Dendritic Cells: Origin, Classification, Development, Biological Functions, and Therapeutic Potential

Fangfang Jin , Lingxiang Xie , Hongqi Zhang , Xiang Fan , Jiaxing Tian , Wei Liu , Yang Xiao , Xinrong Fan

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70455

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70455 DOI: 10.1002/mco2.70455
REVIEW

Dendritic Cells: Origin, Classification, Development, Biological Functions, and Therapeutic Potential

Author information +
History +
PDF

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play a central role in regulating immune responses by linking innate and adaptive immunity. In recent decades, substantial progress has been made in understanding the development, classification, and diverse functions of DCs. However, a comprehensive overview integrating recent advances in the biology and therapeutic targeting of DCs remains lacking. This review systematically summarizes the origin, developmental pathways, and subset heterogeneity of DCs, including classical type 1 and 2 DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. Moreover, it further details the core biological functions of DCs, including antigen capture, migration, and maturation; antigen presentation; activation of adaptive immunity; induction of immune tolerance; and modulation of innate immune responses. The pathological roles of DCs in diseases such as cancer, diabetes, and infectious diseases are discussed, highlighting emerging DC-based therapeutic strategies. Importantly, this review provides a summary of both preclinical studies and clinical trials involving DC-targeted therapies, offering a translational perspective. This work aims to deepen the understanding of DC immunobiology and to provide a valuable foundation for the development of novel DC-based immunotherapies.

Keywords

biological functions / classification / dendritic cells / development / origin / therapeutic potential

Cite this article

Download citation ▾
Fangfang Jin, Lingxiang Xie, Hongqi Zhang, Xiang Fan, Jiaxing Tian, Wei Liu, Yang Xiao, Xinrong Fan. Dendritic Cells: Origin, Classification, Development, Biological Functions, and Therapeutic Potential. MedComm, 2025, 6(11): e70455 DOI:10.1002/mco2.70455

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Collin and F. Ginhoux, “Human Dendritic Cells,” Seminars in Cell & Developmental Biology 86 (2019): 1-2.

[2]

G. P. Linette and B. M. Carreno, “On the Twentieth Anniversary of Dendritic Cell Vaccines—Riding the Next Wave,” Cancer Research 82 (2022): 966-968.

[3]

J. Zhou, L. Zhao, L. Liu, et al., “The Emerging Mechanisms and Therapeutic Potentials of Dendritic Cells in NSCLC,” Journal of Inflammation Research 18 (2025): 5061-5076.

[4]

A. Mildner and S. Jung, “Development and Function of Dendritic Cell Subsets,” Immunity 40 (2014): 642-656.

[5]

L. Castiello, M. Sabatino, P. Jin, et al., “Monocyte-derived DC Maturation Strategies and Related Pathways: A Transcriptional View,” Cancer Immunology, Immunotherapy 60 (2011): 457-466.

[6]

R. Miao, V. Y. Lim, N. Kothapalli, et al., “Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory,” Frontiers in Immunology 11 (2020): 600127.

[7]

Y. Zhu, P. Cai, Z. Li, et al., “Transcription Factors TCF4 and KLF4 Respectively Control the Development of the DC2A and DC2B Lineages,” Nature Immunology 26, no. 8 (2025): 1275-1286.

[8]

M. Kanayama, Y. Izumi, N. Onai, T. Akashi, Y. Hiraoka, and T. Ohteki, “Diverse Developmental Pathways of Lymphoid Conventional Dendritic Cells With Distinct Tissue Distribution and Function,” Science Advances 11 (2025): eadt4909.

[9]

J. A. Villadangos and P. Schnorrer, “Intrinsic and Cooperative Antigen-presenting Functions of Dendritic-cell Subsets in Vivo,” Nature Reviews Immunology 7 (2007): 543-555.

[10]

J. Villar and E. Segura, “Decoding the Heterogeneity of human Dendritic Cell Subsets,” Trends in Immunology 41 (2020): 1062-1071.

[11]

M. Cabeza-Cabrerizo, A. Cardoso, C. M. Minutti, M. Pereira da Costa, and C. Reis e Sousa, “Dendritic Cells Revisited,” Annual Review of Immunology 39 (2021): 131-166.

[12]

I. Mellman, “Dendritic Cells: Master Regulators of the Immune Response,” Cancer Immunology Research 1 (2013): 145-149.

[13]

J. Fucikova, L. Palova-Jelinkova, J. Bartunkova, and R. Spisek, “Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications,” Frontiers in Immunology 10 (2019): 2393.

[14]

M. A. Degli-Esposti and M. J. Smyth, “Close Encounters of Different Kinds: Dendritic Cells and NK Cells Take Centre Stage,” Nature Reviews Immunology 5 (2005): 112-124.

[15]

L. Zhao and X. Yang, “Cross Talk between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections,” Frontiers in Immunology 13 (2022): 837767.

[16]

J. Bandola-Simon and P. A. Roche, “Dysfunction of Antigen Processing and Presentation by Dendritic Cells in Cancer,” Molecular Immunology 113 (2019): 31-37.

[17]

F. Coutant and P. Miossec, “Altered Dendritic Cell Functions in Autoimmune Diseases: Distinct and Overlapping Profiles,” Nature Reviews Rheumatology 12 (2016): 703-715.

[18]

X. Du, M. Li, C. Huan, and G. Lv, “Dendritic Cells in Liver Transplantation Immune Response,” Frontiers in Cell and Developmental Biology 11 (2023): 1277743.

[19]

C. Ngo, C. Garrec, E. Tomasello, and M. Dalod, “The Role of Plasmacytoid Dendritic Cells (pDCs) in Immunity During Viral Infections and Beyond,” Cellular & Molecular Immunology 21 (2024): 1008-1035.

[20]

S. A. Sadeghi Najafabadi, A. Bolhassani, and M. R. Aghasadeghi, “Tumor Cell-based Vaccine: An Effective Strategy for Eradication of Cancer Cells,” Immunotherapy 14 (2022): 639-654.

[21]

L.-B. Jeng, L.-Y. Liao, F.-Y. Shih, and C.-F. Teng, “Dendritic-cell-vaccine-based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies,” Cancers 14 (2022): 4380.

[22]

A. Moreau, D. Kervella, L. Bouchet-Delbos, et al., “A Phase I/IIa Study of Autologous Tolerogenic Dendritic Cells Immunotherapy in Kidney Transplant Recipients,” Kidney International 103 (2023): 627-637.

[23]

T. Nikolic, J. S. Suwandi, J. Wesselius, et al., “Tolerogenic Dendritic Cells Pulsed With Islet Antigen Induce Long-term Reduction in T-cell Autoreactivity in Type 1 Diabetes Patients,” Frontiers in Immunology 13 (2022): 1054968.

[24]

D. M. Abram, L. G. R. Fernandes, A. C. S. Ramos Filho, and P. U. Simioni, “The Modulation of Enzyme Indoleamine 2,3-dioxygenase From Dendritic Cells for the Treatment of Type 1 Diabetes Mellitus,” Drug Design, Development and Therapy 11 (2017): 2171-2178.

[25]

Y. Pastor, N. Ghazzaui, A. Hammoudi, M. Centlivre, S. Cardinaud, and Y. Levy, “Refining the DC-targeting Vaccination for Preventing Emerging Infectious Diseases,” Frontiers in Immunology 13 (2022): 949779.

[26]

P. N. Fries and P. J. Griebel, “Mucosal Dendritic Cell Diversity in the Gastrointestinal Tract,” Cell and Tissue Research 343 (2011): 33-41.

[27]

R. M. Steinman and Z. A. Cohn, “Identification of a Novel Cell Type in Peripheral Lymphoid Organs of Mice. I. Morphology, Quantitation, Tissue Distribution,” The Journal of Experimental Medicine 137 (1973): 1142-1162.

[28]

R. M. Steinman and Z. A. Cohn, “Identification of a Novel Cell Type in Peripheral Lymphoid Organs of Mice. II. Functional Properties in Vitro,” The Journal of Experimental Medicine 139 (1974): 380-397.

[29]

R. M. Steinman and M. D. Witmer, “Lymphoid Dendritic Cells Are Potent Stimulators of the Primary Mixed Leukocyte Reaction in Mice,” Proceedings of the National Academy of Sciences of the United States of America 75 (1978): 5132-5136.

[30]

K. Shortman and W. R. Heath, “The CD8+ Dendritic Cell Subset,” Immunological Reviews 234 (2010): 18-31.

[31]

G. Schuler, N. Romani, and R. M. Steinman, “A Comparison of Murine Epidermal Langerhans Cells With Spleen Dendritic Cells,” The Journal of Investigative Dermatology 85 (1985): 99s-106s.

[32]

M. Colonna, G. Trinchieri, and Y. J. Liu, “Plasmacytoid Dendritic Cells in Immunity,” Nature Immunology 5 (2004): 1219-1226.

[33]

K. Inaba, M. Inaba, N. Romani, et al., “Generation of Large Numbers of Dendritic Cells From Mouse Bone Marrow Cultures Supplemented With Granulocyte/Macrophage Colony-stimulating Factor,” The Journal of Experimental Medicine 176 (1992): 1693-1702.

[34]

M. S. Labeur, B. Roters, B. Pers, et al., “Generation of Tumor Immunity by Bone Marrow-derived Dendritic Cells Correlates With Dendritic Cell Maturation Stage,” Journal of Immunology (Baltimore, Md: 1950) 162 (1999): 168-175.

[35]

F. Geissmann, S. Jung, and D. R. Littman, “Blood Monocytes Consist of Two Principal Subsets With Distinct Migratory Properties,” Immunity 19 (2003): 71-82.

[36]

T. Gardner, B. Elzey, and N. M. Hahn, “Sipuleucel-T (Provenge) Autologous Vaccine Approved for Treatment of Men With Asymptomatic or Minimally Symptomatic Castrate-resistant Metastatic Prostate Cancer,” Human Vaccines & Immunotherapeutics 8 (2012): 534-539.

[37]

J. M. Lee, M. H. Lee, E. Garon, et al., “Phase I Trial of Intratumoral Injection of CCL21 Gene-Modified Dendritic Cells in Lung Cancer Elicits Tumor-Specific Immune Responses and CD8(+) T-cell Infiltration,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 23 (2017): 4556-4568.

[38]

S. Wang, Y. Yang, P. Ma, et al., “CAR-macrophage: An Extensive Immune Enhancer to Fight Cancer,” EBioMedicine 76 (2022): 103873.

[39]

C. M. Minutti, C. Piot, M. Pereira da Costa, et al., “Distinct Ontogenetic Lineages Dictate cDC2 Heterogeneity,” Nature Immunology 25 (2024): 448-461.

[40]

F. F. Rosa, C. F. Pires, I. Kurochkin, et al., “Single-cell Transcriptional Profiling Informs Efficient Reprogramming of human Somatic Cells to Cross-presenting Dendritic Cells,” Science Immunology 7 (2022): eabg5539.

[41]

Y. Zhang, Q. Mao, Q. Xia, et al., “Noncoding RNAs Link Metabolic Reprogramming to Immune Microenvironment in Cancers,” Journal of Hematology & Oncology 14 (2021): 169.

[42]

S. S. Aghamiri, B. L. Puniya, R. Amin, and T. Helikar, “A Multiscale Mechanistic Model of human Dendritic Cells for in-silico Investigation of Immune Responses and Novel Therapeutics Discovery,” Frontiers in Immunology 14 (2023): 1112985.

[43]

R. J. Lim, R. Salehi-Rad, L. M. Tran, et al., “CXCL9/10-engineered Dendritic Cells Promote T Cell Activation and Enhance Immune Checkpoint Blockade for Lung Cancer,” Cell Reports Medicine 5 (2024): 101479.

[44]

Y. Mohammadzadeh and M. De Palma, “Boosting Dendritic Cell Nanovaccines,” Nature Nanotechnology 17 (2022): 442-444.

[45]

H. Parhiz, E. N. Atochina-Vasserman, and D. Weissman, “mRNA-based Therapeutics: Looking Beyond COVID-19 Vaccines,” Lancet 403 (2024): 1192-1204.

[46]

S. Zanotta, D. Galati, R. De Filippi, and A. Pinto, “Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies,” International Journal of Molecular Sciences 25, no. 14 (2024): 7509.

[47]

P. D. Katsikis, K. J. Ishii, and C. Schliehe, “Challenges in Developing Personalized Neoantigen Cancer Vaccines,” Nature Reviews Immunology 24 (2024): 213-227.

[48]

E. Ascic, F. Åkerström, M. Sreekumar Nair, et al., “In Vivo Dendritic Cell Reprogramming for Cancer Immunotherapy,” Science 386 (2024): eadn9083.

[49]

D. A. Anderson, C. A. Dutertre, F. Ginhoux, and K. M. Murphy, “Genetic Models of human and Mouse Dendritic Cell Development and Function,” Nature Reviews Immunology 21 (2021): 101-115.

[50]

S. M. Schlenner, V. Madan, K. Busch, et al., “Fate Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in the thymus,” Immunity 32 (2010): 426-436.

[51]

J. Loschko, G. J. Rieke, H. A. Schreiber, et al., “Inducible Targeting of cDCs and Their Subsets in Vivo,” Journal of Immunological Methods 434 (2016): 32-38.

[52]

N. Onai, K. Kurabayashi, M. Hosoi-Amaike, et al., “A Clonogenic Progenitor With Prominent Plasmacytoid Dendritic Cell Developmental Potential,” Immunity 38 (2013): 943-957.

[53]

B. Reizis, J. Idoyaga, M. Dalod, et al., “Reclassification of Plasmacytoid Dendritic Cells as Innate Lymphocytes Is Premature,” Nature Reviews Immunology 23 (2023): 336-337.

[54]

P. Sathe, D. Vremec, L. Wu, L. Corcoran, and K. Shortman, “Convergent Differentiation: Myeloid and Lymphoid Pathways to Murine Plasmacytoid Dendritic Cells,” Blood 121 (2013): 11-19.

[55]

B. Reizis, “Plasmacytoid Dendritic Cells: Development, Regulation, and Function,” Immunity 50 (2019): 37-50.

[56]

S. M. Parigi, P. Czarnewski, S. Das, et al., “Flt3 ligand Expands Bona Fide Innate Lymphoid Cell Precursors in Vivo,” Scientific Reports 8 (2018): 154.

[57]

A. Baerenwaldt, N. von Burg, M. Kreuzaler, et al., “Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice,” Journal of Immunology (Baltimore, Md: 1950) 196 (2016): 2561-2571.

[58]

A. L. Blasius, W. Barchet, M. Cella, and M. Colonna, “Development and Function of Murine B220+CD11c+NK1.1+ Cells Identify Them as a Subset of NK Cells,” The Journal of Experimental Medicine 204 (2007): 2561-2568.

[59]

R. Arroyo Hornero and J. Idoyaga, “Plasmacytoid Dendritic Cells: A Dendritic Cell in Disguise,” Molecular Immunology 159 (2023): 38-45.

[60]

C. Cheong, I. Matos, J. H. Choi, et al., “Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209(+) Dendritic Cells for Immune T Cell Areas,” Cell 143 (2010): 416-429.

[61]

S. I. Katz, K. Tamaki, and D. H. Sachs, “Epidermal Langerhans Cells Are Derived From Cells Originating in Bone Marrow,” Nature 282 (1979): 324-326.

[62]

M. Collin and P. Milne, “Langerhans Cell Origin and Regulation,” Current Opinion in Hematology 23 (2016): 28-35.

[63]

F. Ginhoux and S. Jung, “Monocytes and Macrophages: Developmental Pathways and Tissue Homeostasis,” Nature Reviews Immunology 14 (2014): 392-404.

[64]

G. Hoeffel, J. Chen, Y. Lavin, et al., “C-Myb(+) Erythro-myeloid Progenitor-derived Fetal Monocytes Give Rise to Adult Tissue-resident Macrophages,” Immunity 42 (2015): 665-678.

[65]

M. Otsuka, G. Egawa, and K. Kabashima, “Uncovering the Mysteries of Langerhans Cells, Inflammatory Dendritic Epidermal Cells, and Monocyte-Derived Langerhans Cell-Like Cells in the Epidermis,” Frontiers in Immunology 9 (2018): 1768.

[66]

N. Li, J. Mao, H. Tang, et al., “FLT3 ligand Regulates Expansion of Regulatory T-cells Induced by Regulatory Dendritic Cells Isolated From Gut-associated Lymphoid Tissues Through the Notch Pathway,” Chinese Medical Journal 138 (2025): 1595-1606.

[67]

K. R. Wilson, J. A. Villadangos, and J. D. Mintern, “Dendritic Cell Flt3 - regulation, Roles and Repercussions for Immunotherapy,” Immunology and Cell Biology 99 (2021): 962-971.

[68]

F. J. Cueto and D. Sancho, “The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy,” Cancers 13, no. 7 (2021): 1525.

[69]

S. Schlaweck, A. Radcke, S. Kampmann, B. V. Becker, P. Brossart, and A. Heine, “The Immunomodulatory Effect of Different FLT3 Inhibitors on Dendritic Cells,” Cancers 16, no. 21 (2024): 3719.

[70]

D. S. Lin, L. Tian, S. Tomei, et al., “Single-cell Analyses Reveal the Clonal and Molecular Aetiology of Flt3L-induced Emergency Dendritic Cell Development,” Nature Cell Biology 23 (2021): 219-231.

[71]

Y. R. Na, D. Jung, G. J. Gu, and S. H. Seok, “GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages,” Molecules and Cells 39 (2016): 734-741.

[72]

S. H. Ryu, H. S. Shin, H. H. Eum, et al., “Granulocyte Macrophage-Colony Stimulating Factor Produces a Splenic Subset of Monocyte-Derived Dendritic Cells That Efficiently Polarize T Helper Type 2 Cells in Response to Blood-Borne Antigen,” Frontiers in Immunology 12 (2021): 767037.

[73]

L. Becker, N. C. Liu, M. M. Averill, et al., “Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells,” PLoS ONE 7 (2012): e33297.

[74]

C. Caux, C. Dezutter-Dambuyant, D. Schmitt, and J. Banchereau, “GM-CSF and TNF-alpha Cooperate in the Generation of Dendritic Langerhans Cells,” Nature 360 (1992): 258-261.

[75]

N. Mossadegh-Keller, S. Sarrazin, P. K. Kandalla, et al., “M-CSF Instructs Myeloid Lineage Fate in Single Haematopoietic Stem Cells,” Nature 497 (2013): 239-243.

[76]

C. L. Yao and T. Y. Tseng, “The Synergistic and Enhancive Effects of IL-6 and M-CSF to Expand and Differentiate Functional Dendritic Cells From human Monocytes Under Serum-free Condition,” Journal of Biological Engineering 17 (2023): 6.

[77]

J. Villar, A. Coillard, C. van Roessel, and E. Segura, “Culture System Allowing the Simultaneous Differentiation of Human Monocytes Into Dendritic Cells and Macrophages Using M-CSF, IL-4, and TNF-α,” Methods in Molecular Biology (Clifton, NJ) 2618 (2023): 147-154.

[78]

J. Schönheit, C. Kuhl, M. L. Gebhardt, et al., “PU.1 Level-directed Chromatin Structure Remodeling at the Irf8 Gene Drives Dendritic Cell Commitment,” Cell Reports 3 (2013): 1617-1628.

[79]

K. Murakami, H. Sasaki, A. Nishiyama, et al., “A RUNX-CBFβ-driven Enhancer Directs the Irf8 Dose-dependent Lineage Choice Between DCs and Monocytes,” Nature Immunology 22 (2021): 301-311.

[80]

P. Bagadia, X. Huang, T. T. Liu, et al., “An Nfil3-Zeb2-Id2 Pathway Imposes Irf8 Enhancer Switching During cDC1 Development,” Nature Immunology 20 (2019): 1174-1185.

[81]

S. Zhang, H. D. Coughlan, M. Ashayeripanah, et al., “Type 1 Conventional Dendritic Cell Fate and Function Are Controlled by DC-SCRIPT,” Science Immunology 6 (2021): eabf4432.

[82]

G. E. Grajales-Reyes, A. Iwata, J. Albring, et al., “Batf3 maintains Autoactivation of Irf8 for Commitment of a CD8α(+) Conventional DC Clonogenic Progenitor,” Nature Immunology 16 (2015): 708-717.

[83]

D. Sichien, C. L. Scott, L. Martens, et al., “IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively,” Immunity 45 (2016): 626-640.

[84]

L. T. Grajkowska, M. Ceribelli, C. M. Lau, et al., “Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification,” Immunity 46 (2017): 65-77.

[85]

H. S. Ghosh, M. Ceribelli, I. Matos, et al., “ETO family Protein Mtg16 Regulates the Balance of Dendritic Cell Subsets by Repressing Id2,” The Journal of Experimental Medicine 211 (2014): 1623-1635.

[86]

S. Zhang, C. Audiger, M. Chopin, and S. L. Nutt, “Transcriptional Regulation of Dendritic Cell Development and Function,” Frontiers in Immunology 14 (2023): 1182553.

[87]

T. T. Liu, S. Kim, P. Desai, et al., “Ablation of cDC2 Development by Triple Mutations Within the Zeb2 Enhancer,” Nature 607 (2022): 142-148.

[88]

S. Carotta, L. Wu, and S. L. Nutt, “Surprising New Roles for PU.1 in the Adaptive Immune Response,” Immunological Reviews 238 (2010): 63-75.

[89]

M. Chopin, A. T. Lun, Y. Zhan, et al., “Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT,” Immunity 50 (2019): 77-90.e5.

[90]

G. C. Ippolito, J. D. Dekker, Y. H. Wang, et al., “Dendritic Cell Fate Is Determined by BCL11A,” Proceedings of the National Academy of Sciences of the United States of America 111 (2014): E998-E1006.

[91]

Y. Bakri, S. Sarrazin, U. P. Mayer, et al., “Balance of MafB and PU.1 Specifies Alternative Macrophage or Dendritic Cell Fate,” Blood 105 (2005): 2707-2716.

[92]

C. Goudot, A. Coillard, A. C. Villani, et al., “Aryl Hydrocarbon Receptor Controls Monocyte Differentiation Into Dendritic Cells versus Macrophages,” Immunity 47 (2017): 582-596.e6.

[93]

I. Sasaki, K. Hoshino, T. Sugiyama, et al., “Spi-B Is Critical for Plasmacytoid Dendritic Cell Function and Development,” Blood 120 (2012): 4733-4743.

[94]

J. U. Mayer, K. L. Hilligan, J. S. Chandler, et al., “Homeostatic IL-13 in Healthy Skin Directs Dendritic Cell Differentiation to Promote T(H)2 and Inhibit T(H)17 Cell Polarization,” Nature Immunology 22 (2021): 1538-1550.

[95]

R. Tussiwand, B. Everts, G. E. Grajales-Reyes, et al., “Klf4 expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses,” Immunity 42 (2015): 916-928.

[96]

R. Tussiwand and E. L. Gautier, “Transcriptional Regulation of Mononuclear Phagocyte Development,” Frontiers in Immunology 6 (2015): 533.

[97]

C. M. Sawai, V. Sisirak, H. S. Ghosh, et al., “Transcription Factor Runx2 Controls the Development and Migration of Plasmacytoid Dendritic Cells,” The Journal of Experimental Medicine 210 (2013): 2151-2159.

[98]

M. Chopin, S. P. Preston, A. T. L. Lun, et al., “RUNX2 Mediates Plasmacytoid Dendritic Cell Egress From the Bone Marrow and Controls Viral Immunity,” Cell Reports 15 (2016): 866-878.

[99]

O. Zimmermannova, A. G. Ferreira, E. Ascic, et al., “Restoring Tumor Immunogenicity With Dendritic Cell Reprogramming,” Science Immunology 8 (2023): eadd4817.

[100]

S. Kim, J. Chen, S. Jo, et al., “IL-6 Selectively Suppresses cDC1 Specification via C/EBPβ,” The Journal of Experimental Medicine 220, no. 10 (2023): e20221757.

[101]

J. P. Böttcher and C. Reis e Sousa, “The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity,” Trends in Cancer 4 (2018): 784-792.

[102]

S. Zhang, M. Chopin, and S. L. Nutt, “Type 1 Conventional Dendritic Cells: Ontogeny, Function, and Emerging Roles in Cancer Immunotherapy,” Trends in Immunology 42 (2021): 1113-1127.

[103]

C. R. Perez and M. De Palma, “Engineering Dendritic Cell Vaccines to Improve Cancer Immunotherapy,” Nature Communications 10 (2019): 5408.

[104]

M. Shen, X. Jiang, Q. Peng, et al., “The cGAS‒STING Pathway in Cancer Immunity: Mechanisms, Challenges, and Therapeutic Implications,” Journal of Hematology & Oncology 18 (2025): 40.

[105]

L. I. L. Rodriguez, R. Amadio, G. M. Piperno, and F. Benvenuti, “Tissue-specific Properties of Type 1 Dendritic Cells in Lung Cancer: Implications for Immunotherapy,” Journal for Immunotherapy of Cancer 13, no. 3 (2025): e010547.

[106]

X. Zhang, M. Artola-Boran, A. Fallegger, et al., “IRF4 Expression Is Required for the Immunoregulatory Activity of Conventional Type 2 Dendritic Cells in Settings of Chronic Bacterial Infection and Cancer,” Journal of Immunology (Baltimore, Md: 1950) 205 (2020): 1933-1943.

[107]

L. Cyran, J. Serfling, L. Kirschner, et al., “Flt3L, LIF, and IL-10 Combination Promotes the Selective in Vitro Development of ESAM(low) cDC2B From Murine Bone Marrow,” European Journal of Immunology 52 (2022): 1946-1960.

[108]

C. M. Minutti, C. Piot, M. Pereira da Costa, et al., “Distinct Ontogenetic Lineages Dictate cDC2 Heterogeneity,” Nature Immunology 25 (2024): 448-461.

[109]

M. Collin and V. Bigley, “Human Dendritic Cell Subsets: An Update,” Immunology 154 (2018): 3-20.

[110]

I. M. Leal Rojas, W. H. Mok, F. E. Pearson, et al., “Human Blood CD1c(+) Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4(+) T Cells,” Frontiers in Immunology 8 (2017): 971.

[111]

J. Cuenca-Escalona, G. Flórez-Grau, K. van den Dries, A. Cambi, and I. J. M. de Vries, “PGE2-EP4 signaling Steers cDC2 Maturation Toward the Induction of Suppressive T-cell Responses,” European Journal of Immunology 54 (2024): e2350770.

[112]

K. L. Hilligan and F. Ronchese, “Antigen Presentation by Dendritic Cells and Their Instruction of CD4+ T Helper Cell Responses,” Cellular & Molecular Immunology 17 (2020): 587-599.

[113]

Y. Saito, S. Komori, T. Kotani, Y. Murata, and T. Matozaki, “The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity,” Cancers (Basel) 14, no. 8 (2022): 1976.

[114]

F. Venegas-Solis, L. Staliunaite, E. Rudolph, et al., “A Type I Interferon Regulatory Network for human Plasmacytoid Dendritic Cells Based on heparin, Membrane-bound and Soluble BDCA-2,” Proceedings of the National Academy of Sciences of the United States of America 121 (2024): e2312404121.

[115]

M. Bérouti, K. Lammens, M. Heiss, et al., “Lysosomal Endonuclease RNase T2 and PLD Exonucleases Cooperatively Generate RNA Ligands for TLR7 Activation,” Immunity 57 (2024): 1482-1496.e8.

[116]

L. K. M. Lam, S. Murphy, D. Kokkinaki, et al., “DNA Binding to TLR9 Expressed by Red Blood Cells Promotes Innate Immune Activation and Anemia,” Science Translational Medicine 13 (2021): eabj1008.

[117]

M. Swiecki and M. Colonna, “The Multifaceted Biology of Plasmacytoid Dendritic Cells,” Nature Reviews Immunology 15 (2015): 471-485.

[118]

N. V. Serbina, T. P. Salazar-Mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer, “TNF/iNOS-producing Dendritic Cells Mediate Innate Immune Defense Against Bacterial Infection,” Immunity 19 (2003): 59-70.

[119]

M. Y. Zanna, A. R. Yasmin, A. R. Omar, et al., “Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species,” International Journal of Molecular Sciences 22, no. 15 (2021): 8044.

[120]

E. Segura and S. Amigorena, “Identification of human Inflammatory Dendritic Cells,” Oncoimmunology 2 (2013): e23851.

[121]

S. Soltani, M. Mahmoudi, and E. Farhadi, “Dendritic Cells Currently Under the Spotlight; Classification and Subset Based Upon New Markers,” Immunological Investigations 50 (2021): 646-661.

[122]

N. C. Wilcox, G. Taheri, K. Halievski, S. Talbot, J. R. Silva, and N. Ghasemlou, “Interactions Between Skin-resident Dendritic and Langerhans Cells and Pain-sensing Neurons,” The Journal of Allergy and Clinical Immunology 154 (2024): 11-19.

[123]

M. Collin, N. McGovern, and M. Haniffa, “Human Dendritic Cell Subsets,” Immunology 140 (2013): 22-30.

[124]

H. Ueno, E. Klechevsky, N. Schmitt, et al., “Targeting human Dendritic Cell Subsets for Improved Vaccines,” Seminars in Immunology 23 (2011): 21-27.

[125]

E. Romano, J. W. Cotari, R. Barreira da Silva, et al., “Human Langerhans Cells Use an IL-15R-α/IL-15/pSTAT5-dependent Mechanism to Break T-cell Tolerance Against the Self-differentiation Tumor Antigen WT1,” Blood 119 (2012): 5182-5190.

[126]

J. Banchereau, L. Thompson-Snipes, S. Zurawski, et al., “The Differential Production of Cytokines by human Langerhans Cells and Dermal CD14(+) DCs Controls CTL Priming,” Blood 119 (2012): 5742-5749.

[127]

K. Sehgal, K. M. Dhodapkar, and M. V. Dhodapkar, “Targeting human Dendritic Cells in Situ to Improve Vaccines,” Immunology Letters 162 (2014): 59-67.

[128]

Y. Pan, M. Hochgerner, M. A. Cichoń, T. Benezeder, T. Bieber, and P. Wolf, “Langerhans Cells: Central Players in the Pathophysiology of Atopic Dermatitis,” Journal of the European Academy of Dermatology and Venereology: JEADV 39 (2025): 278-289.

[129]

M. Galán, L. Fernández-Méndez, V. Núñez, et al., “cDC1s Promote Atherosclerosis via Local Immunity and Are Targetable for Therapy,” Circulation Research 137 (2025): 400-416.

[130]

J. Y. Shin, C. Y. Wang, C. C. Lin, and C. L. Chu, “A Recently Described Type 2 Conventional Dendritic Cell (cDC2) Subset Mediates Inflammation,” Cellular & Molecular Immunology 17 (2020): 1215-1217.

[131]

S. T. Ferris, V. Durai, R. Wu, et al., “cDC1 prime and Are Licensed by CD4(+) T Cells to Induce Anti-tumour Immunity,” Nature 584 (2020): 624-629.

[132]

C. Luri-Rey, Á. Teijeira, S. K. Wculek, et al., “Cross-priming in Cancer Immunology and Immunotherapy,” Nature Reviews Cancer 25 (2025): 249-273.

[133]

E. Ascic, F. Akerstrom, M. Sreekumar Nair, et al., “In Vivo Dendritic Cell Reprogramming for Cancer Immunotherapy,” Science 386 (2024): eadn9083.

[134]

Z. Hussain, Y. Zhang, L. Qiu, S. Gou, and K. Liu, “Exploring Clec9a in Dendritic Cell-based Tumor Immunotherapy for Molecular Insights and Therapeutic Potentials,” NPJ Vaccines 10 (2025): 27.

[135]

C. L. Holley, M. Monteleone, D. Fisch, et al., “Pyroptotic Cell Corpses Are Crowned With F-actin-rich Filopodia That Engage CLEC9A Signaling in Incoming Dendritic Cells,” Nature Immunology 26 (2025): 42-52.

[136]

L. Heger, L. Hatscher, C. Liang, et al., “XCR1 expression Distinguishes human Conventional Dendritic Cell Type 1 With Full Effector Functions From Their Immediate Precursors,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2300343120.

[137]

S. Balan, C. Arnold-Schrauf, A. Abbas, et al., “Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity,” Cell Reports 24 (2018): 1902-1915.e6.

[138]

T. Granot, T. Senda, D. J. Carpenter, et al., “Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics Over Human Life,” Immunity 46 (2017): 504-515.

[139]

B. Farhood, M. Najafi, and K. Mortezaee, “CD8(+) cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review,” Journal of Cellular Physiology 234 (2019): 8509-8521.

[140]

I. Heras-Murillo, I. Adan-Barrientos, M. Galán, S. K. Wculek, and D. Sancho, “Dendritic Cells as Orchestrators of Anticancer Immunity and Immunotherapy,” Nature Reviews Clinical Oncology 21 (2024): 257-277.

[141]

G. Ghislat, A. S. Cheema, E. Baudoin, et al., “NF-κB-dependent IRF1 Activation Programs cDC1 Dendritic Cells to Drive Antitumor Immunity,” Science Immunology 6 (2021): eabg3570.

[142]

T. R. Mempel, J. K. Lill, and L. M. Altenburger, “How Chemokines Organize the Tumour Microenvironment,” Nature Reviews Cancer 24 (2024): 28-50.

[143]

A. Del Prete, F. Sozio, I. Barbazza, et al., “Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications,” International Journal of Molecular Sciences 21 (2020): 3930.

[144]

M. Jain, I. M. Jadhav, S. V. Dangat, et al., “Overcoming the Novel Glycan-lectin Checkpoints in Tumor Microenvironment for the Success of the Cross-presentation-based Immunotherapy,” Biomaterials Science 13 (2025): 3447-3497.

[145]

X. Lei, D. C. de Groot, M. J. P. Welters, et al., “CD4(+) T Cells Produce IFN-I to License cDC1s for Induction of Cytotoxic T-cell Activity in human Tumors,” Cellular & Molecular Immunology 21 (2024): 374-392.

[146]

M. Hubert, E. Gobbini, C. Couillault, et al., “IFN-III Is Selectively Produced by cDC1 and Predicts Good Clinical Outcome in Breast Cancer,” Science Immunology 5, no. 46 (2020): eaav3942.

[147]

M. Collin, R. Dickinson, and V. Bigley, “Haematopoietic and Immune Defects Associated With GATA2 Mutation,” British Journal of Haematology 169 (2015): 173-187.

[148]

C. Tong, Y. Liang, X. Han, et al., “Research Progress of Dendritic Cell Surface Receptors and Targeting,” Biomedicines 11, no. 6 (2023): 1673.

[149]

A. De Monte, C. V. Olivieri, S. Vitale, et al., “CD1c-Related DCs That Express CD207/Langerin, but Are Distinguishable From Langerhans Cells, Are Consistently Present in Human Tonsils,” Frontiers in Immunology 7 (2016): 197.

[150]

S. Balan, M. Saxena, and N. Bhardwaj, “Dendritic Cell Subsets and Locations,” International Review of Cell and Molecular Biology 348 (2019): 1-68.

[151]

A. C. Villani, R. Satija, G. Reynolds, et al., “Single-cell RNA-seq Reveals New Types of human Blood Dendritic Cells, Monocytes, and Progenitors,” Science 356, no. 6335 (2017): eaah4573.

[152]

J. D. Price, C. Hotta-Iwamura, Y. Zhao, N. M. Beauchamp, and K. V. Tarbell, “DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes,” Diabetes 64 (2015): 3521-3531.

[153]

T. A. Patente, M. P. Pinho, A. A. Oliveira, G. C. M. Evangelista, P. C. Bergami-Santos, and J. A. M. Barbuto, “Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy,” Frontiers in Immunology 9 (2018): 3176.

[154]

M. Saito, M. Nagasawa, H. Takada, et al., “Defective IL-10 Signaling in Hyper-IgE Syndrome Results in Impaired Generation of Tolerogenic Dendritic Cells and Induced Regulatory T Cells,” The Journal of Experimental Medicine 208 (2011): 235-249.

[155]

F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley, “Development of Monocytes, Macrophages, and Dendritic Cells,” Science 327 (2010): 656-661.

[156]

N. M. Adams, A. Das, T. J. Yun, and B. Reizis, “Ontogeny and Function of Plasmacytoid Dendritic Cells,” Annual Review of Immunology 42 (2024): 347-373.

[157]

R. J. Dress, C. A. Dutertre, A. Giladi, et al., “Plasmacytoid Dendritic Cells Develop From Ly6D(+) Lymphoid Progenitors Distinct From the Myeloid Lineage,” Nature Immunology 20 (2019): 852-864.

[158]

P. F. Rodrigues, L. Alberti-Servera, A. Eremin, G. E. Grajales-Reyes, R. Ivanek, and R. Tussiwand, “Distinct Progenitor Lineages Contribute to the Heterogeneity of Plasmacytoid Dendritic Cells,” Nature Immunology 19 (2018): 711-722.

[159]

Q. Du, Y. Jiao, W. Hua, et al., “Preferential Depletion of CD2(low) Plasmacytoid Dendritic Cells in HIV-infected Subjects,” Cellular & Molecular Immunology 8 (2011): 441-444.

[160]

M. Alcántara-Hernández, R. Leylek, L. E. Wagar, et al., “High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization,” Immunity 47 (2017): 1037-1050.e6.

[161]

C. Obregon, R. Kumar, M. A. Pascual, G. Vassalli, and D. Golshayan, “Update on Dendritic Cell-Induced Immunological and Clinical Tolerance,” Frontiers in Immunology 8 (2017): 1514.

[162]

M. Plantinga, M. Guilliams, M. Vanheerswynghels, et al., “Conventional and Monocyte-derived CD11b(+) Dendritic Cells Initiate and Maintain T Helper 2 Cell-mediated Immunity to House Dust Mite Allergen,” Immunity 38 (2013): 322-335.

[163]

M. Guilliams and L. van de Laar, “A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System,” Frontiers in Immunology 6 (2015): 406.

[164]

J. Villar, A. Cros, A. De Juan, et al., “ETV3 and ETV6 Enable Monocyte Differentiation Into Dendritic Cells by Repressing Macrophage Fate Commitment,” Nature Immunology 24 (2023): 84-95.

[165]

H. Strobl, C. Krump, and I. Borek, “Micro-environmental Signals Directing human Epidermal Langerhans Cell Differentiation,” Seminars in Cell & Developmental Biology 86 (2019): 36-43.

[166]

S. W. Kashem, M. Haniffa, and D. H. Kaplan, “Antigen-Presenting Cells in the Skin,” Annual Review of Immunology 35 (2017): 469-499.

[167]

C. Levin, O. Bonduelle, C. Nuttens, et al., “Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in T(FH) and GC Responses After Intradermal Immunization,” The Journal of Investigative Dermatology 137 (2017): 1905-1913.

[168]

N. Deluce-Kakwata-Nkor, L. Lamendour, V. Chabot, et al., “Differentiation of human Dendritic Cell Subsets for Immune Tolerance Induction,” Transfusion Clinique Et Biologique: Journal De La Societe Francaise De Transfusion Sanguine 25 (2018): 90-95.

[169]

Z. Liu and P. A. Roche, “Macropinocytosis in Phagocytes: Regulation of MHC Class-II-restricted Antigen Presentation in Dendritic Cells,” Frontiers in Physiology 6 (2015): 1.

[170]

G. Salloum, A. R. Bresnick, and J. M. Backer, “Macropinocytosis: Mechanisms and Regulation,” The Biochemical Journal 480 (2023): 335-362.

[171]

F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, “Dendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class II Compartment: Downregulation by Cytokines and Bacterial Products,” The Journal of Experimental Medicine 182 (1995): 389-400.

[172]

C. C. Norbury, B. J. Chambers, A. R. Prescott, H. G. Ljunggren, and C. Watts, “Constitutive Macropinocytosis Allows TAP-dependent Major Histocompatibility Complex Class I Presentation of Exogenous Soluble Antigen by Bone Marrow-derived Dendritic Cells,” European Journal of Immunology 27 (1997): 280-288.

[173]

X. P. Lin, J. D. Mintern, and P. A. Gleeson, “Macropinocytosis in Different Cell Types: Similarities and Differences,” Membranes 10, no. 8 (2020): 177.

[174]

H. Sun, K. Zhi, L. Hu, and Z. Fan, “The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis,” Frontiers in Immunology 12 (2021): 633639.

[175]

F. Galvez-Cancino, A. P. Simpson, C. Costoya, et al., “Fcγ Receptors and Immunomodulatory Antibodies in Cancer,” Nature Reviews Cancer 24 (2024): 51-71.

[176]

G. Ghajar-Rahimi, N. Yusuf, and H. Xu, “Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms,” Cells 14 (2025): 308.

[177]

J. Zheng, M. Wang, L. Pang, et al., “Identification of a Novel DEC-205 Binding Peptide to Develop Dendritic Cell-targeting Nanovaccine for Cancer Immunotherapy,” Journal of Controlled Release: Official Journal of the Controlled Release Society 373 (2024): 568-582.

[178]

M. K. Kim and J. Kim, “Properties of Immature and Mature Dendritic Cells: Phenotype, Morphology, Phagocytosis, and Migration,” RSC Advances 9 (2019): 11230-11238.

[179]

P. Srivastava, M. Rütter, G. Antoniraj, Y. Ventura, and A. David, “dendritic Cell-targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways,” ACS Applied Materials & Interfaces 16 (2024): 53577-53590.

[180]

C. D. Platt, J. K. Ma, C. Chalouni, et al., “Mature Dendritic Cells Use Endocytic Receptors to Capture and Present Antigens,” Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 4287-4292.

[181]

S. Chen, S. Pounraj, N. Sivakumaran, et al., “Precision-engineering of Subunit Vaccine Particles for Prevention of Infectious Diseases,” Frontiers in Immunology 14 (2023): 1131057.

[182]

N. Pishesha, T. J. Harmand, and H. L. Ploegh, “A Guide to Antigen Processing and Presentation,” Nature Reviews Immunology 22 (2022): 751-764.

[183]

Q. Chang, Y. Zhang, X. Liu, et al., “Oxidative Stress in Antigen Processing and Presentation,” MedComm-Oncology 4 (2025): e70020.

[184]

A. Del Prete, V. Salvi, A. Soriani, et al., “Dendritic Cell Subsets in Cancer Immunity and Tumor Antigen Sensing,” Cellular & Molecular Immunology 20 (2023): 432-447.

[185]

C. Moussion and L. Delamarre, “Antigen Cross-presentation by Dendritic Cells: A Critical Axis in Cancer Immunotherapy,” Seminars in Immunology 71 (2024): 101848.

[186]

J. Canton, H. Blees, C. M. Henry, et al., “The Receptor DNGR-1 Signals for Phagosomal Rupture to Promote Cross-presentation of Dead-cell-associated Antigens,” Nature Immunology 22 (2021): 140-153.

[187]

D. J. Theisen, J. T. Davidson, C. G. Briseño, et al., “WDFY4 is Required for Cross-presentation in Response to Viral and Tumor Antigens,” Science 362 (2018): 694-699.

[188]

S. H. Møller, L. Wang, and P.-C. Ho, “Metabolic Programming in Dendritic Cells Tailors Immune Responses and Homeostasis,” Cellular & Molecular Immunology 19 (2022): 370-383.

[189]

C. Bosteels, K. Neyt, M. Vanheerswynghels, et al., “Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection,” Immunity 52 (2020): 1039-1056.e9.

[190]

L. Cohn, B. Chatterjee, F. Esselborn, et al., “Antigen Delivery to Early Endosomes Eliminates the Superiority of human Blood BDCA3+ Dendritic Cells at Cross Presentation,” The Journal of Experimental Medicine 210 (2013): 1049-1063.

[191]

A. Gardner and B. Ruffell, “moDCs, Less Problems,” Immunity 48 (2018): 6-8.

[192]

K. Furuta, H. Onishi, Y. Ikada, K. Masaki, S. Tanaka, and C. Kaito, “ATP and Its Metabolite Adenosine Cooperatively Upregulate the Antigen-presenting Molecules on Dendritic Cells Leading to IFN-γ Production by T Cells,” The Journal of Biological Chemistry 299 (2023): 104587.

[193]

X. Yin, S. Chen, and S. C. Eisenbarth, “Dendritic Cell Regulation of T Helper Cells,” Annual Review of Immunology 39 (2021): 759-790.

[194]

Y. Zhou, H. Zhang, Y. Yao, X. Zhang, Y. Guan, and F. Zheng, “CD4(+) T Cell Activation and Inflammation in NASH-related Fibrosis,” Frontiers in Immunology 13 (2022): 967410.

[195]

T. Meng, L. Nie, and Y. Wang, “Role of CD4(+) T Cell-derived Cytokines in the Pathogenesis of Uveitis,” Clinical and Experimental Medicine 25 (2025): 49.

[196]

Y. J. Lin, A. Goretzki, and S. Schülke, “Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases,” Frontiers in Immunology 12 (2021): 790658.

[197]

A. Chiricozzi, M. Maurelli, K. Peris, and G. Girolomoni, “Targeting IL-4 for the Treatment of Atopic Dermatitis,” ImmunoTargets and Therapy 9 (2020): 151-156.

[198]

M. Najar, M. Merimi, W. H. Faour, et al., “In Vitro Cellular and Molecular Interplay Between Human Foreskin-Derived Mesenchymal Stromal/Stem Cells and the Th17 Cell Pathway,” Pharmaceutics 13 (2021): 1736.

[199]

Z. Elkoshi, “TGF-β, IL-1β, IL-6 Levels and TGF-β/Smad Pathway Reactivity Regulate the Link Between Allergic Diseases, Cancer Risk, and Metabolic Dysregulations,” Frontiers in Immunology 15 (2024): 1371753.

[200]

A. C. Olatunde, J. S. Hale, and T. J. Lamb, “Cytokine-skewed Tfh Cells: Functional Consequences for B Cell Help,” Trends in Immunology 42 (2021): 536-550.

[201]

W. Chen, “TGF-β Regulation of T Cells,” Annual Review of Immunology 41 (2023): 483-512.

[202]

Q. Shang, X. Yu, Q. Sun, H. Li, C. Sun, and L. Liu, “Polysaccharides Regulate Th1/Th2 Balance: A New Strategy for Tumor Immunotherapy,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 170 (2024): 115976.

[203]

K. Ai, K. Li, X. Jiao, et al., “IL-2-mTORC1 Signaling Coordinates the STAT1/T-bet Axis to Ensure Th1 Cell Differentiation and Anti-bacterial Immune Response in Fish,” PLoS Pathogens 18 (2022): e1010913.

[204]

N. P. Rogozynski and B. Dixon, “The Th1/Th2 Paradigm: A Misrepresentation of Helper T Cell Plasticity,” Immunology Letters 268 (2024): 106870.

[205]

R. Yang, M. Weisshaar, F. Mele, et al., “High Th2 Cytokine Levels and Upper Airway Inflammation in human Inherited T-bet Deficiency,” The Journal of Experimental Medicine 218, no. 8 (2021): e20202726.

[206]

A. Schnell, D. R. Littman, and V. K. Kuchroo, “T(H)17 Cell Heterogeneity and Its Role in Tissue Inflammation,” Nature Immunology 24 (2023): 19-29.

[207]

X. Fan, P. Shu, Y. Wang, N. Ji, and D. Zhang, “Interactions Between Neutrophils and T-helper 17 Cells,” Frontiers in Immunology 14 (2023): 1279837.

[208]

S. Zhang, H. Zhang, and J. Zhao, “The Role of CD4 T Cell Help for CD8 CTL Activation,” Biochemical and Biophysical Research Communications 384 (2009): 405-408.

[209]

D. Jorgovanovic, M. Song, L. Wang, and Y. Zhang, “Roles of IFN-γ in Tumor Progression and Regression: A Review,” Biomarker Research 8 (2020): 49.

[210]

H. Xu, M. Yue, R. Zhou, et al., “A Prime-Boost Vaccination Approach Induces Lung Resident Memory CD8+ T Cells Derived From Central Memory T Cells That Prevent Tumor Lung Metastasis,” Cancer Research 84 (2024): 3173-3188.

[211]

M. Hassert and J. T. Harty, “Tissue Resident Memory T Cells- A New Benchmark for the Induction of Vaccine-induced Mucosal Immunity,” Frontiers in Immunology 13 (2022): 1039194.

[212]

B. Moser, “CXCR5, the Defining Marker for Follicular B Helper T (TFH) Cells,” Frontiers in Immunology 6 (2015): 296.

[213]

N. Fu, F. Xie, Z. Sun, and Q. Wang, “The OX40/OX40L Axis Regulates T Follicular Helper Cell Differentiation: Implications for Autoimmune Diseases,” Frontiers in Immunology 12 (2021): 670637.

[214]

I. Quast, A. R. Dvorscek, C. Pattaroni, et al., “Interleukin-21, Acting Beyond the Immunological Synapse, Independently Controls T Follicular Helper and Germinal Center B Cells,” Immunity 55 (2022): 1414-1430.e5.

[215]

Q. Yang, F. Zhang, H. Chen, et al., “The Differentiation Courses of the Tfh Cells: A New Perspective on Autoimmune Disease Pathogenesis and Treatment,” Bioscience Reports 44 (2024): BSR20231723.

[216]

A. J. MacLean, L. P. Deimel, P. Zhou, et al., “Affinity Maturation of Antibody Responses Is Mediated by Differential Plasma Cell Proliferation,” Science (New York, NY) 387 (2025): 413-420.

[217]

Y. J. Kim, J. Choi, and Y. S. Choi, “Transcriptional Regulation of Tfh Dynamics and the Formation of Immunological Synapses,” Experimental & Molecular Medicine 56 (2024): 1365-1372.

[218]

T. Inoue, Y. Baba, and T. Kurosaki, “BCR Signaling in Germinal Center B Cell Selection,” Trends in Immunology 45 (2024): 693-704.

[219]

N. J. M. Verstegen, V. Ubels, H. V. Westerhoff, S. M. van Ham, and M. Barberis, “System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation,” Frontiers in Immunology 12 (2021): 734282.

[220]

T. Inoue and T. Kurosaki, “Memory B Cells,” Nature Reviews Immunology 24 (2024): 5-17.

[221]

J. Srinivasan, J. N. Lancaster, N. Singarapu, L. P. Hale, L. I. R. Ehrlich, and E. R. Richie, “Age-Related Changes in Thymic Central Tolerance,” Frontiers in Immunology 12 (2021): 676236.

[222]

J. N. Lancaster, D. E. Keatinge-Clay, J. Srinivasan, et al., “Central Tolerance Is Impaired in the Middle-aged Thymic Environment,” Aging Cell 21 (2022): e13624.

[223]

M. J. Mansilla, C. M. U. Hilkens, and E. M. Martínez-Cáceres, “Challenges in Tolerogenic Dendritic Cell Therapy for Autoimmune Diseases: The Route of Administration,” Immunotherapy Advances 3 (2023): ltad012.

[224]

K. Morali, G. Giacomello, M. Vuono, and S. Gregori, “Leveraging Current Insights on IL-10-producing Dendritic Cells for Developing Effective Immunotherapeutic Approaches,” FEBS Letters 599 (2025): 2025-2047.

[225]

Q. Peng, X. Qiu, Z. Zhang, et al., “PD-L1 on Dendritic Cells Attenuates T Cell Activation and Regulates Response to Immune Checkpoint Blockade,” Nature Communications 11 (2020): 4835.

[226]

M. A. Ortega, D. L. Boaru, D. De Leon-Oliva, et al., “PD-1/PD-L1 Axis: Implications in Immune Regulation, Cancer Progression, and Translational Applications,” Journal of Molecular Medicine (Berlin, Germany) 102 (2024): 987-1000.

[227]

L. Passeri, F. Marta, V. Bassi, and S. Gregori, “Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity,” International Journal of Molecular Sciences 22 (2021): 8415.

[228]

O. Morante-Palacios, F. Fondelli, E. Ballestar, and E. M. Martínez-Cáceres, “Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases,” Trends in Immunology 42 (2021): 59-75.

[229]

S. C. Weng, M. C. Wen, S. L. Hsieh, N. J. Chen, and D. C. Tarng, “Decoy Receptor 3 Suppresses T-Cell Priming and Promotes Apoptosis of Effector T-Cells in Acute Cell-Mediated Rejection: The Role of Reverse Signaling,” Frontiers in Immunology 13 (2022): 879648.

[230]

P. Deak, H. R. Knight, and A. Esser-Kahn, “Robust Tolerogenic Dendritic Cells via Push/Pull Pairing of Toll-Like-receptor Agonists and Immunomodulators Reduces EAE,” Biomaterials 286 (2022): 121571.

[231]

B. Liu, Y. Wang, G. Han, and M. Zhu, “Tolerogenic Dendritic Cells in Radiation-induced Lung Injury,” Frontiers in Immunology 14 (2023): 1323676.

[232]

P. F. Pinheiro, G. C. Justino, and M. M. Marques, “NKp30 - A Prospective Target for New Cancer Immunotherapy Strategies,” British Journal of Pharmacology 177 (2020): 4563-4580.

[233]

K. Abdi, K. Laky, M. Abshari, et al., “Dendritic Cells Trigger IFN-γ Secretion by NK Cells Independent of IL-12 and IL-18,” European Journal of Immunology 52 (2022): 1431-1440.

[234]

O. Chijioke and C. Münz, “Dendritic Cell Derived Cytokines in human Natural Killer Cell Differentiation and Activation,” Frontiers in Immunology 4 (2013): 365.

[235]

M. Altfeld, L. Fadda, D. Frleta, and N. Bhardwaj, “DCs and NK Cells: Critical Effectors in the Immune Response to HIV-1,” Nature Reviews Immunology 11 (2011): 176-186.

[236]

A. G. Joyee, J. Uzonna, and X. Yang, “Invariant NKT Cells Preferentially Modulate the Function of CD8 Alpha+ Dendritic Cell Subset in Inducing Type 1 Immunity Against Infection,” Journal of Immunology (Baltimore, Md: 1950) 184 (2010): 2095-2106.

[237]

A. G. Joyee, H. Qiu, Y. Fan, S. Wang, and X. Yang, “Natural Killer T Cells Are Critical for Dendritic Cells to Induce Immunity in Chlamydial Pneumonia,” American Journal of Respiratory and Critical Care Medicine 178 (2008): 745-756.

[238]

S. Shekhar, A. G. Joyee, X. Gao, et al., “Invariant Natural Killer T Cells Promote T Cell Immunity by Modulating the Function of Lung Dendritic Cells During Chlamydia pneumoniae Infection,” Journal of Innate Immunity 7 (2015): 260-274.

[239]

I. Maricic, R. Halder, F. Bischof, and V. Kumar, “Dendritic Cells and Anergic Type I NKT Cells Play a Crucial Role in Sulfatide-mediated Immune Regulation in Experimental Autoimmune Encephalomyelitis,” Journal of Immunology (Baltimore, Md: 1950) 193 (2014): 1035-1046.

[240]

S. Caielli, C. Conforti-Andreoni, C. Di Pietro, et al., “On/off TLR Signaling Decides Proinflammatory or Tolerogenic Dendritic Cell Maturation Upon CD1d-mediated Interaction With Invariant NKT Cells,” Journal of Immunology (Baltimore, Md: 1950) 185 (2010): 7317-7329.

[241]

T. Zhu, Y. Li, Y. Wang, and D. Li, “The Application of Dendritic Cells Vaccines in Tumor Therapy and Their Combination With Biomimetic Nanoparticles,” Vaccines 13 (2025): 337.

[242]

S. Dave and A. Ballesteros-Tato, “Noncanonical Functions of T Follicular Helper Cells,” Science Immunology 10 (2025): eadr1052.

[243]

G. Godoy-Tena and E. Ballestar, “Epigenetics of Dendritic Cells in Tumor Immunology,” Cancers 14, no. 5 (2022): 1179.

[244]

M. Upadhye, C. R. Wilhelm, K. J. Rogers, et al., “Myelin-reactive CD8(+) T Cells Influence Conventional Dendritic Cell Subsets towards a Mature and Regulatory Phenotype in Experimental Autoimmune Encephalomyelitis,” Journal of Neuroinflammation 22 (2025): 54.

[245]

E. Duong, T. B. Fessenden, E. Lutz, et al., “Type I Interferon Activates MHC Class I-dressed CD11b(+) Conventional Dendritic Cells to Promote Protective Anti-tumor CD8(+) T Cell Immunity,” Immunity 55 (2022): 308-323.e9.

[246]

P. Chaudhary, P. Srivastava, and P. P. Manna, “Effector Functions of Dendritic Cells in Cancer: Role of Cytotoxicity and Growth Inhibition,” Frontiers in Bioscience (Landmark Edition) 29 (2024): 293.

[247]

R. M. van der Sluis, J. L. García-Rodríguez, I. H. Nielsen, et al., “Distinctive CD8(+) T Cell Activation by Antigen-presenting Plasmacytoid Dendritic Cells Compared to Conventional Dendritic Cells,” Cell Reports 44 (2025): 115413.

[248]

M. Monti, G. Ferrari, L. Gazzurelli, M. Bugatti, F. Facchetti, and W. Vermi, “Plasmacytoid Dendritic Cells at the Forefront of Anti-cancer Immunity: Rewiring Strategies for Tumor Microenvironment Remodeling,” Journal of Experimental & Clinical Cancer Research: CR 43 (2024): 196.

[249]

D. Qian, J. Li, M. Huang, Q. Cui, X. Liu, and K. Sun, “Dendritic Cell Vaccines in Breast Cancer: Immune Modulation and Immunotherapy,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 162 (2023): 114685.

[250]

J. Yu, H. Sun, W. Cao, Y. Song, and Z. Jiang, “Research Progress on Dendritic Cell Vaccines in Cancer Immunotherapy,” Experimental Hematology & Oncology 11 (2022): 3.

[251]

M. Peng, Y. Mo, Y. Wang, et al., “Neoantigen Vaccine: An Emerging Tumor Immunotherapy,” Molecular Cancer 18 (2019): 128.

[252]

S. Ohno, F. Takano, Y. Ohta, et al., “Frequency of Myeloid Dendritic Cells Can Predict the Efficacy of Wilms' tumor 1 Peptide Vaccination,” Anticancer Research 31 (2011): 2447-2452.

[253]

J. E. Boudreau, A. Bonehill, K. Thielemans, and Y. Wan, “Engineering Dendritic Cells to Enhance Cancer Immunotherapy,” Molecular Therapy: the Journal of the American Society of Gene Therapy 19 (2011): 841-853.

[254]

G. Zhang, Y. Liao, X. Pan, and X. Zhang, “Exosomes From HPV-16 E7-pulsed Dendritic Cells Prevent the Migration, M1 Polarization, and Inflammation of Macrophages in Cervical Cancer by Regulating Catalase 2 (CAT2),” Annals of Translational Medicine 10 (2022): 217.

[255]

I. Rastogi, A. Muralidhar, and D. G. McNeel, “Vaccines as Treatments for Prostate Cancer,” Nature Reviews Urology 20 (2023): 544-559.

[256]

S. I. M. Sutherland, X. Ju, L. G. Horvath, and G. J. Clark, “Moving on from Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer,” Frontiers in Immunology 12 (2021): 641307.

[257]

M. R. Nahas, D. Stroopinsky, J. Rosenblatt, et al., “Hypomethylating Agent Alters the Immune Microenvironment in Acute Myeloid Leukaemia (AML) and Enhances the Immunogenicity of a Dendritic Cell/AML Vaccine,” British Journal of Haematology 185 (2019): 679-690.

[258]

L. Rob, D. Cibula, P. Knapp, et al., “Safety and Efficacy of Dendritic Cell-based Immunotherapy DCVAC/OvCa Added to First-line Chemotherapy (carboplatin plus paclitaxel) for Epithelial Ovarian Cancer: A Phase 2, Open-label, Multicenter, Randomized Trial,” Journal for Immunotherapy of Cancer 10, no. 1 (2022): e003190.

[259]

R. G. Everson, W. Hugo, L. Sun, et al., “TLR Agonists Polarize Interferon Responses in Conjunction With Dendritic Cell Vaccination in Malignant Glioma: A Randomized Phase II Trial,” Nature Communications 15 (2024): 3882.

[260]

Y. S. Ji, S. K. Park, and S. Ryu, “Whole Leukemia Cell Vaccines: Past Progress and Future Directions,” Vaccine 38 (2020): 3811-3820.

[261]

M. H. Andersen, “The Targeting of Immunosuppressive Mechanisms in Hematological Malignancies,” Leukemia 28 (2014): 1784-1792.

[262]

Y. Shapir Itai, O. Barboy, R. Salomon, et al., “Bispecific Dendritic-T Cell Engager Potentiates Anti-tumor Immunity,” Cell 187 (2024): 375-389.e18.

[263]

Z. Guo, Y. Yuan, C. Chen, et al., “Durable Complete Response to Neoantigen-loaded Dendritic-cell Vaccine Following anti-PD-1 Therapy in Metastatic Gastric Cancer,” NPJ Precision Oncology 6 (2022): 34.

[264]

D. Hannani, E. Leplus, D. Laurin, et al., “A New Plasmacytoid Dendritic Cell-Based Vaccine in Combination With Anti-PD-1 Expands the Tumor-Specific CD8+ T Cells of Lung Cancer Patients,” International Journal of Molecular Sciences 24, no. 3 (2023): 1897.

[265]

P. Zhu, S. Y. Li, J. Ding, et al., “Combination Immunotherapy of Glioblastoma With Dendritic Cell Cancer Vaccines, Anti-PD-1 and Poly I:C,” Journal of Pharmaceutical Analysis 13 (2023): 616-624.

[266]

C. F. Teng, T. Wang, F. Y. Shih, W. C. Shyu, and L. B. Jeng, “Therapeutic Efficacy of Dendritic Cell Vaccine Combined With Programmed Death 1 Inhibitor for Hepatocellular Carcinoma,” Journal of Gastroenterology and Hepatology 36 (2021): 1988-1996.

[267]

C. H. Son, J. H. Bae, D. Y. Shin, et al., “CTLA-4 Blockade Enhances Antitumor Immunity of Intratumoral Injection of Immature Dendritic Cells Into Irradiated Tumor in a Mouse Colon Cancer Model,” Journal of Immunotherapy (Hagerstown, Md: 1997) 37 (2014): 1-7.

[268]

S. K. Pruitt, D. Boczkowski, N. de Rosa, et al., “Enhancement of Anti-tumor Immunity Through Local Modulation of CTLA-4 and GITR by Dendritic Cells,” European Journal of Immunology 41 (2011): 3553-3563.

[269]

P. Singh, M. N. Khatib, R. Roopashree, et al., “Advancements and Challenges in Personalized Neoantigen-based Cancer Vaccines,” Oncology Reviews 19 (2025): 1541326.

[270]

L. Li, X. Zhang, X. Wang, et al., “Optimized Polyepitope Neoantigen DNA Vaccines Elicit Neoantigen-specific Immune Responses in Preclinical Models and in Clinical Translation,” Genome Medicine 13 (2021): 56.

[271]

P. A. Ott, Z. Hu, D. B. Keskin, et al., “An Immunogenic Personal Neoantigen Vaccine for Patients With Melanoma,” Nature 547 (2017): 217-221.

[272]

N. Hilf, S. Kuttruff-Coqui, K. Frenzel, et al., “Actively Personalized Vaccination Trial for Newly Diagnosed Glioblastoma,” Nature 565 (2019): 240-245.

[273]

X. Zhang, Z. Xu, X. Dai, X. Zhang, and X. Wang, “Research Progress of Neoantigen-based Dendritic Cell Vaccines in Pancreatic Cancer,” Frontiers in Immunology 14 (2023): 1104860.

[274]

J. Jia, Y. Zhang, Y. Xin, C. Jiang, B. Yan, and S. Zhai, “Interactions between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy,” Frontiers in Oncology 8 (2018): 404.

[275]

Q. Zhou, Y. Zhang, J. Du, et al., “Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses,” ACS Nano 10 (2016): 2678-2692.

[276]

J. Xiang, L. Xu, H. Gong, et al., “Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy,” ACS Nano 9 (2015): 6401-6411.

[277]

C. H. Villa, T. Dao, I. Ahearn, et al., “Single-walled Carbon Nanotubes Deliver Peptide Antigen Into Dendritic Cells and Enhance IgG Responses to Tumor-associated Antigens,” ACS Nano 5 (2011): 5300-5311.

[278]

M. B. Heo and Y. T. Lim, “Programmed Nanoparticles for Combined Immunomodulation, Antigen Presentation and Tracking of Immunotherapeutic Cells,” Biomaterials 35 (2014): 590-600.

[279]

M. Espinar-Buitrago and M. A. Muñoz-Fernández, “New Approaches to Dendritic Cell-Based Therapeutic Vaccines against HIV-1 Infection,” Frontiers in Immunology 12 (2021): 719664.

[280]

M. Esmaily, A. Masjedi, S. Hallaj, et al., “Blockade of CTLA-4 Increases Anti-tumor Response Inducing Potential of Dendritic Cell Vaccine,” Journal of Controlled Release: Official Journal of the Controlled Release Society 326 (2020): 63-74.

[281]

X. Ma, L. Kuang, Y. Yin, et al., “Tumor-Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles With Orchestrating Immune Responses Promote Therapeutic Efficacy Against Glioma,” ACS Nano 17 (2023): 2341-2355.

[282]

F. U. Khan, P. Khongorzul, D. Gris, and A. Amrani, “Role of USP7 in the Regulation of Tolerogenic Dendritic Cell Function in Type 1 Diabetes,” Cellular & Molecular Biology Letters 30 (2025): 47.

[283]

L. Passerini, A. Forlani, and S. Gregori, “Advances in Regulatory Cell Therapy for Type 1 Diabetes: Emerging Strategies and Future Directions,” European Journal of Immunology 55 (2025): e202451722.

[284]

E. R. Unanue, S. T. Ferris, and J. A. Carrero, “The Role of Islet Antigen Presenting Cells and the Presentation of Insulin in the Initiation of Autoimmune Diabetes in the NOD Mouse,” Immunological Reviews 272 (2016): 183-201.

[285]

A. Lehuen, J. Diana, P. Zaccone, and A. Cooke, “Immune Cell Crosstalk in Type 1 Diabetes,” Nature Reviews Immunology 10 (2010): 501-513.

[286]

B. O. Roep, S. Thomaidou, R. van Tienhoven, and A. Zaldumbide, “Type 1 Diabetes Mellitus as a Disease of the β-cell (do not blame the immune system?),” Nature Reviews Endocrinology 17 (2021): 150-161.

[287]

S. V. Gearty, F. Dündar, P. Zumbo, et al., “An Autoimmune Stem-Like CD8 T Cell Population Drives Type 1 Diabetes,” Nature 602 (2022): 156-161.

[288]

Q. Ling, L. Shen, W. Zhang, et al., “Increased Plasmablasts Enhance T Cell-mediated Beta Cell Destruction and Promote the Development of Type 1 Diabetes,” Molecular Medicine (Cambridge, Mass) 28 (2022): 18.

[289]

J. Diana, Y. Simoni, L. Furio, et al., “Crosstalk Between Neutrophils, B-1a Cells and Plasmacytoid Dendritic Cells Initiates Autoimmune Diabetes,” Nature Medicine 19 (2013): 65-73.

[290]

P. S. Apaolaza, D. Balcacean, J. Zapardiel-Gonzalo, et al., “Islet Expression of Type I Interferon Response Sensors Is Associated With Immune Infiltration and Viral Infection in Type 1 Diabetes,” Science Advances 7, no. 9 (2021): eabd6527.

[291]

Z. Parackova, I. Zentsova, P. Vrabcova, et al., “Neutrophil Extracellular Trap Induced Dendritic Cell Activation Leads to Th1 Polarization in Type 1 Diabetes,” Frontiers in Immunology 11 (2020): 661.

[292]

N. Giannoukakis, “Tolerogenic Dendritic Cells in Type 1 Diabetes: No Longer a Concept,” Frontiers in Immunology 14 (2023): 1212641.

[293]

W. J. Ríos-Ríos, S. A. Sosa-Luis, and H. Torres-Aguilar, “Current Advances in Using Tolerogenic Dendritic Cells as a Therapeutic Alternative in the Treatment of Type 1 Diabetes,” World Journal of Diabetes 12 (2021): 603-615.

[294]

H. Torres-Aguilar, C. Sánchez-Torres, L. J. Jara, M. Blank, and Y. Shoenfeld, “IL-10/TGF-beta-treated Dendritic Cells, Pulsed With Insulin, Specifically Reduce the Response to Insulin of CD4+ Effector/Memory T Cells From Type 1 Diabetic Individuals,” Journal of Clinical Immunology 30 (2010): 659-668.

[295]

G. B. Ferreira, C. A. Gysemans, J. Demengeot, et al., “1,25-Dihydroxyvitamin D3 Promotes Tolerogenic Dendritic Cells With Functional Migratory Properties in NOD Mice,” Journal of Immunology (Baltimore, Md: 1950) 192 (2014): 4210-4220.

[296]

N. Giannoukakis, B. Phillips, D. Finegold, J. Harnaha, and M. Trucco, “Phase I (safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients,” Diabetes Care 34 (2011): 2026-2032.

[297]

T. Nikolic, J. J. Zwaginga, B. S. Uitbeijerse, et al., “Safety and Feasibility of Intradermal Injection With Tolerogenic Dendritic Cells Pulsed With Proinsulin Peptide-for Type 1 Diabetes,” The Lancet Diabetes & Endocrinology 8 (2020): 470-472.

[298]

M. Trucco, P. D. Robbins, A. W. Thomson, and N. Giannoukakis, “Gene Therapy Strategies to Prevent Autoimmune Disorders,” Current Gene Therapy 2 (2002): 341-354.

[299]

B. K. Sack, R. W. Herzog, C. Terhorst, and D. M. Markusic, “Development of Gene Transfer for Induction of Antigen-specific Tolerance,” Molecular Therapy Methods & Clinical Development 1 (2014): 14013.

[300]

H. Zhu, W. Qiu, P. Lei, et al., “IL-10 Gene Modified Dendritic Cells Inhibit T Helper Type 1-mediated Alloimmune Responses and Promote Immunological Tolerance in Diabetes,” Cellular & Molecular Immunology 5 (2008): 41-46.

[301]

A. Loskog, H. Dzojic, S. Vikman, et al., “Adenovirus CD40 Ligand Gene Therapy Counteracts Immune Escape Mechanisms in the Tumor Microenvironment,” Journal of Immunology (Baltimore, Md: 1950) 172 (2004): 7200-7205.

[302]

R. Kushwah, J. R. Oliver, R. Duan, L. Zhang, S. Keshavjee, and J. Hu, “Induction of Immunological Tolerance to Adenoviral Vectors by Using a Novel Dendritic Cell-based Strategy,” Journal of Virology 86 (2012): 3422-3435.

[303]

R. M. Gower, R. M. Boehler, S. M. Azarin, C. F. Ricci, J. N. Leonard, and L. D. Shea, “Modulation of Leukocyte Infiltration and Phenotype in Microporous Tissue Engineering Scaffolds via Vector Induced IL-10 Expression,” Biomaterials 35 (2014): 2024-2031.

[304]

L. Ashour, R. A. Al Habashneh, M. M. Al-Mrahelh, et al., “The Modulation of Mature Dendritic Cells From Patients With Type 1 Diabetes Using human Periodontal Ligament Stem Cells. An in-vitro Study,” Journal of Diabetes and Metabolic Disorders 19 (2020): 1037-1044.

[305]

T. Ikeda, S. Hirata, K. Takamatsu, et al., “Suppression of Th1-mediated Autoimmunity by Embryonic Stem Cell-derived Dendritic Cells,” PLoS ONE 9 (2014): e115198.

[306]

J. S. Lewis, J. M. Stewart, G. P. Marshall, et al., “Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model,” ACS Biomaterials Science & Engineering 5 (2019): 2631-2646.

[307]

C. Engman, Y. Wen, W. S. Meng, R. Bottino, M. Trucco, and N. Giannoukakis, “Generation of Antigen-specific Foxp3+ Regulatory T-cells in Vivo Following Administration of Diabetes-reversing Tolerogenic Microspheres Does Not Require Provision of Antigen in the Formulation,” Clinical Immunology (Orlando, Fla) 160 (2015): 103-123.

[308]

Z. Michailidou, M. Gomez-Salazar, and V. I. Alexaki, “Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease,” Journal of Innate Immunity 14 (2022): 4-30.

[309]

Y. Chen, J. Tian, X. Tian, et al., “Adipose Tissue Dendritic Cells Enhances Inflammation by Prompting the Generation of Th17 Cells,” PLoS ONE 9 (2014): e92450.

[310]

T. Qiu, M. Li, M. A. Tanner, et al., “Depletion of Dendritic Cells in Perivascular Adipose Tissue Improves Arterial Relaxation Responses in Type 2 Diabetic Mice,” Metabolism 85 (2018): 76-89.

[311]

A. Bertola, T. Ciucci, D. Rousseau, et al., “Identification of Adipose Tissue Dendritic Cells Correlated With Obesity-associated Insulin-resistance and Inducing Th17 Responses in Mice and Patients,” Diabetes 61 (2012): 2238-2247.

[312]

J. Braune, U. Weyer, C. Hobusch, et al., “IL-6 Regulates M2 Polarization and Local Proliferation of Adipose Tissue Macrophages in Obesity,” Journal of Immunology (Baltimore, Md: 1950) 198 (2017): 2927-2934.

[313]

C. E. Porsche, J. B. Delproposto, E. Patrick, B. F. Zamarron, and C. N. Lumeng, “Adipose Tissue Dendritic Cell Signals Are Required to Maintain T Cell Homeostasis and Obesity-induced Expansion,” Molecular and Cellular Endocrinology 505 (2020): 110740.

[314]

M. Y. Jung, H. S. Kim, H. J. Hong, B. S. Youn, and T. S. Kim, “Adiponectin Induces Dendritic Cell Activation via PLCγ/JNK/NF-κB Pathways, Leading to Th1 and Th17 Polarization,” Journal of Immunology (Baltimore, Md: 1950) 188 (2012): 2592-2601.

[315]

H. O. Al-Hassi, D. Bernardo, A. U. Murugananthan, et al., “A Mechanistic Role for Leptin in human Dendritic Cell Migration: Differences Between Ileum and Colon in Health and Crohn's Disease,” Mucosal Immunology 6 (2013): 751-761.

[316]

M. Kukla, W. Mazur, R. J. Bułdak, and K. Zwirska-Korczala, “Potential Role of Leptin, Adiponectin and Three Novel Adipokines-visfatin, Chemerin and Vaspin-in Chronic hepatitis,” Molecular Medicine (Cambridge, Mass) 17 (2011): 1397-1410.

[317]

K. Stelzner, D. Herbert, Y. Popkova, et al., “Free Fatty Acids Sensitize Dendritic Cells to Amplify TH1/TH17-immune Responses,” European Journal of Immunology 46 (2016): 2043-2053.

[318]

F. Tacke and H. Yoneyama, “From NAFLD to NASH to Fibrosis to HCC: Role of Dendritic Cell Populations in the Liver,” Hepatology (Baltimore, Md) 58 (2013): 494-496.

[319]

K. Matsuno, H. Nomiyama, H. Yoneyama, and R. Uwatoku, “Kupffer Cell-mediated Recruitment of Dendritic Cells to the Liver Crucial for a Host Defense,” Developmental Immunology 9 (2002): 143-149.

[320]

J. R. Weaver, J. L. Nadler, and D. A. Taylor-Fishwick, “Interleukin-12 (IL-12)/STAT4 Axis Is an Important Element for β-Cell Dysfunction Induced by Inflammatory Cytokines,” PLoS ONE 10 (2015): e0142735.

[321]

A. Citro, F. Campo, E. Dugnani, and L. Piemonti, “Innate Immunity Mediated Inflammation and Beta Cell Function: Neighbors or Enemies?,” Front Endocrinol (Lausanne) 11 (2020): 606332.

[322]

X. Sun, L. Liu, J. Wang, et al., “Targeting STING in Dendritic Cells Alleviates Psoriatic Inflammation by Suppressing IL-17A Production,” Cellular & Molecular Immunology 21 (2024): 738-751.

[323]

R. Ginwala, R. Bhavsar, P. Moore, et al., “Apigenin Modulates Dendritic Cell Activities and Curbs Inflammation via RelB Inhibition in the Context of Neuroinflammatory Diseases,” Journal of Neuroimmune Pharmacology: the Official Journal of the Society on NeuroImmune Pharmacology 16 (2021): 403-424.

[324]

M. Xiang, T. Liu, C. Tian, et al., “Kinsenoside Attenuates Liver Fibro-inflammation by Suppressing Dendritic Cells via the PI3K-AKT-FoxO1 Pathway,” Pharmacological Research 177 (2022): 106092.

[325]

T. Toshimitsu, J. Mochizuki, S. Ikegami, and H. Itou, “Identification of a Lactobacillus Plantarum Strain That Ameliorates Chronic Inflammation and Metabolic Disorders in Obese and Type 2 Diabetic Mice,” Journal of Dairy Science 99 (2016): 933-946.

[326]

B. Brooks-Worrell, R. Narla, and J. P. Palmer, “Biomarkers and Immune-modulating Therapies for Type 2 Diabetes,” Trends in Immunology 33 (2012): 546-553.

[327]

A. Petrelli, A. Giovenzana, V. Insalaco, B. E. Phillips, M. Pietropaolo, and N. Giannoukakis, “Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and yet So Close to Explain Diabetes Endotypes,” Current Diabetes Reports 21 (2021): 54.

[328]

L. A. Velloso, D. L. Eizirik, and M. Cnop, “Type 2 Diabetes Mellitus-an Autoimmune Disease?,” Nature Reviews Endocrinology 9 (2013): 750-755.

[329]

G. S. Hotamisligil, “Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease,” Cell 140 (2010): 900-917.

[330]

C. E. Macdougall, E. G. Wood, J. Loschko, et al., “Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk Between Adipocytes and Dendritic Cell Subsets,” Cell Metabolism 27 (2018): 588-601.e4.

[331]

C. E. Macdougall, E. G. Wood, A. Solomou, et al., “Constitutive Activation of β-Catenin in Conventional Dendritic Cells Increases the Insulin Reserve to Ameliorate the Development of Type 2 Diabetes in Mice,” Diabetes 68 (2019): 1473-1484.

[332]

I. I. Ng, J. Zhang, T. Tian, et al., “Network-based Screening Identifies sitagliptin as an Antitumor Drug Targeting Dendritic Cells,” Journal for Immunotherapy of Cancer 12, no. 3 (2024): e008254.

[333]

S. Xia, L. Wang, Y. Zhu, L. Lu, and S. Jiang, “Origin, Virological Features, Immune Evasion and Intervention of SARS-CoV-2 Omicron Sublineages,” Signal Transduction and Targeted Therapy 7 (2022): 241.

[334]

R. Wang, C. Lan, K. Benlagha, et al., “The Interaction of Innate Immune and Adaptive Immune System,” MedComm 5 (2024): e714.

[335]

H. Cheng, W. Chen, Y. Lin, J. Zhang, X. Song, and D. Zhang, “Signaling Pathways Involved in the Biological Functions of Dendritic Cells and Their Implications for Disease Treatment,” Molecular Biomedicine 4 (2023): 15.

[336]

L. Marongiu, M. Valache, A. Facchini Fabio, and F. Granucci, “How Dendritic Cells Sense and Respond to Viral Infections,” Clinical Science 135 (2021): 2217-2242.

[337]

B. Yang and K. D. Yang, “Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention,” Frontiers in Immunology 12 (2021): 690976.

[338]

W. Lu, L. C. Arraes, W. T. Ferreira, and J. M. Andrieu, “Therapeutic Dendritic-cell Vaccine for Chronic HIV-1 Infection,” Nature Medicine 10 (2004): 1359-1365.

[339]

F. García, N. Climent, L. Assoumou, et al., “A Therapeutic Dendritic Cell-based Vaccine for HIV-1 Infection,” Journal of Infectious Diseases 203 (2011): 473-478.

[340]

J. Encke, J. Findeklee, J. Geib, E. Pfaff, and W. Stremmel, “Prophylactic and Therapeutic Vaccination With Dendritic Cells Against hepatitis C Virus Infection,” Clinical and Experimental Immunology 142 (2005): 362-369.

[341]

V. Konduri, W. K. Decker, M. M. Halpert, B. Gilbert, and A. Safdar, “Modeling Dendritic Cell Vaccination for Influenza Prophylaxis: Potential Applications for Niche Populations,” The Journal of Infectious Diseases 207 (2013): 1764-1772.

[342]

M. Ghasemi, M. Erturk, K. Buruk, and M. Sonmez, “Induction of Potent Protection Against Acute and Latent herpes Simplex Virus Infection in Mice Vaccinated With Dendritic Cells,” Cytotherapy 15 (2013): 352-361.

[343]

O. Leplina, N. Starostina, O. Zheltova, A. Ostanin, E. Shevela, and E. Chernykh, “Dendritic Cell-based Vaccines in Treating Recurrent herpes Labialis: Results of Pilot Clinical Study,” Human Vaccines & Immunotherapeutics 12 (2016): 3029-3035.

[344]

G. Kundu and M. C. Noverr, “Exposure to Host or Fungal PGE2 Abrogates Protection Following Immunization With Candida-pulsed Dendritic Cells,” Medical Mycology 49 (2011): 380-394.

[345]

K. Ueno, M. Urai, K. Ohkouchi, Y. Miyazaki, and Y. Kinjo, “Dendritic Cell-Based Vaccine against Fungal Infection,” Methods in Molecular Biology (Clifton, NJ) 1403 (2016): 537-549.

[346]

F. Foroughi-Parvar, G. R. Hatam, B. Sarkari, and E. Kamali-Sarvestani, “Leishmania Infantum FML Pulsed-dendritic Cells Induce a Protective Immune Response in Murine Visceral Leishmaniasis,” Immunotherapy 7 (2015): 3-12.

[347]

G. Domínguez-Bernal, A. Martínez-Rodrigo, A. Mas, et al., “Alternative Strategy for Visceral Leishmaniosis Control: HisAK70-Salmonella Choleraesuis-pulsed Dendritic Cells,” Comparative Immunology, Microbiology and Infectious Diseases 54 (2017): 13-19.

[348]

J. X. Yang, J. C. Tseng, G. Y. Yu, et al., “Recent Advances in the Development of Toll-Like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases,” Pharmaceutics 14, no. 2 (2022): 423.

[349]

R. M. Roy and B. S. Klein, “Dendritic Cells in Antifungal Immunity and Vaccine Design,” Cell Host & Microbe 11 (2012): 436-446.

[350]

J. Jonny, T. A. Putranto, E. C. Sitepu, and R. Irfon, “Dendritic Cell Vaccine as a Potential Strategy to End the COVID-19 Pandemic. Why Should It be Ex Vivo?,” Expert Review of Vaccines 21 (2022): 1111-1120.

[351]

A. L. Flamar, H. Bonnabau, S. Zurawski, et al., “HIV-1 T Cell Epitopes Targeted to Rhesus Macaque CD40 and DCIR: A Comparative Study of Prototype Dendritic Cell Targeting Therapeutic Vaccine Candidates,” PLoS ONE 13 (2018): e0207794.

[352]

B. Levast, S. Awate, L. Babiuk, G. Mutwiri, V. Gerdts, and S. van Drunen Littel-van den Hurk, “Vaccine Potentiation by Combination Adjuvants,” Vaccines 2 (2014): 297-322.

[353]

B. Hong, S. H. Lee, X. T. Song, et al., “A Super TLR Agonist to Improve Efficacy of Dendritic Cell Vaccine in Induction of Anti-HCV Immunity,” PLoS ONE 7 (2012): e48614.

[354]

Q. Wang, W. Yu, L. Sun, and X. Shi, “Myeloid Dendritic Cells in Peripheral Blood Correlate With the Occurrence of Acute Graft-versus-host Disease,” European Journal of Medical Research 30 (2025): 579.

[355]

T. Blanco, H. Nakagawa, A. Musayeva, et al., “Acquired Immunostimulatory Phenotype of Migratory CD103+ DCs Promotes Alloimmunity Following Corneal Transplantation,” JCI Insight 9, no. 20 (2024): e182469.

[356]

J. Lin, H. Wang, C. Liu, et al., “Dendritic Cells: Versatile Players in Renal Transplantation,” Frontiers in Immunology 12 (2021): 654540.

[357]

Y. Ren, Y. Yang, J. Yang, R. Xie, and H. Fan, “Tolerogenic Dendritic Cells Modified by Tacrolimus Suppress CD4+ T-cell Proliferation and Inhibit Collagen-induced Arthritis in Mice,” International Immunopharmacology 21 (2014): 247-254.

[358]

G. Stallone, P. Pontrelli, B. Infante, et al., “Rapamycin Induces ILT3(high)ILT4(high) Dendritic Cells Promoting a New Immunoregulatory Pathway,” Kidney International 85 (2014): 888-897.

[359]

S. Dashti-Khavidaki, R. Saidi, and H. Lu, “Current Status of Glucocorticoid Usage in Solid Organ Transplantation,” World Journal of Transplantation 11 (2021): 443-465.

[360]

S. Li, A. Abu Omar, A. Greasley, et al., “Circular RNA MAP2K2-modified Immunosuppressive Dendritic Cells for Preventing Alloimmune Rejection in Organ Transplantation,” Bioengineering & Translational Medicine 9 (2024): e10615.

[361]

K. Sun, C. Fan, J. Zhang, et al., “Prevention of Alloimmune Rejection Using XBP1-deleted Bone Marrow-derived Dendritic Cells in Heart Transplantation,” The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation 41 (2022): 1660-1671.

[362]

E. Marín, M. C. Cuturi, and A. Moreau, “Tolerogenic Dendritic Cells in Solid Organ Transplantation: Where Do We Stand?,” Frontiers in Immunology 9 (2018): 274.

[363]

A. F. Zahorchak, M. L. DeRiggi, J. L. Muzzio, et al., “Manufacturing and Validation of Good Manufacturing Practice-compliant Regulatory Dendritic Cells for Infusion Into Organ Transplant Recipients,” Cytotherapy 25 (2023): 432-441.

[364]

V. K. Raker, M. P. Domogalla, and K. Steinbrink, “Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man,” Frontiers in Immunology 6 (2015): 569.

[365]

Z. Wang, J. Zhang, F. An, et al., “The Mechanism of Dendritic Cell-T Cell Crosstalk in Rheumatoid Arthritis,” Arthritis Research & Therapy 25 (2023): 193.

[366]

S. Mundt, D. Mrdjen, S. G. Utz, M. Greter, B. Schreiner, and B. Becher, “Conventional DCs Sample and Present Myelin Antigens in the Healthy CNS and Allow Parenchymal T Cell Entry to Initiate Neuroinflammation,” Science Immunology 4, no. 31 (2019): eaau8380.

[367]

J. Liu, X. Zhang, and X. Cao, “Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenesis to Therapeutic Applications,” Journal of Autoimmunity 132 (2022): 102856.

[368]

R. A. Harry, A. E. Anderson, J. D. Isaacs, and C. M. Hilkens, “Generation and Characterisation of Therapeutic Tolerogenic Dendritic Cells for Rheumatoid Arthritis,” Annals of the Rheumatic Diseases 69 (2010): 2042-2050.

[369]

M. J. Mansilla, R. Contreras-Cardone, J. Navarro-Barriuso, et al., “Cryopreserved Vitamin D3-tolerogenic Dendritic Cells Pulsed With Autoantigens as a Potential Therapy for Multiple Sclerosis Patients,” Journal of Neuroinflammation 13 (2016): 113.

[370]

S. C. Funes, M. Ríos, F. Gómez-Santander, et al., “Tolerogenic Dendritic Cell Transfer Ameliorates Systemic Lupus Erythematosus in Mice,” Immunology 158 (2019): 322-339.

[371]

R. Spiering, B. Margry, C. Keijzer, et al., “DEC205+ Dendritic Cell-Targeted Tolerogenic Vaccination Promotes Immune Tolerance in Experimental Autoimmune Arthritis,” Journal of Immunology (Baltimore, Md: 1950) 194 (2015): 4804-4813.

[372]

X. Qin, M. Zhang, J. Liang, et al., “Nanoparticles Encapsulating Antigenic Peptides Induce Tolerogenic Dendritic Cells in Situ for Treating Systemic Lupus Erythematosus,” Journal of Controlled Release: Official Journal of the Controlled Release Society 380 (2025): 943-956.

[373]

V. Brezovakova, B. Valachova, J. Hanes, M. Novak, and S. Jadhav, “Dendritic Cells as an Alternate Approach for Treatment of Neurodegenerative Disorders,” Cellular and Molecular Neurobiology 38 (2018): 1207-1214.

[374]

M. Jung, S. Lee, S. Park, et al., “A Therapeutic Nanovaccine That Generates Anti-Amyloid Antibodies and Amyloid-specific Regulatory T Cells for Alzheimer's Disease,” Advanced Materials (Deerfield Beach, Fla) 35 (2023): e2207719.

[375]

M. Sabahi, A. Joshaghanian, M. Dolatshahi, P. Jabbari, F. Rahmani, and N. Rezaei, “Modification of Glial Cell Activation Through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases,” Journal of Molecular Neuroscience: MN 71 (2021): 1410-1424.

[376]

A. Mula, X. Yuan, and J. Lu, “Dendritic Cells in Parkinson's Disease: Regulatory Role and Therapeutic Potential,” European Journal of Pharmacology 976 (2024): 176690.

[377]

C. R. Schutt, H. E. Gendelman, and R. L. Mosley, “Tolerogenic Bone Marrow-derived Dendritic Cells Induce Neuroprotective Regulatory T Cells in a Model of Parkinson's Disease,” Molecular Neurodegeneration 13 (2018): 26.

[378]

D. D. Álvarez-Luquín, A. Arce-Sillas, J. Leyva-Hernández, et al., “Regulatory Impairment in Untreated Parkinson's Disease Is Not Restricted to Tregs: Other Regulatory Populations Are Also Involved,” Journal of Neuroinflammation 16 (2019): 212.

[379]

Y. Zhao, J. Zhang, W. Zhang, and Y. Xu, “A Myriad of Roles of Dendritic Cells in Atherosclerosis,” Clinical and Experimental Immunology 206 (2021): 12-27.

[380]

M. C. Takenaka and F. J. Quintana, “Tolerogenic Dendritic Cells,” Seminars in Immunopathology 39 (2017): 113-120.

[381]

J. M. Pitt, M. Charrier, S. Viaud, et al., “Dendritic Cell-derived Exosomes as Immunotherapies in the Fight Against Cancer,” Journal of Immunology (Baltimore, Md: 1950) 193 (2014): 1006-1011.

[382]

Y. V. Bobryshev, “Dendritic Cells in Atherosclerosis: Current Status of the Problem and Clinical Relevance,” European Heart Journal 26 (2005): 1700-1704.

[383]

L. Chen, L. Hu, X. Zhu, et al., “MALAT1 overexpression Attenuates AS by Inhibiting Ox-LDL-stimulated Dendritic Cell Maturation via miR-155-5p/NFIA Axis,” Cell Cycle 19 (2020): 2472-2485.

[384]

Z. Li, Y. Yang, J. Zong, et al., “Dendritic Cells Immunotargeted Therapy for Atherosclerosis,” Acta Pharmaceutica Sinica B 15 (2025): 792-808.

[385]

K. Van der Borght, C. L. Scott, V. Nindl, et al., “Myocardial Infarction Primes Autoreactive T Cells Through Activation of Dendritic Cells,” Cell Reports 18 (2017): 3005-3017.

[386]

E. H. Choo, J.-H. Lee, E.-H. Park, et al., “Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and Cardiac Function after Myocardial Infarction by Modulating the Regulatory T Cell and Macrophage Polarization,” Circulation 135 (2017): 1444-1457.

[387]

H. Hammad and B. N. Lambrecht, “Dendritic Cells and Epithelial Cells: Linking Innate and Adaptive Immunity in asthma,” Nature Reviews Immunology 8 (2008): 193-204.

[388]

A. KleinJan, M. Willart, L. S. van Rijt, et al., “An Essential Role for Dendritic Cells in human and Experimental Allergic Rhinitis,” The Journal of Allergy and Clinical Immunology 118 (2006): 1117-1125.

[389]

N. Novak, “An Update on the Role of human Dendritic Cells in Patients With Atopic Dermatitis,” The Journal of Allergy and Clinical Immunology 129 (2012): 879-886.

[390]

H. C. Chuang, J. H. Chang, Y. Y. Fan, C. L. Hsieh, and Y. L. Lee, “Interleukin-38-overexpressing adenovirus Infection in Dendritic Cell-based Treatment Enhances Immunotherapy for Allergic Asthma via Inducing Foxp3(+) Regulatory T Cells,” Biomedicine & Pharmacotherapy 181 (2024): 117738.

[391]

J. Liu, M. Wang, X. Tian, et al., “New Insights Into Allergic Rhinitis Treatment: MSC Nanovesicles Targeting Dendritic Cells,” Journal of Nanobiotechnology 22 (2024): 575.

[392]

C. Bangert, K. Rindler, T. Krausgruber, et al., “Persistence of Mature Dendritic Cells, T(H)2A, and Tc2 Cells Characterize Clinically Resolved Atopic Dermatitis Under IL-4Rα Blockade,” Science Immunology 6, no. 55 (2021): eabe2749.

[393]

M. Kamata and Y. Tada, “Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis,” Frontiers in Immunology 13 (2022): 941071.

[394]

N. Srivastava, A. Bishnoi, D. Parsad, M. S. Kumaran, K. Vinay, and S. Gupta, “Dendritic Cells Sub-sets Are Associated With Inflammatory Cytokine Production in Progressive Vitiligo Disease,” Archives of Dermatological Research 313 (2021): 759-767.

[395]

S. W. Henning, M. F. Fernandez, J. P. Mahon, et al., “70i(Q435A)-Encoding DNA Repigments Vitiligo Lesions in Sinclair Swine,” The Journal of Investigative Dermatology 138 (2018): 2531-2539. HSP.

[396]

J. A. Mosenson, A. Zloza, J. D. Nieland, et al., “Mutant HSP70 Reverses Autoimmune Depigmentation in Vitiligo,” Science Translational Medicine 5 (2013): 174ra28.

[397]

Y. Wang, S. Li, and C. Li, “Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo,” Clinical Reviews in Allergy & Immunology 2021 61: 299-323.

[398]

H. Soliman, A. Aldrich, N. Abdo, et al., “A Pilot Study Incorporating HER2-directed Dendritic Cells Into Neoadjuvant Therapy of Early Stage HER2+ER- breast Cancer,” NPJ Breast Cancer 11 (2025): 29.

[399]

J. A. Shevchenko, A. A. Khristin, V. V. Kurilin, et al., “Autologous Dendritic Cells and Activated Cytotoxic T‑Cells as Combination Therapy for Breast Cancer,” Oncology Reports 43 (2020): 671-680.

[400]

D. A. Bernal-Estévez, M. A. Ortíz Barbosa, P. Ortíz-Montero, C. Cifuentes, R. Sánchez, and C. A. Parra-López, “Autologous Dendritic Cells in Combination with Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial,” Frontiers in Immunology 12 (2021): 669965.

[401]

M. S. Block, A. B. Dietz, M. P. Gustafson, et al., “Th17-inducing Autologous Dendritic Cell Vaccination Promotes Antigen-specific Cellular and Humoral Immunity in Ovarian Cancer Patients,” Nature Communications 11 (2020): 5173.

[402]

J. D. Rudnick, J. M. Sarmiento, B. Uy, et al., “A Phase I Trial of Surgical Resection With Gliadel Wafer Placement Followed by Vaccination With Dendritic Cells Pulsed With Tumor Lysate for Patients With Malignant Glioma,” Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 74 (2020): 187-193.

[403]

Y. T. Ma, J. Zuo, A. Kirkham, et al., “Addition of Dendritic Cell Vaccination to Conditioning Cyclophosphamide and Chemoembolization in Patients With Hepatocellular Carcinoma: The ImmunoTACE Trial,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 31 (2025): 3412-3423.

[404]

J. H. Lee, Y. Lee, M. Lee, et al., “A Phase I/IIa Study of Adjuvant Immunotherapy With Tumour Antigen-pulsed Dendritic Cells in Patients With Hepatocellular Carcinoma,” British Journal of Cancer 113 (2015): 1666-1676.

[405]

X. Wang, M. E. Bayer, X. Chen, et al., “Phase I Trial of Active Specific Immunotherapy With Autologous Dendritic Cells Pulsed With Autologous Irradiated Tumor Stem Cells in hepatitis B-positive Patients With Hepatocellular Carcinoma,” Journal of Surgical Oncology 111 (2015): 862-867.

[406]

R. Fröbom, E. Berglund, D. Berglund, et al., “Phase I Trial Evaluating Safety and Efficacy of Intratumorally Administered Inflammatory Allogeneic Dendritic Cells (ilixadencel) in Advanced Gastrointestinal Stromal Tumors,” Cancer Immunology, Immunotherapy: CII 69 (2020): 2393-2401.

[407]

Q. Qi, N. Ji, H. Duan, G. Yang, Q. Shi, and Y. Qi, “Evaluation of the Efficacy and Safety of DC-CIK Bioimmunotherapy in the Treatment of Advanced Non-Small Cell Lung Cancer,” Journal of Biochemical and Molecular Toxicology 39 (2025): e70338.

[408]

M. Zemanova, M. Cernovska, L. Havel, et al., “Autologous Dendritic Cell-based Immunotherapy (DCVAC/LuCa) and Carboplatin/Paclitaxel in Advanced Non-small Cell Lung Cancer: A Randomized, Open-label, Phase I/II Trial,” Cancer Treatment and Research Communications 28 (2021): 100427.

[409]

N. Somaiah, M. S. Block, J. W. Kim, et al., “First-in-Class, First-in-Human Study Evaluating LV305, a Dendritic-Cell Tropic Lentiviral Vector, in Sarcoma and Other Solid Tumors Expressing NY-ESO-1,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 25 (2019): 5808-5817.

[410]

A. A. Chiappori, C. C. Williams, J. E. Gray, et al., “Randomized-controlled Phase II Trial of Salvage Chemotherapy After Immunization With a TP53-transfected Dendritic Cell-based Vaccine (Ad.p53-DC) in Patients With Recurrent Small Cell Lung Cancer,” Cancer Immunology, Immunotherapy: CII 68 (2019): 517-527.

[411]

J. E. Gray, A. Chiappori, C. C. Williams, et al., “A Phase I/Randomized Phase II Study of GM.CD40L Vaccine in Combination With CCL21 in Patients With Advanced Lung Adenocarcinoma,” Cancer Immunology, Immunotherapy: CII 67 (2018): 1853-1862.

[412]

H. Kimura, Y. Matsui, A. Ishikawa, T. Nakajima, and T. Iizasa, “Randomized Controlled Phase III Trial of Adjuvant Chemoimmunotherapy With Activated Cytotoxic T Cells and Dendritic Cells From Regional Lymph Nodes of Patients With Lung Cancer,” Cancer Immunology, Immunotherapy: CII 67 (2018): 1231-1238.

[413]

H. Saka, C. Kitagawa, Y. Ichinose, et al., “A Randomized Phase II Study to Assess the Effect of Adjuvant Immunotherapy Using α-GalCer-pulsed Dendritic Cells in the Patients With Completely Resected Stage II-IIIA Non-small Cell Lung Cancer: Study Protocol for a Randomized Controlled Trial,” Trials 18 (2017): 429.

[414]

L. Zhang, Y. Xu, J. Shen, et al., “Feasibility Study of DCs/CIKs Combined With Thoracic Radiotherapy for Patients With Locally Advanced or Metastatic Non-small-cell Lung Cancer,” Radiation Oncology (London, England) 11 (2016): 60.

[415]

P. Zhao, X. Bu, X. Wei, et al., “Dendritic Cell Immunotherapy Combined With Cytokine-induced Killer Cells Promotes Skewing Toward Th2 Cytokine Profile in Patients With Metastatic Non-small Cell Lung Cancer,” International Immunopharmacology 25 (2015): 450-456.

[416]

H. Kimura, Y. Matsui, A. Ishikawa, T. Nakajima, M. Yoshino, and Y. Sakairi, “Randomized Controlled Phase III Trial of Adjuvant Chemo-immunotherapy With Activated Killer T Cells and Dendritic Cells in Patients With Resected Primary Lung Cancer,” Cancer Immunology, Immunotherapy: CII 64 (2015): 51-59.

[417]

M. E. Rodríguez-Ruiz, J. L. Perez-Gracia, I. Rodríguez, et al., “Combined Immunotherapy Encompassing Intratumoral Poly-ICLC, Dendritic-cell Vaccination and Radiotherapy in Advanced Cancer Patients,” Annals of Oncology: Official Journal of the European Society for Medical Oncology 29 (2018): 1312-1319.

[418]

K. F. Bol, G. Schreibelt, M. Bloemendal, et al., “Adjuvant Dendritic Cell Therapy in Stage IIIB/C Melanoma: The MIND-DC Randomized Phase III Trial,” Nature Communications 15 (2024): 1632.

[419]

J. Bulgarelli, C. Piccinini, E. Scarpi, et al., “Adjuvant Dendritic Cell-based Immunotherapy in Melanoma: Insights Into Immune Cell Dynamics and Clinical Evidence From a Phase II Trial,” Journal of Translational Medicine 23 (2025): 455.

[420]

S. G. Van Decar, E. L. Carpenter, A. M. Adams, et al., “Tumor Lysate Particle Only Vaccine (TLPO) vs. Tumor Lysate Particle-loaded, Dendritic Cell Vaccine (TLPLDC) to Prevent Recurrence in Resected Stage III/IV Melanoma Patients: Results of a Phase I/IIa Trial,” Cancer Treatment and Research Communications 41 (2024): 100843.

[421]

E. L. Carpenter, S. Van Decar, A. M. Adams, et al., “Prospective, Randomized, Double-blind Phase 2B Trial of the TLPO and TLPLDC Vaccines to Prevent Recurrence of Resected Stage III/IV Melanoma: A Prespecified 36-month Analysis,” Journal for Immunotherapy of Cancer 11, no. 8 (2023): e006665.

[422]

N. Dasyam, K. J. Sharples, C. Barrow, et al., “A Randomised Controlled Trial of Long NY-ESO-1 Peptide-pulsed Autologous Dendritic Cells With or Without Alpha-galactosylceramide in High-risk Melanoma,” Cancer Immunology, Immunotherapy: CII 72 (2023): 2267-2282.

[423]

M. Bloemendal, K. F. Bol, S. Boudewijns, et al., “Immunological Responses to Adjuvant Vaccination With Combined CD1c(+) Myeloid and Plasmacytoid Dendritic Cells in Stage III Melanoma Patients,” Oncoimmunology 11 (2022): 2015113.

[424]

J. K. Schwarze, J. Tijtgat, G. Awada, et al., “Intratumoral Administration of CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) Myeloid Dendritic Cells in Combination With talimogene laherparepvec in Immune Checkpoint Blockade Refractory Advanced Melanoma Patients: A Phase I Clinical Trial,” Journal for Immunotherapy of Cancer 10 (2022): e005141.

[425]

A. M. Adams, E. L. Carpenter, G. T. Clifton, et al., “Divergent Clinical Outcomes in a Phase 2B Trial of the TLPLDC Vaccine in Preventing Melanoma Recurrence and the Impact of Dendritic Cell Collection Methodology: A Randomized Clinical Trial,” Cancer Immunology, Immunotherapy: CII 72 (2023): 697-705.

[426]

S. Koido, J. Taguchi, M. Shimabuku, et al., “Dendritic Cells Pulsed With Multifunctional Wilms' tumor 1 (WT1) Peptides Combined With Multiagent Chemotherapy Modulate the Tumor Microenvironment and Enable Conversion Surgery in Pancreatic Cancer,” Journal for Immunotherapy of Cancer 12, no. 10 (2024): e009765.

[427]

S. P. Lau, L. Klaase, M. Vink, et al., “Autologous Dendritic Cells Pulsed With Allogeneic Tumour Cell Lysate Induce Tumour-reactive T-cell Responses in Patients With Pancreatic Cancer: A Phase I Study,” European Journal of Cancer (Oxford, England: 1990) 169 (2022): 20-31.

[428]

M. Bassani-Sternberg, A. Digklia, F. Huber, et al., “A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma-A Proof of Antigen Discovery Feasibility in Three Patients,” Frontiers in Immunology 10 (2019): 1832.

[429]

M. Katsuda, M. Miyazawa, T. Ojima, et al., “A Double-blind Randomized Comparative Clinical Trial to Evaluate the Safety and Efficacy of Dendritic Cell Vaccine Loaded With WT1 Peptides (TLP0-001) in Combination With S-1 in Patients With Advanced Pancreatic Cancer Refractory to Standard Chemotherapy,” Trials 20 (2019): 242.

[430]

N. Jiang, G. Qiao, X. Wang, et al., “Dendritic Cell/Cytokine-Induced Killer Cell Immunotherapy Combined With S-1 in Patients With Advanced Pancreatic Cancer: A Prospective Study,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 23 (2017): 5066-5073.

[431]

S. Mehrotra, C. D. Britten, S. Chin, et al., “Vaccination With Poly(IC:LC) and Peptide-pulsed Autologous Dendritic Cells in Patients With Pancreatic Cancer,” Journal of Hematology & Oncology 10 (2017): 82.

[432]

G. Sonpavde, J. D. McMannis, Y. Bai, et al., “Phase I Trial of Antigen-targeted Autologous Dendritic Cell-based Vaccine With in Vivo Activation of Inducible CD40 for Advanced Prostate Cancer,” Cancer Immunology, Immunotherapy: CII 66 (2017): 1345-1357.

[433]

L. C. V. Thomsen, A. Honoré, L. A. R. Reisæter, et al., “A Phase I Prospective, Non-randomized Trial of Autologous Dendritic Cell-based Cryoimmunotherapy in Patients With Metastatic Castration-resistant Prostate Cancer,” Cancer Immunology, Immunotherapy: CII 72 (2023): 2357-2373.

[434]

A. M. A. Tryggestad, K. Axcrona, U. Axcrona, et al., “Long-term First-in-man Phase I/II Study of an Adjuvant Dendritic Cell Vaccine in Patients With High-risk Prostate Cancer After Radical Prostatectomy,” Prostate 82 (2022): 245-253.

[435]

H. Westdorp, J. H. A. Creemers, I. M. van Oort, et al., “Blood-derived Dendritic Cell Vaccinations Induce Immune Responses That Correlate With Clinical Outcome in Patients With Chemo-naive Castration-resistant Prostate Cancer,” Journal for Immunotherapy of Cancer 7 (2019): 302.

[436]

P. Kongsted, T. H. Borch, E. Ellebaek, et al., “Dendritic Cell Vaccination in Combination With docetaxel for Patients With Metastatic Castration-resistant Prostate Cancer: A Randomized Phase II Study,” Cytotherapy 19 (2017): 500-513.

[437]

E. Scheid, P. Major, A. Bergeron, et al., “Tn-MUC1 DC Vaccination of Rhesus Macaques and a Phase I/II Trial in Patients With Nonmetastatic Castrate-Resistant Prostate Cancer,” Cancer Immunologic Research 4 (2016): 881-892.

[438]

M. Podrazil, R. Horvath, E. Becht, et al., “Phase I/II Clinical Trial of Dendritic-cell Based Immunotherapy (DCVAC/PCa) Combined With Chemotherapy in Patients With Metastatic, Castration-resistant Prostate Cancer,” Oncotarget 6 (2015): 18192-18205.

[439]

B. J. Macatangay, S. A. Riddler, N. D. Wheeler, et al., “Therapeutic Vaccination with Dendritic Cells Loaded with Autologous HIV Type 1-Infected Apoptotic Cells,” The Journal of Infectious Diseases 213 (2016): 1400-1409.

[440]

L. Leal, E. Couto, S. Sánchez-Palomino, et al., “Effect of Intranodally Administered Dendritic Cell-Based HIV Vaccine in Combination with Pegylated Interferon α-2a on Viral Control Following ART Discontinuation: A Phase 2A Randomized Clinical Trial,” Frontiers in Immunology 12 (2021): 767370.

[441]

J. L. Mitchell, H. Takata, R. Muir, et al., “Plasmacytoid Dendritic Cells Sense HIV Replication Before Detectable Viremia Following Treatment Interruption,” The Journal of Clinical Investigation 130 (2020): 2845-2858.

[442]

M. Surenaud, M. Montes, C. S. Lindestam Arlehamn, et al., “Anti-HIV Potency of T-cell Responses Elicited by Dendritic Cell Therapeutic Vaccination,” PLoS Pathogens 15 (2019): e1008011.

[443]

R. Thiébaut, B. P. Hejblum, H. Hocini, et al., “Gene Expression Signatures Associated with Immune and Virological Responses to Therapeutic Vaccination with Dendritic Cells in HIV-Infected Individuals,” Frontiers in Immunology 10 (2019): 874.

[444]

C. L. Gay, M. A. DeBenedette, I. Y. Tcherepanova, et al., “Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated during Acute HIV Infection,” AIDS Research and Human Retroviruses 34 (2018): 111-122.

[445]

R. T. Gandhi, D. S. Kwon, E. A. Macklin, et al., “Immunization of HIV-1-Infected Persons with Autologous Dendritic Cells Transfected with mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial,” Journal of Acquired Immune Deficiency Syndromes 71 (2016): 246-253.

[446]

E. Chernykh, O. Leplina, E. Oleynik, et al., “Immunotherapy With Interferon-α-induced Dendritic Cells for Chronic HCV Infection (the results of pilot clinical trial),” Immunologic Research 66 (2018): 31-43.

[447]

Y. Maeda, K. Yoshimura, H. Matsui, et al., “Dendritic Cells Transfected With Heat-shock Protein 70 Messenger RNA for Patients With hepatitis C Virus-related Hepatocellular Carcinoma: A Phase 1 Dose Escalation Clinical Trial,” Cancer Immunology, Immunotherapy: CII 64 (2015): 1047-1056.

[448]

J. Jonny, T. A. Putranto, M. L. Yana, et al., “Safety and Efficacy of Dendritic Cell Vaccine for COVID-19 Prevention After 1-Year Follow-up: Phase I and II Clinical Trial Final Result,” Frontiers in Immunology 14 (2023): 1122389.

[449]

G. M. Bell, A. E. Anderson, J. Diboll, et al., “Autologous Tolerogenic Dendritic Cells for Rheumatoid and Inflammatory Arthritis,” Annals of the Rheumatic Diseases 76 (2017): 227-234.

[450]

I. Zubizarreta, G. Flórez-Grau, G. Vila, et al., “Immune Tolerance in Multiple Sclerosis and Neuromyelitis Optica With Peptide-loaded Tolerogenic Dendritic Cells in a Phase 1b Trial,” Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 8463-8470.

[451]

R. A. Furie, R. F. van Vollenhoven, K. Kalunian, et al., “Trial of Anti-BDCA2 Antibody Litifilimab for Systemic Lupus Erythematosus,” The New England Journal of Medicine 387 (2022): 894-904.

[452]

R. Furie, V. P. Werth, J. F. Merola, et al., “Monoclonal Antibody Targeting BDCA2 Ameliorates Skin Lesions in Systemic Lupus Erythematosus,” The Journal of Clinical Investigation 129 (2019): 1359-1371.

[453]

Y. Mu, W. H. Wang, J. P. Xie, Y. X. Zhang, Y. P. Yang, and C. H. Zhou, “Efficacy and Safety of Cord Blood-derived Dendritic Cells plus Cytokine-induced Killer Cells Combined With Chemotherapy in the Treatment of Patients With Advanced Gastric Cancer: A Randomized Phase II Study,” OncoTargets and Therapy 9 (2016): 4617-4627.

[454]

A. S. Lück, J. Pu, A. Melhem, et al., “Preclinical Evaluation of DC-CIK Cells as Potentially Effective Immunotherapy Model for the Treatment of Glioblastoma,” Scientific Reports 15 (2025): 734.

[455]

J. Obreque, F. Vega, A. Torres, et al., “Autologous Tolerogenic Dendritic Cells Derived From Monocytes of Systemic lupus Erythematosus Patients and Healthy Donors Show a Stable and Immunosuppressive Phenotype,” Immunology 152 (2017): 648-659.

[456]

M. Suzuki, M. Yokota, Y. Kanemitsu, W. P. Min, S. Ozaki, and Y. Nakamura, “Intranasal Administration of Regulatory Dendritic Cells Is Useful for the Induction of Nasal Mucosal Tolerance in a Mice Model of Allergic Rhinitis,” The World Allergy Organization Journal 13 (2020): 100447.

[457]

S. Yu, L. Jin, N. Che, R. Zhang, F. Xu, and B. Han, “Dendritic Cells Modified With Der p1 Antigen as a Therapeutic Potential for Allergic Rhinitis in a Murine Model via Regulatory Effects on IL-4, IL-10 and IL-13,” International Immunopharmacology 70 (2019): 216-224.

[458]

W. Sun, J. W. Wei, H. Li, F. Q. Wei, J. Li, and W. P. Wen, “Adoptive Cell Therapy of Tolerogenic Dendritic Cells as Inducer of Regulatory T Cells in Allergic Rhinitis,” International Forum of Allergy & Rhinology 8 (2018): 1291-1299.

[459]

C. C. Lee, C. L. Lin, S. J. Leu, and Y. L. Lee, “Overexpression of Notch Ligand Delta-Like-1 by Dendritic Cells Enhances Their Immunoregulatory Capacity and Exerts Antiallergic Effects on Th2-mediated Allergic Asthma in Mice,” Clinical Immunology (Orlando, Fla) 187 (2018): 58-67.

[460]

R. Zhu, H. Sun, K. Yu, et al., “Interleukin-37 and Dendritic Cells Treated with Interleukin-37 Plus Troponin I Ameliorate Cardiac Remodeling after Myocardial Infarction,” Journal of the American Heart Association 5, no. 12 (2016): e004406.

[461]

F. Wang, H. Liu, X. Shen, et al., “Combined Treatment of Amyloid-β₁₋42-stimulated Bone Marrow-derived Dendritic Cells plus Splenocytes From Young Mice Prevents the Development of Alzheimer's Disease in APPswe/PSENldE9 Mice,” Neurobiology of Aging 36 (2015): 111-122.

[462]

C. Huang, L. Zhang, F. Ling, et al., “Effect of Immune Tolerance Induced by Immature Dendritic Cells and CTLA4-Ig on Systemic Lupus Erythematosus: An in Vivo Study,” Experimental and Therapeutic Medicine 15 (2018): 2499-2506.

[463]

B. Quirant-Sánchez, M. J. Mansilla, J. Navarro-Barriuso, et al., “Combined Therapy of Vitamin D3-Tolerogenic Dendritic Cells and Interferon-β in a Preclinical Model of Multiple Sclerosis,” Biomedicines 9, no. 12 (2021): 1758.

[464]

A. M. Thomas, N. M. Beskid, J. L. Blanchfield, et al., “Localized Hydrogel Delivery of Dendritic Cells for Attenuation of Multiple Sclerosis in a Murine Model,” Journal of Biomedical Materials Research Part A 109 (2021): 1247-1255.

[465]

D. Shi, D. Li, Q. Wang, et al., “Silencing SOCS1 in Dendritic Cells Promote Survival of Mice With Systemic Candida albicans Infection via Inducing Th1-cell Differentiation,” Immunology Letters 197 (2018): 53-62.

[466]

F. Jia, W. Wang, Y. Tian, et al., “Delivery of Dendritic Cells Targeting 3M2e-HA2 Nanoparticles With a CpG Adjuvant via Lysosomal Escape of Salmonella Enhances Protection Against H9N2 Avian Influenza Virus,” Poultry Science 104 (2025): 104616.

[467]

M. Ikeda, T. Ide, S. Matsushima, et al., “Immunomodulatory Cell Therapy Using αGalCer-Pulsed Dendritic Cells Ameliorates Heart Failure in a Murine Dilated Cardiomyopathy Model,” Circulation Heart Failure 15 (2022): e009366.

[468]

S. Karanika, J. T. Gordy, P. Neupane, et al., “An Intranasal Stringent Response Vaccine Targeting Dendritic Cells as a Novel Adjunctive Therapy Against Tuberculosis,” Frontiers in Immunology 13 (2022): 972266.

[469]

J. S. Y. Li, H. Robertson, K. Trinh, et al., “Tolerogenic Dendritic Cells Protect Against Acute Kidney Injury,” Kidney International 104 (2023): 492-507.

[470]

B. Kim, Y. E. Lee, J. W. Yeon, et al., “A Novel Therapeutic Modality Using CRISPR-engineered Dendritic Cells to Treat Allergies,” Biomaterials 273 (2021): 120798.

[471]

X. Y. Wang and J. Y. Zhang, “Treatment Mechanism of Tolerogenic Dendritic Cells on Rheumatoid Arthritis,” Journal of Biological Regulators and Homeostatic Agents 32 (2018): 1239-1244.

[472]

M. C. Vo, T. N. Nguyen-Pham, H. J. Lee, et al., “Combination Therapy With Dendritic Cells and Lenalidomide Is an Effective Approach to Enhance Antitumor Immunity in a Mouse Colon Cancer Model,” Oncotarget 8 (2017): 27252-27262.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/