBx. Int J Mol Sci. 2023; 24(3): 2265.

[287]

Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci U S A. 2018; 115(35): 8829-8834.

[288]

Kim GW, Siddiqui A. Hepatitis B virus X protein expression is tightly regulated by N6-methyladenosine modification of its mRNA. J Virol. 2022; 96(4): e0165521.

[289]

Ding WB, Wang MC, Yu J, et al. HBV/pregenomic RNA increases the stemness and promotes the development of HBV-related HCC Through reciprocal regulation with insulin-like growth factor 2 mRNA-binding protein 3. Hepatology. 2021; 74(3): 1480-1495.

[290]

Kim GW, Imam H, Khan M, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology. 2021; 73(2): 533-547.

[291]

Kim GW, Imam H, Siddiqui A. The RNA binding proteins YTHDC1 and FMRP regulate the nuclear export of N(6)-methyladenosine-modified hepatitis B Virus Transcripts and Affect the Viral Life Cycle. J Virol. 2021; 95(13): e0009721.

[292]

Zhang Z, Gao W, Liu Z, et al. Comprehensive analysis of m6A regulators associated with immune infiltration in Hepatitis B virus-related hepatocellular carcinoma. BMC Gastroenterol. 2023; 23(1): 259.

[293]

Zhao T, Qi J, Liu T, Wu H, Zhu Q. N6-methyladenosine modification participates in the progression of hepatitis B virus-related liver fibrosis by regulating immune cell infiltration. Front Med (Lausanne). 2022; 9: 821710.

[294]

Kanda T, Yajima M, Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 2019; 110(4): 1132-1139.

[295]

Xia TL, Li X, Wang X, et al. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep. 2021; 22(4): e50128.

[296]

Bose D, Lin X, Gao L, Wei Z, Pei Y, Robertson ES. Attenuation of IFN signaling due to m(6)A modification of the host epitranscriptome promotes EBV lytic reactivation. J Biomed Sci. 2023; 30(1): 18.

[297]

Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol. 2022; 52: 78-88.

[298]

Zheng X, Wang J, Zhang X, et al. RNA m(6) A methylation regulates virus-host interaction and EBNA2 expression during Epstein-Barr virus infection. Immun Inflamm Dis. 2021; 9(2): 351-362.

[299]

Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 2019; 15(6): e1007796.

[300]

Xiao H, Zhang Y, Sun L, Zhao Z, Liu W, Luo B. EBV downregulates the m(6)A “writer” WTAP in EBV-associated gastric carcinoma. Virus Res. 2021; 304: 198510.

[301]

Liu Z, He J, Han J, Yang J, Liao W, Chen N. m6A regulators mediated methylation modification patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Front Immunol. 2021; 12: 762243.

[302]

Zhang JY, Du Y, Gong LP, et al. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett. 2022; 535: 215646.

[303]

Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010; 117(2): S5-S10. Suppl.

[304]

Roman BR, Aragones A. Epidemiology and incidence of HPV-related cancers of the head and neck. J Surg Oncol. 2021; 124(6): 920-922.

[305]

Araldi RP, Sant’Ana TA, Módolo DG, et al. The human papillomavirus (HPV)-related cancer biology: an overview. Biomed Pharmacother. 2018; 106: 1537-1556.

[306]

Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018; 26(2): 158-168.

[307]

Hu C, Liu T, Han C, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression. Int J Biol Sci. 2022; 18(2): 507-521.

[308]

Wang L, Zhan G, Maimaitiyiming Y, et al. m(6)A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep. 2022; 41(4): 111546.

[309]

Huo FC, Zhu ZM, Du WQ, et al. HPV E7-drived ALKBH5 promotes cervical cancer progression by modulating m6A modification of PAK5. Pharmacol Res. 2023; 195: 106863.

[310]

Gu Z, Liu J, Qin L, et al. WTAP-mediated m6A modification of IFNE is required for antiviral defense in condyloma acuminata. J Dermatol Sci. 2023; 111(2): 43-51.

[311]

Yu R, Wei Y, He C, et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 2022; 18(9): 3874-3887.

[312]

Grossmann KF, Margolin K. Long-term survival as a treatment benchmark in melanoma: latest results and clinical implications. Ther Adv Med Oncol. 2015; 7(3): 181-191.

[313]

Liu Z, Zhong J, Zeng J, et al. Characterization of the m6A-associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 2021; 12: 735170.

[314]

Shriwas O, Mohapatra P, Mohanty S, Dash R. The impact of m6A RNA modification in therapy resistance of cancer: implication in chemotherapy, radiotherapy, and immunotherapy. Front Oncol. 2020; 10: 612337.

[315]

Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020; 20(6): 303-322.

[316]

Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m(6) A methylation in cancer. Mol Oncol. 2023; 17(2): 195-229.

[317]

Mehdi A, Rabbani SA. Role of methylation in pro-and anti-cancer immunity. Cancers (Basel). 2021; 13(3): 545.

[318]

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383(27): 2603-2615.

[319]

Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022; 23(10): e450-e458.

[320]

Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021; 20(1): 41.

[321]

Morse MA, Gwin WR 3rd, Mitchell DA. Vaccine therapies for cancer: then and now. Target Oncol. 2021; 16(2): 121-152.

[322]

Chen J, Chen J, Xu Q. Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng. 2022; 24: 85-109.

[323]

Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005; 23(2): 165-175.

[324]

Kim SC, Sekhon SS, Shin WR, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol. 2022; 18(1): 1-8.

[325]

He PC, Wei J, Dou X, et al. Exon architecture controls mRNA m(6)A suppression and gene expression. Science. 2023; 379(6633): 677-682.

[326]

Peng PH, Hsu KW, Wu KJ. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am J Cancer Res. 2021; 11(8): 3766-3776.

[327]

Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022; 22(4): 239-252.

[328]

Lee JH, Wang R, Xiong F, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell. 2021; 81(16): 3368-3385.

[329]

Patil A, Strom AR, Paulo JA, et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell. 2023.

[330]

Cheng Y, Xie W, Pickering BF, et al. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021; 39(7): 958-972.

[331]

Li J, Chen K, Dong X, et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022; 55(1): e13157.

[332]

Cargill T, Barnes E. Therapeutic vaccination for treatment of chronic hepatitis B. Clin Exp Immunol. 2021; 205(2): 106-118.

[333]

Lee HW, Lee JS, Ahn SH. Hepatitis B Virus Cure: targets and Future Therapies. Int J Mol Sci. 2020; 22(1): 213.

[334]

Patrizia G, Ilaria P, Orazio F, Francesca P. Immunomodulatory role of EV-derived non-coding RNA in lung cancer. Extracell Vesicles Circ Nucl Acids. 2023; 4(1): 59-71.

[335]

Cheng C, Wang P, Yang Y, et al. Smoking-Induced M2-TAMs, via circEML4 in EVs, Promote the progression of NSCLC through ALKBH5-regulated m6A modification of SOCS2 in NSCLC cells. Adv Sci (Weinh). 2023:e2300953.

[336]

You Q, Wang F, Du R, et al. m(6) A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv Mater. 2023; 35(8): e2204910.

[337]

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977.

[338]

Ye Y, Wang M, Wang G, et al. lncRNA miR4458HG modulates hepatocellular carcinoma progression by activating m6A-dependent glycolysis and promoting the polarization of tumor-associated macrophages. Cell Mol Life Sci. 2023; 80(4): 99.

[339]

Xie H, Yao J, Wang Y, Ni B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022; 29(1): 1257-1271.

[340]

Li H, Peng K, Yang K, et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 2022; 12(14): 6422-6436.

[341]

Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022; 19(4): 254-267.

[342]

Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022; 22(3): 174-189.

[343]

Schadendorf D, Fisher DE, Garbe C, et al. Melanoma. Nat Rev Dis Primers. 2015; 1: 15003.

[344]

Tang Q, Chen Y, Li X, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022; 13: 964442.

[345]

Liu L, Liang L, Li H, et al. The role of m6A-mediated PD-1/PD-L1 in antitumor immunity. Biochem Pharmacol. 2023; 210: 115460.

[346]

Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol. 2022; 38(6): 1159-1173.

[347]

Tang W, Xu N, Zhou J, et al. ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022; 8(1): 497.

[348]

Song Z, Wang X, Chen F, et al. LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front Oncol. 2022; 12: 1004212.

[349]

Wang A, Sun Y, Wang X, et al. m(6)A methyltransferase METTL16 mediates immune evasion of colorectal cancer cells via epigenetically regulating PD-L1 expression. Aging (Albany N Y). 2023; 15(16): 8444-8457.

[350]

Qiu X, Yang S, Wang S, et al. M(6)A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res. 2021; 81(18): 4778-4793.

[351]

Yan G, An Y, Xu B, Wang N, Sun X, Sun M. Potential impact of ALKBH5 and YTHDF1 on tumor immunity in colon adenocarcinoma. Front Oncol. 2021; 11: 670490.

[352]

Vesely MD, Zhang T, Chen L. Resistance mechanisms to Anti-PD cancer immunotherapy. Annu Rev Immunol. 2022; 40: 45-74.

[353]

Wang L, Hui H, Agrawal K, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020; 39(20): e104514.

[354]

Yang S, Wei J, Cui YH, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019; 10(1): 2782.

[355]

Zhai J, Chen H, Wong CC, et al. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 2023; 165(2): 445-462.

[356]

Pan Y, Chen H, Zhang X, et al. METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy. Cell Rep Med. 2023; 4(8): 101144.

[357]

Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov. 2021; 20(12): 899-919.

[358]

Han J, Liu Y, Yang S, Wu X, Li H, Wang Q. MEK inhibitors for the treatment of non-small cell lung cancer. J Hematol Oncol. 2021; 14(1): 1.

[359]

Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020; 8(2): e000957.

[360]

Kim D, Lee SA, Moon H, Kim K, Park D. The Tim gene family in efferocytosis. Genes Genomics. 2020; 42(9): 979-986.

[361]

Liu Z, Zheng N, Li J, et al. N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 2022; 65: 100886.

[362]

Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022; 19(4): 237-253.

[363]

Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol. 2015; 33: 139-167.

[364]

Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018; 281(1): 57-61.

[365]

Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol. 2022; 22(10): 614-628.

[366]

Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018; 15(4): 234-248.

[367]

Liu H, Zhao Q, Tan L, et al. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell. 2023; 41(4): 693-710.

[368]

Kurz E, Hirsch CA, Dalton T, et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell. 2022; 40(7): 720-737.

[369]

Wang L, Zhu L, Liang C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 2023.

[370]

Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol. 2020; 11: 176.

[371]

Kalbasi A, Siurala M, Su LL, et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature. 2022; 607(7918): 360-365.

[372]

Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front Immunol. 2022; 13: 927153.

[373]

Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 2023; 22(1): 20.

[374]

Dolton G, Rius C, Wall A, et al. Targeting of multiple tumor-associated antigens by individual T cell receptors during successful cancer immunotherapy. Cell. 2023.

[375]

Huang S, Wang X, Wang Y, et al. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol Cancer. 2023; 22(1): 80.

[376]

Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020; 19(3): 185-199.

[377]

Zhao W, Wu Y, Zhao F, et al. Scoring model based on the signature of non-m6A-related neoantigen-coding lncRNAs assists in immune microenvironment analysis and TCR-neoantigen pair selection in gliomas. J Transl Med. 2022; 20(1): 494.

[378]

Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer. 2020; 19(1): 53.

[379]

Feng G, Wu Y, Hu Y, et al. Small molecule inhibitors targeting m6A regulators. J Hematol Oncol. 2024; 17(1): 30.

[380]

Cully M. Chemical inhibitors make their RNA epigenetic mark. Nat Rev Drug Discov. 2019; 18(12): 892-894.

[381]

Chen Z, Wu L, Zhou J, et al. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics. 2020; 10(8): 3382-3396.

[382]

Wang M, Liu J, Zhao Y, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020; 19(1): 130.

[383]

Yang Z, Zhao F, Gu X, et al. Binding of RNA m6A by IGF2BP3 triggers chemoresistance of HCT8 cells via upregulation of ABCB1. Am J Cancer Res. 2021; 11(4): 1428-1445.

[384]

Zhang X, Su T, Wu Y, et al. N6-methyladenosine reader YTHDF1 promotes stemness and therapeutic resistance in hepatocellular carcinoma by enhancing NOTCH1 expression. Cancer Res. 2024; 84(6): 827-840.

[385]

Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017; 552(7683): 126-131.

[386]

Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021; 593(7860): 597-601.

[387]

Wang L, Yang Q, Zhou Q, et al. METTL3-m6A-EGFR-axis drives lenvatinib resistance in hepatocellular carcinoma. Cancer Lett. 2023; 559: 216122.

[388]

Xu QC, Tien YC, Shi YH, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022; 41(11): 1622-1633.

[389]

Yang Y, Zhang Y, Chen G, et al. KAP1 stabilizes MYCN mRNA and promotes neuroblastoma tumorigenicity by protecting the RNA m(6)A reader YTHDC1 protein degradation. J Exp Clin Cancer Res. 2024; 43(1): 141.

[390]

Pomaville M, Chennakesavalu M, Wang P, et al. Small-molecule inhibition of the METTL3/METTL14 complex suppresses neuroblastoma tumor growth and promotes differentiation. Cell Rep. 2024; 43(5): 114165.

[391]

Zhou J, Zhang H, Zhong K, et al. N6-methyladenosine facilitates mitochondrial fusion of colorectal cancer cells via induction of GSH synthesis and stabilization of OPA1 mRNA. Natl Sci Rev. 2024; 11(3): nwae039.

[392]

Chen Y, He Y, Li Z, et al. METTL3 facilitates renal cell carcinoma progression by PLOD2 m(6)A-methylation under prolonged hypoxia. Cell Death Dis. 2024; 15(1): 62.

[393]

Xuan YF, Lu S, Ou YJ, et al. The combination of methionine adenosyltransferase 2A inhibitor and methyltransferase like 3 inhibitor promotes apoptosis of non-small cell lung cancer cells and produces synergistic anti-tumor activity. Biochem Biophys Res Commun. 2024; 716: 150011.

[394]

Xiao H, Zhao R, Meng W, Liao Y. Effects and translatomics characteristics of a small-molecule inhibitor of METTL3 against non-small cell lung cancer. J Pharm Anal. 2023; 13(6): 625-639.

[395]

Fraser G, Sorlet C, Parmentier N, et al. EP102: pharmacological inhibition of METTL3 elicits tumor growth inhibition in vivo and demonstrates synergy with venetoclax in various AML models. Blood. 2023; 142(1): 2263-2263.

[396]

Dolbois A, Bedi RK, Bochenkova E, et al. 1, 4, 9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J Med Chem. 2021; 64(17): 12738-12760.

[397]

Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019; 35(4): 677-691.

[398]

Huang Y, Xia W, Dong Z, Yang CG. Chemical inhibitors targeting the oncogenic m(6)A modifying proteins. Acc Chem Res. 2023; 56(21): 3010-3022.

[399]

Xiao P, Duan Z, Liu Z, et al. Rational design of RNA demethylase FTO inhibitors with enhanced antileukemia drug-like properties. J Med Chem. 2023; 66(14): 9731-9752.

[400]

Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM. m(6)A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chem Biol. 2021; 16(2): 324-333.

[401]

Huff S, Kummetha IR, Zhang L, et al. Rational design and optimization of m(6)A-RNA demethylase FTO inhibitors as anticancer agents. J Med Chem. 2022; 65(16): 10920-10937.

[402]

Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020; 38(1): 79-96.

[403]

Canaani J, Danylesko I, Shemtov N, et al. A phase II study of bisantrene in patients with relapsed/refractory acute myeloid leukemia. Eur J Haematol. 2021; 106(2): 260-266.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/