Human Endogenous Retroviruses and Diseases

Can Chen , Yanru Cui , Shixiang Wang , Yuze Yang , Zunpeng Liu , Suhan Jin , Fangqian Shen , Udo Gaipl , Hu Ma , Jian-Guo Zhou

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70452

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70452 DOI: 10.1002/mco2.70452
REVIEW

Human Endogenous Retroviruses and Diseases

Author information +
History +
PDF

Abstract

Human endogenous retroviruses (HERVs), remnants of ancient retroviral infections, comprise nearly 8% of the human genome and play dual roles in physiological regulation and disease pathogenesis. Once considered genomic “fossils,” HERVs are now known to dynamically influence gene expression, immunity, and homeostasis via epigenetic regulation, molecular mimicry, and viral mimicry. Their structural components, including long terminal repeats and conserved viral genes, enable them to act as regulatory elements and potential sources of novel antigens. However, the causal mechanisms linking the dysregulation of HERVs to diseases—the technical challenges in their detection and quantification, as well as their therapeutic potential—remain poorly systematized. This review synthesizes the molecular architecture and evolutionary trajectories of HERVs, emphasizing their tissue-specific expression patterns. We further delineates their pathogenic roles in diseases including cancer, autoimmune conditions, and neurodegenerative disorders. Finally, we discuss emerging strategies targeting HERVs, including epigenetic modulators, immunotherapies, and gene editing, alongside ongoing clinical trials and translational challenges. By integrating molecular insights with clinical perspectives, this work provides a foundational framework for leveraging HERVs as biomarkers and therapeutic targets in precision medicine.

Keywords

human endogenous retroviruses / genetic domestication / transcriptional regulation / molecular mimicry / therapeutic targets

Cite this article

Download citation ▾
Can Chen, Yanru Cui, Shixiang Wang, Yuze Yang, Zunpeng Liu, Suhan Jin, Fangqian Shen, Udo Gaipl, Hu Ma, Jian-Guo Zhou. Human Endogenous Retroviruses and Diseases. MedComm, 2025, 6(11): e70452 DOI:10.1002/mco2.70452

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. J. Thompson, T. S. Macfarlan, and M. C. Lorincz, “Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire,” Molecular Cell 62, no. 5 (2016): 766-776.

[2]

R. Cordaux and M. A. Batzer, “The Impact of Retrotransposons on human Genome Evolution,” Nature Reviews Genetics 10, no. 10 (2009): 691-703.

[3]

C. Bao, Q. Gao, H. Xiang, et al., “Human Endogenous Retroviruses and Exogenous Viral Infections,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1439292.

[4]

D. L. Mager and J. P. Stoye, “Mammalian Endogenous Retroviruses,” Microbiology Spectrum 3, no. 1 (2015): Mdna3-0009-2014.

[5]

B. Barckmann, M. El-Barouk, A. Pélisson, et al., “The Somatic piRNA Pathway Controls Germline Transposition Over Generations,” Nucleic Acids Res 46, no. 18 (2018): 9524-9536.

[6]

P. Jern and J. M. Coffin, “Effects of Retroviruses on Host Genome Function,” Annual Review of Genetics 42 (2008): 709-732.

[7]

H. A. Lawson, Y. Liang, and T. Wang, “Transposable Elements in Mammalian Chromatin Organization,” Nature Reviews Genetics 24, no. 10 (2023): 712-723.

[8]

R. Fueyo, J. Judd, C. Feschotte, and J. Wysocka, “Roles of Transposable Elements in the Regulation of Mammalian Transcription,” Nature Reviews Molecular Cell Biology 23, no. 7 (2022): 481-497.

[9]

T. P. Hurst and G. Magiorkinis, “Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs),” Viruses 9, no. 6 (2017): 130.

[10]

J. She, M. Du, Z. Xu, et al., “The Landscape of hervRNAs Transcribed From human Endogenous Retroviruses Across human Body Sites,” Genome Biology 23, no. 1 (2022): 231.

[11]

A. Burn, F. Roy, M. Freeman, and J. M. Coffin, “Widespread Expression of the Ancient HERV-K (HML-2) Provirus Group in Normal human Tissues,” Plos Biology 20, no. 10 (2022): e3001826.

[12]

F. Li and H. Karlsson, “Expression and Regulation of human Endogenous Retrovirus W Elements,” Apmis 124, no. 1-2 (2016): 52-66.

[13]

A. S. Anisimova, M. B. Meerson, M. V. Gerashchenko, I. V. Kulakovskiy, S. E. Dmitriev, and V. N. Gladyshev, “Multifaceted Deregulation of Gene Expression and Protein Synthesis With Age,” PNAS 117, no. 27 (2020): 15581-15590.

[14]

R. Jaenisch and A. Bird, “Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals,” Nature Genetics 33 (2003): 245-254. Suppl.

[15]

W. Li, M. H. Lee, L. Henderson, et al., “Human Endogenous Retrovirus-K Contributes to Motor Neuron Disease,” Science Translational Medicine 7, no. 307 (2015): 307ra153.

[16]

X. Liu, Z. Liu, Z. Wu, et al., “Resurrection of Endogenous Retroviruses During Aging Reinforces Senescence,” Cell 186, no. 2 (2023): 287-304. e26.

[17]

G. Li, Y. Cheng, Y. Li, et al., “A Novel Base Editor SpRY-ABE8e(F148A) Mediates Efficient A-to-G Base Editing With a Reduced off-target Effect,” Mol Ther Nucleic Acids 31 (2023): 78-87.

[18]

H. Zhang, J. Li, Y. Yu, et al., “Nuclear Lamina Erosion-induced Resurrection of Endogenous Retroviruses Underlies Neuronal Aging,” Cell Reports 42, no. 6 (2023): 112593.

[19]

G. Kassiotis, “The Immunological Conundrum of Endogenous Retroelements,” Annual Review of Immunology 41 (2023): 99-125.

[20]

N. Jansz and G. J. Faulkner, “Endogenous Retroviruses in the Origins and Treatment of Cancer,” Genome Biology 22, no. 1 (2021): 147.

[21]

J. Jakobsson and M. Vincendeau, “SnapShot: Human Endogenous Retroviruses,” Cell 185, no. 2 (2022): 400-400. e1.

[22]

M. Chen, X. Huang, C. Wang, S. Wang, L. Jia, and L. Li, “Endogenous Retroviral Solo-LTRs in human Genome,” Frontiers in Genetics 15 (2024): 1358078.

[23]

M. Garcia-Montojo, T. Doucet-O'Hare, L. Henderson, and A. Nath, “Human Endogenous Retrovirus-K (HML-2): A Comprehensive Review,” Critical Reviews in Microbiology 44, no. 6 (2018): 715-738.

[24]

G. Kassiotis and J. P. Stoye, “Immune Responses to Endogenous Retroelements: Taking the Bad With the Good,” Nature Reviews Immunology 16, no. 4 (2016): 207-219.

[25]

T. H. Eickbush and V. K. Jamburuthugoda, “The Diversity of Retrotransposons and the Properties of Their Reverse Transcriptases,” Virus Research 134, no. 1-2 (2008): 221-234.

[26]

J. Wang, X. Lu, W. Zhang, and G. H. Liu, “Endogenous Retroviruses in Development and Health,” Trends in Microbiology 32, no. 4 (2024): 342-354.

[27]

R. B. Jones, K. E. Garrison, S. Mujib, et al., “HERV-K-specific T Cells Eliminate Diverse HIV-1/2 and SIV Primary Isolates,” Journal of Clinical Investigation 122, no. 12 (2012): 4473-4489.

[28]

S. Mafi, D. Savadi Oskoee, H. Bannazadeh Baghi, A. Azadi, and M. Ahangar Oskouee, “Association of Epstein-Barr Virus (EBV) and Human Endogenous Retroviruses (HERV) With Multiple Sclerosis in Northwest of Iran,” Int J Inflam 2023 (2023): 8175628.

[29]

N. Dopkins and D. F. Nixon, “Activation of human Endogenous Retroviruses and Its Physiological Consequences,” Nature Reviews Molecular Cell Biology 25, no. 3 (2024): 212-222.

[30]

Y. Xiong and T. H. Eickbush, “Origin and Evolution of Retroelements Based Upon Their Reverse Transcriptase Sequences,” Embo Journal 9, no. 10 (1990): 3353-3362.

[31]

E. A. Cherkasova, L. Chen, and R. W. Childs, “Mechanistic Regulation of HERV Activation in Tumors and Implications for Translational Research in Oncology,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1358470.

[32]

A. D. Greenwood, Y. Ishida, S. P. O'Brien, A. L. Roca, and M. V. Eiden, “Transmission, Evolution, and Endogenization: Lessons Learned From Recent Retroviral Invasions,” Microbiology and Molecular Biology Reviews 82, no. 1 (2018): e00044-e00117.

[33]

W. E. Johnson, “Origins and Evolutionary Consequences of Ancient Endogenous Retroviruses,” Nature Reviews Microbiology 17, no. 6 (2019): 355-370.

[34]

J. Wang and G. Z. Han, “A Sister Lineage of Sampled Retroviruses Corroborates the Complex Evolution of Retroviruses,” Molecular Biology and Evolution 38, no. 3 (2021): 1031-1039.

[35]

M. Dewannieux, F. Harper, A. Richaud, et al., “Identification of an Infectious Progenitor for the Multiple-copy HERV-K human Endogenous Retroelements,” Genome Research 16, no. 12 (2006): 1548-1556.

[36]

X. Xiang, Y. Tao, J. DiRusso, et al., “Human Reproduction Is Regulated by Retrotransposons Derived From Ancient Hominidae-specific Viral Infections,” Nature Communications 13, no. 1 (2022): 463.

[37]

J. Göke, X. Lu, Y. S. Chan, et al., “Dynamic Transcription of Distinct Classes of Endogenous Retroviral Elements Marks Specific Populations of Early human Embryonic Cells,” Cell Stem Cell 16, no. 2 (2015): 135-141.

[38]

X. Wu, Q. Yan, L. Liu, et al., “Domesticated HERV-W Env Contributes to the Activation of the Small Conductance Ca(2+)-activated K(+) Type 2 Channels via Decreased 5-HT4 Receptor in Recent-onset Schizophrenia,” Virol Sin 38, no. 1 (2023): 9-22.

[39]

J. Pontis, E. Planet, S. Offner, et al., “Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs,” Cell Stem Cell 24, no. 5 (2019): 724-735. e5.

[40]

T. S. Macfarlan, W. D. Gifford, S. Driscoll, et al., “Embryonic Stem Cell Potency Fluctuates With Endogenous Retrovirus Activity,” Nature 487, no. 7405 (2012): 57-63.

[41]

F. Yang, X. Huang, R. Zang, et al., “DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-Like State,” Cell Stem Cell 26, no. 2 (2020): 234-250. e7.

[42]

C. E. Sexton, R. L. Tillett, and M. V. Han, “The Essential but Enigmatic Regulatory Role of HERVH in Pluripotency,” Trends in Genetics 38, no. 1 (2022): 12-21.

[43]

A. H. Shah, S. R. Rivas, and T. T. Doucet-O'Hare, “Human Endogenous Retrovirus K Contributes to a Stem Cell Niche in Glioblastoma,” Journal of Clinical Investigation 133, no. 13 (2023): e167929.

[44]

M. Zhang, J. Q. Liang, and S. Zheng, “Expressional Activation and Functional Roles of human Endogenous Retroviruses in Cancers,” Reviews in Medical Virology 29, no. 2 (2019): e2025.

[45]

M. Suntsova, A. Garazha, A. Ivanova, D. Kaminsky, A. Zhavoronkov, and A. Buzdin, “Molecular Functions of human Endogenous Retroviruses in Health and Disease,” Cellular and Molecular Life Sciences 72, no. 19 (2015): 3653-3675.

[46]

W. Seifarth, O. Frank, U. Zeilfelder, et al., “Comprehensive Analysis of human Endogenous Retrovirus Transcriptional Activity in human Tissues With a Retrovirus-specific Microarray,” Journal of Virology 79, no. 1 (2005): 341-352.

[47]

J. Denner, “Expression and Function of Endogenous Retroviruses in the Placenta,” Apmis 124, no. 1-2 (2016): 31-43.

[48]

F. Li, S. Sabunciyan, R. H. Yolken, D. Lee, S. Kim, and H. Karlsson, “Transcription of human Endogenous Retroviruses in human Brain by RNA-seq Analysis,” PLoS ONE 14, no. 1 (2019): e0207353.

[49]

P. Pérot, N. Mugnier, C. Montgiraud, et al., “Microarray-based Sketches of the HERV Transcriptome Landscape,” PLoS ONE 7, no. 6 (2012): e40194.

[50]

P. Küry, A. Nath, A. Créange, et al., “Human Endogenous Retroviruses in Neurological Diseases,” Trends in Molecular Medicine 24, no. 4 (2018): 379-394.

[51]

L. Vargiu, P. Rodriguez-Tomé, G. O. Sperber, et al., “Classification and Characterization of human Endogenous Retroviruses; Mosaic Forms Are Common,” Retrovirology 13 (2016): 7.

[52]

K. B. Chiappinelli, P. L. Strissel, A. Desrichard, et al., “Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses,” Cell 169, no. 2 (2017): 361.

[53]

R. Barbalat, S. E. Ewald, M. L. Mouchess, and G. M. Barton, “Nucleic Acid Recognition by the Innate Immune System,” Annual Review of Immunology 29 (2011): 185-214.

[54]

M. Tokuyama, Y. Kong, E. Song, T. Jayewickreme, I. Kang, and A. Iwasaki, “ERVmap Analysis Reveals Genome-wide Transcription of human Endogenous Retroviruses,” PNAS 115, no. 50 (2018): 12565-12572.

[55]

P. Pisitkun, J. A. Deane, M. J. Difilippantonio, T. Tarasenko, A. B. Satterthwaite, and S. Bolland, “Autoreactive B Cell Responses to RNA-related Antigens due to TLR7 Gene Duplication,” Science 312, no. 5780 (2006): 1669-1672.

[56]

E. Rauch, T. Amendt, A. Lopez Krol, et al., “T-bet(+) B Cells Are Activated by and Control Endogenous Retroviruses Through TLR-dependent Mechanisms,” Nature Communications 15, no. 1 (2024): 1229.

[57]

K. B. Chiappinelli, P. L. Strissel, A. Desrichard, et al., “Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses,” Cell 162, no. 5 (2015): 974-986.

[58]

M. J. Campa, E. B. Gottlin, K. Wiehe, and E. F. Patz, “A Tumor-binding Antibody With Cross-reactivity to Viral Antigens,” Cancer Immunology, Immunotherapy 74, no. 4 (2025): 126.

[59]

H. Ogasawara, T. Naito, H. Kaneko, et al., “Quantitative Analyses of Messenger RNA of human Endogenous Retrovirus in Patients With Systemic Lupus Erythematosus,” Journal of Rheumatology 28, no. 3 (2001): 533-538.

[60]

A. K. Mankan and V. Hornung, “Retroviral Danger From Within: TLR7 Is in Control,” Immunity 37, no. 5 (2012): 763-766.

[61]

M. Zeng, Z. Hu, X. Shi, et al., “MAVS, cGAS, and Endogenous Retroviruses in T-independent B Cell Responses,” Science 346, no. 6216 (2014): 1486-1492.

[62]

T. A. Evans and J. A. Erwin, “Retroelement-derived RNA and Its Role in the Brain,” Seminars in Cell & Developmental Biology 114 (2021): 68-80.

[63]

D. S. Lima-Junior, S. R. Krishnamurthy, N. Bouladoux, et al., “Endogenous Retroviruses Promote Homeostatic and Inflammatory Responses to the Microbiota,” Cell 184, no. 14 (2021): 3794-3811. e19.

[64]

D. Roulois, H. Loo Yau, R. Singhania, et al., “DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts,” Cell 162, no. 5 (2015): 961-973.

[65]

K. B. Chiappinelli, P. L. Strissel, A. Desrichard, et al., “Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses,” Cell 164, no. 5 (2016): 1073.

[66]

G. R. Young, U. Eksmond, R. Salcedo, L. Alexopoulou, J. P. Stoye, and G. Kassiotis, “Resurrection of Endogenous Retroviruses in Antibody-deficient Mice,” Nature 491, no. 7426 (2012): 774-778.

[67]

E. B. Chuong, N. C. Elde, and C. Feschotte, “Regulatory Evolution of Innate Immunity Through co-option of Endogenous Retroviruses,” Science 351, no. 6277 (2016): 1083-1087.

[68]

C. D. Schmid and P. Bucher, “MER41 repeat Sequences Contain Inducible STAT1 Binding Sites,” PLoS ONE 5, no. 7 (2010): e11425.

[69]

B. Lamprecht, K. Walter, S. Kreher, et al., “Derepression of an Endogenous Long Terminal Repeat Activates the CSF1R Proto-oncogene in human Lymphoma,” Nature Medicine 16, no. 5 (2010): 571-579. 1p following 579.

[70]

M. Manghera, J. Ferguson-Parry, R. Lin, and R. N. Douville, “NF-κB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat,” Journal of Virology 90, no. 20 (2016): 9338-9349.

[71]

Y. Chen, J. Lin, Y. Zhao, X. Ma, and H. Yi, “Toll-Like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses,” J Zhejiang Univ Sci B 22, no. 8 (2021): 609-632.

[72]

T. P. Hurst and G. Magiorkinis, “Activation of the Innate Immune Response by Endogenous Retroviruses,” Journal of General Virology 96 (2015): 1207-1218. Pt 6.

[73]

F. J. Kohlhapp, E. J. Huelsmann, A. T. Lacek, et al., “Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death,” Cell reports 17, no. 4 (2016): 957-965.

[74]

F. Schiavetti, J. Thonnard, D. Colau, T. Boon, and P. G. Coulie, “A human Endogenous Retroviral Sequence Encoding an Antigen Recognized on Melanoma by Cytolytic T Lymphocytes,” Cancer Research 62, no. 19 (2002): 5510-5516.

[75]

Y. Song, G. Hou, J. Diep, et al., “Inhibitor of Growth Protein 3 Epigenetically Silences Endogenous Retroviral Elements and Prevents Innate Immune Activation,” Nucleic Acids Res 49, no. 22 (2021): 12706-12715.

[76]

X. Tu, S. Li, L. Zhao, R. Xiao, X. Wang, and F. Zhu, “Human Leukemia Antigen-A*0201-restricted Epitopes of human Endogenous Retrovirus W family Envelope (HERV-W env) Induce Strong Cytotoxic T Lymphocyte Responses,” Virol Sin 32, no. 4 (2017): 280-289.

[77]

F. Meylan, M. De Smedt, G. Leclercq, et al., “Negative Thymocyte Selection to HERV-K18 Superantigens in Humans,” Blood 105, no. 11 (2005): 4377-4382.

[78]

J. Krishnamurthy, B. A. Rabinovich, T. Mi, et al., “Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma,” Clinical Cancer Research 21, no. 14 (2015): 3241-3251.

[79]

D. S. Pisetsky, “Pathogenesis of Autoimmune Disease,” Nature Reviews Nephrology 19, no. 8 (2023): 509-524.

[80]

P. A. Jones, H. Ohtani, A. Chakravarthy, and D. D. De Carvalho, “Epigenetic Therapy in Immune-oncology,” Nature Reviews Cancer 19, no. 3 (2019): 151-161.

[81]

I. Cañadas, R. Thummalapalli, J. W. Kim, et al., “Tumor Innate Immunity Primed by Specific Interferon-stimulated Endogenous Retroviruses,” Nature Medicine 24, no. 8 (2018): 1143-1150.

[82]

W. R. Yang, D. Ardeljan, C. N. Pacyna, L. M. Payer, and K. H. Burns, “SQuIRE Reveals Locus-specific Regulation of Interspersed Repeat Expression,” Nucleic Acids Res 47, no. 5 (2019): e27.

[83]

M. Gracia-Hernandez, M. D. M. Maldonado, J. Schlom, and D. H. Hamilton, “Combination Therapy Approaches to Enhance the Efficacy of ERV-Targeting Vaccines in Cancer,” Cancer Immunology Research (2025): Of1-of12.

[84]

K. Robasky, N. E. Lewis, and G. M. Church, “The Role of Replicates for Error Mitigation in next-generation Sequencing,” Nature Reviews Genetics 15, no. 1 (2014): 56-62.

[85]

R. L. Troskie, Y. Jafrani, T. R. Mercer, A. D. Ewing, G. J. Faulkner, and S. W. Cheetham, “Long-read cDNA Sequencing Identifies Functional Pseudogenes in the human Transcriptome,” Genome Biology 22, no. 1 (2021): 146.

[86]

R. V. Berrens, A. Yang, C. E. Laumer, et al., “Locus-specific Expression of Transposable Elements in Single Cells With CELLO-seq,” Nature Biotechnology 40, no. 4 (2022): 546-554.

[87]

R. Rodríguez-Quiroz and B. Valdebenito-Maturana, “SoloTE for Improved Analysis of Transposable Elements in Single-cell RNA-Seq Data Using Locus-specific Expression,” Communications Biology 5, no. 1 (2022): 1063.

[88]

J. He, I. A. Babarinde, L. Sun, et al., “Identifying Transposable Element Expression Dynamics and Heterogeneity During Development at the Single-cell Level With a Processing Pipeline scTE,” Nature Communications 12, no. 1 (2021): 1456.

[89]

R. Musich, L. Cadle-Davidson, and M. V. Osier, “Comparison of Short-Read Sequence Aligners Indicates Strengths and Weaknesses for Biologists to Consider,” Frontiers in Plant Science 12 (2021): 657240.

[90]

M. L. Bendall, M. de Mulder, L. P. Iñiguez, et al., “Telescope: Characterization of the Retrotranscriptome by Accurate Estimation of Transposable Element Expression,” Plos Computational Biology 15, no. 9 (2019): e1006453.

[91]

H. H. Jeong, H. K. Yalamanchili, C. Guo, J. M. Shulman, and Z. Liu, “An Ultra-fast and Scalable Quantification Pipeline for Transposable Elements From next Generation Sequencing Data,” Pacific Symposium on Biocomputing 23 (2018): 168-179.

[92]

C. C. Smith, K. E. Beckermann, D. S. Bortone, et al., “Endogenous Retroviral Signatures Predict Immunotherapy Response in Clear Cell Renal Cell Carcinoma,” Journal of Clinical Investigation 128, no. 11 (2018): 4804-4820.

[93]

G. Bourque, K. H. Burns, M. Gehring, et al., “Ten Things You Should Know About Transposable Elements,” Genome Biology 19, no. 1 (2018): 199.

[94]

S. I. Grewal and S. Jia, “Heterochromatin Revisited,” Nature Reviews Genetics 8, no. 1 (2007): 35-46.

[95]

G. Hu, J. Kim, Q. Xu, Y. Leng, S. H. Orkin, and S. J. Elledge, “A Genome-wide RNAi Screen Identifies a New Transcriptional Module Required for Self-renewal,” Genes & Development 23, no. 7 (2009): 837-848.

[96]

H. M. Rowe, J. Jakobsson, D. Mesnard, et al., “KAP1 controls Endogenous Retroviruses in Embryonic Stem Cells,” Nature 463, no. 7278 (2010): 237-240.

[97]

T. Matsui, D. Leung, H. Miyashita, et al., “Proviral Silencing in Embryonic Stem Cells Requires the Histone Methyltransferase ESET,” Nature 464, no. 7290 (2010): 927-931.

[98]

H. M. Rowe and D. Trono, “Dynamic Control of Endogenous Retroviruses During Development,” Virology 411, no. 2 (2011): 273-287.

[99]

L. M. Payer and K. H. Burns, “Transposable Elements in human Genetic Disease,” Nature Reviews Genetics 20, no. 12 (2019): 760-772.

[100]

J. N. Wells and C. Feschotte, “A Field Guide to Eukaryotic Transposable Elements,” Annual Review of Genetics 54 (2020): 539-561.

[101]

T. Chelmicki, E. Roger, A. Teissandier, et al., “m(6)A RNA Methylation Regulates the Fate of Endogenous Retroviruses,” Nature 591, no. 7849 (2021): 312-316.

[102]

W. Xu, J. Li, C. He, et al., “METTL3 regulates Heterochromatin in Mouse Embryonic Stem Cells,” Nature 591, no. 7849 (2021): 317-321.

[103]

J. Liu, M. Gao, J. He, et al., “The RNA M(6)A Reader YTHDC1 Silences Retrotransposons and Guards ES Cell Identity,” Nature 591, no. 7849 (2021): 322-326.

[104]

F. Cammas, M. Mark, P. Dollé, A. Dierich, P. Chambon, and R. Losson, “Mice Lacking the Transcriptional Corepressor TIF1beta Are Defective in Early Postimplantation Development,” Development (Cambridge, England) 127, no. 13 (2000): 2955-2963.

[105]

A. Petrizzo, C. Ragone, B. Cavalluzzo, et al., “Human Endogenous Retrovirus Reactivation: Implications for Cancer Immunotherapy,” Cancers (Basel) 13, no. 9 (2021): 1999.

[106]

M. Liu, S. L. Thomas, A. K. DeWitt, et al., “Dual Inhibition of DNA and Histone Methyltransferases Increases Viral Mimicry in Ovarian Cancer Cells,” Cancer Research 78, no. 20 (2018): 5754-5766.

[107]

N. Dopkins, T. Fei, S. Michael, et al., “Endogenous Retroelement Expression in the Gut Microenvironment of People Living With HIV-1,” EBioMedicine 103 (2024): 105133.

[108]

R. Wang, X. Dong, X. Zhang, J. Liao, W. Cui, and W. Li, “Exploring Viral Mimicry Combined With Epigenetics and Tumor Immunity: New Perspectives in Cancer Therapy,” Int J Biol Sci 21, no. 3 (2025): 958-973.

[109]

B. Frost and J. Dubnau, “The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders,” Annual Review of Neuroscience 47, no. 1 (2024): 123-143.

[110]

K. E. Copley and J. Shorter, “Repetitive Elements in Aging and Neurodegeneration,” Trends in Genetics 39, no. 5 (2023): 381-400.

[111]

C. Bu, Z. Wang, Y. Ren, D. Chen, and S. W. Jiang, “Syncytin-1 Nonfusogenic Activities Modulate Inflammation and Contribute to Preeclampsia Pathogenesis,” Cellular and Molecular Life Sciences 79, no. 6 (2022): 290.

[112]

C. Toufaily, S. Landry, C. Leib-Mosch, E. Rassart, and B. Barbeau, “Activation of LTRs From Different human Endogenous Retrovirus (HERV) Families by the HTLV-1 Tax Protein and T-cell Activators,” Viruses 3, no. 11 (2011): 2146-2159.

[113]

R. D. S. Bezerra, J. P. B. Ximenez, M. Giovanetti, et al., “Metavirome Composition of Brazilian Blood Donors Positive for the Routinely Tested Blood-borne Infections,” Virus Research 311 (2022): 198689.

[114]

R. E. Tarlinton, E. Martynova, A. A. Rizvanov, S. Khaiboullina, and S. Verma, “Role of Viruses in the Pathogenesis of Multiple Sclerosis,” Viruses 12, no. 6 (2020): 643.

[115]

G. Bellucci, V. Rinaldi, M. C. Buscarinu, et al., “Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?,” Frontiers in immunology 12 (2021): 755333.

[116]

T. Hong, J. Li, L. Guo, et al., “TET2 modulates Spatial Relocalization of Heterochromatin in Aged Hematopoietic Stem and Progenitor Cells,” Nat Aging 3, no. 11 (2023): 1387-1400.

[117]

J. A. Kreiling, “Dysregulation of Endogenous Retroviruses Triggers Aging and Senescence,” Nat Aging 4, no. 12 (2024): 1670-1672.

[118]

S. Lopes-Paciencia and G. Ferbeyre, “Increased Chromatin Accessibility Underpins Senescence,” Febs Journal (2025).

[119]

F. Michor, Y. Iwasa, and M. A. Nowak, “Dynamics of Cancer Progression,” Nature Reviews Cancer 4, no. 3 (2004): 197-205.

[120]

C. L. Chaffer and R. A. Weinberg, “How Does Multistep Tumorigenesis Really Proceed,” Cancer Discovery 5, no. 1 (2015): 22-24.

[121]

Q. T. T. Nguyen, S. G. Shin, T. T. T. Nguyen, K. Y. Lee, M. McClelland, and E. J. Lee, “Human Endogenous Retrovirus-K Envelope Protein Is Aberrantly Expressed in Serous Ovarian Cancer and Promotes Chemosensitivity via NF-κB/P-glycoprotein Pathway Inhibition,” J Ovarian Res 18, no. 1 (2025): 146.

[122]

M. Liu, L. Jia, H. Li, et al., “p53 Binding Sites in Long Terminal Repeat 5Hs (LTR5Hs) of Human Endogenous Retrovirus K Family (HML-2 Subgroup) Play Important Roles in the Regulation of LTR5Hs Transcriptional Activity,” Microbiology Spectrum 10, no. 4 (2022): e0048522.

[123]

N. M. Shah, H. J. Jang, Y. Liang, et al., “Pan-cancer Analysis Identifies Tumor-specific Antigens Derived From Transposable Elements,” Nature Genetics 55, no. 4 (2023): 631-639.

[124]

P. Bonaventura, V. Alcazer, V. Mutez, et al., “Identification of Shared Tumor Epitopes From Endogenous Retroviruses Inducing High-avidity Cytotoxic T Cells for Cancer Immunotherapy,” Science Advances 8, no. 4 (2022): eabj3671.

[125]

M. Natoli, J. Gallon, H. Lu, et al., “Transcriptional Analysis of Multiple Ovarian Cancer Cohorts Reveals Prognostic and Immunomodulatory Consequences of ERV Expression,” Journal for ImmunoTherapy of Cancer 9, no. 1 (2021): e001519.

[126]

F. Wang-Johanning, L. Radvanyi, and K. Rycaj, “Human Endogenous Retrovirus K Triggers an Antigen-specific Immune Response in Breast Cancer Patients,” Cancer Research 68, no. 14 (2008): 5869-5877.

[127]

F. Zhou, J. Krishnamurthy, Y. Wei, et al., “Chimeric Antigen Receptor T Cells Targeting HERV-K Inhibit Breast Cancer and Its Metastasis Through Downregulation of Ras,” 4, no. 11 (2015): e1047582.

[128]

K. W. Ng, J. Boumelha, K. S. S. Enfield, et al., “Antibodies Against Endogenous Retroviruses Promote Lung Cancer Immunotherapy,” Nature 616, no. 7957 (2023): 563-573.

[129]

F. Rafiei, N. Masoumi, and E. Faghihloo, “Investigating the Expression of HERV-K Env, np9, Gag, and Rec in Bladder Cancers,” Infect Agent Cancer 20, no. 1 (2025): 41.

[130]

Y. Chen, Y. Xu, Y. Zhang, D. Yang, and Y. Sun, “Functions of the Fusogenic and Non-fusogenic Activities of Syncytin-1 in human Physiological and Pathological Processes,” Biochemical and Biophysical Research Communications 761 (2025): 151746.

[131]

C. Zhang, E. Stelloo, S. Barrans, et al., “Non-IG::MYC in Diffuse Large B-cell Lymphoma Confers Variable Genomic Configurations and MYC Transactivation Potential,” Leukemia 38, no. 3 (2024): 621-629.

[132]

H. Ohtani, M. Liu, G. Liang, H. J. Jang, and P. A. Jones, “Efficient Activation of Hundreds of LTR12C Elements Reveals Cis-regulatory Function Determined by Distinct Epigenetic Mechanisms,” Nucleic Acids Res 52, no. 14 (2024): 8205-8217.

[133]

J. Wang, M. Ren, J. Yu, et al., “Single-cell RNA Sequencing Highlights the Functional Role of human Endogenous Retroviruses in Gallbladder Cancer,” EBioMedicine 85 (2022): 104319.

[134]

J. Viot, R. Loyon, N. Adib, et al., “Deciphering human Endogenous Retrovirus Expression in Colorectal Cancers: Exploratory Analysis Regarding Prognostic Value in Liver Metastases,” EBioMedicine 116 (2025): 105727.

[135]

H. Wen, M. Pérez-Losada, L. Mishra, and K. A. Crandall, “Locus-specific HERV Expression Associated With Hepatocellular Carcinoma,” Mob DNA 16, no. 1 (2025): 30.

[136]

K. Yang, W. Zhang, L. Zhong, et al., “Long Non-coding RNA HIF1A-As2 and MYC Form a Double-positive Feedback Loop to Promote Cell Proliferation and Metastasis in KRAS-driven Non-small Cell Lung Cancer,” Cell Death and Differentiation 30, no. 6 (2023): 1533-1549.

[137]

Y. L. Tuo, X. M. Li, and J. Luo, “Long Noncoding RNA UCA1 Modulates Breast Cancer Cell Growth and Apoptosis Through Decreasing Tumor Suppressive miR-143,” European Review for Medical and Pharmacological Sciences 19, no. 18 (2015): 3403-3411.

[138]

Z. Izsvák, J. Ma, M. Singh, and L. D. Hurst, “Co-option of an Endogenous Retrovirus (LTR7-HERVH) in Early human Embryogenesis: Becoming Useful and Going Unnoticed,” Mob DNA 16, no. 1 (2025): 27.

[139]

L. Li, T. Feng, Y. Lian, G. Zhang, A. Garen, and X. Song, “Role of human Noncoding RNAs in the Control of Tumorigenesis,” PNAS 106, no. 31 (2009): 12956-12961.

[140]

G. Wang, Y. Cui, G. Zhang, A. Garen, and X. Song, “Regulation of Proto-oncogene Transcription, Cell Proliferation, and Tumorigenesis in Mice by PSF Protein and a VL30 Noncoding RNA,” PNAS 106, no. 39 (2009): 16794-16798.

[141]

J. Lv and Z. Zhao, “Binding of LINE-1 RNA to PSF Transcriptionally Promotes GAGE6 and Regulates Cell Proliferation and Tumor Formation in Vitro,” Exp Ther Med 14, no. 2 (2017): 1685-1691.

[142]

A. Panda, A. A. de Cubas, M. Stein, et al., “Endogenous Retrovirus Expression Is Associated With Response to Immune Checkpoint Blockade in Clear Cell Renal Cell Carcinoma,” JCI Insight 3, no. 16 (2018): e121522.

[143]

Y. Wang, M. Liu, X. Guo, et al., “Endogenous Retrovirus Elements Are Co-Expressed With IFN Stimulation Genes in the JAK-STAT Pathway,” Viruses 15, no. 1 (2022): 60.

[144]

M. K. McGeary, W. Damsky, A. J. Daniels, et al., “Setdb1 Loss Induces Type I Interferons and Immune Clearance of Melanoma,” Cancer Immunology Research 13, no. 2 (2025): 245-257.

[145]

Q. Jiang, D. A. Braun, K. R. Clauser, et al., “HIF Regulates Multiple Translated Endogenous Retroviruses: Implications for Cancer Immunotherapy,” Cell 188, no. 7 (2025): 1807-1827. e34.

[146]

J. Lecuelle, L. Favier, C. Fraisse, et al., “MER4 endogenous Retrovirus Correlated With Better Efficacy of Anti-PD1/PD-L1 Therapy in Non-small Cell Lung Cancer,” Journal for ImmunoTherapy of Cancer 10, no. 3 (2022): e004241.

[147]

E. Stricker, E. C. Peckham-Gregory, and M. E. Scheurer, “CancerHERVdb: Human Endogenous Retrovirus (HERV) Expression Database for Human Cancer Accelerates Studies of the Retrovirome and Predictions for HERV-Based Therapies,” Journal of Virology 97, no. 6 (2023): e0005923.

[148]

M. C. Steiner, J. L. Marston, L. P. Iñiguez, et al., “Locus-Specific Characterization of Human Endogenous Retrovirus Expression in Prostate, Breast, and Colon Cancers,” Cancer Research 81, no. 13 (2021): 3449-3460.

[149]

G. Ehx, J. D. Larouche, C. Durette, et al., “Atypical Acute Myeloid Leukemia-specific Transcripts Generate Shared and Immunogenic MHC Class-I-associated Epitopes,” Immunity 54, no. 4 (2021): 737-752. e10.

[150]

J. A. Marin-Acevedo, E. O. Kimbrough, and Y. Lou, “Next Generation of Immune Checkpoint Inhibitors and Beyond,” Journal of Hematology & Oncology 14, no. 1 (2021): 45.

[151]

N. Kirchhammer, M. P. Trefny, P. Auf der Maur, H. Läubli, and A. Zippelius, “Combination Cancer Immunotherapies: Emerging Treatment Strategies Adapted to the Tumor Microenvironment,” Science Translational Medicine 14, no. 670 (2022): eabo3605.

[152]

J. G. Zhou, Y. Zeng, H. Wang, et al., “Identification of an Endogenous Retroviral Signature to Predict Anti-PD1 Response in Advanced Clear Cell Renal Cell Carcinoma: An Integrated Analysis of Three Clinical Trials,” Ther Adv Med Oncol 14 (2022): 17588359221126154.

[153]

H. Perron, J. A. Garson, F. Bedin, et al., “Molecular Identification of a Novel Retrovirus Repeatedly Isolated From Patients With Multiple Sclerosis. The Collaborative Research Group on Multiple Sclerosis,” PNAS 94, no. 14 (1997): 7583-7588.

[154]

M. Tokuyama, B. M. Gunn, A. Venkataraman, et al., “Antibodies Against human Endogenous Retrovirus K102 Envelope Activate Neutrophils in Systemic Lupus Erythematosus,” Journal of Experimental Medicine 218, no. 7 (2021): e20191766.

[155]

J. F. Bach, “The Effect of Infections on Susceptibility to Autoimmune and Allergic Diseases,” New England Journal of Medicine 347, no. 12 (2002): 911-920.

[156]

G. I. Rice, C. Meyzer, N. Bouazza, et al., “Reverse-Transcriptase Inhibitors in the Aicardi-Goutières Syndrome,” New England Journal of Medicine 379, no. 23 (2018): 2275-2277.

[157]

H. Perron, C. Geny, A. Laurent, et al., “Leptomeningeal Cell Line From multiple Sclerosis With Reverse Transcriptase Activity and Viral Particles,” Research in Virology 140, no. 6 (1989): 551-561.

[158]

A. Dolei and H. Perron, “The Multiple Sclerosis-associated Retrovirus and Its HERV-W Endogenous family: A Biological Interface Between Virology, Genetics, and Immunology in human Physiology and Disease,” Journal of Neurovirology 15, no. 1 (2009): 4-13.

[159]

H. Perron, E. Jouvin-Marche, M. Michel, et al., “Multiple Sclerosis Retrovirus Particles and Recombinant Envelope Trigger an Abnormal Immune Response in Vitro, by Inducing Polyclonal Vbeta16 T-lymphocyte Activation,” Virology 287, no. 2 (2001): 321-332.

[160]

A. Rolland, E. Jouvin-Marche, C. Viret, M. Faure, H. Perron, and P. N. Marche, “The Envelope Protein of a human Endogenous Retrovirus-W family Activates Innate Immunity Through CD14/TLR4 and Promotes Th1-Like Responses,” Journal of Immunology 176, no. 12 (2006): 7636-7644.

[161]

H. Perron, H. L. Dougier-Reynaud, C. Lomparski, et al., “Human Endogenous Retrovirus Protein Activates Innate Immunity and Promotes Experimental Allergic Encephalomyelitis in Mice,” PLoS ONE 8, no. 12 (2013): e80128.

[162]

J. A. Garson, P. W. Tuke, P. Giraud, G. Paranhos-Baccala, and H. Perron, “Detection of Virion-associated MSRV-RNA in Serum of Patients With Multiple Sclerosis,” Lancet 351, no. 9095 (1998): 33.

[163]

G. Mameli, L. Poddighe, V. Astone, et al., “Novel Reliable Real-time PCR for Differential Detection of MSRVenv and Syncytin-1 in RNA and DNA From Patients With Multiple Sclerosis,” Journal of Virological Methods 161, no. 1 (2009): 98-106.

[164]

H. Perron, R. Germi, C. Bernard, et al., “Human Endogenous Retrovirus Type W Envelope Expression in Blood and Brain Cells Provides New Insights Into multiple Sclerosis Disease,” Multiple Sclerosis 18, no. 12 (2012): 1721-1736.

[165]

J. van Horssen, S. van der Pol, P. Nijland, S. Amor, and H. Perron, “Human Endogenous Retrovirus W in Brain Lesions: Rationale for Targeted Therapy in Multiple Sclerosis,” Mult Scler Relat Disord 8 (2016): 11-18.

[166]

D. Kremer, J. Gruchot, V. Weyers, et al., “pHERV-W Envelope Protein Fuels Microglial Cell-dependent Damage of Myelinated Axons in Multiple Sclerosis,” PNAS 116, no. 30 (2019): 15216-15225.

[167]

K. Bjornevik, M. Cortese, B. C. Healy, et al., “Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated With Multiple Sclerosis,” Science 375, no. 6578 (2022): 296-301.

[168]

G. Mameli, G. Madeddu, A. Mei, et al., “Activation of MSRV-type Endogenous Retroviruses During Infectious Mononucleosis and Epstein-Barr Virus Latency: The Missing Link With Multiple Sclerosis?,” PLoS ONE 8, no. 11 (2013): e78474.

[169]

G. Mameli, L. Poddighe, A. Mei, et al., “Expression and Activation by Epstein Barr Virus of human Endogenous Retroviruses-W in Blood Cells and Astrocytes: Inference for Multiple Sclerosis,” PLoS ONE 7, no. 9 (2012): e44991.

[170]

P. M. Barral, D. Sarkar, Z. Z. Su, et al., “Functions of the Cytoplasmic RNA Sensors RIG-I and MDA-5: Key Regulators of Innate Immunity,” Pharmacology & Therapeutics 124, no. 2 (2009): 219-234.

[171]

J. T. Crowl, E. E. Gray, K. Pestal, H. E. Volkman, and D. B. Stetson, “Intracellular Nucleic Acid Detection in Autoimmunity,” Annual Review of Immunology 35 (2017): 313-336.

[172]

M. Shehab, N. Sherri, H. Hussein, N. Salloum, and E. A. Rahal, “Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice,” Journal of Virology 93, no. 20 (2019): e00987-e01019.

[173]

E. P. Browne, “The Role of Toll-Like Receptors in Retroviral Infection,” Microorganisms 8, no. 11 (2020): 1787.

[174]

A. Perl, G. Nagy, A. Koncz, et al., “Molecular Mimicry and Immunomodulation by the HRES-1 Endogenous Retrovirus in SLE,” Autoimmunity 41, no. 4 (2008): 287-297.

[175]

B. M. Javierre, A. F. Fernandez, J. Richter, et al., “Changes in the Pattern of DNA Methylation Associate With Twin Discordance in Systemic Lupus Erythematosus,” Genome Research 20, no. 2 (2010): 170-179.

[176]

L. Baudino, K. Yoshinobu, N. Morito, M. L. Santiago-Raber, and S. Izui, “Role of Endogenous Retroviruses in Murine SLE,” Autoimmunity Reviews 10, no. 1 (2010): 27-34.

[177]

Z. Wu, X. Mei, D. Zhao, et al., “DNA Methylation Modulates HERV-E Expression in CD4+ T Cells From Systemic lupus Erythematosus Patients,” Journal of Dermatological Science 77, no. 2 (2015): 110-116.

[178]

A. I. Khadjinova, X. Wang, A. Laine, et al., “Autoantibodies Against the Envelope Proteins of Endogenous Retroviruses K102 and K108 in Patients With Systemic Lupus Erythematosus Correlate With Active Disease,” Clinical and Experimental Rheumatology 40, no. 7 (2022): 1306-1312.

[179]

X. Liu, Y. Ding, X. Zheng, et al., “Small RNAs Encoded by human Endogenous Retrovirus K Overexpressed in PBMCs May Contribute to the Diagnosis and Evaluation of Systemic Lupus Erythematosus as Novel Biomarkers,” Human Molecular Genetics 31, no. 9 (2022): 1407-1416.

[180]

C. M. Mariaselvam, G. Seth, C. Kavadichanda, et al., “Low C4A Copy Numbers and Higher HERV Gene Insertion Contributes to Increased Risk of SLE, With Absence of Association With Disease Phenotype and Disease Activity,” Immunologic Research 72, no. 4 (2024): 697-706.

[181]

L. Gan, M. R. Cookson, L. Petrucelli, and A. R. La Spada, “Converging Pathways in Neurodegeneration, From Genetics to Mechanisms,” Nature Neuroscience 21, no. 10 (2018): 1300-1309.

[182]

W. Sun, H. Samimi, M. Gamez, H. Zare, and B. Frost, “Pathogenic Tau-induced piRNA Depletion Promotes Neuronal Death Through Transposable Element Dysregulation in Neurodegenerative Tauopathies,” Nature Neuroscience 21, no. 8 (2018): 1038-1048.

[183]

E. R. Simula, S. Jasemi, D. Cossu, et al., “Human Endogenous Retroviruses as Novel Therapeutic Targets in Neurodegenerative Disorders,” Vaccines (Basel) 13, no. 4 (2025): 415.

[184]

R. R. R. Duarte, D. F. Nixon, and T. R. Powell, “Ancient Viral DNA in the human Genome Linked to Neurodegenerative Diseases,” Brain, Behavior, and Immunity 123 (2025): 765-770.

[185]

T. Dharmadasa, J. M. Matamala, W. Huynh, M. C. Zoing, and M. C. Kiernan, “Motor Neurone Disease,” Handb Clin Neurol 159 (2018): 345-357.

[186]

M. E. McCauley and R. H. Baloh, “Inflammation in ALS/FTD Pathogenesis,” Acta Neuropathologica 137, no. 5 (2019): 715-730.

[187]

M. A. Barceló, M. Povedano, J. F. Vázquez-Costa, Á. Franquet, M. Solans, and M. Saez, “Estimation of the Prevalence and Incidence of Motor Neuron Diseases in Two Spanish Regions: Catalonia and Valencia,” Scientific Reports 11, no. 1 (2021): 6207.

[188]

J. Ravits, S. Appel, R. H. Baloh, et al., “Deciphering Amyotrophic Lateral Sclerosis: What Phenotype, Neuropathology and Genetics Are Telling Us About Pathogenesis,” Amyotroph Lateral Scler Frontotemporal Degener 14, no. 0 1 (2013): 5-18. Suppl 1.

[189]

L. Krug, N. Chatterjee, R. Borges-Monroy, et al., “Retrotransposon Activation Contributes to Neurodegeneration in a Drosophila TDP-43 Model of ALS,” PLos Genet 13, no. 3 (2017): e1006635.

[190]

G. Romano, R. Klima, and F. Feiguin, “TDP-43 Prevents Retrotransposon Activation in the Drosophila Motor System Through Regulation of Dicer-2 Activity,” BMC Biology 18, no. 1 (2020): 82.

[191]

K. Phan, Y. He, Y. Fu, et al., “Pathological Manifestation of human Endogenous Retrovirus K in Frontotemporal Dementia,” Commun Med (Lond) 1 (2021): 60.

[192]

E. R. Simula, G. Arru, I. R. Zarbo, P. Solla, and L. A. Sechi, “TDP-43 and HERV-K Envelope-Specific Immunogenic Epitopes Are Recognized in ALS Patients,” Viruses 13, no. 11 (2021): 2301.

[193]

G. Ibba, C. Piu, E. Uleri, C. Serra, and A. Dolei, “Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene With Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis,” Viruses 10, no. 8 (2018): 412.

[194]

Y. H. Chang and J. Dubnau, “The Gypsy Endogenous Retrovirus Drives Non-Cell-Autonomous Propagation in a Drosophila TDP-43 Model of Neurodegeneration,” Current Biology 29, no. 19 (2019): 3135-3152. e4.

[195]

M. Garcia-Montojo, E. R. Simula, S. Fathi, et al., “Antibody Response to HML-2 May Be Protective in Amyotrophic Lateral Sclerosis,” Annals of Neurology 92, no. 5 (2022): 782-792.

[196]

Y. Li, Y. Chen, N. Zhang, and D. Fan, “Human Endogenous Retrovirus K (HERV-K) Env in Neuronal Extracellular Vesicles: A New Biomarker of Motor Neuron Disease,” Amyotroph Lateral Scler Frontotemporal Degener 23, no. 1-2 (2022): 100-107.

[197]

S. Carra, B. Fabian, H. Taghavi, et al., “Virus-Like Particles of Retroviral Origin in Protein Aggregation and Neurodegenerative Diseases,” Molecular Aspects of Medicine 103 (2025): 101369.

[198]

J. C. Masdeu, B. Pascual, and M. Fujita, “Imaging Neuroinflammation in Neurodegenerative Disorders,” Journal of Nuclear Medicine 63, no. Suppl 1 (2022): 45s-52s.

[199]

Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 354 Diseases and Injuries for 195 Countries and territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789-1858.

[200]

E. R. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The Emerging Evidence of the Parkinson Pandemic,” J Parkinsons Dis 8, no. s1 (2018): S3-s8.

[201]

D. K. Simon, C. M. Tanner, and P. Brundin, “Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology,” Clinics in Geriatric Medicine 36, no. 1 (2020): 1-12.

[202]

M. G. Erkkinen, M. O. Kim, and M. D. Geschwind, “Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases,” Cold Spring Harbor perspectives in biology 10, no. 4 (2018): a033118.

[203]

E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe, “Challenges in the Diagnosis of Parkinson's Disease,” Lancet Neurology 20, no. 5 (2021): 385-397.

[204]

M. T. Hayes, “Parkinson's Disease and Parkinsonism,” American Journal of Medicine 132, no. 7 (2019): 802-807.

[205]

J. Gordevicius, T. Goralski, A. Bergsma, et al. Human Endogenous Retrovirus Expression is Dynamically Regulated in Parkinson's Disease. 2023.

[206]

R. Douville, J. Liu, J. Rothstein, and A. Nath, “Identification of Active Loci of a human Endogenous Retrovirus in Neurons of Patients With amyotrophic Lateral sclerosis,” Annals of Neurology 69, no. 1 (2011): 141-151.

[207]

A. D. Wallace, G. A. Wendt, L. F. Barcellos, et al., “To ERV Is Human: A Phenotype-Wide Scan Linking Polymorphic Human Endogenous Retrovirus-K Insertions to Complex Phenotypes,” Frontiers in Genetics 9 (2018): 298.

[208]

F. X. Blaudin de Thé, H. Rekaik, E. Peze-Heidsieck, et al., “Engrailed Homeoprotein Blocks Degeneration in Adult Dopaminergic Neurons Through LINE-1 Repression,” Embo Journal 37, no. 15 (2018): e97374.

[209]

A. L. Pfaff, V. J. Bubb, J. P. Quinn, and S. Koks, “Reference SVA Insertion Polymorphisms Are Associated With Parkinson's Disease Progression and Differential Gene Expression,” NPJ Parkinsons Dis 7, no. 1 (2021): 44.

[210]

E. A. Albornoz, A. A. Amarilla, N. Modhiran, et al., “SARS-CoV-2 Drives NLRP3 Inflammasome Activation in human Microglia Through Spike Protein,” Molecular Psychiatry 28, no. 7 (2023): 2878-2893.

[211]

R. K. Bhat, W. Rudnick, J. M. Antony, et al., “Human Endogenous Retrovirus-K(II) Envelope Induction Protects Neurons During HIV/AIDS,” PLoS ONE 9, no. 7 (2014): e97984.

[212]

B. F. Boeve, A. L. Boxer, F. Kumfor, Y. Pijnenburg, and J. D. Rohrer, “Advances and Controversies in Frontotemporal Dementia: Diagnosis, Biomarkers, and Therapeutic Considerations,” Lancet Neurology 21, no. 3 (2022): 258-272.

[213]

M. Nikolac Perkovic and N. Pivac, “Genetic Markers of Alzheimer's Disease,” Advances in Experimental Medicine and Biology 1192 (2019): 27-52.

[214]

O. Sheppard and M. Coleman. Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis. In: Huang X, ed. “Alzheimer's Disease: Drug Discovery”b> (Exon Publications, 2020). Copyright: The Authors.

[215]

R. Madabhushi, L. Pan, and L. H. Tsai, “DNA Damage and Its Links to Neurodegeneration,” Neuron 83, no. 2 (2014): 266-282.

[216]

B. Frost, M. Hemberg, J. Lewis, and M. B. Feany, “Tau Promotes Neurodegeneration Through Global Chromatin Relaxation,” Nature Neuroscience 17, no. 3 (2014): 357-366.

[217]

P. Dembny, A. G. Newman, M. Singh, et al., “Human Endogenous Retrovirus HERV-K(HML-2) RNA Causes Neurodegeneration Through Toll-Like Receptors,” JCI Insight 5, no. 7 (2020): e131093.

[218]

T. Dawson, U. Rentia, J. Sanford, C. Cruchaga, J. S. K. Kauwe, and K. A. Crandall, “Locus Specific Endogenous Retroviral Expression Associated With Alzheimer's Disease,” Frontiers in Aging Neuroscience 15 (2023): 1186470.

[219]

F. Licastro and E. Porcellini, “Activation of Endogenous Retrovirus, Brain Infections and Environmental Insults in Neurodegeneration and Alzheimer's Disease,” International Journal of Molecular Sciences 22, no. 14 (2021): 7263.

[220]

T. H. Evering, J. L. Marston, L. Gan, and D. F. Nixon, “Transposable Elements and Alzheimer's Disease Pathogenesis,” Trends in Neuroscience (Tins) 46, no. 3 (2023): 170-172.

[221]

W. Huang, S. Li, Y. Hu, et al., “Implication of the Env Gene of the human Endogenous Retrovirus W family in the Expression of BDNF and DRD3 and Development of Recent-onset Schizophrenia,” Schizophrenia Bulletin 37, no. 5 (2011): 988-1000.

[222]

S. C. Rangel, M. D. da Silva, D. G. Natrielli Filho, et al., “HERV-W Upregulation Expression in Bipolar Disorder and Schizophrenia: Unraveling Potential Links to Systemic Immune/Inflammation Status,” Retrovirology 21, no. 1 (2024): 7.

[223]

H. Karlsson, S. Bachmann, J. Schröder, J. McArthur, E. F. Torrey, and R. H. Yolken, “Retroviral RNA Identified in the Cerebrospinal Fluids and Brains of Individuals With Schizophrenia,” PNAS 98, no. 8 (2001): 4634-4639.

[224]

R. Tamouza, U. Meyer, M. Foiselle, et al., “Identification of Inflammatory Subgroups of Schizophrenia and Bipolar Disorder Patients With HERV-W ENV Antigenemia by Unsupervised Cluster Analysis,” Transl Psychiatry 11, no. 1 (2021): 377.

[225]

F. Herrero, C. Heeb, M. Meier, et al., “Recapitulation and Reversal of Neuropsychiatric Phenotypes in a Mouse Model of human Endogenous Retrovirus Type W Expression,” Molecular Psychiatry 30, no. 7 (2025): 3325-3337.

[226]

S. Otsuki, T. Saito, S. Taylor, et al., “Monocyte-released HERV-K dUTPase Engages TLR4 and MCAM Causing Endothelial Mesenchymal Transition,” JCI Insight 6, no. 15 (2021): e146416.

[227]

M. Diebold and T. Derfuss, “The Monoclonal Antibody GNbAC1: Targeting human Endogenous Retroviruses in Multiple Sclerosis,” Ther Adv Neurol Disord 12 (2019): 1756286419833574.

[228]

S. Hosseiniporgham and L. A. Sechi, “Anti-HERV-K Drugs and Vaccines, Possible Therapies Against Tumors,” Vaccines (Basel) 11, no. 4 (2023): 751.

[229]

V. Alcazer, P. Bonaventura, and S. Depil, “Human Endogenous Retroviruses (HERVs): Shaping the Innate Immune Response in Cancers,” Cancers (Basel) 12, no. 3 (2020): 610.

[230]

C. C. Smith, S. R. Selitsky, S. Chai, P. M. Armistead, B. G. Vincent, and J. S. Serody, “Alternative Tumour-specific Antigens,” Nature Reviews Cancer 19, no. 8 (2019): 465-478.

[231]

M. Gonzalez-Cao, N. Karachaliou, M. Santarpia, S. Viteri, A. Meyerhans, and R. Rosell, “Activation of Viral Defense Signaling in Cancer,” Ther Adv Med Oncol 10 (2018): 1758835918793105.

[232]

K. Hashimoto, A. M. Suzuki, A. Dos Santos, et al., “CAGE Profiling of ncRNAs in Hepatocellular Carcinoma Reveals Widespread Activation of Retroviral LTR Promoters in Virus-induced Tumors,” Genome Research 25, no. 12 (2015): 1812-1824.

[233]

L. Buonaguro, A. Petrizzo, M. L. Tornesello, and F. M. Buonaguro, “Innate Immunity and hepatitis C Virus Infection: A Microarray's View,” Infect Agent Cancer 7, no. 1 (2012): 7.

[234]

C. Lemaître, J. Tsang, C. Bireau, T. Heidmann, and M. Dewannieux, “A human Endogenous Retrovirus-derived Gene That Can Contribute to Oncogenesis by Activating the ERK Pathway and Inducing Migration and Invasion,” Plos Pathogens 13, no. 6 (2017): e1006451.

[235]

P. Yu, W. Lübben, H. Slomka, et al., “Nucleic Acid-sensing Toll-Like Receptors Are Essential for the Control of Endogenous Retrovirus Viremia and ERV-induced Tumors,” Immunity 37, no. 5 (2012): 867-879.

[236]

A. K. Coley, C. Lu, A. Pankaj, et al., “Dysregulated Repeat Element Viral-Like Immune Response in Hepatocellular Carcinoma,” BioRxiv (2023).

[237]

M. C. Zhang, Y. Fang, P. P. Xu, et al., “Clinical Efficacy and Tumour Microenvironment Influence of Decitabine plus R-CHOP in Patients With Newly Diagnosed Diffuse Large B-Cell Lymphoma: Phase 1/2 and Biomarker Study,” Clinical and Translational Medicine 11, no. 12 (2021): e584.

[238]

M. J. Topper, M. Vaz, K. A. Marrone, J. R. Brahmer, and S. B. Baylin, “The Emerging Role of Epigenetic Therapeutics in Immuno-oncology,” Nature Reviews Clinical Oncology 17, no. 2 (2020): 75-90.

[239]

K. K. Wong, R. Hassan, and N. S. Yaacob, “Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes,” Frontiers in Oncology 11 (2021): 624742.

[240]

C. Hu, X. Liu, Y. Zeng, J. Liu, and F. Wu, “DNA Methyltransferase Inhibitors Combination Therapy for the Treatment of Solid Tumor: Mechanism and Clinical Application,” Clin Epigenetics 13, no. 1 (2021): 166.

[241]

C. Kordella, E. Lamprianidou, and I. Kotsianidis, “Mechanisms of Action of Hypomethylating Agents: Endogenous Retroelements at the Epicenter,” Frontiers in Oncology 11 (2021): 650473.

[242]

Y. P. Liu, C. C. Zheng, Y. N. Huang, M. L. He, W. W. Xu, and B. Li, “Molecular Mechanisms of Chemo- and Radiotherapy Resistance and the Potential Implications for Cancer Treatment,” MedComm 2, no. 3 (2021): 315-340.

[243]

A. Giovinazzo, E. Balestrieri, V. Petrone, et al., “The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells Under Microenvironmental Changes Is a Potential Target for Antiretroviral Drugs,” Cancer Microenvironment: official journal of the International Cancer Microenvironment Society 12, no. 2-3 (2019): 105-118.

[244]

Identifying Drug Combinations That Enhance Treatment Responses Mediated by the Tumor Microenvironment. Nature Biotechnology 2022; 40(12): 1770-1771.

[245]

G. V. Glinsky, “Single Cell Genomics Reveals Activation Signatures of Endogenous SCAR's Networks in Aneuploid human Embryos and Clinically Intractable Malignant Tumors,” Cancer Letters 381, no. 1 (2016): 176-193.

[246]

J. K. Patra, G. Das, L. F. Fraceto, et al., “Nano Based Drug Delivery Systems: Recent Developments and Future Prospects,” J Nanobiotechnology 16, no. 1 (2018): 71.

[247]

H. P. Hartung, T. Derfuss, B. A. Cree, et al., “Efficacy and Safety of temelimab in Multiple Sclerosis: Results of a Randomized Phase 2b and Extension Study,” Multiple Sclerosis 28, no. 3 (2022): 429-440.

[248]

M. A. Martin, T. Bryan, S. Rasheed, and A. S. Khan, “Identification and Cloning of Endogenous Retroviral Sequences Present in human DNA,” PNAS 78, no. 8 (1981): 4892-4896.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/