Loss-of-function variants in RNA binding motif protein X-linked induce neuronal defects contributing to amyotrophic lateral sclerosis pathogenesis

Di He , Xinyi He , Dongchao Shen , Liyang Liu , Xunzhe Yang , Meng Hao , Yi Wang , Yi Li , Qing Liu , Mingsheng Liu , Jiucun Wang , Xue Zhang , Liying Cui

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e712

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e712 DOI: 10.1002/mco2.712
ORIGINAL ARTICLE

Loss-of-function variants in RNA binding motif protein X-linked induce neuronal defects contributing to amyotrophic lateral sclerosis pathogenesis

Author information +
History +
PDF

Abstract

Despite being one of the most prevalent RNA modifications, the role of N6-methyladenosine (m6A) in amyotrophic lateral sclerosis (ALS) remains ambiguous. In this investigation, we explore the contribution of genetic defects of m6A-related genes to ALS pathogenesis. We scrutinized the mutation landscape of m6A genes through a comprehensive analysis of whole-exome sequencing cohorts, encompassing 508 ALS patients and 1660 population-matched controls. Our findings reveal a noteworthy enrichment of RNA binding motif protein X-linked (RBMX) variants among ALS patients, with a significant correlation between pathogenic m6A variants and adverse clinical outcomes. Furthermore, Rbmx knockdown in NSC-34 cells overexpressing mutant TDP43Q331K results in cell death mediated by an augmented p53 response. Similarly, RBMX knockdown in ALS motor neurons derived from induced pluripotent stem cells (iPSCs) manifests morphological defects and activation of the p53 pathway. Transcriptional analysis using publicly available single-cell sequencing data from the primary motor cortex indicates that RBMX-regulated genes selectively influence excitatory neurons and exhibit enrichment in ALS-implicated pathways. Through integrated analyses, our study underscores the emerging roles played by RBMX in ALS, suggesting a potential nexus between the disease and dysregulated m6A-mediated mRNA metabolism.

Keywords

ALS / m6A modification / RBMX / single-cell sequencing / whole-exome sequencing

Cite this article

Download citation ▾
Di He, Xinyi He, Dongchao Shen, Liyang Liu, Xunzhe Yang, Meng Hao, Yi Wang, Yi Li, Qing Liu, Mingsheng Liu, Jiucun Wang, Xue Zhang, Liying Cui. Loss-of-function variants in RNA binding motif protein X-linked induce neuronal defects contributing to amyotrophic lateral sclerosis pathogenesis. MedComm, 2024, 5(9): e712 DOI:10.1002/mco2.712

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022; 400(10360): 1363-1380.

[2]

Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017; 377(2): 162-172.

[3]

Goutman SA, Hardiman O, Al-Chalabi A, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 2022; 21(5): 480-493.

[4]

Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018; 17(1): 94-102.

[5]

Cook C, Petrucelli L. Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron. 2019; 101(6): 1057-1069.

[6]

Dong S, Yin X, Wang K, et al. Presence of rare variants is associated with poorer survival in Chinese patients with amyotrophic lateral sclerosis. Phenomics. 2023; 3(2): 167-181.

[7]

Goutman SA, Hardiman O, Al-Chalabi A, et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022; 21(5): 465-479.

[8]

Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2016; 18(1): 31-42.

[9]

Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry. 2022; 27(9): 3633-3646.

[10]

He D, Xu Y, Liu M, Cui L. The inflammatory puzzle: piecing together the links between neuroinflammation and amyotrophic lateral sclerosis. Aging Dis. 2023 15(1): 96-114.

[11]

Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation. Trends Genet. 2020; 36(1): 44-52.

[12]

Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169(7): 1187-1200.

[13]

Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018; 28(6): 616-624.

[14]

Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019; 20(10): 608-624.

[15]

Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020; 21(1): 36-51.

[16]

Zhao J, Xu H, Su Y, et al. Emerging regulatory mechanisms of N6-methyladenosine modification in cancer metastasis. Phenomics. 2022; 3(1): 83-100.

[17]

He D, Yang X, Liu L, et al. Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis. Front Med. 2024; 18(2): 285-302.

[18]

Xiong X, Hou L, Park YP, et al. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet. 2021; 53(8): 1156-1165.

[19]

Pineda SS, Lee H, Fitzwalter BE, et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRvix. 2021. doi:10.1101/2021.07.07.451374

[20]

Cai T, Cinkornpumin JK, Yu Z, Villarreal OD, Pastor WA, Richard S. Deletion of RBMX RGG/RG motif in Shashi-XLID syndrome leads to aberrant p53 activation and neuronal differentiation defects. Cell Rep. 2021; 36(2): 109337.

[21]

Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017; 45(10): 6051-6063.

[22]

Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol Cell. 2019; 76(1): 70-81.

[23]

Shashi V, Xie P, Schoch K, et al. The RBMX gene as a candidate for the Shashi X-linked intellectual disability syndrome. Clin Genet. 2015; 88(4): 386-390.

[24]

Johansson J, Lidéus S, Frykholm C, et al. Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Eur J Hum Genet. 2024; 32(3): 333-341.

[25]

Hofmann Y, Wirth B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-β1. Hum Mol Genet. 2002; 11(17): 2037-2049.

[26]

Moisse M, Zwamborn RAJ, Vugt J, et al. The effect of <scp>SMN </scp>gene dosage on <scp>ALS</scp>risk and disease severity. Ann Neurol. 2021; 89(4): 686-697. doi:10.1002/ana.26009

[27]

Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res. 2018; 46(W1): W60-W64.

[28]

Moursy A, Allain FHT, Cléry A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014; 42(10): 6659-6672.

[29]

Bao X, Zhang Y, Li H, et al. RM2Target: a comprehensive database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids Res. 2022; 22(3): 1-11. doi:10.1093/nar/gkac945

[30]

Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 2017; 95(4): 808-816.

[31]

Li Q, Feng Y, Xue Y, et al. Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells. Mol Neurodegener. 2022; 17(1): 1-18.

[32]

Petrozziello T, Secondo A, Tedeschi V, et al. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway. Cell Death Differ. 2017; 24(3): 511-522.

[33]

Holstege H, Hulsman M, Charbonnier C, et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat Genet. 2022; 54(12): 1786-1794. doi:10.1038/s41588-022-01208-7

[34]

Broce I, Karch CM, Wen N, et al. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLOS Med. 2018; 15(1): e1002487.

[35]

Liu J, Gao M, Xu S, et al. YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways. Cell Rep. 2020; 32(10): 108120.

[36]

Jin S, Li M, Chang H, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKϵ/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 2022; 21(1): 1-19.

[37]

Panneerdoss S, Eedunuri VK, Yadav P, et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv. 2018; 4(10).

[38]

Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP43 repression is compromised in ALS-FTD. Science (80-). 2015; 2(6248): 650-655. doi:10.1126/science.aab0983.TDP-43

[39]

Qamar S, Wang GZ, Randle SJ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell. 2018; 173(3): 720-734. e15.

[40]

Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015; 162(5): 1066-1077.

[41]

Tank EM, Figueroa-Romero C, Hinder LM, et al. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun. 2018; 9(1): 2845.

[42]

Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015; 347(6225): 1002-1006.

[43]

McMillan M, Gomez N, Hsieh C, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell. 2023; 83(2): 219-236.e7.

[44]

Li Y, Dou X, Liu J, et al. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci. 2023; 26(8): 1328-1338.

[45]

Dermentzaki G, Furlan M, Tanaka I, et al. Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration. Cell Rep. 2024; 43(4): 113999.

[46]

Fontana A, Marin B, Luna J, et al. Time-trend evolution and determinants of sex ratio in amyotrophic lateral sclerosis: a dose–response meta-analysis. J Neurol. 2021; 268(8): 2973-2984.

[47]

Pfohl SR, Halicek MT, Mitchell CS. Characterization of the contribution of genetic background and gender to disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: a meta-analysis. J Neuromuscul Dis. 2015; 2(2): 137-150.

[48]

Hayes-Punzo A, Mulcrone P, Meyer M, Mchugh J, Svendsen CN, Suzuki M. Gonadectomy and dehydroepiandrosterone (DHEA) do not modulate disease progression in the G93A mutant SOD1 rat model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012; 13(3): 311-314.

[49]

Chiò A, Moglia C, Canosa A, et al. ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurology. 2020; 94(8): e802-e810.

[50]

Nihei K, McKee AC, Kowall NW. Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol. 1993; 86(1): 55-64.

[51]

King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. Excitotoxicity in ALS: overstimulation, or overreaction? Exp Neurol. 2016; 275: 162-171.

[52]

Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: diagnostic and pathogenic biomarker of ALS. Neurosci Lett. 2021; 759: 136039.

[53]

Lamanauskas N, Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur J Neurosci. 2008; 27(10): 2501-2514.

[54]

Zhu L, Li Y, Xie X, et al. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol. 2019; 21: 1604-1614.

[55]

Gerbino V, Kaunga E, Ye J, et al. The loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice. Neuron. 2020; 106(5): 789-805.e5.

[56]

Harding O, Evans CS, Ye J, Cheung J, Maniatis T, Holzbaur ELF. ALS-and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy. Proc Natl Acad Sci U S A. 2021; 118(24): e2025053118.

[57]

Shao W, Todd TW, Wu Y, et al. Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science (80-). 2022; 378(6615): 94-99.

[58]

Lu Y, Almeida S, Gao F-B. TBK1 haploinsufficiency in ALS and FTD compromises membrane trafficking. Acta Neuropathol. 2021; 142(1): 217-221.

[59]

Dunker W, Ye X, Zhao Y, Liu L, Richardson A, Karijolich J. TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response. Cell Rep. 2021; 35(2): 108976.

[60]

Zhao W, Beers DR, Bell S, et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol. 2015; 273: 24-35.

[61]

Hao M, Pu W, Li Y, et al. The HuaBiao project: whole-exome sequencing of 5000 Han Chinese individuals. J Genet Genomics. 2021; 48(11): 1032-1035.

[62]

He D, Shang L, Liu Q, et al. Association of apolipoprotein E ϵ4 allele and amyotrophic lateral sclerosis in Chinese population. Amyotroph Lateral Scler Front Degener. 2022; 23(5–6): 399-406.

[63]

Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol. 2020; 21(5): 501-512.

[64]

Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018; 28(11): 1747-1756.

[65]

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405-424.

[66]

Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017; 100(2): 267-280.

[67]

Pool M, Thiemann J, Bar-Or A, Fournier AE. NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods. 2008; 168(1): 134-139.

[68]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 1-21.

[69]

Shen S, Park JW, Lu ZX, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014; 111(51): E5593-E5601.

[70]

Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13): 3573-3587. e29.

[71]

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011; 89(1): 82-93.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/