Antibiotic Resistance: A Genetic and Physiological Perspective

Rania G. Elbaiomy , Ahmed H. El-Sappah , Rong Guo , Xiaoling Luo , Shiyuan Deng , Meifang Du , Xiaohong Jian , Mohammed Bakeer , Zaixin Li , Zhi Zhang

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70447

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70447 DOI: 10.1002/mco2.70447
REVIEW

Antibiotic Resistance: A Genetic and Physiological Perspective

Author information +
History +
PDF

Abstract

Antimicrobial-resistant bacteria, a growing worldwide concern, reduce the effectiveness of antibiotics against a wide range of microbial infections. Various bacterial species have quickly developed antibiotic resistance since the first mention of penicillin resistance in 1947. A rise in mortality, more extended hospital stays, more healthcare expenditures, and morbidity are all brought about by these bacteria that are resistant to antibiotics. To develop resistance, bacteria may undergo genetic changes, engage in horizontal gene transfer, produce β-lactamase, activate efflux pumps, form biofilms, and alter their metabolism to become less susceptible to drugs. Environmental factors and sublethal antibiotic exposure exacerbate resistance, particularly in cases of persistent infections caused by biofilms. This tendency is prompted by the overuse of antibiotics in both human and veterinary medicine, as well as inadequate infection control measures and environmental pollution. This review presents an extensive survey of antimicrobial resistance across bacterial taxa, with a focus on the physiological and genetic processes underlying this phenomenon. It delves into the current therapeutic landscape and showcases cutting-edge methods—such as artificial intelligence-driven antibiotic discovery and resistance prediction—to inform the development of next-generation antibiotics and containment systems.

Keywords

β-lactamases / antibiotic resistance / biofilm / coccoid / efflux pumps / genetic mutations

Cite this article

Download citation ▾
Rania G. Elbaiomy, Ahmed H. El-Sappah, Rong Guo, Xiaoling Luo, Shiyuan Deng, Meifang Du, Xiaohong Jian, Mohammed Bakeer, Zaixin Li, Zhi Zhang. Antibiotic Resistance: A Genetic and Physiological Perspective. MedComm, 2025, 6(11): e70447 DOI:10.1002/mco2.70447

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. S. Chong, S. A. Shazali, Z. Xu, R. R. Cutler, and A. Idris, “Using MALDI-TOF Mass Spectrometry to Identify Drug Resistant Staphylococcal Isolates From Nonhospital Environments in Brunei Darussalam,” Interdisciplinary Perspectives on Infectious Diseases 2016 (2016): 8685602.

[2]

R. G. Elbaiomy, X. Luo, R. Guo, et al., “Antibiotic Resistance in Helicobacter pylori: A Genetic and Physiological Perspective,” Gut Pathogens 17, no. 1 (2025): 35.

[3]

N. S. Devi, R. Mythili, T. Cherian, et al., “Overview of Antimicrobial Resistance and Mechanisms: The Relative Status of the Past and Current,” The Microbe 3 (2024): 100083.

[4]

M. E. Elshobary, N. K. Badawy, Y. Ashraf, et al., “Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review,” Pharmaceuticals 18, no. 3 (2025): 402.

[5]

A. A. Elshamy and K. M. Aboshanab, “A Review on Bacterial Resistance to Carbapenems: Epidemiology, Detection and Treatment Options,” Future Science OA 6, no. 3 (2020): Fso438.

[6]

M. R. Felício, O. N. Silva, S. Gonçalves, N. C. Santos, and O. L. Franco, “Peptides With Dual Antimicrobial and Anticancer Activities,” Frontiers in Chemistry 5 (2017): 5.

[7]

S. Hattab, A. H. Ma, Z. Tariq, et al., “Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory,” Antibiotics (Basel, Switzerland) 13, no. 8 (2024).

[8]

M. A. Ozma, A. Abbasi, M. Asgharzadeh, et al., “Antibiotic Therapy for Pan-drug-resistant Infections,” Le Infezioni in Medicina 30, no. 4 (2022): 525-531.

[9]

C. L. Tooke, P. Hinchliffe, E. C. Bragginton, et al., “β-Lactamases and β-Lactamase Inhibitors in the 21st Century,” Journal of Molecular Biology 431, no. 18 (2019): 3472-3500.

[10]

M. Cabrera-Aguas, N. Chidi-Egboka, H. Kandel, and S. L. Watson, “Antimicrobial Resistance in Ocular Infection: A Review,” Clinical & Experimental Ophthalmology 52, no. 3 (2024): 258-275.

[11]

A. Cesaro, S. C. Hoffman, P. Das, and C. de la Fuente-Nunez, “Challenges and Applications of Artificial Intelligence in Infectious Diseases and Antimicrobial Resistance,” Npj Antimicrobials and Resistance 3, no. 1 (2025): 2.

[12]

D. Carcione, J. Intra, L. Andriani, et al., “New Antimicrobials for Gram-Positive Sustained Infections: A Comprehensive Guide for Clinicians,” Pharmaceuticals 16, no. 9 (2023): 1304.

[13]

C. Maher and A. Hassan Karl, “The Gram-negative Permeability Barrier: Tipping the Balance of the in and the Out,” MBio 14, no. 6 (2023): e01205-e01223.

[14]

M. Zwama and K. Nishino, “Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race Against Time,” Antibiotics (Basel, Switzerland) 10, no. 7 (2021): 774.

[15]

K. Neil, N. Allard, and S. Rodrigue, “Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota,” Frontiers in Microbiology 12 (2021): 673260.

[16]

B. Singha, V. Singh, and V. Soni, “Alternative Therapeutics to Control Antimicrobial Resistance: A General Perspective,” Frontiers in Drug Discovery 4 (2024).

[17]

A. I. Samreen, H. A. Malak, and H. H. Abulreesh, “Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health,” Journal of Global Antimicrobial Resistance 27 (2021): 101-111.

[18]

H. Tahmasebi, N. Arjmand, M. Monemi, et al., “From Cure to Crisis: Understanding the Evolution of Antibiotic-Resistant Bacteria in Human Microbiota,” Biomolecules 15, no. 1 (2025): 93.

[19]

Y. Jia, W. Chen, R. Tang, et al., “Multi-armed Antibiotics for Gram-positive Bacteria,” Cell Host & Microbe 31, no. 7 (2023): 1101-1110. e5.

[20]

M. Oliveira, W. Antunes, S. Mota, Á. Madureira-Carvalho, R. J. Dinis-Oliveira, and D. Dias da Silva, “An Overview of the Recent Advances in Antimicrobial Resistance,” Microorganisms 12, no. 9 (2024): 1920.

[21]

S. Deng, X. Luo, Y. Du, et al., “Immunoglobulin Y Antibodies Against Colonization-related Genes Block the Growth and Infection of Helicobacter pylori,” Frontiers in Immunology 16 (2025): 1582250.

[22]

S. Acosta-Gutiérrez, I. V. Bodrenko, and M. Ceccarelli, “The Influence of Permeability Through Bacterial Porins in Whole-Cell Compound Accumulation,” Antibiotics (Basel, Switzerland) 10, no. 6 (2021): 635.

[23]

G. Muteeb, M. T. Rehman, M. Shahwan, and M. Aatif, “Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review,” Pharmaceuticals (Basel, Switzerland) 16, no. 11 (2023): 1615.

[24]

K. Lewis, R. E. Lee, H. Brötz-Oesterhelt, et al., “Sophisticated Natural Products as Antibiotics,” Nature 632, no. 8023 (2024): 39-49.

[25]

G. Kapoor, S. Saigal, and A. Elongavan, “Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians,” Journal of Anaesthesiology, Clinical Pharmacology 33, no. 3 (2017): 300-305.

[26]

D. N. Wilson, J. M. Harms, K. H. Nierhaus, F. Schlünzen, and P. Fucini, “Species-specific Antibiotic-ribosome Interactions: Implications for Drug Development,” Biological Chemistry 386, no. 12 (2005): 1239-1252.

[27]

J. Lin, D. Zhou, T. A. Steitz, Y. S. Polikanov, and M. G. Gagnon, “Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design,” Annual Review of Biochemistry 87 (2018): 451-478.

[28]

S. R. Connell, D. M. Tracz, K. H. Nierhaus, and D. E. Taylor, “Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance,” Antimicrobial Agents and Chemotherapy 47, no. 12 (2003): 3675-3681.

[29]

E. J. Hasenoehrl, T. J. Wiggins, and M. Berney, “Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium Tuberculosis,” Frontiers in Cellular and Infection Microbiology 10 (2020): 611683.

[30]

S. Ahmadipour, R. A. Field, and G. J. Miller, “Prospects for Anti-Candida Therapy Through Targeting the Cell Wall: A Mini-review,” The Cell Surface 7 (2021): 100063.

[31]

A. Dalhoff, “Selective Toxicity of Antibacterial Agents-still a Valid Concept or Do We Miss Chances and Ignore Risks?,” Infection 49, no. 1 (2021): 29-56.

[32]

Z. Breijyeh, B. Jubeh, and R. Karaman, “Resistance of Gram-negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It,” Molecules (Basel, Switzerland) 25, no. 6 (2020): 1340.

[33]

M. Lobanovska and G. Pilla, “Penicillin's Discovery and Antibiotic Resistance: Lessons for the Future?,” The Yale Journal of Biology and Medicine 90, no. 1 (2017): 135-145.

[34]

D. R. Giacobbe, V. Di Pilato, I. Karaiskos, et al., “Treatment and Diagnosis of Severe KPC-producing Klebsiella pneumoniae Infections: A Perspective on What Has Changed Over Last Decades,” Annals of Medicine 55, no. 1 (2023): 101-113.

[35]

R. Urban-Chmiel, A. Marek, D. Stępień-Pyśniak, et al., “Antibiotic Resistance in Bacteria-A Review,” Antibiotics (Basel, Switzerland) 11, no. 8 (2022): 1079.

[36]

N. G. Heatley, “A Method for the Assay of Penicillin,” Biochemical Journal 38, no. 1 (1944): 61-65, https://doi.org/10.1042/bj0380061.

[37]

H. J. Jung, M. T. Sorbara, and E. G. Pamer, “TAM Mediates Adaptation of Carbapenem-resistant Klebsiella pneumoniae to Antimicrobial Stress During Host Colonization and Infection,” Plos Pathogens 17, no. 2 (2021): e1009309.

[38]

M. E. Walker, W. Zhu, J. H. Peterson, et al., “Antibacterial Macrocyclic Peptides Reveal a Distinct Mode of BamA Inhibition,” Nature Communications 16, no. 1 (2025): 3395.

[39]

A. A. Abebe and A. G. Birhanu, “Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat,” Infection and Drug Resistance 16 (2023): 7641-7662.

[40]

G. Mancuso, A. Midiri, S. De Gaetano, E. Ponzo, and C. Biondo, “Tackling Drug-Resistant Tuberculosis: New Challenges From the Old Pathogen Mycobacterium Tuberculosis,” Microorganisms 11, no. 9 (2023): 2277.

[41]

A. Gauba and K. M. Rahman, “Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria,” Antibiotics (Basel, Switzerland) 12, no. 11 (2023): 1590.

[42]

J. M. Munita and C. A. Arias, “Mechanisms of Antibiotic Resistance,” Microbiology Spectrum 4, no. 2 (2016).

[43]

A. M. Mohammed, M. Mohammed, J. K. Oleiwi, et al., “Enhancing Antimicrobial Resistance Strategies: Leveraging Artificial Intelligence for Improved Outcomes,” South African Journal of Chemical Engineering 51 (2025): 272-286.

[44]

A. P. Kunnath, M. Suodha Suoodh, D. K. Chellappan, J. Chellian, and K. Palaniveloo, “Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update,” British Journal of Biomedical Science 81 (2024): 12958.

[45]

A. Husna, M. M. Rahman, A. Badruzzaman, et al., “Extended-spectrum β-lactamases (ESBL): Challenges and Opportunities,” Biomedicines 11, no. 11 (2023): 2937.

[46]

K. Baraka, R. Abozahra, M. M. Haggag, and S. M. Abdelhamid, “Genotyping and Molecular Investigation of Plasmid-mediated Carbapenem Resistant Clinical Klebsiella pneumoniae Isolates in Egypt,” AIMS Microbiology 9, no. 2 (2023): 228-244.

[47]

S. Dettori, F. Portunato, A. Vena, D. R. Giacobbe, and M. Bassetti, “Severe Infections Caused by Difficult-to-treat Gram-negative Bacteria,” Current Opinion in Critical Care 29, no. 5 (2023): 438-445.

[48]

Y. Guo, “Removal Ability of Antibiotic Resistant Bacteria (Arb) and Antibiotic Resistance Genes (Args) by Membrane Filtration Process,” IOP Conference Series: Earth and Environmental Science 801 (2021): 012004.

[49]

D. M. P. De Oliveira, B. M. Forde, T. J. Kidd, et al., “Antimicrobial Resistance in ESKAPE Pathogens,” Clinical Microbiology Reviews 33, no. 3 (2020): e00181-19.

[50]

T. Chen, L. Ying, L. Xiong, et al., “Understanding Carbapenem-resistant Hypervirulent Klebsiella pneumoniae: Key Virulence Factors and Evolutionary Convergence,” Hlife 2, no. 12 (2024): 611-624.

[51]

K. Ravi and B. Singh, “ESKAPE: Navigating the Global Battlefield for Antimicrobial Resistance and Defense in Hospitals,” Bacteria 3, no. 2 (2024): 76-98.

[52]

Y. Desalegn, A. Bitew, and A. Adane, “A Spectrum of Non-spore-forming Fermentative and Non-fermentative Gram-negative Bacteria: Multi-drug Resistance, Extended-spectrum Beta-lactamase, and Carbapenemase Production,” Frontiers in Antibiotics 2 (2023): 1155005.

[53]

Z. Shen, C. Tang, and G. Liu, “Towards a Better Understanding of Antimicrobial Resistance Dissemination: What Can be Learnt From Studying Model Conjugative Plasmids?,” Military Medical Research 9 (2022): 3.

[54]

E. Bakkeren, M. Diard, and W.-D. Hardt, “Evolutionary Causes and Consequences of Bacterial Antibiotic Persistence,” Nature Reviews Microbiology 18, no. 9 (2020): 479-490.

[55]

C. F. Amabile-Cuevas, M. Cardenas-Garcia, and M. Ludgar, “Antibiotic Resistance,” American Scientist 83, no. 4 (1995): 320-329.

[56]

A. Giedraitienė, A. Vitkauskienė, R. Naginienė, and A. Pavilonis, “Antibiotic Resistance Mechanisms of Clinically Important Bacteria,” Medicina 47, no. 3 (2011): 19.

[57]

J. L. Martínez and F. Rojo, “Metabolic Regulation of Antibiotic Resistance,” FEMS Microbiology Reviews 35, no. 5 (2011): 768-789.

[58]

C. Thomas and C. D. Gwenin, “The Role of Nitroreductases in Resistance to Nitroimidazoles,” Biology 10, no. 5 (2021): 388.

[59]

M. T. Zaw, N. A. Emran, and Z. Lin, “Mutations inside Rifampicin-resistance Determining Region of rpoB Gene Associated With Rifampicin-resistance in Mycobacterium Tuberculosis,” Journal of Infection and Public Health 11, no. 5 (2018): 605-610.

[60]

L. M. Weigel, C. D. Steward, and F. C. Tenover, “gyrA Mutations Associated With Fluoroquinolone Resistance in Eight Species of Enterobacteriaceae,” Antimicrobial Agents and Chemotherapy 42, no. 10 (1998): 2661-2667.

[61]

T. T. Tran, A. T. Nguyen, D. T. Quach, et al., “Emergence of Amoxicillin Resistance and Identification of Novel Mutations of the pbp1A Gene in Helicobacter pylori in Vietnam,” BMC Microbiology 22, no. 1 (2022): 41.

[62]

H. Miyachi, I. Miki, N. Aoyama, et al., “Primary Levofloxacin Resistance and gyrA/B Mutations Among Helicobacter pylori in Japan,” Helicobacter 11, no. 4 (2006): 243-249.

[63]

J. Versalovic, D. Shortridge, K. Kibler, et al., “Mutations in 23S rRNA Are Associated With Clarithromycin Resistance in Helicobacter pylori,” Antimicrobial Agents and Chemotherapy 40, no. 2 (1996): 477-480.

[64]

P. Heisig, “Genetic Evidence for a Role of parC Mutations in Development of High-level Fluoroquinolone Resistance in Escherichia coli,” Antimicrobial Agents and Chemotherapy 40, no. 4 (1996): 879-885.

[65]

S. Ramos, V. Silva, M. de Lurdes Enes Dapkevicius, et al., “Escherichia coli as Commensal and Pathogenic Bacteria Among Food-producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production,” Animals 10, no. 12 (2020): 2239.

[66]

S. C. Nang, J. Li, and T. Velkov, “The Rise and Spread of mcr Plasmid-mediated Polymyxin Resistance,” Critical Reviews in Microbiology 45, no. 2 (2019): 131-161.

[67]

M. Adler, M. Anjum, D. I. Andersson, and L. Sandegren, “Influence of Acquired β-lactamases on the Evolution of Spontaneous Carbapenem Resistance in Escherichia coli,” Journal of Antimicrobial Chemotherapy 68, no. 1 (2013): 51-59.

[68]

P. Courvalin, B. Weisblum, and J. Davies, “Aminoglycoside-modifying Enzyme of an Antibiotic-producing Bacterium Acts as a Determinant of Antibiotic Resistance in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America 74, no. 3 (1977): 999-1003.

[69]

K. Poole, “Efflux-mediated Antimicrobial Resistance,” Journal of Antimicrobial Chemotherapy 56, no. 1 (2005): 20-51.

[70]

W. Shaw and R. Brodsky, “Characterization of Chloramphenicol Acetyltransferase From Chloramphenicol-resistant Staphylococcus aureus,” Journal of Bacteriology 95, no. 1 (1968): 28-36.

[71]

G. Vedantam, G. G. Guay, N. E. Austria, S. Z. Doktor, and B. P. Nichols, “Characterization of Mutations Contributing to Sulfathiazole Resistance in Escherichia coli,” Antimicrobial Agents and Chemotherapy 42, no. 1 (1998): 88-93.

[72]

H. Sidjabat, G. R. Nimmo, T. R. Walsh, et al., “Carbapenem Resistance in Klebsiella pneumoniae due to the New Delhi Metallo-β-lactamase,” Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 52, no. 4 (2011): 481.

[73]

A. M. Queenan, B. Foleno, C. Gownley, E. Wira, and K. Bush, “Effects of Inoculum and β-lactamase Activity in AmpC-and Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae Clinical Isolates Tested by Using NCCLS ESBL Methodology,” Journal of Clinical Microbiology 42, no. 1 (2004): 269-275.

[74]

Y.-Q. Yang, Y.-X. Li, C.-W. Lei, A.-Y. Zhang, and H.-N. Wang, “Novel Plasmid-mediated Colistin Resistance Gene Mcr-7.1 in Klebsiella pneumoniae,” Journal of Antimicrobial Chemotherapy 73, no. 7 (2018): 1791-1795.

[75]

F.-J. Chen, T.-L. Lauderdale, M. Ho, and H.-J. Lo, “The Roles of Mutations in gyrA, parC, and ompK35 in Fluoroquinolone Resistance in Klebsiella pneumoniae,” Microbial Drug Resistance 9, no. 3 (2003): 265-271.

[76]

L. García-Sureda, A. Doménech-Sánchez, M. Barbier, C. Juan, J. Gascó, and S. Albertí, “OmpK26, a Novel Porin Associated With Carbapenem Resistance in Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy 55, no. 10 (2011): 4742-4747.

[77]

R. Almaghrabi, C. J. Clancy, Y. Doi, et al., “Carbapenem-resistant Klebsiella pneumoniae Strains Exhibit Diversity in Aminoglycoside-modifying Enzymes, Which Exert Differing Effects on Plazomicin and Other Agents,” Antimicrobial Agents and Chemotherapy 58, no. 8 (2014): 4443-4451.

[78]

Z. Ahmadi, Z. Noormohammadi, R. Ranjbar, and P. Behzadi, “Prevalence of Tetracycline Resistance Genes Tet (A, B, C, 39) in Klebsiella pneumoniae Isolated From Tehran, Iran,” Iranian Journal of Medical Microbiology 16, no. 2 (2022): 141-147.

[79]

Y. Huang, Q. Lin, Q. Zhou, et al., “Identification of fosA10, a Novel Plasmid-mediated Fosfomycin Resistance Gene of Klebsiella pneumoniae Origin, in Escherichia coli,” Infection and Drug Resistance (2020): 1273-1279.

[80]

J. W. Boslego, E. C. Tramont, E. T. Takafuji, et al., “Effect of Spectinomycin Use on the Prevalence of Spectinomycin-resistant and of Penicillinase-producing Neisseria Gonorrhoeae,” New England Journal of Medicine 317, no. 5 (1987): 272-278.

[81]

S. Rambaran, K. Naidoo, N. Dookie, P. Moodley, and A. W. Sturm, “Resistance Profile of Neisseria Gonorrhoeae in KwaZulu-Natal, South Africa Questioning the Effect of the Currently Advocated Dual Therapy,” Sexually Transmitted Diseases 46, no. 4 (2019): 266-270.

[82]

L.-K. Ng, I. Martin, G. Liu, and L. Bryden, “Mutation in 23S rRNA Associated With Macrolide Resistance in Neisseria gonorrhoeae,” Antimicrobial Agents and Chemotherapy 46, no. 9 (2002): 3020-3025.

[83]

R. Belland, S. Morrison, C. Ison, and W. Huang, “Neisseria Gonorrhoeae Acquires Mutations in Analogous Regions of gyrA and parC in Fluoroquinolone-resistant Isolates,” Molecular Microbiology 14, no. 2 (1994): 371-380.

[84]

H. Lee, Y. H. Suh, S. Lee, et al., “Emergence and Spread of Cephalosporin-resistant Neisseria Gonorrhoeae With Mosaic penA Alleles, South Korea, 2012-2017,” Emerging Infectious Diseases 25, no. 3 (2019): 416.

[85]

B. Młynarczyk-Bonikowska, A. Majewska, M. Malejczyk, G. Młynarczyk, and S. Majewski, “Multiresistant Neisseria Gonorrhoeae: A New Threat in Second Decade of the XXI Century,” Medical Microbiology and Immunology 209 (2020): 95-108.

[86]

P. Rådström, C. Fermer, B. Kristiansen, A. Jenkins, O. Sköld, and G. Swedberg, “Transformational Exchanges in the Dihydropteroate Synthase Gene of Neisseria meningitidis: A Novel Mechanism for Acquisition of Sulfonamide Resistance,” Journal of Bacteriology 174, no. 20 (1992): 6386-6393.

[87]

A. Zapun, C. Morlot, and M.-K. Taha, “Resistance to β-lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-binding Proteins,” Antibiotics 5, no. 4 (2016): 35.

[88]

B. Lukovic, I. Gajic, I. Dimkic, et al., “The First Nationwide Multicenter Study of Acinetobacter baumannii Recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing Isolates,” Antimicrobial Resistance & Infection Control 9 (2020): 1-12.

[89]

A. R. Rebelo, V. Bortolaia, J. S. Kjeldgaard, et al., “Multiplex PCR for Detection of Plasmid-mediated Colistin Resistance Determinants, Mcr-1, Mcr-2, Mcr-3, Mcr-4 and Mcr-5 for Surveillance Purposes,” Eurosurveillance 23, no. 6 (2018): 17-00672.

[90]

L. Lin, B.-D. Ling, and X.-Z. Li, “Distribution of the Multidrug Efflux Pump Genes, adeABC, adeDE and adeIJK, and Class 1 Integron Genes in Multiple-antimicrobial-resistant Clinical Isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus Complex,” International Journal of Antimicrobial Agents 33, no. 1 (2009): 27-32.

[91]

S. Park, K. M. Lee, Y. S. Yoo, et al., “Alterations of gyrA, gyrB, and parC and Activity of Efflux Pump in Fluoroquinolone-resistant Acinetobacter baumannii,” Osong Public Health and Research Perspectives 2, no. 3 (2011): 164-170.

[92]

M. Hamidian, K. E. Holt, D. Pickard, and R. M. Hall, “A Small Acinetobacter Plasmid Carrying the tet39 Tetracycline Resistance Determinant,” Journal of Antimicrobial Chemotherapy 71, no. 1 (2016): 269-271.

[93]

A. Bala, B. E. Uhlin, and N. Karah, “Insights Into the Genetic Contexts of Sulfonamide Resistance Among Early Clinical Isolates of Acinetobacter baumannii,” Infection, Genetics and Evolution 112 (2023): 105444.

[94]

A. Siroy, V. Molle, C. Lemaître-Guillier, et al., “Channel Formation by CarO, the Carbapenem Resistance-associated Outer Membrane Protein of Acinetobacter baumannii,” Antimicrobial Agents and Chemotherapy 49, no. 12 (2005): 4876-4883.

[95]

J. Zhu, C. Wang, J. Wu, R. Jiang, Z. Mi, and Z. Huang, “A Novel Aminoglycoside-modifying Enzyme Gene Aac (6′)-Ib in a Pandrug-resistant Acinetobacter baumannii Strain,” Journal of Hospital Infection 73, no. 2 (2009): 184-185.

[96]

J. H. Moffatt, M. Harper, P. Harrison, et al., “Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production,” Antimicrobial Agents and Chemotherapy 54, no. 12 (2010): 4971-4977.

[97]

Y. T. Cayci, I. Biyik, and A. Birinci, “VIM, NDM, IMP, GES, SPM, GIM, SIM Metallobetalactamases in Carbapenem-resistant Pseudomonas aeruginosa Isolates From a Turkish University Hospital,” Journal of Archives in Military Medicine 10, no. 1 (2022).

[98]

N. Masuda, E. Sakagawa, S. Ohya, N. Gotoh, H. Tsujimoto, and T. Nishino, “Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM Efflux Pumps in Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy 44, no. 12 (2000): 3322-3327.

[99]

P. Higgins, A. Fluit, D. Milatovic, J. Verhoef, and F.-J. Schmitz, “Mutations in GyrA, ParC, MexR and NfxB in Clinical Isolates of Pseudomonas aeruginosa,” International Journal of Antimicrobial Agents 21, no. 5 (2003): 409-413.

[100]

D. Hocquet, C. Vogne, and F. El Garch, “MexXY-OprM Efflux Pump Is Necessary for Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides,” Antimicrobial Agents and Chemotherapy 47, no. 4 (2003): 1371-1375.

[101]

T. Panahi, L. Asadpour, and N. Ranji, “Distribution of Aminoglycoside Resistance Genes in Clinical Isolates of Pseudomonas aeruginosa in North of Iran,” Gene Reports 21 (2020): 100929.

[102]

F. Hameed, M. A. Khan, H. Muhammad, T. Sarwar, H. Bilal, and T. U. Rehman, “Plasmid-mediated Mcr-1 Gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First Report From Pakistan,” Revista Da Sociedade Brasileira De Medicina Tropical 52 (2019): e20190237.

[103]

D. M. Livermore, “Of Pseudomonas, Porins, Pumps and Carbapenems,” Journal of Antimicrobial Chemotherapy 47, no. 3 (2001): 247-250.

[104]

R. R. Trivedi, J. A. Crooks, G. K. Auer, et al., “Mechanical Genomic Studies Reveal the Role of D-alanine Metabolism in Pseudomonas aeruginosa Cell Stiffness,” MBio 9, no. 5 (2018): e01340-18.

[105]

L. Fernández, W. J. Gooderham, M. Bains, J. B. McPhee, I. Wiegand, and R. E. Hancock, “Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-component Regulatory System ParR-ParS,” Antimicrobial Agents and Chemotherapy 54, no. 8 (2010): 3372-3382.

[106]

B. M. Pokharel, J. Koirala, R. K. Dahal, S. K. Mishra, P. K. Khadga, and N. Tuladhar, “Multidrug-resistant and Extended-spectrum Beta-lactamase (ESBL)-producing Salmonella Enterica (serotypes Typhi and Paratyphi A) From Blood Isolates in Nepal: Surveillance of Resistance and a Search for Newer Alternatives,” International Journal of Infectious Diseases 10, no. 6 (2006): 434-438.

[107]

P. Winokur, A. Brueggemann, D. DeSalvo, et al., “Animal and human Multidrug-resistant, Cephalosporin-resistant Salmonella Isolates Expressing a Plasmid-mediated CMY-2 AmpC β-lactamase,” Antimicrobial Agents and Chemotherapy 44, no. 10 (2000): 2777-2783.

[108]

I. Casin, J. Breuil, J. P. Darchis, C. Guelpa, and E. Collatz, “Fluoroquinolone Resistance Linked to GyrA, GyrB, and ParC Mutations in Salmonella Enterica Typhimurium Isolates in Humans,” Emerging Infectious Diseases 9, no. 11 (2003): 1455.

[109]

S. Baucheron, S. Tyler, D. Boyd, M. R. Mulvey, E. Chaslus-Dancla, and A. Cloeckaert, “AcrAB-TolC Directs Efflux-mediated Multidrug Resistance in Salmonella Enterica Serovar Typhimurium DT104,” Antimicrobial Agents and Chemotherapy 48, no. 10 (2004): 3729-3735.

[110]

E. R. Hassan, A. O. Alhatami, H. M. Abdulwahab, and B. S. Schneider, “Characterization of Plasmid-mediated Quinolone Resistance Genes and Extended-spectrum Beta-lactamases in Non-typhoidal Salmonella enterica Isolated From Broiler Chickens,” Veterinary World 15, no. 6 (2022): 1515.

[111]

J. P. Folster, R. Rickert, E. J. Barzilay, and J. M. Whichard, “Identification of the Aminoglycoside Resistance Determinants armA and rmtC Among Non-Typhi Salmonella Isolates From Humans in the United States,” Antimicrobial Agents and Chemotherapy 53, no. 10 (2009): 4563-4564.

[112]

I. Osterman, O. Dontsova, and P. Sergiev, “rRNA Methylation and Antibiotic Resistance,” Biochemistry (Moscow) 85 (2020): 1335-1349.

[113]

T. Akiyama, J. Presedo, and A. A. Khan, “The tetA Gene Decreases Tigecycline Sensitivity of Salmonella Enterica Isolates,” International Journal of Antimicrobial Agents 42, no. 2 (2013): 133-140.

[114]

P. Antunes, J. Machado, J. C. Sousa, and L. Peixe, “Dissemination of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Portuguese Salmonella Enterica Strains and Relation With Integrons,” Antimicrobial Agents and Chemotherapy 49, no. 2 (2005): 836-839.

[115]

W. Dong, S. Chochua, L. McGee, D. Jackson, K. Klugman, and J. Vidal, “Mutations Within the rplD Gene of Linezolid-nonsusceptible Streptococcus pneumoniae Strains Isolated in the United States,” Antimicrobial Agents and Chemotherapy 58, no. 4 (2014): 2459-2462.

[116]

S. Tristram, M. R. Jacobs, and P. C. Appelbaum, “Antimicrobial Resistance in Haemophilus influenzae,” Clinical Microbiology Reviews 20, no. 2 (2007): 368-389.

[117]

B. Bozdogan, S. Tristram, and P. C. Appelbaum, “Combination of Altered PBPs and Expression of Cloned Extended-spectrum β-lactamases Confers Cefotaxime Resistance in Haemophilus influenzae,” Journal of Antimicrobial Chemotherapy 57, no. 4 (2006): 747-749.

[118]

M. Peric, B. Bl, M. R. Jacobs, and P. C. Appelbaum, “Effects of an Efflux Mechanism and Ribosomal Mutations on Macrolide Susceptibility of Haemophilus influenzae Clinical Isolates,” Antimicrobial Agents and Chemotherapy 47, no. 3 (2003): 1017-1022.

[119]

A. Cherkaoui, N. Gaïa, D. Baud, et al., “Molecular Characterization of Fluoroquinolones, Macrolides, and Imipenem Resistance in Haemophilus influenzae: Analysis of the Mutations in QRDRs and Assessment of the Extent of the AcrAB-TolC-mediated Resistance,” European Journal of Clinical Microbiology & Infectious Diseases 37 (2018): 2201-2210.

[120]

V. I. Enne, A. King, D. M. Livermore, and L. M. Hall, “Sulfonamide Resistance in Haemophilus influenzae Mediated by Acquisition of sul2 or a Short Insertion in Chromosomal folP,” Antimicrobial Agents and Chemotherapy 46, no. 6 (2002): 1934-1939.

[121]

M. Georgiou, R. Munoz, F. Román, et al., “Ciprofloxacin-resistant Haemophilus influenzae Strains Possess Mutations in Analogous Positions of GyrA and ParC,” Antimicrobial Agents and Chemotherapy 40, no. 7 (1996): 1741-1744.

[122]

J. Zhang, Y.-M. Gu, Y.-S. Yu, Z.-H. Zhou, and X.-L. Du, “Drug-resistance Mechanisms and Prevalence of Enterobacter cloacae Resistant to Multi-antibiotics,” Chinese Medical Journal 117, no. 11 (2004): 1729-1731.

[123]

S. Liu, N. Huang, C. Zhou, et al., “Molecular Mechanisms and Epidemiology of Carbapenem-resistant Enterobacter cloacae Complex Isolated From Chinese Patients During 2004-2018,” Infection and Drug Resistance (2021): 3647-3658.

[124]

F. Guérin, C. Isnard, V. Cattoir, and J. C. Giard, “Complex Regulation Pathways of AmpC-mediated β-lactam Resistance in Enterobacter cloacae Complex,” Antimicrobial Agents and Chemotherapy 59, no. 12 (2015): 7753-7761.

[125]

A. Pérez, M. Poza, A. Fernández, et al., “Involvement of the AcrAB-TolC Efflux Pump in the Resistance, Fitness, and Virulence of Enterobacter cloacae,” Antimicrobial Agents and Chemotherapy 56, no. 4 (2012): 2084-2090.

[126]

N. Curtis, D. Orr, G. Ross, and M. Boulton, “Competition of Beta-lactam Antibiotics for the Penicillin-binding Proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus Rettgeri, and Escherichia coli: Comparison With Antibacterial Activity and Effects Upon Bacterial Morphology,” Antimicrobial Agents and Chemotherapy 16, no. 3 (1979): 325-328.

[127]

W. Yuan, Y. Zhang, L. Riaz, Q. Yang, B. Du, and R. Wang, “Multiple Antibiotic Resistance and DNA Methylation in Enterobacteriaceae Isolates From Different Environments,” Journal of Hazardous Materials 402 (2021): 123822.

[128]

J.-J. Wu, W.-C. Ko, S.-H. Tsai, and J.-J. Yan, “Prevalence of Plasmid-mediated Quinolone Resistance Determinants QnrA, QnrB, and QnrS Among Clinical Isolates of Enterobacter cloacae in a Taiwanese Hospital,” Antimicrobial Agents and Chemotherapy 51, no. 4 (2007): 1223-1227.

[129]

E. Sheykhsaran, H. Bannazadeh Baghi, M. H. Soroush Barhaghi, et al., “The Rate of Resistance to Tetracyclines and Distribution of tetA, tetB, tetC, tetD, tetE, tetG, tetJ and tetY Genes in Enterobacteriaceae Isolated From Azerbaijan, Iran During 2017,” Physiology and Pharmacology 22, no. 3 (2018): 205-212.

[130]

D. Kilic, N. Tulek, G. Tuncer, L. Doganci, and A. Willke, “Antimicrobial Susceptibilities and ESBL Production Rates of Salmonella and Shigella Strains in Turkey,” Clinical Microbiology and Infection 7, no. 6 (2001): 341-342.

[131]

D. M. Livermore, S. Mushtaq, T. Nguyen, and M. Warner, “Strategies to Overcome Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases in Shigellae,” International Journal of Antimicrobial Agents 37, no. 5 (2011): 405-409.

[132]

H. Yang, G. Duan, J. Zhu, et al., “The AcrAB-TolC Pump Is Involved in Multidrug Resistance in Clinical Shigella flexneri Isolates,” Microbial Drug Resistance 14, no. 4 (2008): 245-249.

[133]

K. A. Talukder, B. K. Khajanchi, M. A. Islam, et al., “Fluoroquinolone Resistance Linked to both gyrA and parC Mutations in the Quinolone Resistance-determining Region of Shigella dysenteriae Type 1,” Current Microbiology 52 (2006): 108-111.

[134]

Z. Ghalavand, P. Behruznia, M. Kodori, et al., “Mechanisms of Resistance and Decreased Susceptibility to Azithromycin in Shigella,” Gene Reports (2024): 102011.

[135]

W.-X. Zhang, H.-Y. Chen, L.-H. Tu, M.-F. Xi, M. Chen, and J. Zhang, “Fluoroquinolone Resistance Mechanisms in Shigella Isolates in Shanghai, China, Between 2010 and 2015,” Microbial Drug Resistance 25, no. 2 (2019): 212-218.

[136]

J. Zhao, C. Zhang, Y. Xu, et al., “Intestinal Toxicity and Resistance Gene Threat Assessment of Multidrug-resistant Shigella: A Novel Biotype Pollutant,” Environmental Pollution 316 (2023): 120551.

[137]

T. Zhang, M. Zhang, X. Zhang, and H. H. Fang, “Tetracycline Resistance Genes and Tetracycline Resistant Lactose-fermenting Enterobacteriaceae in Activated Sludge of Sewage Treatment Plants,” Environmental Science & Technology 43, no. 10 (2009): 3455-3460.

[138]

E. Charvalos, Y. Tselentis, M. M. Hamzehpour, T. Köhler, and J.-C. Pechere, “Evidence for an Efflux Pump in Multidrug-resistant Campylobacter jejuni,” Antimicrobial Agents and Chemotherapy 39, no. 9 (1995): 2019-2022.

[139]

F. Tenover, S. Williams, K. Gordon, C. Nolan, and J. Plorde, “Survey of Plasmids and Resistance Factors in Campylobacter Jejuni and Campylobacter coli,” Antimicrobial Agents and Chemotherapy 27, no. 1 (1985): 37-41.

[140]

L. Fu, Y. Zhao, Y. Bai, X. Fan, T. Ma, and J. Ying, “The Emergence of Carbapenemase-producing Acinetobacter spp. Has Been Widely Reported and Become a Global Threat. However, Carbapenem-resistant A. johnsonii Strains Are Relatively Rare and Without Comprehensive Genetic Structure Analysis, Especially for Isolates Collected From human Specimen. Here, One A. johnsonii AYTCM Strain, co-producing NDM-1, OXA-58, and PER,” Multidrug Gram-Negative Bacilli: Current Situation and Future Perspective (2023): 65.

[141]

R. Bachoual, S. Ouabdesselam, F. Mory, C. Lascols, C.-J. Soussy, and J. Tankovic, “Single or Double Mutational Alterations of gyrA Associated With Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli,” Microbial Drug Resistance 7, no. 3 (2001): 257-261.

[142]

H. Ohno, J.-I. Wachino, and R. Saito, “A Highly Macrolide-resistant Campylobacter jejuni Strain With Rare A2074T Mutations in 23S rRNA Genes,” Antimicrobial Agents and Chemotherapy 60, no. 4 (2016): 2580-2581.

[143]

W. Sougakoff, B. Papadopoulou, P. Nordmann, and P. Courvalin, “Nucleotide Sequence and Distribution of Gene tetO Encoding Tetracycline Resistance in Campylobacter coli,” FEMS Microbiology Letters 44, no. 1 (1987): 153-159.

[144]

N. M. Iovine, “Resistance Mechanisms in Campylobacter jejuni,” Virulence 4, no. 3 (2013): 230-240.

[145]

T. K. Wood, “Strategies for Combating Persister Cell and Biofilm Infections,” Microbial Biotechnology 10, no. 5 (2017): 1054-1056.

[146]

J. Zhou, Y. Cai, Y. Liu, et al., “Breaking Down the Cell Wall: Still an Attractive Antibacterial Strategy,” Frontiers in Microbiology 13 (2022): 952633.

[147]

P. Bhowmik, B. Modi, P. Roy, and A. Chowdhury, “Strategies to Combat Gram-negative Bacterial Resistance to Conventional Antibacterial Drugs: A Review,” Osong Public Health Res Perspect 14, no. 5 (2023): 333-346.

[148]

Z. Zhang, “Hacking the Permeability Barrier of Gram-Negative Bacteria,” ACS Central Science 8, no. 8 (2022): 1043-1046.

[149]

A. Vaishampayan and E. Grohmann, “Antimicrobials Functioning Through ROS-Mediated Mechanisms: Current Insights,” Microorganisms 10, no. 1 (2021): 61.

[150]

M. Zhu and X. Dai, “Stringent Response Ensures the Timely Adaptation of Bacterial Growth to Nutrient Downshift,” Nature Communications 14, no. 1 (2023): 467.

[151]

L. P. Morawska and O. P. Kuipers, “Antibiotic Tolerance in Environmentally Stressed Bacillus Subtilis: Physical Barriers and Induction of a Viable but Nonculturable state,” Microlife 3 (2022): uqac010.

[152]

A. Oprei, J. Schreckinger, T. Kholiavko, A. Frossard, M. Mutz, and U. Risse-Buhl, “Long-term Functional Recovery and Associated Microbial Community Structure After Sediment Drying and Bedform Migration,” Frontiers in Ecology and Evolution 11 (2023).

[153]

A. A. Zhgun, “Industrial Production of Antibiotics in Fungi: Current State, Deciphering the Molecular Basis of Classical Strain Improvement and Increasing the Production of High-Yielding Strains by the Addition of Low-Molecular Weight Inducers,” Fermentation 9, no. 12 (2023): 1027.

[154]

J. I. Batchelder, P. J. Hare, and W. W. K. Mok, “Resistance-resistant Antibacterial Treatment Strategies,” Frontiers in Antibiotics 2 (2023): 1093156.

[155]

D. Roncarati, A. Vannini, and V. Scarlato, “Temperature Sensing and Virulence Regulation in Pathogenic Bacteria,” Trends in Microbiology 33, no. 1 (2025): 66-79.

[156]

O. Maslovska, S. Komplikevych, and S. Hnatush, “Oxidative Stress and Protection Against It in Bacteria,” Studia Biologica 17 (2023): 153-172.

[157]

G. V. De Gaetano, G. Lentini, A. Famà, F. Coppolino, and C. Beninati, “Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps,” Antibiotics 12, no. 6 (2023): 965.

[158]

A. Gaurav, P. Bakht, M. Saini, S. Pandey, and R. Pathania, “Role of Bacterial Efflux Pumps in Antibiotic Resistance, Virulence, and Strategies to Discover Novel Efflux Pump Inhibitors,” Microbiology (Reading, England) 169, no. 5 (2023): 001333.

[159]

S. Sinha, S. Aggarwal, and D. V. Singh, “Efflux Pumps: Gatekeepers of Antibiotic Resistance in Staphylococcus aureus Biofilms,” Microbial Cell (Graz, Austria) 11 (2024): 368-377.

[160]

J. Ren, M. Wang, W. Zhou, and Z. Liu, “Efflux Pumps as Potential Targets for Biofilm Inhibition,” Frontiers in Microbiology 15 (2024): 1315238.

[161]

H. I. Zgurskaya and H. Nikaido, “Multidrug Resistance Mechanisms: Drug Efflux Across Two Membranes,” Molecular Microbiology 37, no. 2 (2000): 219-225.

[162]

H. I. Zgurskaya, J. K. Walker, J. M. Parks, and V. V. Rybenkov, “Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors,” Accounts of Chemical Research 54, no. 4 (2021): 930-939.

[163]

D. Saxena, R. Maitra, R. Bormon, et al., “Tackling the Outer Membrane: Facilitating Compound Entry Into Gram-negative Bacterial Pathogens,” Npj Antimicrobials and Resistance 1, no. 1 (2023): 17.

[164]

K. Nishino, S. Yamasaki, R. Nakashima, M. Zwama, and M. Hayashi-Nishino, “Function and Inhibitory Mechanisms of Multidrug Efflux Pumps,” Frontiers in Microbiology 12 (2021): 737288.

[165]

R. Kristensen, J. B. Andersen, M. Rybtke, et al., “Inhibition of Pseudomonas aeruginosa Quorum Sensing by Chemical Induction of the MexEF-oprN Efflux Pump,” Antimicrobial Agents and Chemotherapy 68, no. 2 (2024): e0138723.

[166]

C. Liao, X. Huang, Q. Wang, D. Yao, and W. Lu, “Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance,” Frontiers in Cellular and Infection Microbiology 12 (2022): 926758.

[167]

A. Elfadadny, R. F. Ragab, M. AlHarbi, et al., “Antimicrobial Resistance of Pseudomonas aeruginosa: Navigating Clinical Impacts, Current Resistance Trends, and Innovations in Breaking Therapies,” Frontiers in Microbiology 15 (2024): 1374466.

[168]

F. Zhang and W. Cheng, “The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies,” Antibiotics (Basel, Switzerland) 11, no. 9 (2022): 1215.

[169]

H. H. Shahin, M. Baroudi, F. Dabboussi, et al., “Synergistic Antibacterial Effects of Plant Extracts and Essential Oils against Drug-Resistant Bacteria of Clinical Interest,” Pathogens 14, no. 4 (2025): 348.

[170]

A. Karnwal, A. Y. Jassim, A. A. Mohammed, A. Al-Tawaha, M. Selvaraj, and T. Malik, “Addressing the Global Challenge of Bacterial Drug Resistance: Insights, Strategies, and Future Directions,” Frontiers in Microbiology 16 (2025): 1517772.

[171]

A. T. Garrison and R. W. Huigens, “Eradicating Bacterial Biofilms With Natural Products and Their Inspired Analogues That Operate through Unique Mechanisms,” Current Topics in Medicinal Chemistry (2016).

[172]

M. A. Rather, K. Gupta, and M. Mandal, “Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies,” Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology] 52, no. 4 (2021): 1701-1718.

[173]

Y. Guo, G. Song, M. Sun, J. Wang, and Y. Wang, “Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus,” Frontiers in Cellular and Infection Microbiology 10 (2020).

[174]

A. Ito, A. Taniuchi, T. May, K. Kawata, and S. Okabe, “Increased Antibiotic Resistance of Escherichia coli in Mature Biofilms,” Applied and Environmental Microbiology 75, no. 12 (2009): 4093-4100.

[175]

T. Zohra, M. Numan, A. Ikram, et al., “Cracking the Challenge of Antimicrobial Drug Resistance With CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens,” Microorganisms 9, no. 5 (2021): 954.

[176]

C. J. Hartline, R. Zhang, and F. Zhang, “Transient Antibiotic Tolerance Triggered by Nutrient Shifts from Gluconeogenic Carbon Sources to Fatty Acid,” Frontiers in Microbiology 13 (2022).

[177]

C. J. Hastings, G. E. Himmler, A. Patel, and C. N. H. Marques, “Immune Response Modulation by Pseudomonas aeruginosa Persister Cells,” MBio 14, no. 2 (2023): e0005623.

[178]

S. Mishra, A. Gupta, V. Upadhye, S. C. Singh, R. P. Sinha, and D. P. Häder, “Therapeutic Strategies Against Biofilm Infections,” Life (Basel, Switzerland) 13, no. 1 (2023): 172.

[179]

L. Pai, S. Patil, S. Liu, and F. Wen, “A Growing Battlefield in the War Against Biofilm-induced Antimicrobial Resistance: Insights From Reviews on Antibiotic Resistance,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1327069.

[180]

N. G. Naga, D. E. El-Badan, K. M. Ghanem, and M. I. Shaaban, “It Is the Time for Quorum Sensing Inhibition as Alternative Strategy of Antimicrobial Therapy,” Cell Communication and Signaling: CCS 21, no. 1 (2023): 133.

[181]

P. Bahmaninejad, S. Ghafourian, M. Mahmoudi, A. Maleki, N. Sadeghifard, and B. Badakhsh, “Persister Cells as a Possible Cause of Antibiotic Therapy Failure in Helicobacter pylori,” JGH Open: an Open Access Journal of Gastroenterology and Hepatology 5, no. 4 (2021): 493-497.

[182]

L. Li, X. Gao, M. Li, et al., “Relationship Between Biofilm Formation and Antibiotic Resistance of Klebsiella pneumoniae and Updates on Antibiofilm Therapeutic Strategies,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1324895.

[183]

K. W. K. Tang, B. C. Millar, and J. E. Moore, “Antimicrobial Resistance (AMR),” British Journal of Biomedical Science 80 (2023): 11387.

[184]

O. A. A. Alabrahim, M. Fytory, A. M. Abou-Shanab, et al., “A Biocompatible β-cyclodextrin Inclusion Complex Containing Natural Extracts: A Promising Antibiofilm Agent††Electronic Supplementary Information (ESI) Available,” Nanoscale Advances 7, no. 5 (2025): 1405-1420.

[185]

N. Personnic, P. Doublet, and S. Jarraud, “Intracellular Persister: A Stealth Agent Recalcitrant to Antibiotics,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1141868.

[186]

P. K. Talukdar, T. M. Crockett, L. M. Gloss, et al., “The Bile Salt Deoxycholate Induces Campylobacter jejuni Genetic Point Mutations That Promote Increased Antibiotic Resistance and Fitness,” Frontiers in Microbiology 13 (2022): 1062464.

[187]

M. Park, J. Kim, J. Feinstein, K. S. Lang, S. Ryu, and B. Jeon, “Development of Fluoroquinolone Resistance Through Antibiotic Tolerance in Campylobacter jejuni,” Microbiology Spectrum 10, no. 5 (2022): e0166722.

[188]

F. H. Martins, A. Rajan, H. E. Carter, H. R. Baniasadi, A. W. Maresso, and V. Sperandio, “Interactions Between Enterohemorrhagic Escherichia coli (EHEC) and Gut Commensals at the Interface of Human Colonoids,” MBio 13, no. 3 (2022): e0132122.

[189]

J. Knorr, I. Sharafutdinov, F. Fiedler, et al., “Cortactin Is Required for Efficient FAK, Src and Abl Tyrosine Kinase Activation and Phosphorylation of Helicobacter pylori CagA,” International Journal of Molecular Sciences 22, no. 11 (2021): 6045.

[190]

M. Gong, Y. Han, X. Wang, et al., “Effect of Temperature on Metronidazole Resistance in Helicobacter pylori,” Frontiers in Microbiology 12 (2021): 681911.

[191]

P. Krzyżek, P. Migdał, R. Grande, and G. Gościniak, “Biofilm Formation of Helicobacter pylori in both Static and Microfluidic Conditions Is Associated with Resistance to Clarithromycin,” Frontiers in Cellular and Infection Microbiology 12 (2022): 868905.

[192]

H. Yang and B. Hu, “Immunological Perspective: Helicobacter pylori Infection and Gastritis,” Mediators of Inflammation 2022 (2022): 2944156.

[193]

Y. Lin, Y. Shao, J. Yan, and G. Ye, “Antibiotic Resistance in Helicobacter pylori: From Potential Biomolecular Mechanisms to Clinical Practice,” Journal of Clinical Laboratory Analysis 37, no. 7 (2023): e24885.

[194]

Y. Y. Cheok, C. Y. Q. Lee, H. C. Cheong, et al., “An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment,” Microorganisms 9, no. 12 (2021): 2502.

[195]

T. B. Vu, T. N. Q. Tran, T. Q. A. Tran, D. L. Vu, and V. T. Hoang, “Antibiotic Resistance of Helicobacter pylori in Patients With Peptic Ulcer,” Medicina (Kaunas, Lithuania) 59, no. 1 (2022): 6.

[196]

R. A. Proctor, C. von Eiff, B. C. Kahl, et al., “Small Colony Variants: A Pathogenic Form of Bacteria That Facilitates Persistent and Recurrent Infections,” Nature Reviews Microbiology 4, no. 4 (2006): 295-305.

[197]

M. M. Lleò, B. Bonato, M. C. Tafi, C. Signoretto, M. Boaretti, and P. Canepari, “Resuscitation Rate in Different Enterococcal Species in the Viable but Non-culturable state,” Journal of Applied Microbiology 91, no. 6 (2001): 1095-1102.

[198]

L. R. Marks, R. M. Reddinger, and A. P. Hakansson, “High Levels of Genetic Recombination During Nasopharyngeal Carriage and Biofilm Formation in Streptococcus pneumoniae,” MBio 3, no. 5 (2012): e00200-12.

[199]

L. G. Wayne and C. D. Sohaskey, “Nonreplicating Persistence of Mycobacterium Tuberculosis,” Annual Review of Microbiology 55 (2001): 139-163.

[200]

M. Gengenbacher and S. H. Kaufmann, “Mycobacterium Tuberculosis: Success Through Dormancy,” Fems Microbiology Review 36, no. 3 (2012): 514-532.

[201]

A. Ojha, M. Anand, A. Bhatt, L. Kremer, W. R. Jacobs,, and G. F. Hatfull, “GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis During Biofilm Formation in Mycobacteria,” Cell 123, no. 5 (2005): 861-873.

[202]

P. J. Brennan and H. Nikaido, “The Envelope of Mycobacteria,” Annual Review of Biochemistry 64 (1995): 29-63.

[203]

J. A. Imlay, “Cellular Defenses Against Superoxide and Hydrogen Peroxide,” Annual Review of Biochemistry 77 (2008): 755-776.

[204]

K. Lewis, “Persister Cells,” Annual Review of Microbiology 64 (2010): 357-372.

[205]

R. Rogers and L. B. Rice, “Executive Summary: State-of-the-Art Review: Persistent Enterococcal Bacteremia,” Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 78, no. 1 (2024): 1-2.

[206]

J. D. Oliver, “Recent Findings on the Viable but Nonculturable state in Pathogenic Bacteria,” Fems Microbiology Review 34, no. 4 (2010): 415-425.

[207]

R. A. Fisher, B. Gollan, and S. Helaine, “Persistent Bacterial Infections and Persister Cells,” Nature Reviews Microbiology 15, no. 8 (2017): 453-464.

[208]

L. Li, N. Mendis, H. Trigui, J. D. Oliver, and S. P. Faucher, “The Importance of the Viable but Non-culturable state in human Bacterial Pathogens,” Frontiers in Microbiology 5 (2014): 258.

[209]

K. Lewis, “Persister Cells, Dormancy and Infectious Disease,” Nature Reviews Microbiology 5, no. 1 (2007): 48-56.

[210]

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial Biofilms: From the Natural Environment to Infectious Diseases,” Nature Reviews Microbiology 2, no. 2 (2004): 95-108.

[211]

M. Ayrapetyan, T. C. Williams, and J. D. Oliver, “Bridging the Gap Between Viable but Non-culturable and Antibiotic Persistent Bacteria,” Trends in Microbiology 23, no. 1 (2015): 7-13.

[212]

A. Harms, E. Maisonneuve, and K. Gerdes, “Mechanisms of Bacterial Persistence During Stress and Antibiotic Exposure,” Science 354, no. 6318 (2016): aaf4268.

[213]

L. Tuchscherr, E. Medina, M. Hussain, et al., “Staphylococcus aureus Phenotype Switching: An Effective Bacterial Strategy to Escape Host Immune Response and Establish a Chronic Infection,” EMBO Molecular Medicine 3, no. 3 (2011): 129-141.

[214]

F. Mutua, G. Kiarie, M. Mbatha, et al., “Antimicrobial Use by Peri-Urban Poultry Smallholders of Kajiado and Machakos Counties in Kenya,” Antibiotics (Basel, Switzerland) 12, no. 5 (2023): 905.

[215]

S. H. Kim, R. Chelliah, S. R. Ramakrishnan, et al., “Review on Stress Tolerance in Campylobacter jejuni,” Frontiers in Cellular and Infection Microbiology 10 (2020): 596570.

[216]

U. Łapińska, M. Voliotis, K. K. Lee, et al., “Fast Bacterial Growth Reduces Antibiotic Accumulation and Efficacy,” Elife 11 (2022): e74062.

[217]

W. Y. Chung, Y. Zhu, M. H. Mahamad Maifiah, N. K. Hawala Shivashekaregowda, E. H. Wong, and N. Abdul Rahim, “Exogenous Metabolite Feeding on Altering Antibiotic Susceptibility in Gram-negative Bacteria Through Metabolic Modulation: A Review,” Metabolomics: Official Journal of the Metabolomic Society 18, no. 7 (2022): 47.

[218]

V. Tiku, E. M. Kofoed, D. Yan, et al., “Outer Membrane Vesicles Containing OmpA Induce Mitochondrial Fragmentation to Promote Pathogenesis of Acinetobacter baumannii,” Scientific Reports 11, no. 1 (2021): 618.

[219]

L. Malikova, M. Malik, J. Pavlik, et al., “Anti-staphylococcal Activity of Soilless Cultivated Cannabis Across the Whole Vegetation Cycle Under Various Nutritional Treatments in Relation to Cannabinoid Content,” Scientific Reports 14, no. 1 (2024): 4343.

[220]

S. Havis, J. Rangel, S. Mali, et al., “A Color-based Competition Assay for Studying Bacterial Stress Responses in Micrococcus Luteus,” Fems Microbiology Letters 366, no. 5 (2019): fnz054.

[221]

S. S. Grant and D. T. Hung, “Persistent Bacterial Infections, Antibiotic Tolerance, and the Oxidative Stress Response,” Virulence 4, no. 4 (2013): 273-283.

[222]

M. Guha, A. Singh, and N. C. Butzin, “Priestia Megaterium Cells Are Primed for Surviving Lethal Doses of Antibiotics and Chemical Stress,” Communications Biology 8, no. 1 (2025): 206.

[223]

J. G. Hurdle, A. J. O'Neill, I. Chopra, and R. E. Lee, “Targeting Bacterial Membrane Function: An Underexploited Mechanism for Treating Persistent Infections,” Nature Reviews Microbiology 9, no. 1 (2011): 62-75.

[224]

R. García-Contreras and M. Tomás, “Editorial: Molecular Mechanisms of Bacterial Clinical Pathogens Tolerance and Persistence under Stress Conditions: Tolerant and Persister Cells,” Frontiers in Microbiology 12 (2021).

[225]

N. Kaldalu, N. Bērziņš, S. Berglund Fick, et al., “Antibacterial Compounds Against Non-growing and Intracellular Bacteria,” NPJ Antimicrob Resist 3, no. 1 (2025): 25.

[226]

E. M. Darby, E. Trampari, P. Siasat, et al., “Molecular Mechanisms of Antibiotic Resistance Revisited,” Nature Reviews Microbiology 21, no. 5 (2023): 280-295.

[227]

M. Galgano, F. Pellegrini, E. Catalano, et al., “Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future,” Antibiotics (Basel, Switzerland) 14, no. 3 (2025): 222.

[228]

S. Onseedaeng and P. Ratthawongjirakul, “Rapid Detection of Genomic Mutations in gyrA and parC Genes of Escherichia coli by Multiplex Allele Specific Polymerase Chain Reaction,” Journal of Clinical Laboratory Analysis 30, no. 6 (2016): 947-955.

[229]

J. Lawrence, D. O'Hare, J. van Batenburg-Sherwood, M. Sutton, A. Holmes, and T. M. Rawson, “Innovative Approaches in Phenotypic Beta-lactamase Detection for Personalised Infection Management,” Nature Communications 15, no. 1 (2024): 9070.

[230]

D. Hammoudi Halat, C. A. Moubareck, and D. K. Sarkis, “Heterogeneity of Carbapenem Resistance Mechanisms among Gram-Negative Pathogens in Lebanon: Results of the First Cross-Sectional Countrywide Study,” Microbial Drug Resistance (Larchmont, NY) 23, no. 6 (2017): 733-743.

[231]

S. Vijayakumar, I. Biswas, and B. Veeraraghavan, “Accurate Identification of Clinically Important Acinetobacter spp.: An Update,” Future Science OA 5, no. 6 (2019): Fso395.

[232]

E. Palomba, A. Comelli, F. Saluzzo, et al., “Activity of imipenem/Relebactam Against KPC-producing Klebsiella pneumoniae and the Possible Role of Ompk36 Mutation in Determining Resistance: An Italian Retrospective Analysis,” Annals of Clinical Microbiology and Antimicrobials 24, no. 1 (2025): 23.

[233]

V. Nourbakhsh, F. Nourbakhsh, E. Tajbakhsh, S. Borooni, and D. Daneshmand, “Characterization of<Em>Staphylococcus aureus</Em>Isolated from Wound Infectious in Diabetes Clinic of Hazrat Fatemeh Zahra (SA) Hospital,” Avicenna J Clin Microbiol Infect 5, no. 3 (2018): 67-70.

[234]

H. Lade and J. S. Kim, “Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review,” Antibiotics (Basel, Switzerland) 12, no. 9 (2023): 1362.

[235]

S. R. Partridge, S. M. Kwong, N. Firth, and S. O. Jensen, “Mobile Genetic Elements Associated With Antimicrobial Resistance,” Clinical Microbiology Reviews 31, no. 4 (2018): e00088-17.

[236]

B. Zhang, W. Phetsang, M. R. L. Stone, et al., “Synthesis of Vancomycin Fluorescent Probes That Retain Antimicrobial Activity, Identify Gram-positive Bacteria, and Detect Gram-negative Outer Membrane Damage,” Communications Biology 6, no. 1 (2023): 409.

[237]

L. Y. Gelaw, A. A. Bitew, E. M. Gashey, and M. N. Ademe, “Ceftriaxone Resistance Among Patients at GAMBY teaching general hospital,” Scientific Reports 12, no. 1 (2022): 12000.

[238]

A. Zhydzetski, Z. Głowacka-Grzyb, M. Bukowski, T. Żądło, E. Bonar, and B. Władyka, “Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens,” Molecules (Basel, Switzerland) 29, no. 17 (2024): 4065.

[239]

D. C. Hooper and G. A. Jacoby, “Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance,” Cold Spring Harbor Perspectives in Medicine 6, no. 9 (2016): a025320.

[240]

D. C. Hooper and G. A. Jacoby, “Mechanisms of Drug Resistance: Quinolone Resistance,” Annals of the New York Academy of Sciences 1354, no. 1 (2015): 12-31.

[241]

S. Tao, H. Chen, N. Li, T. Wang, and W. Liang, “The Spread of Antibiotic Resistance Genes in Vivo Model,” The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien Des Maladies Infectieuses Et De La Microbiologie Medicale 2022 (2022): 3348695.

[242]

M. Tokuda and M. Shintani, “Microbial Evolution Through Horizontal Gene Transfer by Mobile Genetic Elements,” Microbial Biotechnology 17, no. 1 (2024): e14408.

[243]

A. R. Burmeister, “Horizontal Gene Transfer,” Evolution, Medicine, and Public Health 2015, no. 1 (2015): 193-194.

[244]

Y. Y. Liu, Y. Wang, T. R. Walsh, et al., “Emergence of Plasmid-mediated Colistin Resistance Mechanism MCR-1 in Animals and human Beings in China: A Microbiological and Molecular Biological Study,” The Lancet Infectious Diseases 16, no. 2 (2016): 161-168.

[245]

A. Carattoli, “Plasmids and the Spread of Resistance,” International Journal of Medical Microbiology: IJMM 303, no. 6-7 (2013): 298-304.

[246]

Q. S. Huang, W. Liao, Z. Xiong, et al., “Prevalence of the NTE(KPC)-I on IncF Plasmids among Hypervirulent Klebsiella pneumoniae Isolates in Jiangxi Province, South China,” Frontiers in Microbiology 12 (2021): 622280.

[247]

L. B. Migliorini, R. O. de Sales, P. C. M. Koga, et al., “Prevalence of Bla(KPC-2), Bla(KPC-3) and Bla(KPC-30)-Carrying Plasmids in Klebsiella pneumoniae Isolated in a Brazilian Hospital,” Pathogens 10, no. 3 (2021): 332.

[248]

M. Quintela-Baluja, D. Frigon, M. Abouelnaga, et al., “Dynamics of Integron Structures Across a Wastewater Network—Implications to Resistance Gene Transfer,” Water Research 206 (2021): 117720.

[249]

W. J. J. Meijer, D. R. Boer, S. Ares, et al., “Multiple Layered Control of the Conjugation Process of the Bacillus Subtilis Plasmid pLS20,” Frontiers in Molecular Biosciences 8 (2021): 648468.

[250]

C. Souque, J. A. Escudero, and R. C. MacLean, “Integron Activity Accelerates the Evolution of Antibiotic Resistance,” Elife 10 (2021): e62474.

[251]

B. Giordani, C. Parolin, and B. Vitali, “Lactobacilli as Anti-biofilm Strategy in Oral Infectious Diseases: A Mini-Review,” Frontiers in Medical Technology 3 (2021): 769172.

[252]

Abdullah, A. Asghar, A. Algburi, et al., “Anti-biofilm Potential of Elletaria Cardamomum Essential Oil against Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748,” Frontiers in Microbiology 12 (2021): 620227.

[253]

S. Roy, S. Chatterjee, A. Bhattacharjee, et al., “Overexpression of Efflux Pumps, Mutations in the Pumps' Regulators, Chromosomal Mutations, and AAC(6')-Ib-cr Are Associated with Fluoroquinolone Resistance in Diverse Sequence Types of Neonatal Septicaemic Acinetobacter baumannii: A 7-Year Single Center Study,” Frontiers in Microbiology 12 (2021): 602724.

[254]

A. Shariati, M. Arshadi, M. A. Khosrojerdi, et al., “The Resistance Mechanisms of Bacteria Against Ciprofloxacin and New Approaches for Enhancing the Efficacy of this Antibiotic,” Frontiers in Public Health 10 (2022): 1025633.

[255]

Y. Ding, J. Hao, and W. Xiao, “Role of Efflux Pumps, Their Inhibitors, and Regulators in Colistin Resistance,” Frontiers in Microbiology 14 (2023): 1207441.

[256]

S. Schuster, M. Vavra, L. Greim, and W. V. Kern, “Exploring the Contribution of the AcrB Homolog MdtF to Drug Resistance and Dye Efflux in a Multidrug Resistant E. coli Isolate,” Antibiotics (Basel, Switzerland) 10, no. 5 (2021): 503.

[257]

R. Maddamsetti, Y. Yao, T. Wang, et al., “Duplicated Antibiotic Resistance Genes Reveal Ongoing Selection and Horizontal Gene Transfer in Bacteria,” Nature Communications 15, no. 1 (2024): 1449.

[258]

Y. Tu, H. Gao, F. Wang, et al., “Genomic and Molecular Characterization of a Ceftazidime-avibactam Resistant Klebsiella pneumoniae Strain Isolated From a Chinese Tertiary Hospital,” BMC Microbiology 25, no. 1 (2025): 199.

[259]

F. Ramos-Martín and N. D'Amelio, “Drug Resistance: An Incessant Fight Against Evolutionary Strategies of Survival,” Microbiology Research 14, no. 2 (2023): 507-542.

[260]

M. Young, M. Chojnacki, C. Blanchard, et al., “Genetic Determinants of Acinetobacter baumannii Serum-Associated Adaptive Efflux-Mediated Antibiotic Resistance,” Antibiotics 12, no. 7 (2023): 1173.

[261]

R. Gross, I. Yelin, V. Lázár, M. S. Datta, and R. Kishony, “Beta-lactamase Dependent and Independent Evolutionary Paths to High-level Ampicillin Resistance,” Nature Communications 15, no. 1 (2024): 5383.

[262]

H. Nicoloff, K. Hjort, D. I. Andersson, and H. Wang, “Three Concurrent Mechanisms Generate Gene Copy Number Variation and Transient Antibiotic Heteroresistance,” Nature Communications 15, no. 1 (2024): 3981.

[263]

X. Yu, M. Liu, P. Liu, Z. Hao, L. Zhao, and X. Zhao, “Increased Expression of AbcA Efflux Pump Accelerated Resistance Development From Tolerance to Resistance against Oxacillin in Staphylococcus aureus,” Microorganisms 13, no. 5 (2025): 1140.

[264]

C. Boralli, J. A. Paganini, R. S. Meneses, et al., “Characterization of Bla(KPC-2) and Bla(NDM-1) Plasmids of a K. pneumoniae ST11 Outbreak Clone,” Antibiotics (Basel, Switzerland) 12, no. 5 (2023): 926.

[265]

D. Gurvic and U. Zachariae, “Multidrug Efflux in Gram-negative Bacteria: Structural Modifications in Active Compounds Leading to Efflux Pump Avoidance,” NPJ Antimicrob Resist 2, no. 1 (2024): 6.

[266]

D. P. M. Sethuvel, Y. D. Bakthavatchalam, M. Karthik, et al., “β-Lactam Resistance in ESKAPE Pathogens Mediated through Modifications in Penicillin-Binding Proteins: An Overview,” Infectious Diseases and Therapy 12, no. 3 (2023): 829-841.

[267]

N. Kaderabkova, M. Bharathwaj, R. C. D. Furniss, D. Gonzalez, T. Palmer, and D. A. I. Mavridou, “The Biogenesis of β-lactamase Enzymes,” Microbiology (Reading, England) 168, no. 8 (2022): 001217.

[268]

C. H. Tseng, Y. T. Huang, Y. C. Mao, et al., “Insight Into the Mechanisms of Carbapenem Resistance in Klebsiella pneumoniae: A Study on IS26 Integrons, Beta-Lactamases, Porin Modifications, and Plasmidome Analysis,” Antibiotics (Basel, Switzerland) 12, no. 4 (2023): 749.

[269]

M. Castanheira, P. J. Simner, and P. A. Bradford, “Extended-spectrum β-lactamases: An Update on Their Characteristics, Epidemiology and Detection,” JAC-Antimicrobial Resistance 3, no. 3 (2021): dlab092.

[270]

F. Rajer, L. Allander, A. Karlsson Philip, and L. Sandegren, “Evolutionary Trajectories Toward High-Level β-Lactam/β-Lactamase Inhibitor Resistance in the Presence of Multiple β-Lactamases,” Antimicrobial Agents and Chemotherapy 66, no. 6 (2022): e00290-22.

[271]

S. Garneau-Tsodikova and K. J. Labby, “Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives,” MedChemComm 7, no. 1 (2016): 11-27.

[272]

X. Zhai, G. Wu, X. Tao, et al., “Success Stories of Natural Product-derived Compounds From Plants as Multidrug Resistance Modulators in Microorganisms,” RSC Advances 13, no. 12 (2023): 7798-7817.

[273]

M. Zieliński, J. Park, B. Sleno, and A. M. Berghuis, “Structural and Functional Insights Into Esterase-mediated Macrolide Resistance,” Nature Communications 12, no. 1 (2021): 1732.

[274]

J. Joseph, S. Boby, S. Mooyottu, and M. S. Muyyarikkandy, “Antibiotic Potentiators as a Promising Strategy for Combating Antibiotic Resistance,” Npj Antimicrobials and Resistance 3, no. 1 (2025): 53.

[275]

G. Naderi, M. Talebi, R. Gheybizadeh, et al., “Mobile Genetic Elements Carrying Aminoglycoside Resistance Genes in Acinetobacter baumannii Isolates Belonging to Global Clone 2,” Frontiers in Microbiology 14 (2023): 1172861.

[276]

W. C. Reygaert, “An Overview of the Antimicrobial Resistance Mechanisms of Bacteria,” AIMS Microbiology 4, no. 3 (2018): 482.

[277]

S. J. Krawczyk, M. Leśniczak-Staszak, E. Gowin, and W. Szaflarski, “Mechanistic Insights Into Clinically Relevant Ribosome-Targeting Antibiotics,” Biomolecules 14, no. 10 (2024): 1263.

[278]

W. Zhang, J. Huffman, S. Li, Y. Shen, and L. Du, “Unusual Acylation of Chloramphenicol in Lysobacter Enzymogenes, a Biocontrol Agent With Intrinsic Resistance to Multiple Antibiotics,” BMC Biotechnology 17, no. 1 (2017): 59.

[279]

M. Sánchez-Osuna, P. Cortés, J. Barbé, and I. Erill, “Origin of the Mobile Di-Hydro-Pteroate Synthase Gene Determining Sulfonamide Resistance in Clinical Isolates,” Frontiers in Microbiology 9 (2018): 3332.

[280]

M. F. Varela, J. Stephen, M. Lekshmi, et al., “Bacterial Resistance to Antimicrobial Agents,” Antibiotics (Basel, Switzerland) 10, no. 5 (2021): 593.

[281]

C. Chen, T. Chen, D. Xue, M. Liu, and B. Zheng, “Antibiotics in the Treatment of Scrub Typhus: A Network Meta-analysis and Cost-effectiveness Analysis,” Journal of Infection in Developing Countries 19, no. 1 (2025): 67-75.

[282]

Y. S. Huang and H. Zhou, “Breakthrough Advances in Beta-Lactamase Inhibitors: New Synthesized Compounds and Mechanisms of Action against Drug-Resistant Bacteria,” Pharmaceuticals (Basel, Switzerland) 18, no. 2 (2025): 206.

[283]

I. Karaiskos, I. Galani, G. L. Daikos, and H. Giamarellou, “Breaking through Resistance: A Comparative Review of New Beta-Lactamase Inhibitors (Avibactam, Vaborbactam, Relebactam) against Multidrug-Resistant Superbugs,” Antibiotics (Basel, Switzerland) 14, no. 5 (2025): 528.

[284]

S. G. Mohiuddin, H. Ngo, and M. A. Orman, “Unveiling the Critical Roles of Cellular Metabolism Suppression in Antibiotic Tolerance,” NPJ Antimicrob Resist 2, no. 1 (2024): 17.

[285]

F. M. Khan, F. Rasheed, Y. Yang, B. Liu, and R. Zhang, “Endolysins: A New Antimicrobial Agent Against Antimicrobial Resistance. Strategies and Opportunities in Overcoming the Challenges of Endolysins Against Gram-negative Bacteria,” Frontiers in Pharmacology 15 (2024): 1385261.

[286]

T. Alonso-Vásquez, M. Fondi, and E. Perrin, “Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling,” Antibiotics (Basel, Switzerland) 12, no. 5 (2023): 896.

[287]

N. D. Nnaji, C. U. Anyanwu, T. Miri, and H. Onyeaka, “Mechanisms of Heavy Metal Tolerance in Bacteria: A Review,” Sustainability 16, no. 24 (2024): 11124.

[288]

Z. Li, Z. Guo, X. Lu, et al., “Evolution and Development of Potent Monobactam Sulfonate Candidate IMBZ18g as a Dual Inhibitor Against MDR Gram-negative Bacteria Producing ESBLs,” Acta Pharmaceutica Sinica B 13, no. 7 (2023): 3067-3079.

[289]

M. Venkatesan, M. Fruci, L. A. Verellen, et al., “Molecular Mechanism of Plasmid-borne Resistance to Sulfonamide Antibiotics,” Nature Communications 14, no. 1 (2023): 4031.

[290]

H. Siebinga, J. Hendrikx, A. D. R. Huitema, and B. J. de Wit-van der Veen, “Predicting the Effect of Different Folate Doses on [(68)Ga]Ga-PSMA-11 Organ and Tumor Uptake Using Physiologically Based Pharmacokinetic Modeling,” EJNMMI Research 13, no. 1 (2023): 60.

[291]

S. Ahmed, S. Shams, D. Trivedi, et al., “Metabolic Response of Klebsiella oxytoca to Ciprofloxacin Exposure: A Metabolomics Approach,” Metabolomics: Official Journal of the Metabolomic Society 21, no. 1 (2024): 8.

[292]

S. Nepal, S. Maaß, S. Grasso, et al., “Proteomic Charting of Imipenem Adaptive Responses in a Highly Carbapenem Resistant Clinical Enterobacter Roggenkampii Isolate,” Antibiotics (Basel, Switzerland) 10, no. 5 (2021): 501.

[293]

G. A. Niño-Vega, J. A. Ortiz-Ramírez, and E. López-Romero, “Novel Antibacterial Approaches and Therapeutic Strategies,” Antibiotics (Basel, Switzerland) 14, no. 4 (2025): 404.

[294]

X. S. Xiong, X. D. Zhang, J. W. Yan, et al., “Identification of Mycobacterium Tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques,” Infection and Drug Resistance 17 (2024): 1491-1506.

[295]

J. Sankar, A. Chauhan, R. Singh, and D. Mahajan, “Isoniazid-historical Development, Metabolism Associated Toxicity and a Perspective on Its Pharmacological Improvement,” Frontiers in Pharmacology 15 (2024): 1441147.

[296]

S. V. Aduru, K. Szenkiel, A. Rahman, et al., “Sub-inhibitory Antibiotic Treatment Selects for Enhanced Metabolic Efficiency,” Microbiology Spectrum 12, no. 2 (2024): e0324123.

[297]

S. Gautam, K. A. Qureshi, and S. B. Jameel Pasha, “Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium Tuberculosis: A Comprehensive Review,” Antibiotics (Basel, Switzerland) 12, no. 3 (2023): 541.

[298]

G. A. Goig, F. Menardo, Z. Salaam-Dreyer, et al., “Effect of Compensatory Evolution in the Emergence and Transmission of Rifampicin-resistant Mycobacterium Tuberculosis in Cape Town, South Africa: A Genomic Epidemiology Study,” The Lancet Microbe 4, no. 7 (2023): e506-e515.

[299]

C. F. Amábile-Cuevas, “Ascorbate and Antibiotics, at Concentrations Attainable in Urine, Can Inhibit the Growth of Resistant Strains of Escherichia coli Cultured in Synthetic Human Urine,” Antibiotics (Basel, Switzerland) 12, no. 6 (2023): 985.

[300]

D. W. Zhao and C. T. Lohans, “Combatting Pseudomonas aeruginosa With β-Lactam Antibiotics: A Revived Weapon?,” Antibiotics (Basel, Switzerland) 14, no. 5 (2025): 526.

[301]

E. Trampari, F. Prischi, A. V. Vargiu, J. Abi-Assaf, V. N. Bavro, and M. A. Webber, “Functionally Distinct Mutations Within AcrB Underpin Antibiotic Resistance in Different Lifestyles,” NPJ Antimicrob Resist 1, no. 1 (2023): 2.

[302]

I. C. Materon and T. Palzkill, “Structural Biology of MCR-1-mediated Resistance to Polymyxin Antibiotics,” Current Opinion in Structural Biology 82 (2023): 102647.

[303]

W. Y. Belay, M. Getachew, B. A. Tegegne, et al., “Mechanism of Antibacterial Resistance, Strategies and next-generation Antimicrobials to Contain Antimicrobial Resistance: A Review,” Frontiers in pharmacology 15 (2024): 1444781.

[304]

G. Zhou, Q. Wang, Y. Wang, et al., “Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria,” Microorganisms 11, no. 7 (2023): 1690.

[305]

X. B. Zhong and J. S. Leeder, “Epigenetic Regulation of ADME-related Genes: Focus on Drug Metabolism and Transport,” Drug Metabolism and Disposition: the Biological Fate of Chemicals 41, no. 10 (2013): 1721-1724.

[306]

J. R. Willdigg and J. D. Helmann, “Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress,” Frontiers in Molecular Biosciences 8 (2021): 634438.

[307]

A. Sharma, S. Tayal, and S. Bhatnagar, “Analysis of Stress Response in Multiple Bacterial Pathogens Using a Network Biology Approach,” Scientific Reports 15, no. 1 (2025): 15342.

[308]

A. Schumann, A. R. Cohn, A. Gaballa, and M. Wiedmann, “Escherichia coli B-Strains Are Intrinsically Resistant to Colistin and Not Suitable for Characterization and Identification of Mcr Genes,” Microbiology Spectrum 11, no. 3 (2023): e0089423.

[309]

X. Gong, G. Yang, W. Liu, et al., “A Multiplex TaqMan Real-time PCR Assays for the Rapid Detection of Mobile Colistin Resistance (mcr-1 to mcr-10) Genes,” Frontiers in Microbiology 15 (2024): 1279186.

[310]

P. F. Mc Dermott, R. D. Walker, and D. G. White, “Antimicrobials: Modes of Action and Mechanisms of Resistance,” International Journal of Toxicology 22, no. 2 (2003): 135-143.

[311]

C. Vilchèze and W. R. Jacobs, “Resistance to Isoniazid and Ethionamide in Mycobacterium Tuberculosis: Genes, Mutations, and Causalities,” Microbiology Spectrum 2, no. 4 (2014): Mgm2-0014-2013.

[312]

B. L. F. Kaplan, A. M. Hoberman, and W. Slikker,, “Protecting Human and Animal Health: The Road From Animal Models to New Approach Methods,” Pharmacological Reviews 76, no. 2 (2024): 251-266.

[313]

S. Janik, E. Grela, S. Stączek, et al., “Amphotericin B-Silver Hybrid Nanoparticles Help to Unveil the Mechanism of Biological Activity of the Antibiotic: Disintegration of Cell Membranes,” Molecules (Basel, Switzerland) 28, no. 12 (2023): 4687.

[314]

G. Kaspute, A. Zebrauskas, A. Streckyte, T. Ivaskiene, and U. Prentice, “Combining Advanced Therapies With Alternative Treatments: A New Approach to Managing Antimicrobial Resistance?,” Pharmaceutics 17, no. 5 (2025): 648.

[315]

E. Vignaud, S. Goutelle, C. Genestet, et al., “Poor Efficacy of the Combination of Clarithromycin, Amikacin, and Cefoxitin Against Mycobacterium Abscessus in the Hollow fiber Infection Model,” Annals of Clinical Microbiology and Antimicrobials 24, no. 1 (2025): 10.

[316]

J. Li, Y. Shi, X. Song, X. Yin, and H. Liu, “Mechanisms of Antimicrobial Resistance in Klebsiella: Advances in Detection Methods and Clinical Implications,” Infection and Drug Resistance 18 (2025): 1339-1354.

[317]

A. Yarahmadi, H. Najafiyan, M. H. Yousefi, et al., “Beyond Antibiotics: Exploring Multifaceted Approaches to Combat Bacterial Resistance in the Modern Era: A Comprehensive Review,” Frontiers in Cellular and Infection Microbiology 15 (2025): 1493915.

[318]

B. Zalewska-Piątek and M. Nagórka, “Phages as Potential Life-saving Therapeutic Option in the Treatment of Multidrug-resistant Urinary Tract Infections,” Acta Biochimica Polonica 72 (2025): 14264.

[319]

S. Taheri-Araghi, “Synergistic Action of Antimicrobial Peptides and Antibiotics: Current Understanding and Future Directions,” Frontiers in Microbiology 15 (2024): 1390765.

[320]

Y. Chen, X. He, Q. Chen, et al., “Nanomaterials Against Intracellular Bacterial Infection: From Drug Delivery to Intrinsic Biofunction,” Frontiers in Bioengineering and Biotechnology 11 (2023).

[321]

J. Zhang, W. Tang, X. Zhang, Z. Song, and T. Tong, “An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials,” Pharmaceutics 15, no. 8 (2023): 2113.

[322]

M. P. Khurana, J. Curran-Sebastian, S. Bhatt, and G. M. Knight, “Modelling the Implementation of Narrow versus Broader Spectrum Antibiotics in the Empiric Treatment of E. coli Bacteraemia,” Scientific Reports 14, no. 1 (2024): 16986.

[323]

E. Gras, T. T. T. Vu, N. T. Q. Nguyen, et al., “Development and Validation of a Rabbit Model of Pseudomonas aeruginosa Non-ventilated Pneumonia for Preclinical Drug Development,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1297281.

[324]

C. Amaral, M. Paiva, A. R. Rodrigues, F. Veiga, and V. Bell, “Global Regulatory Challenges for Medical Devices: Impact on Innovation and Market Access,” Applied Sciences 14, no. 20 (2024): 9304.

[325]

S. Giuliano, J. Angelini, F. Campanile, et al., “Evaluation of ampicillin plus ceftobiprole Combination Therapy in Treating Enterococcus faecalis Infective Endocarditis and Bloodstream Infection,” Scientific Reports 15, no. 1 (2025): 3519.

[326]

S. Y. Liu, S. H. Chou, C. Chuang, et al., “Clinical and Microbiological Characteristics of Patients With Ceftazidime/Avibactam-resistant Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae Strains,” Annals of Clinical Microbiology and Antimicrobials 24, no. 1 (2025): 26.

[327]

M. Karvouniaris, M. P. Almyroudi, M. H. Abdul-Aziz, et al., “Novel Antimicrobial Agents for Gram-Negative Pathogens,” Antibiotics (Basel, Switzerland) 12, no. 4 (2023): 761.

[328]

S. Asokan, T. Jacob, J. Jacob, et al., “Klebsiella pneumoniae: A Growing Threat in the Era of Antimicrobial Resistance,” The Microbe 7 (2025): 100333.

[329]

M. M. I. Majumder, A. R. Mahadi, T. Ahmed, M. Ahmed, M. N. Uddin, and M. Z. Alam, “Antibiotic Resistance Pattern of Microorganisms Causing Urinary Tract Infection: A 10-year Comparative Analysis in a Tertiary Care Hospital of Bangladesh,” Antimicrobial Resistance & Infection Control 11, no. 1 (2022): 156.

[330]

C. Anastassopoulou, S. Ferous, A. Petsimeri, G. Gioula, and A. Tsakris, “Phage-Based Therapy in Combination With Antibiotics: A Promising Alternative Against Multidrug-Resistant Gram-Negative Pathogens,” Pathogens 13, no. 10 (2024): 896.

[331]

D. L. Paterson, “Antibacterial Agents Active Against Gram Negative bacilli in Phase I, II, or III Clinical Trials,” Expert Opinion on Investigational Drugs 33, no. 4 (2024): 371-387.

[332]

Y. X. Ma, C. Y. Wang, Y. Y. Li, et al., “Considerations and Caveats in Combating ESKAPE Pathogens Against Nosocomial Infections,” Advanced Science 7, no. 1 (2020): 1901872.

[333]

A. Marino, E. Augello, S. Stracquadanio, et al., “Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations,” International Journal of Molecular Sciences 25, no. 13 (2024): 6814.

[334]

N. S. Sundaramoorthy, P. Shankaran, V. Gopalan, and S. Nagarajan, “New Tools to Mitigate Drug Resistance in Enterobacteriaceae-Escherichia coli and Klebsiella pneumoniae,” Critical Reviews in Microbiology 49, no. 4 (2023): 435-454.

[335]

I. A. Cardos, D. C. Zaha, R. K. Sindhu, and S. Cavalu, “Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies,” Molecules (Basel, Switzerland) 26, no. 19 (2021): 6078.

[336]

M. Ishnaiwer, Multimodal Treatment of Intestinal Carriage of Multi-drug Resistant Bacteria With Probiotics and Prebiotics (Nantes Université, 2022).

[337]

S. D. Akshay, V. K. Deekshit, J. Mohan Raj, and B. Maiti, “Outer Membrane Proteins and Efflux Pumps Mediated Multi-drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy,” ACS Infectious Diseases 9, no. 11 (2023): 2072-2092.

[338]

J. Rao Muvva, S. Ahmed, R. S. Rekha, et al., “Immunomodulatory Agents Combat Multidrug-resistant Tuberculosis by Improving Antimicrobial Immunity,” The Journal of Infectious Diseases 224, no. 2 (2021): 332-344.

[339]

G. R. Corey, M. H. Wilcox, G. H. Talbot, D. Thye, D. Friedland, and T. Baculik, “CANVAS 1: The First Phase III, Randomized, Double-blind Study Evaluating Ceftaroline Fosamil for the Treatment of Patients With Complicated Skin and Skin Structure Infections,” Journal of Antimicrobial Chemotherapy 65, no. Suppl 4 (2010): iv41-51.

[340]

L. Plumet, N. Ahmad-Mansour, C. Dunyach-Remy, et al., “Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials,” Frontiers in Cellular and Infection Microbiology 12 (2022): 907314.

[341]

M. Arthur and R. Quintiliani, “Regulation of VanA- and VanB-type Glycopeptide Resistance in Enterococci,” Antimicrobial Agents and Chemotherapy 45, no. 2 (2001): 375-381.

[342]

J. R. Smith, K. E. Barber, A. Raut, M. Aboutaleb, G. Sakoulas, and M. J. Rybak, “β-Lactam Combinations With Daptomycin Provide Synergy Against Vancomycin-resistant Enterococcus faecalis and Enterococcus faecium,” Journal of Antimicrobial Chemotherapy 70, no. 6 (2015): 1738-1743.

[343]

S. A. Bhatti, M. H. Hussain, M. Z. Mohsin, et al., “Evaluation of the Antimicrobial Effects of Capsicum, Nigella Sativa, Musa Paradisiaca L., and Citrus Limetta: A Review,” Frontiers in Sustainable Food Systems 6 (2022).

[344]

H. F. Hetta, Y. N. Ramadan, and A. I. Al-Harbi, “Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives,” Biomedicines 11, no. 2 (2023): 413.

[345]

R. Abbas, M. Chakkour, H. Zein El Dine, et al., “General Overview of Klebsiella Pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity,” Biology (Basel) 13, no. 2 (2024): 78.

[346]

V. Spanu, S. Virdis, C. Scarano, F. Cossu, E. P. De Santis, and A. M. Cosseddu, “Antibiotic Resistance Assessment in S. aureus Strains Isolated From Raw Sheep's Milk Cheese,” Veterinary Research Communications 34, no. Suppl 1 (2010): S87-90.

[347]

M. E. Stryjewski and G. R. Corey, “Methicillin-resistant Staphylococcus aureus: An Evolving Pathogen,” Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 58, no. Suppl 1 (2014): S10-S19.

[348]

K. S. Long, J. Poehlsgaard, C. Kehrenberg, S. Schwarz, and B. Vester, “The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics,” Antimicrobial Agents and Chemotherapy 50, no. 7 (2006): 2500-2505.

[349]

M. Afsharipour, S. Mahmoudi, H. Raji, B. Pourakbari, and S. Mamishi, “Three-year Evaluation of the Nosocomial Infections in Pediatrics: Bacterial and Fungal Profile and Antimicrobial Resistance Pattern,” Annals of Clinical Microbiology and Antimicrobials 21, no. 1 (2022): 6.

[350]

A. Dalhoff, “Global Fluoroquinolone Resistance Epidemiology and Implictions for Clinical Use,” Interdisciplinary Perspectives on Infectious Diseases 2012 (2012): 976273.

[351]

D. C. Hooper, “Emerging Mechanisms of Fluoroquinolone Resistance,” Emerging Infectious Diseases 7, no. 2 (2001): 337-341.

[352]

M. Akbari, C. G. Giske, M. Alenaseri, A. Zarei, N. Karimi, and H. Solgi, “Infection Control Interventions Against Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae in an Iranian Referral University Hospital: A Quasi-experimental Study,” Antimicrobial Resistance and Infection Control 14, no. 1 (2025): 48.

[353]

O. J. Okesanya, M. M. Ahmed, J. B. Ogaya, et al., “Reinvigorating AMR Resilience: Leveraging CRISPR-Cas Technology Potentials to Combat the 2024 WHO Bacterial Priority Pathogens for Enhanced Global Health Security—a Systematic Review,” Tropical Medicine and Health 53, no. 1 (2025): 43.

[354]

P. Cerini, F. R. Meduri, F. Tomassetti, et al., “Trends in Antibiotic Resistance of Nosocomial and Community-Acquired Infections in Italy,” Antibiotics (Basel, Switzerland) 12, no. 4 (2023): 651.

[355]

S. Ahmed, S. Hussein, K. Qurbani, et al., “Antimicrobial Resistance: Impacts, Challenges, and Future Prospects,” Journal of Medicine Surgery and Public Health 2 (2024): 100081.

[356]

Y. Imai, K. J. Meyer, A. Iinishi, et al., “A New Antibiotic Selectively Kills Gram-negative Pathogens,” Nature 576, no. 7787 (2019): 459-464.

[357]

E. van Groesen, P. Innocenti, and N. I. Martin, “Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022,” ACS Infect Dis 8, no. 8 (2022): 1381-1407.

[358]

A. Rusu, I. M. Moga, L. Uncu, and G. Hancu, “The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy,” Pharmaceutics 15, no. 11 (2023): 2554.

[359]

G. Courtemanche, R. Wadanamby, A. Kiran, et al., “Looking for Solutions to the Pitfalls of Developing Novel Antibacterials in an Economically Challenging System,” Microbiology Research 12, no. 1 (2021): 173-185.

[360]

G. Barlow, “Clinical Challenges in Antimicrobial Resistance,” Nature Microbiology 3, no. 3 (2018): 258-260.

[361]

M. G. Bacanlı, “The Two Faces of Antibiotics: An Overview of the Effects of Antibiotic Residues in Foodstuffs,” Archives of Toxicology 98, no. 6 (2024): 1717-1725.

[362]

E. S. Okeke, K. I. Chukwudozie, R. Nyaruaba, et al., “Antibiotic Resistance in Aquaculture and Aquatic Organisms: A Review of Current Nanotechnology Applications for Sustainable Management,” Environmental Science and Pollution Research International 29, no. 46 (2022): 69241-69274.

[363]

L. Elton, M. J. Thomason, J. Tembo, et al., “Antimicrobial Resistance Preparedness in sub-Saharan African Countries,” Antimicrobial Resistance and Infection Control 9, no. 1 (2020): 145.

[364]

O. J. Okolie, S. U. Ismail, U. Igwe, and E. C. Adukwu, “Assessing Barriers and Opportunities for the Improvement of Laboratory Performance and Robust Surveillance of Antimicrobial Resistance in Nigeria- a Quantitative Study,” Antimicrobial Resistance and Infection Control 14, no. 1 (2025): 29.

[365]

Y. P. Shelke, N. J. Bankar, G. R. Bandre, D. V. Hawale, and P. Dawande, “An Overview of Preventive Strategies and the Role of Various Organizations in Combating Antimicrobial Resistance,” Cureus 15, no. 9 (2023): e44666.

[366]

M. Sharma, S. Sharma, Paavan, et al., “Mechanisms of Microbial Resistance Against Cadmium-a Review,” Journal of Environmental Health Science and Engineering 22, no. 1 (2024): 13-30.

[367]

C. Llor, R. Benkő, and L. Bjerrum, “Global Restriction of the Over-the-counter Sale of Antimicrobials: Does It Make Sense?,” Frontiers in Public Health 12 (2024): 1412644.

[368]

K. H. Park, Y. J. Jung, H. J. Lee, et al., “Impact of Multidrug Resistance on Outcomes in Hematologic Cancer Patients With Bacterial Bloodstream Infections,” Scientific Reports 14, no. 1 (2024): 15622.

[369]

A. Parmanik, S. Das, B. Kar, A. Bose, G. R. Dwivedi, and M. M. Pandey, “Current Treatment Strategies against Multidrug-Resistant Bacteria: A Review,” Current Microbiology 79, no. 12 (2022): 388.

[370]

E. Avershina, A. Khezri, and R. Ahmad, “Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics-Current State and Whole Genome Sequencing Implementation Perspectives,” Antibiotics (Basel, Switzerland) 12, no. 4 (2023): 781.

[371]

E. Bouza, “The Role of New Carbapenem Combinations in the Treatment of Multidrug-resistant Gram-negative Infections,” Journal of Antimicrobial Chemotherapy 76, no. Suppl 4 (2021): iv38-iv45.

[372]

R. Giurazza, M. C. Mazza, R. Andini, P. Sansone, M. C. Pace, and E. Durante-Mangoni, “Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections,” Life (Basel, Switzerland) 11, no. 6 (2021): 519.

[373]

J. Rodríguez-Baño, B. Gutiérrez-Gutiérrez, I. Machuca, and A. Pascual, “Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae,” Clinical Microbiology Reviews 31, no. 2 (2018): e00079-17.

[374]

A. M. Bal, J. Garau, I. M. Gould, et al., “Vancomycin in the Treatment of Meticillin-resistant Staphylococcus aureus (MRSA) Infection: End of an Era?,” J Glob Antimicrob Resist 1, no. 1 (2013): 23-30.

[375]

I. Gajic, N. Tomic, B. Lukovic, et al., “A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges,” Antibiotics 14, no. 3 (2025): 221.

[376]

A. H. Nguyen, K. S. Hood, E. Mileykovskaya, W. R. Miller, and T. T. Tran, “Bacterial Cell Membranes and Their Role in Daptomycin Resistance: A Review,” Frontiers in Molecular Biosciences 9 (2022): 1035574.

[377]

M. H. Sharaf, G. M. El-Sherbiny, S. A. Moghannem, et al., “New Combination Approaches to Combat Methicillin-resistant Staphylococcus aureus (MRSA),” Scientific Reports 11, no. 1 (2021): 4240.

[378]

Z. Makhlouf, A. A. Ali, and M. H. Al-Sayah, “Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation,” Antibiotics (Basel, Switzerland) 12, no. 5 (2023): 875.

[379]

L. A. Pollack and A. Srinivasan, “Core Elements of Hospital Antibiotic Stewardship Programs From the Centers for Disease Control and Prevention,” Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 59, no. Suppl 3 (2014): S97-100.

[380]

I. Roca, M. Akova, F. Baquero, et al., “The Global Threat of Antimicrobial Resistance: Science for Intervention,” New Microbes and New Infections 6 (2015): 22-29.

[381]

N. Sakenova, E. Cacace, A. Orakov, et al., “Systematic Mapping of Antibiotic Cross-resistance and Collateral Sensitivity With Chemical Genetics,” Nature Microbiology 10, no. 1 (2025): 202-216.

[382]

H. A. Mahmud and C. A. Wakeman, “Navigating Collateral Sensitivity: Insights Into the Mechanisms and Applications of Antibiotic Resistance Trade-offs,” Frontiers in Microbiology 15 (2024): 1478789.

[383]

G. Satchanska, S. Davidova, and A. Gergova, “Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides,” Antibiotics (Basel, Switzerland) 13, no. 3 (2024): 202.

[384]

X. Li, S. Zuo, B. Wang, K. Zhang, and Y. Wang, “Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides,” Molecules (Basel, Switzerland) 27, no. 9 (2022): 2675.

[385]

G. S. Dijksteel, M. M. W. Ulrich, E. Middelkoop, and B. Boekema, “Review: Lessons Learned from Clinical Trials Using Antimicrobial Peptides (AMPs),” Frontiers in Microbiology 12 (2021): 616979.

[386]

M. Sadeeq, Y. Li, C. Wang, F. Hou, J. Zuo, and P. Xiong, “Unlocking the Power of Antimicrobial Peptides: Advances in Production, Optimization, and Therapeutics,” Frontiers in Cellular and Infection Microbiology 15 (2025): 1528583.

[387]

Y. Gal, H. Marcus, E. Mamroud, and R. Aloni-Grinstein, “Mind the Gap-A Perspective on Strategies for Protecting Against Bacterial Infections During the Period From Infection to Eradication,” Microorganisms 11, no. 7 (2023): 1701.

[388]

D. A. Lamprecht, R. J. Wall, A. Leemans, et al., “Targeting De Novo Purine Biosynthesis for Tuberculosis Treatment,” Nature 644, no. 8075 (2025): 214-220.

[389]

V. Kumar, N. Yasmeen, A. Pandey, et al., “Antibiotic Adjuvants: Synergistic Tool to Combat Multi-drug Resistant Pathogens,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1293633.

[390]

A. Zumla, M. Rao, E. Dodoo, and M. Maeurer, “Potential of Immunomodulatory Agents as Adjunct Host-directed Therapies for Multidrug-resistant Tuberculosis,” BMC Medicine 14 (2016): 89.

[391]

S. Ozawa, H.-H. Chen, G. G. Rao, T. Eguale, and A. Stringer, “Value of Pneumococcal Vaccination in Controlling the Development of Antimicrobial Resistance (AMR): Case Study Using DREAMR in Ethiopia,” Vaccine 39, no. 45 (2021): 6700-6711.

[392]

K. Klaper, Y. Pfeifer, L. Heinrich, et al., “Enhanced Invasion and Survival of Antibiotic- resistant Klebsiella pneumoniae Pathotypes in Host Cells and Strain-specific Replication in Blood,” Frontiers in Cellular and Infection Microbiology 15 (2025): 1522573.

[393]

F. Farzaneh and Z. Mohammad, “The Role of Gut Microbiota in Antimicrobial Resistance: A Mini-Review,” Anti-Infective Agents 18, no. 3 (2020): 201-206.

[394]

A. Grießhammer, J. de la Cuesta-Zuluaga, P. Müller, et al., “Non-antibiotics Disrupt Colonization Resistance Against Enteropathogens,” Nature 644, no. 8076 (2025): 497-505.

[395]

F. Branda and F. Scarpa, “Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare's Future,” Antibiotics 13, no. 6 (2024): 502.

[396]

A. Arnold, S. McLellan, and J. M. Stokes, “How AI Can Help Us Beat AMR,” Npj Antimicrobials and Resistance 3, no. 1 (2025): 18.

[397]

K. Swanson, G. Liu, D. B. Catacutan, A. Arnold, J. Zou, and J. M. Stokes, “Generative AI for Designing and Validating Easily Synthesizable and Structurally Novel Antibiotics,” Nature Machine Intelligence 6, no. 3 (2024): 338-353.

[398]

A. H. Behling, B. C. Wilson, D. Ho, M. Virta, J. M. O'Sullivan, and T. Vatanen, “Addressing Antibiotic Resistance: Computational Answers to a Biological Problem?,” Current Opinion in Microbiology 74 (2023): 102305.

[399]

M. C. R. Melo, J. Maasch, and C. de la Fuente-Nunez, “Accelerating Antibiotic Discovery Through Artificial Intelligence,” Communications Biology 4, no. 1 (2021): 1050.

[400]

J. Yan, B. Zhang, M. Zhou, F.-X. Campbell-Valois, and W. I. Siu Shirley, “A Deep Learning Method for Predicting the Minimum Inhibitory Concentration of Antimicrobial Peptides Against Escherichia coli Using Multi-Branch-CNN and Attention,” Msystems 8, no. 4 (2023): e00345-23.

[401]

A. Singh, “Artificial Intelligence for Drug Repurposing Against Infectious Diseases,” Artificial Intelligence Chemistry 2, no. 2 (2024): 100071.

[402]

A. Wenteler, C. P. Cabrera, W. Wei, V. Neduva, and M. R. Barnes, “AI Approaches for the Discovery and Validation of Drug Targets,” Cambridge Prisms Precision Medicine 2 (2024): e7.

[403]

A. S. Dove, D. I. Dzurny, W. R. Dees, et al., “Silver Nanoparticles Enhance the Efficacy of Aminoglycosides Against Antibiotic-resistant Bacteria,” Frontiers in Microbiology 13 (2022): 1064095.

[404]

L. P. Mullins, E. Mason, K. Winter, and M. Sadarangani, “Vaccination Is an Integral Strategy to Combat Antimicrobial Resistance,” Plos Pathogens 19, no. 6 (2023): e1011379.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/