Mucosal-Associated Invariant T Cells: Origins, Biological Functions, Diseases, and Therapeutic Targets

Cheng Zhu , Qian Huai , Yishan Du , Xingyu Li , Fumin Zhang , Yongkang Zhang , Mengwei Wu , Ying Dai , Xiaolei Li , Hanren Dai , Hua Wang

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70445

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70445 DOI: 10.1002/mco2.70445
REVIEW

Mucosal-Associated Invariant T Cells: Origins, Biological Functions, Diseases, and Therapeutic Targets

Author information +
History +
PDF

Abstract

Mucosal-associated invariant T (MAIT) cells are a highly conserved population of immune cells that can be activated via the major histocompatibility complex class I-related protein pathway or cytokine pathways, playing a central role in immune surveillance. This review provides comprehensive information on their thymic developmental origin, tissue-specific distribution, and microbial regulatory networks, with a focus on analyzing the bidirectional regulatory mechanisms in diseases. In infectious diseases, MAIT cells eliminate pathogens through the rapid release of cytokines; however, sustained antigen exposure leads to functional exhaustion. In autoimmune diseases, their migration disorders and proinflammatory cytokine secretion of MAIT cells exacerbate tissue damage. In the tumor microenvironment, they play a paradoxical role, being capable of mediating antitumor effects while also being reprogrammed into a protumor phenotype. Based on their tissue targeting ability and functional plasticity, we discuss novel strategies for targeted therapy, including engineering chimeric antigen receptor–MAIT cells to enhance tumor killing, blocking exhaustion pathways to reverse functional impairment, and regulating the microbiota–metabolic axis to reprogram cell activity. This review integrates cutting-edge evidence, reveals the translational potential of MAIT cells as a cross-disease regulatory hub, and provides a theoretical framework for precision immunotherapy.

Keywords

autoimmune disease / cancer / immunotherapy / infectious disease / MAIT cells / MR1 / unconventional T cells

Cite this article

Download citation ▾
Cheng Zhu, Qian Huai, Yishan Du, Xingyu Li, Fumin Zhang, Yongkang Zhang, Mengwei Wu, Ying Dai, Xiaolei Li, Hanren Dai, Hua Wang. Mucosal-Associated Invariant T Cells: Origins, Biological Functions, Diseases, and Therapeutic Targets. MedComm, 2025, 6(11): e70445 DOI:10.1002/mco2.70445

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. I. Godfrey, H. F. Koay, J. McCluskey, and N. A. Gherardin, “The Biology and Functional Importance of MAIT Cells,” Nature Immunology 20, no. 9 (2019): 1110-1128.

[2]

F. Legoux, M. Salou, and O. Lantz, “MAIT Cell Development and Functions: The Microbial Connection,” Immunity 53, no. 4 (2020): 710-723.

[3]

W. Wang, C. Dai, P. Zhu, et al., “Liver Transplant-facilitated CD161+Vα7.2+ MAIT Cell Recovery Demonstrates Clinical Benefits in Hepatic Failure Patients,” Nature Communications 16, no. 1 (2025): 4022.

[4]

Y. Zhang, H. Liu, D. Liu, et al., “Hantaan Virus Infection Induces human Mucosal-associated Invariant T Cell Pyroptosis Through IRE1α Pathway,” Communications Biology 8, no. 1 (2025): 538.

[5]

A. Varelias, M. D. Bunting, K. L. Ormerod, et al., “Recipient Mucosal-associated Invariant T Cells Control GVHD Within the Colon,” The Journal of Clinical Investigation 128, no. 5 (2018): 1919-1936.

[6]

A. Willing, J. Jäger, S. Reinhardt, N. Kursawe, and M. A. Friese, “Production of IL-17 by MAIT Cells Is Increased in Multiple Sclerosis and Is Associated With IL-7 Receptor Expression,” The Journal of Immunology 200, no. 3 (2018): 974-982.

[7]

N. A. Gherardin, L. Loh, L. Admojo, et al., “Enumeration, Functional Responses and Cytotoxic Capacity of MAIT Cells in Newly Diagnosed and Relapsed Multiple Myeloma,” Scientific Reports 8, no. 1 (2018): 4159.

[8]

B. Ruf, V. V. Catania, S. Wabitsch, et al., “Activating Mucosal-Associated Invariant T Cells Induces a Broad Antitumor Response,” Cancer Immunology Research 9, no. 9 (2021): 1024-1034.

[9]

M. M. Pisarska, M. R. Dunne, D. O'Shea, and A. E. Hogan, “Interleukin-17 Producing Mucosal Associated Invariant T Cells—emerging Players in Chronic Inflammatory Diseases?,” European Journal of Immunology 50, no. 8 (2020): 1098-1108.

[10]

Q. Huang, L. Duan, X. Qian, et al., “IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma,” Scientific Reports 6 (2016): 36551.

[11]

P. Wu, D. Wu, C. Ni, et al., “γδT17 cells Promote the Accumulation and Expansion of Myeloid-derived Suppressor cells in human Colorectal Cancer,” Immunity 40, no. 5 (2014): 785-800.

[12]

P. Kulig, S. Burkhard, J. Mikita-Geoffroy, et al., “IL17A-Mediated Endothelial Breach Promotes Metastasis Formation,” Cancer Immunology Research 4, no. 1 (2016): 26-32.

[13]

S. Porcelli, C. E. Yockey, M. B. Brenner, and S. P. Balk, “Analysis of T Cell Antigen Receptor (TCR) Expression by human Peripheral Blood CD4-8- alpha/Beta T Cells Demonstrates Preferential Use of Several V Beta Genes and an Invariant TCR Alpha Chain,” The Journal of Experimental Medicine 178, no. 1 (1993): 1-16.

[14]

F. Tilloy, E. Treiner, S. H. Park, et al., “An Invariant T Cell Receptor Alpha Chain Defines a Novel TAP-independent Major Histocompatibility Complex Class Ib-restricted Alpha/Beta T Cell Subpopulation in Mammals,” The Journal of Experimental Medicine 189, no. 12 (1999): 1907-1921.

[15]

E. Treiner, L. Duban, S. Bahram, et al., “Selection of Evolutionarily Conserved Mucosal-associated Invariant T Cells by MR1,” Nature 422, no. 6928 (2003): 164-169.

[16]

E. Martin, E. Treiner, L. Duban, et al., “Stepwise Development of MAIT Cells in Mouse and Human,” PLoS Biology 7, no. 3 (2009): e1000054.

[17]

L. Le Bourhis, E. Martin, and I. Péguillet, “Antimicrobial Activity of Mucosal-associated Invariant T Cells,” Nature Immunology 11, no. 8 (2010): 701-708.

[18]

M. C. Gold, S. Cerri, S. Smyk-Pearson, et al., “Human Mucosal Associated Invariant T Cells Detect Bacterially Infected Cells,” PLoS Biology 8, no. 6 (2010): e1000407.

[19]

L. Kjer-Nielsen, O. Patel, A. J. Corbett, et al., “MR1 presents Microbial Vitamin B Metabolites to MAIT Cells,” Nature 491, no. 7426 (2012): 717-723.

[20]

A. J. Corbett, S. B. Eckle, R. W. Birkinshaw, et al., “T-cell Activation by Transitory Neo-antigens Derived From Distinct Microbial Pathways,” Nature 509, no. 7500 (2014): 361-365.

[21]

A. Rahimpour, H. F. Koay, A. Enders, et al., “Identification of Phenotypically and Functionally Heterogeneous Mouse Mucosal-associated Invariant T Cells Using MR1 Tetramers,” The Journal of Experimental Medicine 212, no. 7 (2015): 1095-1108.

[22]

R. Reantragoon, A. J. Corbett, I. G. Sakala, et al., “Antigen-loaded MR1 Tetramers Define T Cell Receptor Heterogeneity in Mucosal-associated Invariant T Cells,” The Journal of Experimental Medicine 210, no. 11 (2013): 2305-2320.

[23]

Y. R. Li, J. Brown, Y. Yu, et al., “Targeting Immunosuppressive Tumor-Associated Macrophages Using Innate T Cells for Enhanced Antitumor Reactivity,” Cancers 14, no. 11 (2022): 2749.

[24]

M. Dogan, E. Karhan, L. Kozhaya, et al., “Engineering Human MAIT Cells With Chimeric Antigen Receptors for Cancer Immunotherapy,” Journal of Immunology (Baltimore, Md: 1950) 209, no. 8 (2022): 1523-1531.

[25]

M. Dey, M. H. Kim, M. Nagamine, et al., “Biofabrication of 3D Breast Cancer Models for Dissecting the Cytotoxic Response of human T Cells Expressing Engineered MAIT Cell Receptors,” Biofabrication 14, no. 4 (2022).

[26]

H. Wakao, K. Yoshikiyo, U. Koshimizu, et al., “Expansion of Functional Human Mucosal-Associated Invariant T Cells via Reprogramming to Pluripotency and Redifferentiation,” Cell Stem Cell 12, no. 5 (2013): 546-558.

[27]

T. Leng, H. D. Akther, C. P. Hackstein, et al., “TCR and Inflammatory Signals Tune Human MAIT Cells to Exert Specific Tissue Repair and Effector Functions,” Cell Reports 28, no. 12 (2019): 3077-3091. e5.

[28]

A. Kurioka, L. J. Walker, P. Klenerman, and C. B. Willberg, “MAIT Cells: New Guardians of the Liver,” Clinical & Translational Immunology 5, no. 8 (2016): e98.

[29]

N. E. Serriari, M. Eoche, L. Lamotte, et al., “Innate Mucosal-associated Invariant T (MAIT) Cells Are Activated in Inflammatory Bowel Diseases,” Clinical and Experimental Immunology 176, no. 2 (2014): 266-274.

[30]

C. Cosgrove, J. E. Ussher, A. Rauch, et al., “Early and Nonreversible Decrease of CD161++/MAIT Cells in HIV Infection,” Blood 121, no. 6 (2013): 951-961.

[31]

J. R. Fergusson, M. H. Hühn, L. Swadling, et al., “CD161(int)CD8+ T Cells: A Novel Population of Highly Functional, Memory CD8+ T Cells Enriched Within the Gut,” Mucosal Immunology 9, no. 2 (2016): 401-413.

[32]

E. Leeansyah, A. Ganesh, M. F. Quigley, et al., “Activation, Exhaustion, and Persistent Decline of the Antimicrobial MR1-restricted MAIT-cell Population in Chronic HIV-1 Infection,” Blood 121, no. 7 (2013): 1124-1135.

[33]

M. Dusseaux, E. Martin, N. Serriari, et al., “Human MAIT Cells Are Xenobiotic-resistant, Tissue-targeted, CD161hi IL-17-secreting T Cells,” Blood 117, no. 4 (2011): 1250-1259.

[34]

X. Z. Tang, J. Jo, and A. T. Tan, “IL-7 Licenses Activation of human Liver Intrasinusoidal Mucosal-associated Invariant T Cells,” Journal of Immunology (Baltimore, Md: 1950) 190, no. 7 (2013): 3142-3152.

[35]

H. C. Jeffery, B. van Wilgenburg, A. Kurioka, et al., “Biliary Epithelium and Liver B Cells Exposed to Bacteria Activate Intrahepatic MAIT Cells Through MR1,” Journal of Hepatology 64, no. 5 (2016): 1118-1127.

[36]

T. Hinks, J. Wallington, A. Williams, R. Djukanovic, K. Staples, and T. Wilkinson, “Steroid-induced Deficiency of Mucosal-associated Invariant T Cells in the COPD Lung: Implications for NTHi Infection,” American Journal of Respiratory and Critical Care Medicine 194 (2016): 1208-1218.

[37]

A. Gibbs, E. Leeansyah, A. Introini, et al., “MAIT Cells Reside in the Female Genital Mucosa and Are Biased towards IL-17 and IL-22 Production in Response to Bacterial Stimulation,” Mucosal Immunology 10, no. 1 (2017): 35-45.

[38]

M. Lepore, A. Kalinichenko, A. Colone, et al., “Parallel T-cell Cloning and Deep Sequencing of human MAIT Cells Reveal Stable Oligoclonal TCRβ Repertoire,” Nature Communications 5, no. 1 (2014): 3866.

[39]

M. J. Sobkowiak, H. Davanian, R. Heymann, et al., “Tissue-resident MAIT Cell Populations in human Oral Mucosa Exhibit an Activated Profile and Produce IL-17,” European Journal of Immunology 49, no. 1 (2019): 133-143.

[40]

J. M. Eberhard, P. Hartjen, S. Kummer, et al., “CD161+ MAIT Cells Are Severely Reduced in Peripheral Blood and Lymph Nodes of HIV-Infected Individuals Independently of Disease Progression,” PLoS ONE 9, no. 11 (2014): e111323.

[41]

Y. S. Kwon, H.-M. Jin, Y.-N. Cho, et al., “Mucosal-Associated Invariant T Cell Deficiency in Chronic Obstructive Pulmonary Disease,” COPD 13, no. 2 (2016): 196-202.

[42]

N. A. Gherardin, M. N. Souter, H. F. Koay, et al., “Human Blood MAIT Cell Subsets Defined Using MR1 Tetramers,” Immunology and Cell Biology 96, no. 5 (2018): 507-525.

[43]

J. Novak, J. Dobrovolny, L. Novakova, and T. Kozak, “The Decrease in Number and Change in Phenotype of Mucosal-associated Invariant T Cells in the Elderly and Differences in Men and Women of Reproductive Age,” Scandinavian Journal of Immunology 80, no. 4 (2014): 271-275.

[44]

I. Kawachi, J. Maldonado, C. Strader, and S. Gilfillan, “MR1-Restricted Vα19i Mucosal-Associated Invariant T Cells Are Innate T Cells in the Gut Lamina Propria That Provide a Rapid and Diverse Cytokine Response1,” The Journal of Immunology 176, no. 3 (2006): 1618-1627.

[45]

Y. Cui, K. Franciszkiewicz, Y. K. Mburu, et al., “Mucosal-associated Invariant T Cell-rich Congenic Mouse Strain Allows Functional Evaluation,” The Journal of Clinical Investigation 125, no. 11 (2015): 4171-4185.

[46]

S. Jahreis, S. Böttcher, S. Hartung, et al., “Human MAIT Cells Are Rapidly Activated by Aspergillus spp. in an APC-dependent Manner,” European Journal of Immunology 48, no. 10 (2018): 1698-1706.

[47]

T. Sato, H. Thorlacius, B. Johnston, et al., “Role for CXCR6 in Recruitment of Activated CD8+ Lymphocytes to Inflamed Liver1,” The Journal of Immunology 174, no. 1 (2005): 277-283.

[48]

E. Billerbeck, Y. H. Kang, L. Walker, et al., “Analysis of CD161 Expression on human CD8+ T Cells Defines a Distinct Functional Subset With Tissue-homing Properties,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 7 (2010): 3006-3011.

[49]

J. Jo, A. T. Tan, J. E. Ussher, et al., “Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in human Liver,” PLoS Pathogens 10, no. 6 (2014): e1004210.

[50]

S. P. Singh, H. H. Zhang, H. Tsang, et al., “PLZF Regulates CCR6 and Is Critical for the Acquisition and Maintenance of the Th17 Phenotype in human Cells,” Journal of Immunology (Baltimore, Md: 1950) 194, no. 9 (2015): 4350-4361.

[51]

L. Le Bourhis, M. Dusseaux, and A. Bohineust, “MAIT Cells Detect and Efficiently Lyse Bacterially-infected Epithelial Cells,” PLoS Pathogens 9, no. 10 (2013): e1003681.

[52]

N. M. Provine, B. Binder, M. E. B. FitzPatrick, et al., “Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells,” Original Research 9 (2018): 756.

[53]

M. Gutierrez-Arcelus, N. Teslovich, A. R. Mola, et al., “Lymphocyte Innateness Defined by Transcriptional States Reflects a Balance Between Proliferation and Effector Functions,” Nature Communications 10, no. 1 (2019): 687.

[54]

D. Kovalovsky, O. U. Uche, S. Eladad, et al., “The BTB-zinc Finger Transcriptional Regulator PLZF Controls the Development of Invariant Natural Killer T Cell Effector Functions,” Nature Immunology 9, no. 9 (2008): 1055-1064.

[55]

I. I. Ivanov, B. S. McKenzie, L. Zhou, et al., “The Orphan Nuclear Receptor RORgammat Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells,” Cell 126, no. 6 (2006): 1121-1133.

[56]

R. P. Wilson, M. L. Ives, G. Rao, et al., “STAT3 is a Critical Cell-intrinsic Regulator of human Unconventional T Cell Numbers and Function,” The Journal of Experimental Medicine 212, no. 6 (2015): 855-864.

[57]

E. L. Pearce, A. C. Mullen, G. A. Martins, et al., “Control of Effector CD8+ T Cell Function by the Transcription Factor Eomesodermin,” Science (New York, NY) 302, no. 5647 (2003): 1041-1043.

[58]

S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, “A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment,” Cell 100, no. 6 (2000): 655-669.

[59]

A. Kallies, A. Xin, G. T. Belz, and S. L. Nutt, “Blimp-1 Transcription Factor Is Required for the Differentiation of Effector CD8(+) T Cells and Memory Responses,” Immunity 31, no. 2 (2009): 283-295.

[60]

H. F. Koay, N. A. Gherardin, A. Enders, et al., “A Three-stage Intrathymic Development Pathway for the Mucosal-associated Invariant T Cell Lineage,” Nature Immunology 17, no. 11 (2016): 1300-1311.

[61]

S. J. Winter, H. Kunze-Schumacher, E. Imelmann, Z. Grewers, T. Osthues, and A. Krueger, “MicroRNA miR-181a/b-1 Controls MAIT Cell Development,” Immunology and Cell Biology 97, no. 2 (2019): 190-202.

[62]

F. Legoux, J. Gilet, E. Procopio, K. Echasserieau, K. Bernardeau, and O. Lantz, “Molecular Mechanisms of Lineage Decisions in Metabolite-specific T Cells,” Nature Immunology 20, no. 9 (2019): 1244-1255.

[63]

E. Martin, E. Treiner, L. Duban, et al., “Stepwise Development of MAIT Cells in Mouse and Human,” PLoS Biology 7 (2009): e54.

[64]

H. Wang, M. N. T. Souter, M. de Lima Moreira, et al., “MAIT Cell Plasticity Enables Functional Adaptation That Drives Antibacterial Immune Protection,” Science Immunology 9, no. 102 (2024): eadp9841.

[65]

H.-F. Koay, N. A. Gherardin, A. Enders, et al., “A Three-stage Intrathymic Development Pathway for the Mucosal-associated Invariant T Cell Lineage,” Nature Immunology 17 (2016): 1300-1311.

[66]

E. W. Meermeier, M. J. Harriff, E. Karamooz, and D. M. Lewinsohn, “MAIT Cells and Microbial Immunity,” Immunology and Cell Biology 96, no. 6 (2018): 607-617.

[67]

A. Kurioka, J. E. Ussher, C. Cosgrove, et al., “MAIT Cells Are Licensed Through Granzyme Exchange to Kill Bacterially Sensitized Targets,” Mucosal Immunology 8, no. 2 (2015): 429-440.

[68]

Z. Chen, H. Wang, and C. D'Souza, “Mucosal-associated Invariant T-cell Activation and Accumulation After in Vivo Infection Depends on Microbial Riboflavin Synthesis and co-stimulatory Signals,” Mucosal Immunology 10, no. 1 (2017): 58-68.

[69]

W.-J. Chua, S. M. Truscott, C. S. Eickhoff, et al., “Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection,” Infection and Immunity 80 (2012): 3256-3267.

[70]

A. I. Meierovics, W.-J. C. Yankelevich, and S. C. Cowley, “MAIT Cells Are Critical for Optimal Mucosal Immune Responses During in Vivo Pulmonary Bacterial Infection,” PNAS 110 (2013): E3119-E3128.

[71]

O. Sortino, E. Richards, J. Dias, E. Leeansyah, J. K. Sandberg, and I. Sereti, “IL-7 Treatment Supports CD8+ Mucosa-associated Invariant T-cell Restoration in HIV-1-infected Patients on Antiretroviral Therapy,” AIDS (London, England) 32, no. 6 (2018): 825-828.

[72]

B. van Wilgenburg, I. Scherwitzl, and E. C. Hutchinson, et al., “MAIT Cells Are Activated During human Viral Infections,” Nature Communications 7 (2016): 11653.

[73]

B. van Wilgenburg, L. Loh, Z. Chen, et al., “MAIT Cells Contribute to Protection Against Lethal Influenza Infection in Vivo,” Nature Communications 9, no. 1 (2018): 4706.

[74]

Y. K. Yong, H. Y. Tan, A. Saeidi, et al., “Decrease of CD69 Levels on TCR Vα7.2+CD4+ Innate-Like Lymphocytes Is Associated With Impaired Cytotoxic Functions in Chronic hepatitis B Virus-infected Patients,” Innate Immun 23, no. 5 (2017): 459-467.

[75]

E. Jesteadt, I. Zhang, H. Yu, A. Meierovics, W. J. Chua Yankelevich, and S. Cowley, “Interleukin-18 Is Critical for Mucosa-Associated Invariant T Cell Gamma Interferon Responses to Francisella Species in Vitro but Not in Vivo,” Infection and Immunity 86, no. 5 (2018): e00117-e00118.

[76]

J. E. Ussher, M. Bilton, E. Attwod, et al., “CD161++ CD8+ T Cells, Including the MAIT Cell Subset, Are Specifically Activated by IL-12+IL-18 in a TCR-independent Manner,” European Journal of Immunology 44, no. 1 (2014): 195-203.

[77]

M. Barathan, R. Mohamed, J. Vadivelu, et al., “Peripheral Loss of CD8(+) CD161(++) TCRVα7·2(+) Mucosal-associated Invariant T Cells in Chronic hepatitis C Virus-infected Patients,” European Journal of Clinical Investigation 46, no. 2 (2016): 170-180.

[78]

L. L. Boeijen, N. R. Montanari, R. A. de Groen, et al., “Mucosal-Associated Invariant T Cells Are More Activated in Chronic Hepatitis B, but Not Depleted in Blood: Reversal by Antiviral Therapy,” The Journal of Infectious Diseases 216, no. 8 (2017): 969-976.

[79]

F. J. Bolte, A. C. O'Keefe, and L. M. Webb, “Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation,” Gastroenterology 153, no. 5 (2017): 1392-1403. e2.

[80]

C. S. Fernandez, T. Amarasena, A. D. Kelleher, et al., “MAIT Cells Are Depleted Early but Retain Functional Cytokine Expression in HIV Infection,” Immunology and Cell Biology 93, no. 2 (2015): 177-188.

[81]

J. Hengst, B. Strunz, K. Deterding, et al., “Nonreversible MAIT Cell-dysfunction in Chronic hepatitis C Virus Infection Despite Successful Interferon-free Therapy,” European Journal of Immunology 46, no. 9 (2016): 2204-2210.

[82]

F. Legoux, D. Bellet, C. Daviaud, et al., “Microbial Metabolites Control the Thymic Development of Mucosal-associated Invariant T Cells,” Science (New York, NY) 366, no. 6464 (2019): 494-499.

[83]

A. Kurioka, B. van Wilgenburg, R. R. Javan, et al., “Diverse Streptococcus pneumoniae Strains Drive a Mucosal-Associated Invariant T-Cell Response through Major Histocompatibility Complex Class I-Related Molecule-Dependent and Cytokine-Driven Pathways,” Journal of Infectious Diseases 217 (2017): 988-999.

[84]

J. C. Wallington, A. P. Williams, K. J. Staples, and T. M. A. Wilkinson, “IL-12 and IL-7 Synergize to Control Mucosal-associated Invariant T-cell Cytotoxic Responses to Bacterial Infection,” The Journal of Allergy and Clinical Immunology 141, no. 6 (2018): 2182-2195.

[85]

E. Leeansyah, J. Svärd, J. Dias, et al., “Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection,” PLoS Pathogens 11, no. 8 (2015): e1005072.

[86]

C. J. Turtle, J. Delrow, R. C. Joslyn, et al., “Innate Signals Overcome Acquired TCR Signaling Pathway Regulation and Govern the Fate of human CD161(hi) CD8α⁺ Semi-invariant T Cells,” Blood 118, no. 10 (2011): 2752-2762.

[87]

Z. Bánki, L. Krabbendam, D. Klaver, et al., “Antibody Opsonization Enhances MAIT Cell Responsiveness to Bacteria via a TNF-dependent Mechanism,” Immunology and Cell Biology 97, no. 6 (2019): 538-551.

[88]

A. I. Meierovics and S. C. Cowley, “MAIT Cells Promote Inflammatory Monocyte Differentiation Into Dendritic Cells During Pulmonary Intracellular Infection,” The Journal of Experimental Medicine 213, no. 12 (2016): 2793-2809.

[89]

R. Salerno-Goncalves, D. Luo, S. Fresnay, et al., “Challenge of Humans With Wild-type Salmonella Enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells,” Frontiers in Immunology 8 (2017): 398.

[90]

S. B. G. Eckle, R. W. Birkinshaw, L. Kostenko, et al., “A Molecular Basis Underpinning the T Cell Receptor Heterogeneity of Mucosal-associated Invariant T Cells,” Journal of Experimental Medicine 211, no. 8 (2014): 1585-1600.

[91]

J. Y. W. Mak, W. Xu, R. C. Reid, et al., “Stabilizing Short-lived Schiff Base Derivatives of 5-aminouracils That Activate Mucosal-associated Invariant T Cells,” Nature Communications 8, no. 1 (2017): 14599.

[92]

C. Soudais, F. Samassa, M. Sarkis, et al., “In Vitro and In Vivo Analysis of the Gram-Negative Bacteria-Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells,” Journal of Immunology (Baltimore, Md: 1950) 194, no. 10 (2015): 4641-4649.

[93]

S. B. Eckle, A. J. Corbett, A. N. Keller, et al., “Recognition of Vitamin B Precursors and Byproducts by Mucosal Associated Invariant T Cells,” The Journal of Biological Chemistry 290, no. 51 (2015): 30204-302011.

[94]

J. E. Ussher, B. van Wilgenburg, R. F. Hannaway, et al., “TLR Signaling in human Antigen-presenting Cells Regulates MR1-dependent Activation of MAIT Cells,” European Journal of Immunology 46, no. 7 (2016): 1600-1614.

[95]

X. Xiao and J. Cai, “Mucosal-Associated Invariant T Cells: New Insights Into Antigen Recognition and Activation,” Frontiers in Immunology 8 (2017): 1540.

[96]

K. Franciszkiewicz, M. Salou, F. Legoux, et al., “MHC Class I-related Molecule, MR1, and Mucosal-associated Invariant T Cells,” Immunological Reviews 272, no. 1 (2016): 120-138.

[97]

L. Loh, Z. Wang, S. Sant, et al., “Human Mucosal-associated Invariant T Cells Contribute to Antiviral Influenza Immunity via IL-18-dependent Activation,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 36 (2016): 10133-10138.

[98]

E. J. Won, J. K. Ju, Y. N. Cho, et al., “Clinical Relevance of Circulating Mucosal-associated Invariant T Cell Levels and Their Anti-cancer Activity in Patients With Mucosal-associated Cancer,” Oncotarget 7, no. 46 (2016): 76274-76290.

[99]

J. J. Wang, C. Macardle, H. Weedon, D. Beroukas, and T. Banovic, “Mucosal-associated Invariant T Cells Are Reduced and Functionally Immature in the Peripheral Blood of Primary Sjögren's syndrome Patients,” European Journal of Immunology 46, no. 10 (2016): 2444-2453.

[100]

A. Chiba, N. Tamura, K. Yoshikiyo, et al., “Activation Status of Mucosal-associated Invariant T Cells Reflects Disease Activity and Pathology of Systemic Lupus Erythematosus,” Arthritis Research & Therapy 19, no. 1 (2017): 58.

[101]

C. K. Slichter, A. McDavid, H. W. Miller, et al., “Distinct Activation Thresholds of human Conventional and Innate-Like Memory T Cells,” JCI Insight 1, no. 8 (2016): e86292.

[102]

S. H. C. Havenith, S. L. Yong, S. M. Henson, et al., “Analysis of Stem-cell-Like Properties of human CD161++IL-18Rα+ Memory CD8+ T Cells,” International Immunology 24, no. 10 (2012): 625-636.

[103]

R. Martínez-Barricarte, J. G. Markle, C. S. Ma, et al., “Human IFN-γ Immunity to Mycobacteria Is Governed by both IL-12 and IL-23,” Science Immunology 3, no. 30 (2018): eaau6759.

[104]

M.-S. Rha, J. W. Han, J. H. Kim, et al., “Human Liver CD8+ MAIT Cells Exert TCR/MR1-independent Innate-Like Cytotoxicity in Response to IL-15,” Journal of Hepatology 73, no. 3 (2020): 640-650.

[105]

S. Jin, J. Chin, S. Seeber, et al., “TL1A/TNFSF15 directly Induces Proinflammatory Cytokines, Including TNFα, From CD3+CD161+ T Cells to Exacerbate Gut Inflammation,” Mucosal Immunology 6, no. 5 (2013): 886-899.

[106]

A. Sattler, L. G. Thiel, A. H. Ruhm, et al., “The TL1A-DR3 Axis Selectively Drives Effector Functions in Human MAIT Cells,” The Journal of Immunology 203, no. 11 (2019): 2970-2978.

[107]

A. Chiba, R. Tajima, C. Tomi, Y. Miyazaki, T. Yamamura, and S. Miyake, “Mucosal-associated Invariant T Cells Promote Inflammation and Exacerbate Disease in Murine Models of Arthritis,” Arthritis and Rheumatism 64, no. 1 (2012): 153-161.

[108]

C. R. Shaler, J. Choi, P. T. Rudak, et al., “MAIT Cells Launch a Rapid, Robust and Distinct Hyperinflammatory Response to Bacterial Superantigens and Quickly Acquire an Anergic Phenotype That Impedes Their Cognate Antimicrobial Function: Defining a Novel Mechanism of Superantigen-induced Immunopathology and Immunosuppression,” PLoS Biology 15, no. 6 (2017): e2001930.

[109]

J. K. Sandberg, A. Norrby-Teglund, and E. Leeansyah, “Bacterial Deception of MAIT Cells in a Cloud of Superantigen and Cytokines,” PLoS Biology 15, no. 7 (2017): e2003167.

[110]

J. White, A. Herman, A. M. Pullen, R. Kubo, J. W. Kappler, and P. Marrack, “The V Beta-specific Superantigen Staphylococcal Enterotoxin B: Stimulation of Mature T Cells and Clonal Deletion in Neonatal Mice,” Cell 56, no. 1 (1989): 27-35.

[111]

M. Salio, O. Gasser, C. Gonzalez-Lopez, et al., “Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells,” Journal of Immunology (Baltimore, Md: 1950) 199, no. 8 (2017): 2631-2638.

[112]

Y. R. Li, K. Zhou, Y. Zhu, T. Halladay, and L. Yang, “Breaking the Mold: Unconventional T Cells in Cancer Therapy,” Cancer Cell 43, no. 3 (2025): 317-322.

[113]

Y.-R. Li, K. Zhou, M. Wilson, et al., “Mucosal-associated Invariant T Cells for Cancer Immunotherapy,” Molecular Therapy 31, no. 3 (2023): 631-646.

[114]

P. Pinco and F. Facciotti, “Unconventional T Cells' Role in Cancer: Unlocking Their Hidden Potential to Guide Tumor Immunity and Therapy,” Cells 14, no. 10 (2025): 720.

[115]

A. Heczey, X. Xu, A. N. Courtney, et al., “Anti-GD2 CAR-NKT Cells in Relapsed or Refractory Neuroblastoma: Updated Phase 1 Trial Interim Results,” Nature Medicine 29, no. 6 (2023): 1379-1388.

[116]

Y. R. Li, Y. Zhou, J. Yu, et al., “Generation of Allogeneic CAR-NKT Cells From Hematopoietic Stem and Progenitor Cells Using a Clinically Guided Culture Method,” Nature Biotechnology 43, no. 3 (2025): 329-344.

[117]

M. Alnaggar, Y. Xu, J. Li, et al., “Allogenic Vγ9Vδ2 T Cell as New Potential Immunotherapy Drug for Solid Tumor: A Case Study for Cholangiocarcinoma,” Journal for Immunotherapy of Cancer 7, no. 1 (2019): 36.

[118]

A. J. Nicol, H. Tokuyama, S. R. Mattarollo, et al., “Clinical Evaluation of Autologous Gamma Delta T Cell-based Immunotherapy for Metastatic Solid Tumours,” British Journal of Cancer 105, no. 6 (2011): 778-786.

[119]

L. Jiang, F. You, H. Wu, et al., “B7-H3-Targeted CAR-Vδ1T Cells Exhibit Potent Broad-Spectrum Activity Against Solid Tumors,” Cancer Research 84, no. 23 (2024): 4066-4080.

[120]

X. Zhai, F. You, S. Xiang, et al., “MUC1-Tn-targeting Chimeric Antigen Receptor-modified Vγ9Vδ2 T Cells With Enhanced Antigen-specific Anti-tumor Activity,” American Journal of Cancer Research 11, no. 1 (2021): 79-91.

[121]

L. Le Bourhis, E. Martin, and I. Péguillet, “Antimicrobial Activity of Mucosal-associated Invariant T Cells,” Nature Immunology 11, no. 8 (2010): 701-708.

[122]

T. S. C. Hinks and X.-W. Zhang, “MAIT Cell Activation and Functions,” Frontiers in Immunology 11 (2020): 1014.

[123]

W.-J. Chua, S. M. Truscott, C. S. Eickhoff, et al., “Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection,” Infection and Immunity 80, no. 9 (2012): 3256-3267.

[124]

A. Meierovics, W.-J. C. Yankelevich, and S. C. Cowley, “MAIT Cells Are Critical for Optimal Mucosal Immune Responses During in Vivo Pulmonary Bacterial Infection,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 33 (2013): E3119-E3128.

[125]

J. Jiang, B. Yang, H. An, et al., “Mucosal-associated Invariant T Cells From Patients With Tuberculosis Exhibit Impaired Immune Response,” Journal of Infection 72, no. 3 (2016): 338-352.

[126]

E. Jesteadt, I. Zhang, H. Yu, et al., “Interleukin-18 Is Critical for Mucosa-Associated Invariant T Cell Gamma Interferon Responses to Francisella SpeciesIn Vitrobut NotIn Vivo,” Infection and Immunity 86, no. 5 (2018): e00117-e00118.

[127]

P. Marrack, C. Boulouis, W. R. Sia, et al., “Human MAIT Cell Cytolytic Effector Proteins Synergize to Overcome Carbapenem Resistance in Escherichia coli,” PLoS Biology 18, no. 6 (2020): e3000644.

[128]

M. Dusseaux, E. Martin, N. Serriari, et al., “Human MAIT Cells Are Xenobiotic-resistant, Tissue-targeted, CD161hi IL-17-secreting T Cells,” Blood 117, no. 4 (2011): 1250-1259.

[129]

F. R. DeLeo, L. Le Bourhis, and M. Dusseaux, “MAIT Cells Detect and Efficiently Lyse Bacterially-Infected Epithelial Cells,” PLoS Pathogens 9, no. 10 (2013): e1003681.

[130]

J. Jiang, Z. Cao, L. Xiao, et al., “Tim-3 Expression Is Induced by Mycobacterial Antigens and Identifies Tissue-resident Subsets of MAIT Cells From Patients With Tuberculosis,” Microbes and Infection 25, no. 1-2 (2023): 105021.

[131]

J. K. Sandberg, D. J. Smith, G. R. Hill, S. C. Bell, and D. W. Reid, “Reduced Mucosal Associated Invariant T-Cells Are Associated With Increased Disease Severity and Pseudomonas aeruginosa Infection in Cystic Fibrosis,” PLoS ONE 9, no. 10 (2014): e109891.

[132]

H. Wang, C. D'Souza, and X. Y. Lim, “MAIT Cells Protect Against Pulmonary Legionella Longbeachae Infection,” Nature Communications 9, no. 1 (2018): 3350.

[133]

R. Salerno-Gonçalves, S. Fresnay, L. Magder, et al., “Mucosal-Associated Invariant T Cells Exhibit Distinct Functional Signatures Associated With Protection Against Typhoid Fever,” Cellular Immunology 378 (2022): 104572.

[134]

J. M. Vinetz, D. T. Leung, T. R. Bhuiyan, et al., “Circulating Mucosal Associated Invariant T Cells Are Activated in Vibrio Cholerae O1 Infection and Associated With Lipopolysaccharide Antibody Responses,” PLoS Neglected Tropical Diseases 8, no. 8 (2014): e3076.

[135]

J. J. Douglas, J. L. Y. Tsang, and K. R. Walley, “Sepsis and the Innate-Like Response,” Intensive Care Medicine 40, no. 2 (2013): 249-251.

[136]

H. M. O'Hagan, W. Wang, and S. Sen, “Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CpG Islands,” Cancer Cell 20, no. 5 (2011): 606-619.

[137]

C. E. Niehaus, B. Strunz, M. Cornillet, et al., “MAIT Cells Are Enriched and Highly Functional in Ascites of Patients with Decompensated Liver Cirrhosis,” Hepatology 72, no. 4 (2020): 1378-1393.

[138]

J. Jiang, X. Chen, H. An, B. Yang, F. Zhang, and X. Cheng, “Enhanced Immune Response of MAIT Cells in Tuberculous Pleural Effusions Depends on Cytokine Signaling,” Scientific Reports 6, no. 1 (2016): 32320.

[139]

L. Ouyang, M. Wu, Z. Shen, et al., “Activation and Functional Alteration of Mucosal-Associated Invariant T Cells in Adult Patients with Community-Acquired Pneumonia,” Frontiers in Immunology 12 (2021): 788406.

[140]

R. F. Hannaway, X. Wang, M. Schneider, et al., “Mucosal-associated Invariant T Cells and Vδ2+ Γδ T Cells in Community Acquired Pneumonia: Association of Abundance in Sputum With Clinical Severity and Outcome,” Clinical and Experimental Immunology 199, no. 2 (2020): 201-215.

[141]

P. Georgel, M. Radosavljevic, C. Macquin, and S. Bahram, “The Non-conventional MHC Class I MR1 Molecule Controls Infection by Klebsiella pneumoniae in Mice,” Molecular Immunology 48, no. 5 (2011): 769-775.

[142]

J. S. Booth, R. Salerno-Goncalves, T. G. Blanchard, et al., “Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection,” Frontiers in Immunology 6 (2015): 466.

[143]

C. D'Souza, T. Pediongco, and H. Wang, “Mucosal-Associated Invariant T Cells Augment Immunopathology and Gastritis in Chronic Helicobacter pylori Infection,” The Journal of Immunology 200, no. 5 (2018): 1901-1916.

[144]

A. Bhandoola, C. R. Shaler, J. Choi, et al., “MAIT Cells Launch a Rapid, Robust and Distinct Hyperinflammatory Response to Bacterial Superantigens and Quickly Acquire an Anergic Phenotype That Impedes Their Cognate Antimicrobial Function: Defining a Novel Mechanism of Superantigen-induced Immunopathology and Immunosuppression,” PLoS Biology 15, no. 6 (2017): e2001930.

[145]

C. Cosgrove, J. E. Ussher, A. Rauch, et al., “Early and Nonreversible Decrease of CD161++ /MAIT Cells in HIV Infection,” Blood 121, no. 6 (2013): 951-961.

[146]

A. Saeidi, V. L. Tien Tien, R. Al-Batran, et al., “Attrition of TCR Vα7.2+ CD161++ MAIT Cells in HIV-tuberculosis co-infection Is Associated With Elevated Levels of PD-1 Expression,” PLoS ONE 10, no. 4 (2015): e0124659.

[147]

C. Boulouis, E. Leeansyah, S. Mairpady Shambat, A. Norrby-Teglund, and J. K. Sandberg, “Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its Modulation by Activation,” Journal of Immunology (Baltimore, Md: 1950) 208, no. 5 (2022): 1170-1179.

[148]

V. H. Wu, J. M. L. Nordin, S. Nguyen, et al., “Profound Phenotypic and Epigenetic Heterogeneity of the HIV-1-infected CD4(+) T Cell Reservoir,” Nature Immunology 24, no. 2 (2023): 359-370.

[149]

S. Khuzwayo, M. Mthembu, E. W. Meermeier, et al., “MR1-Restricted MAIT Cells from the Human Lung Mucosal Surface Have Distinct Phenotypic, Functional, and Transcriptomic Features That Are Preserved in HIV Infection,” Frontiers in Immunology 12 (2021): 631410.

[150]

A. Gibbs, K. Healy, V. Kaldhusdal, et al., “Preserved Mucosal-Associated Invariant T Cells in the Cervical Mucosa of HIV-Infected Women With Dominant Expression of the TRAV1-2-TRAJ20 T Cell Receptor α-Chain,” The Journal of Infectious Diseases 226, no. 8 (2022): 1428-1440.

[151]

J. M. Brenchley, D. A. Price, T. W. Schacker, et al., “Microbial Translocation Is a Cause of Systemic Immune Activation in Chronic HIV Infection,” Nature Medicine 12, no. 12 (2006): 1365-1371.

[152]

J. K. Sandberg, J. Dias, and B. L. Shacklett, and E. Leeansyah, “Will Loss of Your Mucosa-associated Invariant T Cells Weaken Your HAART?,” Aids 27, no. 16 (2013): 2501-2504.

[153]

O. Rouxel, J. Da Silva, L. Beaudoin, et al., “Cytotoxic and Regulatory Roles of Mucosal-associated Invariant T Cells in Type 1 Diabetes,” Nature Immunology 18, no. 12 (2017): 1321-1331.

[154]

P. Xia, X. D. Xing, C. X. Yang, et al., “Activation-induced Pyroptosis Contributes to the Loss of MAIT Cells in Chronic HIV-1 Infected Patients,” Military Medical Research 9, no. 1 (2022): 24.

[155]

X. Tang, S. Zhang, Q. Peng, et al., “Sustained IFN-I Stimulation Impairs MAIT Cell Responses to Bacteria by Inducing IL-10 During Chronic HIV-1 Infection,” Science Advances 6, no. 8 (2020): eaaz0374.

[156]

K. G. Lal, D. Kim, M. C. Costanzo, et al., “Dynamic MAIT Cell Response With Progressively Enhanced Innateness During Acute HIV-1 Infection,” Nature Communications 11, no. 1 (2020): 272.

[157]

J. A. Juno, K. M. Wragg, T. Amarasena, et al., “MAIT Cells Upregulate α4β7 in Response to Acute Simian Immunodeficiency Virus/Simian HIV Infection but Are Resistant to Peripheral Depletion in Pigtail Macaques,” Journal of Immunology (Baltimore, Md: 1950) 202, no. 7 (2019): 2105-2120.

[158]

A. L. French, C. T. Evans, D. M. Agniel, et al., “Microbial Translocation and Liver Disease Progression in Women Coinfected With HIV and hepatitis C Virus,” The Journal of Infectious Diseases 208, no. 4 (2013): 679-689.

[159]

J. Dias, E. Leeansyah, and J. K. Sandberg, “Multiple Layers of Heterogeneity and Subset Diversity in human MAIT Cell Responses to Distinct Microorganisms and to Innate Cytokines,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 27 (2017): E5434-e5443.

[160]

K. Verdonck, E. González, S. Van Dooren, A. M. Vandamme, G. Vanham, and E. Gotuzzo, “Human T-lymphotropic Virus 1: Recent Knowledge About an Ancient Infection,” The Lancet Infectious Diseases 7, no. 4 (2007): 266-281.

[161]

E. W. Meermeier, C. L. Zheng, J. G. Tran, et al., “Human Lung-resident Mucosal-associated Invariant T Cells Are Abundant, Express Antimicrobial Proteins, and Are Cytokine Responsive,” Communications Biology 5, no. 1 (2022): 942.

[162]

T. Parrot, J. B. Gorin, A. Ponzetta, et al., “MAIT Cell Activation and Dynamics Associated With COVID-19 Disease Severity,” Science Immunology 5, no. 51 (2020): eabe1670.

[163]

H. Flament, M. Rouland, L. Beaudoin, et al., “Outcome of SARS-CoV-2 Infection Is Linked to MAIT Cell Activation and Cytotoxicity,” Nature Immunology 22, no. 3 (2021): 322-335.

[164]

J. Youngs, N. M. Provine, N. Lim, et al., “Identification of Immune Correlates of Fatal Outcomes in Critically Ill COVID-19 Patients,” PLoS Pathogens 17, no. 9 (2021): e1009804.

[165]

Y. Jouan, A. Guillon, L. Gonzalez, et al., “Phenotypical and Functional Alteration of Unconventional T Cells in Severe COVID-19 Patients,” The Journal of Experimental Medicine 217, no. 12 (2020): e20200872.

[166]

P. T. Rudak, T. Yao, C. D. Richardson, and S. M. M. Haeryfar, “Measles Virus Infects and Programs MAIT Cells for Apoptosis,” The Journal of Infectious Diseases 223, no. 4 (2021): 667-672.

[167]

J. M. Eberhard, S. Kummer, P. Hartjen, et al., “Reduced CD161(+) MAIT Cell Frequencies in HCV and HIV/HCV co-infection: Is the Liver the Heart of the Matter?,” Journal of Hepatology 65, no. 6 (2016): 1261-1263.

[168]

M. Spaan, S. J. Hullegie, B. J. Beudeker, et al., “Frequencies of Circulating MAIT Cells Are Diminished in Chronic HCV, HIV and HCV/HIV Co-Infection and Do Not Recover During Therapy,” PLoS ONE 11, no. 7 (2016): e0159243.

[169]

G. Luo, J. Zhang, T. Wang, et al., “A human Commensal-pathogenic Fungus Suppresses Host Immunity via Targeting TBK1,” Cell Host & Microbe 32, no. 9 (2024): 1536-1551. e6.

[170]

B. Zhai, C. Liao, S. Jaggavarapu, et al., “Antifungal Heteroresistance Causes Prophylaxis Failure and Facilitates Breakthrough Candida parapsilosis Infections,” Nature Medicine 30, no. 11 (2024): 3163-3172.

[171]

T. Riffelmacher, M. Paynich Murray, C. Wientjens, et al., “Divergent Metabolic Programmes Control Two Populations of MAIT Cells That Protect the Lung,” Nature Cell Biology 25, no. 6 (2023): 877-891.

[172]

Q. Jing, R. Liu, Q. Jiang, et al., “Staphylococcus aureus Wraps Around Candida albicans and Synergistically Escapes From Neutrophil Extracellular Traps,” Frontiers in Immunology 15 (2024): 1422440.

[173]

W. Awad, J. R. Mayall, W. Xu, et al., “Cigarette Smoke Components Modulate the MR1-MAIT Axis,” The Journal of Experimental Medicine 222, no. 2 (2025): e20240896.

[174]

M. Mpina, N. J. Maurice, M. Yajima, et al., “Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-Like Lymphocyte Populations,” Journal of Immunology (Baltimore, Md: 1950) 199, no. 1 (2017): 107-118.

[175]

Y. G. Jo, H. M. Jin, Y. N. Cho, J. C. Kim, S. J. Kee, and Y. W. Park, “Activation and Impaired Tumor Necrosis Factor-alpha Production of Circulating Mucosal-Associated Invariant T Cells in Patients With Trauma,” J Innate Immun 11, no. 6 (2019): 506-515.

[176]

S. J. Kang, H. M. Jin, E. J. Won, et al., “Activation, Impaired Tumor Necrosis Factor-α Production, and Deficiency of Circulating Mucosal-Associated Invariant T Cells in Patients With Scrub Typhus,” PLoS Neglected Tropical Diseases 10, no. 7 (2016): e0004832.

[177]

Y. Zhang, J. T. Bailey, E. Xu, et al., “Mucosal-associated Invariant T Cells Restrict Reactive Oxidative Damage and Preserve Meningeal Barrier Integrity and Cognitive Function,” Nature Immunology 23, no. 12 (2022): 1714-1725.

[178]

M. Walkenhorst, J. K. Sonner, N. Meurs, et al., “Protective Effect of TCR-mediated MAIT Cell Activation During Experimental Autoimmune Encephalomyelitis,” Nature Communications 15, no. 1 (2024): 9287.

[179]

D. De Federicis, C. Bassani, R. R. Chiarelli, et al., “Circulating MAIT Cells in Multiple Sclerosis and Amyotrophic Lateral Sclerosis,” Frontiers in Immunology 15 (2024): 1436717.

[180]

A. Willing, J. Jäger, S. Reinhardt, N. Kursawe, and M. A. Friese, “Production of IL-17 by MAIT Cells Is Increased in Multiple Sclerosis and Is Associated With IL-7 Receptor Expression,” Journal of Immunology (Baltimore, Md: 1950) 200, no. 3 (2018): 974-982.

[181]

H. Koppejan, D. Jansen, M. Hameetman, R. Thomas, R. E. M. Toes, and F. A. van Gaalen, “Altered Composition and Phenotype of Mucosal-associated Invariant T Cells in Early Untreated Rheumatoid Arthritis,” Arthritis Research & Therapy 21, no. 1 (2019): 3.

[182]

M. Kyriakidi, E. K. Vetsika, G. E. Fragoulis, M. Tektonidou, and P. P. Sfikakis, “Identification and Clinical Correlation of Circulating MAIT, Γδ T, ILC3, and Pre-Inflammatory Mesenchymal Cells in Patients With Rheumatoid Arthritis and Spondyloarthritis,” Mediterranean Journal of Rheumatology 35, no. 2 (2024): 312-315.

[183]

H. J. T. Lien, T. T. Pedersen, B. Jakobsen, et al., “Single-cell Resolution of Longitudinal Blood Transcriptome Profiles in Rheumatoid Arthritis, Systemic Lupus Erythematosus and Healthy Control Pregnancies,” Annals of the Rheumatic Diseases 83, no. 3 (2024): 300-311.

[184]

K. Abacar, T. Macleod, H. Direskeneli, and D. McGonagle, “How Underappreciated Autoinflammatory (innate immunity) Mechanisms Dominate Disparate Autoimmune Disorders,” Frontiers in Immunology 15 (2024): 1439371.

[185]

Z. Wu, X. Chen, F. Han, and E. Leeansyah, “MAIT Cell Homing in Intestinal Homeostasis and Inflammation,” Science Advances 11, no. 6 (2025): eadu4172.

[186]

V. Mitsialis, S. Wall, P. Liu, et al., “Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn's Disease,” Gastroenterology 159, no. 2 (2020): 591-608. e10.

[187]

M. Yuksel, F. Nazmi, D. Wardat, et al., “Standard Immunosuppressive Treatment Reduces Regulatory B Cells in Children With Autoimmune Liver Disease,” Frontiers in Immunology 13 (2022): 1053216.

[188]

A. Renand, S. Habes, J. F. Mosnier, et al., “Immune Alterations in Patients with Type 1 Autoimmune Hepatitis Persist Upon Standard Immunosuppressive Treatment,” Hepatology Communications 2, no. 8 (2018): 968-981.

[189]

Y. N. Cho, S. J. Kee, T. J. Kim, et al., “Mucosal-associated Invariant T Cell Deficiency in Systemic Lupus Erythematosus,” Journal of Immunology (Baltimore, Md: 1950) 193, no. 8 (2014): 3891-3901.

[190]

E. Litvinova, C. Bounaix, G. Hanouna, et al., “MAIT Cells Altered Phenotype and Cytotoxicity in lupus Patients Are Linked to Renal Disease Severity and Outcome,” Frontiers in Immunology 14 (2023): 1205405.

[191]

E. Gülden, N. Palm, and K. C. Herold, “MAIT Cells: A Link Between Gut Integrity and Type 1 Diabetes,” Cell Metabolism 26, no. 6 (2017): 813-815.

[192]

M. Shimamura, Y. Y. Huang, H. Goji, S. Endo, R. Migishima, and M. Yokoyama, “Regulation of Immunological Disorders by Invariant Vα19-Jα33 TCR-bearing Cells,” Immunobiology 216, no. 3 (2011): 374-378.

[193]

M. Sadeghi, S. Dehnavi, A. M. Amiri, A. E. Butler, and A. Sahebkar, “Mucosal-associated Invariant T Cells in Diabetes Mellitus: Protective or Destructive?,” International Immunopharmacology 161 (2025): 115069.

[194]

K. E. de Visser and J. A. Joyce, “The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth,” Cancer Cell 41, no. 3 (2023): 374-403.

[195]

Y. R. Li, K. Zhou, M. Wilson, et al., “Mucosal-associated Invariant T Cells for Cancer Immunotherapy,” Molecular Therapy: the Journal of the American Society of Gene Therapy 31, no. 3 (2023): 631-646.

[196]

W. C. Huang, Y. C. Hsiao, C. C. Wu, Y. T. Hsu, and C. L. Chang, “Less Circulating Mucosal-associated Invariant T Cells in Patients With Cervical Cancer,” Taiwanese Journal of Obstetrics & Gynecology 58, no. 1 (2019): 117-121.

[197]

P. Sundström, L. Szeponik, F. Ahlmanner, et al., “Tumor-infiltrating Mucosal-associated Invariant T (MAIT) Cells Retain Expression of Cytotoxic Effector Molecules,” Oncotarget 10, no. 29 (2019): 2810-2823.

[198]

C. Shao, C. Zhu, Y. Zhu, et al., “Decrease of Peripheral Blood Mucosal-associated Invariant T Cells and Impaired Serum Granzyme-B Production in Patients With Gastric Cancer,” Cell & Bioscience 11, no. 1 (2021): 12.

[199]

W. Rodin, P. Sundström, F. Ahlmanner, et al., “Exhaustion in Tumor-infiltrating Mucosal-Associated Invariant T (MAIT) Cells From Colon Cancer Patients,” Cancer Immunology, Immunotherapy: CII 70, no. 12 (2021): 3461-3475.

[200]

M. Duan, S. Goswami, J. Y. Shi, et al., “Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcome in Hepatocellular Carcinoma,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 25, no. 11 (2019): 3304-3316.

[201]

J. Yan, S. Allen, E. McDonald, et al., “MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1,” Cancer Discovery 10, no. 1 (2020): 124-141.

[202]

Q. Zhang, P. Li, W. Zhou, S. Fang, and J. Wang, “Participation of Increased Circulating MAIT Cells in Lung Cancer: A Pilot Study,” Journal of Cancer 13, no. 5 (2022): 1623-1629.

[203]

C. Zheng, L. Zheng, J. K. Yoo, et al., “Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing,” Cell 169, no. 7 (2017): 1342-1356. e16.

[204]

C. R. Shaler, M. E. Tun-Abraham, A. I. Skaro, et al., “Mucosa-associated Invariant T Cells Infiltrate Hepatic Metastases in Patients With Colorectal Carcinoma but Are Rendered Dysfunctional Within and Adjacent to Tumor Microenvironment,” Cancer Immunology, Immunotherapy 66, no. 12 (2017): 1563-1575.

[205]

C. L. Zimmer, I. Filipovic, M. Cornillet, et al., “Mucosal-associated Invariant T-cell Tumor Infiltration Predicts Long-term Survival in Cholangiocarcinoma,” Hepatology 75, no. 5 (2022): 1154-1168.

[206]

L. Ling, Y. Lin, W. Zheng, et al., “Circulating and Tumor-infiltrating Mucosal Associated Invariant T (MAIT) Cells in Colorectal Cancer Patients,” Scientific Reports 6, no. 1 (2016): 20358.

[207]

P. Sundström, F. Ahlmanner, P. Akéus, et al., “Human Mucosa-Associated Invariant T Cells Accumulate in Colon Adenocarcinomas but Produce Reduced Amounts of IFN-γ,” Journal of Immunology (Baltimore, Md: 1950) 195, no. 7 (2015): 3472-3481.

[208]

L. Zabijak, C. Attencourt, C. Guignant, et al., “Increased Tumor Infiltration by Mucosal-associated Invariant T Cells Correlates With Poor Survival in Colorectal Cancer Patients,” Cancer Immunology, Immunotherapy 64, no. 12 (2015): 1601-1608.

[209]

A. M. Melo, A. M. O'Brien, and J. J. Phelan, “Mucosal-Associated Invariant T Cells Display Diminished Effector Capacity in Oesophageal Adenocarcinoma,” Frontiers in Immunology 10 (2019): 1580.

[210]

J. Qu, B. Wu, L. Chen, et al., “CXCR6-positive Circulating Mucosal-associated Invariant T Cells Can Identify Patients With Non-small Cell Lung Cancer Responding to anti-PD-1 Immunotherapy,” Journal of Experimental & Clinical Cancer Research: CR 43, no. 1 (2024): 134.

[211]

T. Comont, M. L. Nicolau-Travers, S. Bertoli, C. Recher, F. Vergez, and E. Treiner, “MAIT Cells Numbers and Frequencies in Patients With Acute Myeloid Leukemia at Diagnosis: Association With Cytogenetic Profile and Gene Mutations,” Cancer Immunology, Immunotherapy: CII 71, no. 4 (2022): 875-887.

[212]

W. Wu, X. Liang, H. Li, et al., “Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing,” Journal of Leukocyte Biology 112, no. 4 (2022): 745-758.

[213]

M. Favreau, K. Venken, S. Faict, et al., “Both Mucosal-associated Invariant and Natural Killer T-cell Deficiency in Multiple Myeloma Can be Countered by PD-1 Inhibition,” Haematologica 102, no. 7 (2017): e266-e270.

[214]

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer Statistics, 2023,” CA: A Cancer Journal for Clinicians 73, no. 1 (2023): 17-48.

[215]

I. Afanas'ev, “New Nucleophilic Mechanisms of Ros-dependent Epigenetic Modifications: Comparison of Aging and Cancer,” Aging and Disease 5, no. 1 (2014): 52-62.

[216]

Y. Yin, A. Zeng, A. Abuduwayiti, et al., “MAIT Cells Are Associated With Responsiveness to Neoadjuvant Immunotherapy in COPD-associated NSCLC,” Cancer Medicine 13, no. 6 (2024): e7112.

[217]

L. Shi, J. Lu, D. Zhong, et al., “Clinicopathological and Predictive Value of MAIT Cells in Non-small Cell Lung Cancer for Immunotherapy,” Journal for Immunotherapy of Cancer 11, no. 1 (2023): e005902.

[218]

L. Ouyang, M. Wu, J. Zhao, et al., “Mucosal-associated Invariant T Cells Reduce and Display Tissue-resident Phenotype With Elevated IL-17 Producing Capacity in Non-small Cell Lung Cancer,” International Immunopharmacology 113, no. Pt B (2022): 109461.

[219]

P. Sundström, N. Dutta, W. Rodin, A. Hallqvist, S. Raghavan, and M. Quiding Järbrink, “Immune Checkpoint Blockade Improves the Activation and Function of Circulating Mucosal-associated Invariant T (MAIT) Cells in Patients With Non-small Cell Lung Cancer,” Oncoimmunology 13, no. 1 (2024): 2312631.

[220]

J. W. Vardiman, J. Thiele, D. A. Arber, et al., “The 2008 Revision of the World Health Organization (WHO) Classification of Myeloid Neoplasms and Acute Leukemia: Rationale and Important Changes,” Blood 114, no. 5 (2009): 937-951.

[221]

N. Bozorgmehr, M. Hnatiuk, A. C. Peters, and S. Elahi, “Depletion of Polyfunctional CD26(high)CD8(+) T Cells Repertoire in Chronic Lymphocytic Leukemia,” Experimental Hematology & Oncology 12, no. 1 (2023): 13.

[222]

P. K. Sharma, E. B. Wong, R. J. Napier, et al., “High Expression of CD26 Accurately Identifies human Bacteria-reactive MR1-restricted MAIT Cells,” Immunology 145, no. 3 (2015): 443-453.

[223]

E. M. Jarvis, S. Collings, A. Authier-Hall, et al., “Mucosal-Associated Invariant T (MAIT) Cell Dysfunction and PD-1 Expression in Prostate Cancer: Implications for Immunotherapy,” Frontiers in Immunology 12 (2021): 748741.

[224]

A. Bhattacharyya, L. A. Hanafi, A. Sheih, et al., “Graft-Derived Reconstitution of Mucosal-Associated Invariant T Cells After Allogeneic Hematopoietic Cell Transplantation,” Biology of Blood and Marrow Transplantation 24, no. 2 (2018): 242-251.

[225]

H. Andrlová, O. Miltiadous, A. I. Kousa, et al., “MAIT and Vδ2 Unconventional T Cells Are Supported by a Diverse Intestinal Microbiome and Correlate With Favorable Patient Outcome After Allogeneic HCT,” Science Translational Medicine 14, no. 646 (2022): eabj2829.

[226]

M. G. Gao, Y. Hong, X. Y. Zhao, et al., “The Potential Roles of Mucosa-Associated Invariant T Cells in the Pathogenesis of Gut Graft-Versus-Host Disease after Hematopoietic Stem Cell Transplantation,” Frontiers in Immunology 12 (2021): 720354.

[227]

J. Novak, J. Dobrovolny, J. Brozova, L. Novakova, and T. Kozak, “Recovery of Mucosal-associated Invariant T Cells After Myeloablative Chemotherapy and Autologous Peripheral Blood Stem Cell Transplantation,” Clinical and Experimental Medicine 16, no. 4 (2016): 529-537.

[228]

K. Kawaguchi, K. Umeda, E. Hiejima, et al., “Influence of Post-transplant Mucosal-associated Invariant T Cell Recovery on the Development of Acute Graft-versus-host Disease in Allogeneic Bone Marrow Transplantation,” International Journal of Hematology 108, no. 1 (2018): 66-75.

[229]

J. M. Llovet, R. K. Kelley, A. Villanueva, et al., “Hepatocellular Carcinoma,” Nature Reviews Disease Primers 7, no. 1 (2021): 6.

[230]

J. M. Llovet, F. Castet, M. Heikenwalder, et al., “Immunotherapies for Hepatocellular Carcinoma,” Nature Reviews Clinical Oncology 19, no. 3 (2022): 151-172.

[231]

L. Lu, J. Jiang, M. Zhan, et al., “Targeting Tumor-Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies,” Hepatology (Baltimore, Md) 73, no. 2 (2021): 821-832.

[232]

T. Yao, P. Shooshtari, and S. M. M. Haeryfar, “Leveraging Public Single-Cell and Bulk Transcriptomic Datasets to Delineate MAIT Cell Roles and Phenotypic Characteristics in Human Malignancies,” Frontiers in Immunology 11 (2020): 1691.

[233]

W. Huang, D. Ye, W. He, X. He, X. Shi, and Y. Gao, “Activated but Impaired IFN-γ Production of Mucosal-associated Invariant T Cells in Patients With Hepatocellular Carcinoma,” Journal for Immunotherapy of Cancer 9, no. 11 (2021): e003685.

[234]

H. Wang, L. Kjer-Nielsen, M. Shi, et al., “IL-23 Costimulates Antigen-specific MAIT Cell Activation and Enables Vaccination Against Bacterial Infection,” Science Immunology 4 (2019): eaaw0402.

[235]

B. Ruf, M. Bruhns, S. Babaei, et al., “Tumor-associated Macrophages Trigger MAIT Cell Dysfunction at the HCC Invasive Margin,” Cell 186, no. 17 (2023): 3686-3705. e32.

[236]

S. Fu, M. Liu, C. Zhu, et al., “Regulatory Mucosa-associated Invariant T Cells Controlled by β1 Adrenergic Receptor Signaling Contribute to Hepatocellular Carcinoma Progression,” Hepatology (Baltimore, Md) 78, no. 1 (2023): 72-87.

[237]

S. Rizvi, S. A. Khan, C. L. Hallemeier, R. K. Kelley, and G. J. Gores, “Cholangiocarcinoma—evolving Concepts and Therapeutic Strategies,” Nature Reviews Clinical Oncology 15, no. 2 (2018): 95-111.

[238]

P. J. Brindley, M. Bachini, S. I. Ilyas, et al., “Cholangiocarcinoma,” Nature Reviews Disease Primers 7, no. 1 (2021): 65.

[239]

H. Sung, J. Ferlay, R. L. Siegel, et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71, no. 3 (2021): 209-249.

[240]

M. C. S. Wong, J. Huang, V. Lok, et al., “Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location,” Clinical Gastroenterology and Hepatology 19, no. 5 (2021): 955-966. e61.

[241]

M. S. Islam, V. Gopalan, A. K. Lam, and M. J. A. Shiddiky, “Current Advances in Detecting Genetic and Epigenetic Biomarkers of Colorectal Cancer,” Biosensors & Bioelectronics 239 (2023): 115611.

[242]

M. Schmitt and F. R. Greten, “The Inflammatory Pathogenesis of Colorectal Cancer,” Nature Reviews Immunology 21, no. 10 (2021): 653-667.

[243]

I. J. ME, R. Sanz-Pamplona, F. Hermitte, and N. de Miranda, “Colorectal Cancer: A Paradigmatic Model for Cancer Immunology and Immunotherapy,” Molecular Aspects of Medicine 69 (2019): 123-129.

[244]

T. A. Wynn, “IL-13 Effector Functions,” Annual Review of Immunology 21 (2003): 425-456.

[245]

M. Jaén, Á. Martín-Regalado, R. A. Bartolomé, J. Robles, and J. I. Casal, “Interleukin 13 Receptor Alpha 2 (IL13Rα2): Expression, Signaling Pathways and Therapeutic Applications in Cancer,” Biochimica Et Biophysica Acta Reviews on Cancer 1877, no. 5 (2022): 188802.

[246]

J. Kelly, Y. Minoda, T. Meredith, et al., “Chronically Stimulated human MAIT Cells Are Unexpectedly Potent IL-13 Producers,” Immunology and Cell Biology 97, no. 8 (2019): 689-699.

[247]

A. Tanaka and S. Sakaguchi, “Regulatory T Cells in Cancer Immunotherapy,” Cell Research 27, no. 1 (2017): 109-118.

[248]

Y. Liu, Q. Zhang, B. Xing, et al., “Immune Phenotypic Linkage Between Colorectal Cancer and Liver Metastasis,” Cancer Cell 40, no. 4 (2022): 424-437. e5.

[249]

C. K. Vorkas, C. Krishna, K. Li, et al., “Single-Cell Transcriptional Profiling Reveals Signatures of Helper, Effector, and Regulatory MAIT Cells During Homeostasis and Activation,” Journal of Immunology (Baltimore, Md: 1950) 208, no. 5 (2022): 1042-1056.

[250]

G. Churlaud, F. Pitoiset, F. Jebbawi, et al., “Human and Mouse CD8(+)CD25(+)FOXP3(+) Regulatory T Cells at Steady State and During Interleukin-2 Therapy,” Frontiers in Immunology 6 (2015): 171.

[251]

S. Li, Y. Simoni, E. Becht, et al., “Human Tumor-Infiltrating MAIT Cells Display Hallmarks of Bacterial Antigen Recognition in Colorectal Cancer,” Cell Reports Medicine 1, no. 3 (2020): 100039.

[252]

E. Morgan, I. Soerjomataram, H. Rumgay, et al., “The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020,” Gastroenterology 163, no. 3 (2022): 649-658. e2.

[253]

C. T. Demarest and A. C. Chang, “The Landmark Series: Multimodal Therapy for Esophageal Cancer,” Annals of Surgical Oncology 28, no. 6 (2021): 3375-3382.

[254]

G. Luo, Y. Zhang, P. Guo, L. Wang, Y. Huang, and K. Li, “Global Patterns and Trends in Stomach Cancer Incidence: Age, Period and Birth Cohort Analysis,” International Journal of Cancer 141, no. 7 (2017): 1333-1344.

[255]

R. Wang, S. Song, J. Qin, et al., “Evolution of Immune and Stromal Cell States and Ecotypes During Gastric Adenocarcinoma Progression,” Cancer Cell 41, no. 8 (2023): 1407-1426. e9.

[256]

H. Jiang, D. Yu, P. Yang, et al., “Revealing the Transcriptional Heterogeneity of Organ-specific Metastasis in human Gastric Cancer Using Single-cell RNA Sequencing,” Clinical and Translational Medicine 12, no. 2 (2022): e730.

[257]

C. D'Souza, T. Pediongco, and H. Wang, “Mucosal-Associated Invariant T Cells Augment Immunopathology and Gastritis in Chronic Helicobacter pylori Infection,” Journal of Immunology (Baltimore, Md: 1950) 200, no. 5 (2018): 1901-1916.

[258]

S. Ming, M. Zhang, Z. Liang, et al., “OX40L/OX40 Signal Promotes IL-9 Production by Mucosal MAIT Cells during Helicobacter pylori Infection,” Frontiers in Immunology 12 (2021): 626017.

[259]

S. R. Hingorani, “Epithelial and Stromal co-evolution and Complicity in Pancreatic Cancer,” Nature Reviews Cancer 23, no. 2 (2023): 57-77.

[260]

B. Ren, M. Cui, G. Yang, et al., “Tumor Microenvironment Participates in Metastasis of Pancreatic Cancer,” Molecular Cancer 17, no. 1 (2018): 108.

[261]

E. Kuric, L. Krogvold, K. F. Hanssen, K. Dahl-Jørgensen, O. Skog, and O. Korsgren, “No Evidence for Presence of Mucosal-Associated Invariant T Cells in the Insulitic Lesions in Patients Recently Diagnosed With Type 1 Diabetes,” The American Journal of Pathology 188, no. 8 (2018): 1744-1748.

[262]

A. Lehuen, J. Diana, P. Zaccone, and A. Cooke, “Immune Cell Crosstalk in Type 1 Diabetes,” Nature Reviews Immunology 10, no. 7 (2010): 501-513.

[263]

J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, Pathogenesis and Clinical Interventions in Type 1 Diabetes,” Nature 464, no. 7293 (2010): 1293-1300.

[264]

I. Magalhaes, K. Pingris, C. Poitou, et al., “Mucosal-associated Invariant T Cell Alterations in Obese and Type 2 Diabetic Patients,” The Journal of Clinical Investigation 125, no. 4 (2015): 1752-1762.

[265]

E. Carolan, L. M. Tobin, and B. A. Mangan, “Altered Distribution and Increased IL-17 Production by Mucosal-associated Invariant T Cells in Adult and Childhood Obesity,” Journal of Immunology (Baltimore, Md: 1950) 194, no. 12 (2015): 5775-5780.

[266]

L. Chiossone, P. Y. Dumas, M. Vienne, and E. Vivier, “Natural Killer Cells and Other Innate Lymphoid Cells in Cancer,” Nature Reviews Immunology 18, no. 11 (2018): 671-688.

[267]

N. D. Huntington, J. Cursons, and J. Rautela, “The Cancer-natural Killer Cell Immunity Cycle,” Nature Reviews Cancer 20, no. 8 (2020): 437-454.

[268]

E. V. Petley, H. F. Koay, M. A. Henderson, et al., “MAIT Cells Regulate NK Cell-mediated Tumor Immunity,” Nature Communications 12, no. 1 (2021): 4746.

[269]

L. Cassetta and J. W. Pollard, “A Timeline of Tumour-associated Macrophage Biology,” Nature Reviews Cancer 23, no. 4 (2023): 238-257.

[270]

H. Wang, L. Kjer-Nielsen, M. Shi, et al., “IL-23 Costimulates Antigen-specific MAIT Cell Activation and Enables Vaccination Against Bacterial Infection,” Science Immunology 4, no. 41 (2019): eaaw0402.

[271]

Y. Li, B. Huang, X. Jiang, et al., “Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease through Regulating Macrophage Polarization,” Frontiers in Immunology 9 (2018): 1994.

[272]

M. Mabire, P. Hegde, A. Hammoutene, et al., “MAIT Cell Inhibition Promotes Liver Fibrosis Regression via Macrophage Phenotype Reprogramming,” Nature Communications 14, no. 1 (2023): 1830.

[273]

C. M. Laumont, A. C. Banville, M. Gilardi, D. P. Hollern, and B. H. Nelson, “Tumour-infiltrating B Cells: Immunological Mechanisms, Clinical Impact and Therapeutic Opportunities,” Nature Reviews Cancer 22, no. 7 (2022): 414-430.

[274]

R. Salerno-Goncalves, T. Rezwan, and M. B. Sztein, “B Cells Modulate Mucosal Associated Invariant T Cell Immune Responses,” Frontiers in Immunology 4 (2014): 511.

[275]

R. Lamichhane and J. E. Ussher, “Expression and Trafficking of MR1,” Immunology 151, no. 3 (2017): 270-279.

[276]

G. Murayama, A. Chiba, H. Suzuki, et al., “A Critical Role for Mucosal-Associated Invariant T Cells as Regulators and Therapeutic Targets in Systemic Lupus Erythematosus,” Frontiers in immunology 10 (2019): 2681.

[277]

M. S. Bennett, S. Trivedi, A. S. Iyer, J. S. Hale, and D. T. Leung, “Human Mucosal-associated Invariant T (MAIT) Cells Possess Capacity for B Cell Help,” Journal of Leukocyte Biology 102, no. 5 (2017): 1261-1269.

[278]

S. J. Pedersen and W. P. Maksymowych, “The Pathogenesis of Ankylosing Spondylitis: An Update,” Current Rheumatology Reports 21, no. 10 (2019): 58.

[279]

I. Sanz and F. E. Lee, “B Cells as Therapeutic Targets in SLE,” Nature Reviews Rheumatology 6, no. 6 (2010): 326-337.

[280]

B. R. Blazar, W. J. Murphy, and M. Abedi, “Advances in Graft-versus-host Disease Biology and Therapy,” Nature Reviews Immunology 12, no. 6 (2012): 443-458.

[281]

Z. G. Fridlender, J. Sun, S. Kim, et al., “Polarization of Tumor-associated Neutrophil Phenotype by TGF-beta: “N1” versus “N2” TAN,” Cancer Cell 16, no. 3 (2009): 183-194.

[282]

M. S. Davey, M. P. Morgan, A. R. Liuzzi, et al., “Microbe-specific Unconventional T Cells Induce human Neutrophil Differentiation Into Antigen Cross-presenting Cells,” Journal of Immunology (Baltimore, Md: 1950) 193, no. 7 (2014): 3704-3716.

[283]

M. Schneider, R. F. Hannaway, R. Lamichhane, et al., “Neutrophils Suppress Mucosal-associated Invariant T Cells in Humans,” European Journal of Immunology 50, no. 5 (2020): 643-655.

[284]

M. E. Zinser, A. J. Highton, A. Kurioka, et al., “Human MAIT Cells Show Metabolic Quiescence With Rapid Glucose-dependent Upregulation of Granzyme B Upon Stimulation,” Immunology and Cell Biology 96, no. 6 (2018): 666-674.

[285]

A. O'Brien, R. M. Loftus, M. M. Pisarska, et al., “Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses,” Journal of Immunology (Baltimore, Md: 1950) 202, no. 12 (2019): 3404-3411.

[286]

E. Treiner, “Mucosal-associated Invariant T Cells in Inflammatory Bowel Diseases: Bystanders, Defenders, or Offenders?,” Frontiers in Immunology 6 (2015): 27.

[287]

C. R. Shaler, M. E. Tun-Abraham, A. I. Skaro, et al., “Mucosa-associated Invariant T Cells Infiltrate Hepatic Metastases in Patients With Colorectal Carcinoma but Are Rendered Dysfunctional Within and Adjacent to Tumor Microenvironment,” Cancer Immunology, Immunotherapy: CII 66, no. 12 (2017): 1563-1575.

[288]

A. N. Keller, S. B. Eckle, W. Xu, et al., “Drugs and Drug-Like Molecules Can Modulate the Function of Mucosal-associated Invariant T Cells,” Nature Immunology 18, no. 4 (2017): 402-411.

[289]

L. Zabijak, C. Attencourt, C. Guignant, et al., “Increased Tumor Infiltration by Mucosal-associated Invariant T Cells Correlates With Poor Survival in Colorectal Cancer Patients,” Cancer Immunology, Immunotherapy: CII 64, no. 12 (2015): 1601-1608.

[290]

M. Lepore, A. Kalinichenko, S. Calogero, et al., “Functionally Diverse human T Cells Recognize Non-microbial Antigens Presented by MR1,” Elife 6 (2017): e24476.

[291]

H. J. Gober, M. Kistowska, L. Angman, P. Jenö, L. Mori, and G. De Libero, “Human T Cell Receptor Gammadelta Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells,” The Journal of Experimental Medicine 197, no. 2 (2003): 163-168.

[292]

H. F. Koay, N. A. Gherardin, C. Xu, et al., “Diverse MR1-restricted T Cells in Mice and Humans,” Nature Communications 10, no. 1 (2019): 2243.

[293]

R. Lamichhane, M. Schneider, S. M. de la Harpe, et al., “TCR- or Cytokine-Activated CD8(+) Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses,” Cell Reports 28, no. 12 (2019): 3061-3076. e5.

[294]

L. C. Garner, A. Amini, M. E. B. FitzPatrick, et al., “Single-cell Analysis of human MAIT Cell Transcriptional, Functional and Clonal Diversity,” Nature Immunology 24, no. 9 (2023): 1565-1578.

[295]

L. Camard, T. Stephen, H. Yahia-Cherbal, et al., “IL-23 Tunes Inflammatory Functions of human Mucosal-associated Invariant T Cells,” Iscience 28, no. 2 (2025): 111898.

[296]

C. Boulouis, E. Mouchtaridi, T. R. Müller, et al., “Human MAIT Cell Response Profiles Biased Toward IL-17 or IL-10 Are Distinct Effector States Directed by the Cytokine Milieu,” Proceedings of the National Academy of Sciences of the United States of America 122, no. 6 (2025): e2414230122.

[297]

W. J. Chua, S. M. Truscott, C. S. Eickhoff, A. Blazevic, D. F. Hoft, and T. H. Hansen, “Polyclonal Mucosa-associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection,” Infection and Immunity 80, no. 9 (2012): 3256-3267.

[298]

S. Suliman, M. Murphy, M. Musvosvi, et al., “MR1-Independent Activation of Human Mucosal-Associated Invariant T Cells by Mycobacteria,” Journal of Immunology (Baltimore, Md: 1950) 203, no. 11 (2019): 2917-2927.

[299]

A. Kurioka, B. van Wilgenburg, R. R. Javan, et al., “Diverse Streptococcus pneumoniae Strains Drive a Mucosal-Associated Invariant T-Cell Response through Major Histocompatibility Complex Class I-Related Molecule-Dependent and Cytokine-Driven Pathways,” The Journal of Infectious Diseases 217, no. 6 (2018): 988-999.

[300]

R. Lamichhane, H. Galvin, R. F. Hannaway, et al., “Type I Interferons Are Important co-stimulatory Signals During T Cell Receptor Mediated human MAIT Cell Activation,” European Journal of Immunology 50, no. 2 (2020): 178-191.

[301]

J. C. López-Rodríguez, S. J. Hancock, K. Li, et al., “Type I Interferons Drive MAIT Cell Functions Against Bacterial Pneumonia,” The Journal of Experimental Medicine 220, no. 10 (2023): e20230037.

[302]

A. Sattler, C. Dang-Heine, P. Reinke, and N. Babel, “IL-15 Dependent Induction of IL-18 Secretion as a Feedback Mechanism Controlling human MAIT-cell Effector Functions,” European Journal of Immunology 45, no. 8 (2015): 2286-2298.

[303]

H. Tao, Y. Pan, S. Chu, et al., “Differential Controls of MAIT Cell Effector Polarization by mTORC1/mTORC2 via Integrating Cytokine and Costimulatory Signals,” Nature Communications 12, no. 1 (2021): 2029.

[304]

F. Han, M. Y. Gulam, Y. Zheng, et al., “IL7RA single Nucleotide Polymorphisms Are Associated With the Size and Function of the MAIT Cell Population in Treated HIV-1 Infection,” Frontiers in Immunology 13 (2022): 985385.

[305]

Q. Yang, Y. Wen, F. Qi, et al., “Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients With Severe COVID-19,” Journal of Immunology (Baltimore, Md: 1950) 207, no. 7 (2021): 1848-1856.

[306]

K. Haga, A. Chiba, T. Shibuya, et al., “MAIT Cells Are Activated and Accumulated in the Inflamed Mucosa of Ulcerative Colitis,” Journal of Gastroenterology and Hepatology 31, no. 5 (2016): 965-972.

[307]

E. Treiner, L. Duban, S. Bahram, et al., “Selection of Evolutionarily Conserved Mucosal-associated Invariant T Cells by MR1,” Nature 422, no. 6928 (2003): 164-169.

[308]

E. Martin, E. Treiner, L. Duban, et al., “Stepwise Development of MAIT Cells in Mouse and human,” PLoS Biology 7, no. 3 (2009): e54.

[309]

A. Kurioka, A. S. Jahun, R. F. Hannaway, et al., “Shared and Distinct Phenotypes and Functions of Human CD161++ Vα7.2+ T Cell Subsets,” Frontiers in Immunology 8 (2017): 1031.

[310]

R. Priya and R. R. Brutkiewicz, “MR1 Tetramer-Based Artificial APCs Expand MAIT Cells From Human Peripheral Blood That Effectively Kill Glioblastoma Cells,” ImmunoHorizons 5, no. 6 (2021): 500-511.

[311]

T. Parrot, K. Healy, C. Boulouis, et al., “Expansion of Donor-unrestricted MAIT Cells With Enhanced Cytolytic Function Suitable for TCR Redirection,” JCI Insight 6, no. 5 (2021): e140074.

[312]

Y. R. Li, Y. Zhou, Y. J. Kim, et al., “Development of Allogeneic HSC-engineered iNKT Cells for off-the-shelf Cancer Immunotherapy,” Cell Reports Medicine 2, no. 11 (2021): 100449.

[313]

Y. R. Li, Z. S. Dunn, Y. Zhou, D. Lee, and L. Yang, “Development of Stem Cell-Derived Immune Cells for off-the-Shelf Cancer Immunotherapies,” Cells 10, no. 12 (2021): 3497.

[314]

A. Bohineust, M. Tourret, L. Derivry, and S. Caillat-Zucman, “Mucosal-associated Invariant T (MAIT) Cells, a New Source of Universal Immune Cells for Chimeric Antigen Receptor (CAR)-cell Therapy,” Bulletin Du Cancer 108, no. 10 (2021): S92-S95.

[315]

H. Murthy, M. Iqbal, J. C. Chavez, and M. A. Kharfan-Dabaja, “Cytokine Release Syndrome: Current Perspectives,” ImmunoTargets and Therapy 8 (2019): 43-52.

[316]

L. Ma, T. Dichwalkar, J. Y. H. Chang, et al., “Enhanced CAR-T Cell Activity Against Solid Tumors by Vaccine Boosting Through the Chimeric Receptor,” Science (New York, NY) 365, no. 6449 (2019): 162-168.

[317]

Y. Zhou, M. Li, K. Zhou, et al., “Engineering Induced Pluripotent Stem Cells for Cancer Immunotherapy,” Cancers 14, no. 9 (2022): 2266.

[318]

C. Tastan, E. Karhan, W. Zhou, et al., “Tuning of human MAIT Cell Activation by Commensal Bacteria Species and MR1-dependent T-cell Presentation,” Mucosal Immunology 11, no. 6 (2018): 1591-1605.

[319]

Y. Yasutomi, A. Chiba, K. Haga, et al., “Activated Mucosal-associated Invariant T Cells Have a Pathogenic Role in a Murine Model of Inflammatory Bowel Disease,” Cellular and Molecular Gastroenterology and Hepatology 13, no. 1 (2022): 81-93.

[320]

A. M. Globig, A. V. Hipp, P. Otto-Mora, et al., “High-dimensional Profiling Reveals Tc17 Cell Enrichment in Active Crohn's Disease and Identifies a Potentially Targetable Signature,” Nature Communications 13, no. 1 (2022): 3688.

[321]

A. Toubal, B. Kiaf, L. Beaudoin, et al., “Mucosal-associated Invariant T Cells Promote Inflammation and Intestinal Dysbiosis Leading to Metabolic Dysfunction During Obesity,” Nature Communications 11, no. 1 (2020): 3755.

[322]

P. Hegde, E. Weiss, V. Paradis, et al., “Mucosal-associated Invariant T Cells Are a Profibrogenic Immune Cell Population in the Liver,” Nature Communications 9, no. 1 (2018): 2146.

[323]

A. Riva, V. Patel, A. Kurioka, et al., “Mucosa-associated Invariant T Cells Link Intestinal Immunity With Antibacterial Immune Defects in Alcoholic Liver Disease,” Gut 67, no. 5 (2018): 918-930.

[324]

T. S. Hinks, X. Zhou, K. J. Staples, et al., “Innate and Adaptive T Cells in Asthmatic Patients: Relationship to Severity and Disease Mechanisms,” The Journal of Allergy and Clinical Immunology 136, no. 2 (2015): 323-333.

[325]

T. S. Hinks, J. C. Wallington, A. P. Williams, R. Djukanović, K. J. Staples, and T. M. Wilkinson, “Steroid-induced Deficiency of Mucosal-associated Invariant T Cells in the Chronic Obstructive Pulmonary Disease Lung. Implications for Nontypeable Haemophilus influenzae Infection,” American Journal of Respiratory and Critical Care Medicine 194, no. 10 (2016): 1208-1218.

[326]

J. L. Simpson, J. Daly, K. J. Baines, et al., “Airway Dysbiosis: Haemophilus influenzae and Tropheryma in Poorly Controlled Asthma,” The European Respiratory Journal 47, no. 3 (2016): 792-800.

[327]

X. Wen, S. Nian, G. Wei, et al., “Changes in the Phenotype and Function of Mucosal-associated Invariant T Cells in Neutrophilic Asthma,” International Immunopharmacology 106 (2022): 108606.

[328]

W. Qiu, N. Kang, Y. Wu, et al., “Mucosal Associated Invariant T Cells Were Activated and Polarized toward Th17 in Chronic Obstructive Pulmonary Disease,” Frontiers in Immunology 12 (2021): 640455.

[329]

T. Pincikova, T. Parrot, L. Hjelte, et al., “MAIT Cell Counts Are Associated With the Risk of Hospitalization in COPD,” Respiratory Research 23, no. 1 (2022): 127.

[330]

R. P. Dickson, J. R. Erb-Downward, F. J. Martinez, and G. B. Huffnagle, “The Microbiome and the Respiratory Tract,” Annual Review of Physiology 78 (2016): 481-504.

[331]

A. Khlaiphuengsin, N. Chuaypen, P. Sodsai, et al., “Successful Direct-acting Antiviral Therapy Improves Circulating Mucosal-associated Invariant T Cells in Patients With Chronic HCV Infection,” PLoS ONE 15, no. 12 (2020): e0244112.

[332]

E. Merlini, M. Cerrone, B. van Wilgenburg, et al., “Association between Impaired Vα7.2+CD161++CD8+ (MAIT) and Vα7.2+CD161-CD8+ T-Cell Populations and Gut Dysbiosis in Chronically HIV- and/or HCV-Infected Patients,” Frontiers in Microbiology 10 (2019): 1972.

[333]

T. Konuma, C. Kohara, E. Watanabe, et al., “Reconstitution of Circulating Mucosal-Associated Invariant T Cells After Allogeneic Hematopoietic Cell Transplantation: Its Association With the Riboflavin Synthetic Pathway of Gut Microbiota in Cord Blood Transplant Recipients,” Journal of Immunology (Baltimore, Md: 1950) 204, no. 6 (2020): 1462-1473.

[334]

M. G. Constantinides, V. M. Link, S. Tamoutounour, et al., “MAIT Cells Are Imprinted by the Microbiota in Early Life and Promote Tissue Repair,” Science (New York, NY) 366, no. 6464 (2019): eaax6624.

[335]

S. Sakai, K. D. Kauffman, S. Oh, C. E. Nelson, C. E. Barry, and D. L. Barber, “MAIT Cell-directed Therapy of Mycobacterium Tuberculosis Infection,” Mucosal Immunology 14, no. 1 (2021): 199-208.

[336]

X. Yu, Y. Jin, and W. Zhou, “Rifaximin Modulates the Gut Microbiota to Prevent Hepatic Encephalopathy in Liver Cirrhosis without Impacting the Resistome,” Frontiers in Cellular and Infection Microbiology 11 (2021): 761192.

[337]

T. S. C. Hinks, E. Marchi, M. Jabeen, et al., “Activation and in Vivo Evolution of the MAIT Cell Transcriptome in Mice and Humans Reveals Tissue Repair Functionality,” Cell Reports 28, no. 12 (2019): 3249-3262. e5.

[338]

L. J. Howson, W. Awad, A. von Borstel, et al., “Absence of Mucosal-associated Invariant T Cells in a Person With a Homozygous Point Mutation in MR1,” Science Immunology 5, no. 49 (2020): eabc9492.

[339]

R. J. Dey, B. Dey, M. Harriff, E. T. Canfield, D. M. Lewinsohn, and W. R. Bishai, “Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium Tuberculosis Virulence,” MBio 13, no. 1 (2021): e0386521.

[340]

R. Rashu, M. Ninkov, C. M. Wardell, et al., “Targeting the MR1-MAIT Cell Axis Improves Vaccine Efficacy and Affords Protection Against Viral Pathogens,” PLoS Pathogens 19, no. 6 (2023): e1011485.

[341]

S. Jalali, C. M. Harpur, A. T. Piers, et al., “A High-dimensional Cytometry Atlas of Peripheral Blood Over the human Life Span,” Immunology and Cell Biology 100, no. 10 (2022): 805-821.

[342]

J. E. Ledgerwood, A. D. DeZure, D. A. Stanley, et al., “Chimpanzee Adenovirus Vector Ebola Vaccine,” The New England Journal of Medicine 376, no. 10 (2017): 928-938.

[343]

M. N. Ramasamy, A. M. Minassian, K. J. Ewer, et al., “Safety and Immunogenicity of ChAdOx1 nCoV-19 Vaccine Administered in a Prime-boost Regimen in Young and Old Adults (COV002): A Single-blind, Randomised, Controlled, Phase 2/3 Trial,” Lancet (London, England) 396, no. 10267 (2021): 1979-1993.

[344]

N. M. Provine, A. Amini, L. C. Garner, et al., “MAIT Cell Activation Augments adenovirus Vector Vaccine Immunogenicity,” Science (New York, NY) 371, no. 6528 (2021): 521-526.

[345]

L. J. Howson, G. Napolitani, D. Shepherd, et al., “MAIT Cell Clonal Expansion and TCR Repertoire Shaping in human Volunteers Challenged With Salmonella Paratyphi A,” Nature Communications 9, no. 1 (2018): 253.

[346]

A. N. Bucsan, N. Rout, T. W. Foreman, S. A. Khader, J. Rengarajan, and D. Kaushal, “Mucosal-activated Invariant T Cells Do Not Exhibit Significant Lung Recruitment and Proliferation Profiles in Macaques in Response to Infection With Mycobacterium Tuberculosis CDC1551,” Tuberculosis 116 (2019): S11-S18.

[347]

S. Sakai, N. E. Lora, K. D. Kauffman, et al., “Functional Inactivation of Pulmonary MAIT Cells Following 5-OP-RU Treatment of Non-human Primates,” Mucosal Immunology 14, no. 5 (2021): 1055-1066.

[348]

J. Jiang, B. Yang, H. An, et al., “Mucosal-associated Invariant T Cells From Patients With Tuberculosis Exhibit Impaired Immune Response,” The Journal of Infection 72, no. 3 (2016): 338-352.

[349]

J. Jiang, X. Wang, H. An, et al., “Mucosal-associated Invariant T-cell Function Is Modulated by Programmed Death-1 Signaling in Patients With Active Tuberculosis,” American Journal of Respiratory and Critical Care Medicine 190, no. 3 (2014): 329-339.

[350]

M. Schmaler, A. Colone, J. Spagnuolo, et al., “Modulation of Bacterial Metabolism by the Microenvironment Controls MAIT Cell Stimulation,” Mucosal Immunology 11, no. 4 (2018): 1060-1070.

[351]

M. J. Harriff, C. McMurtrey, C. A. Froyd, et al., “MR1 displays the Microbial Metabolome Driving Selective MR1-restricted T Cell Receptor Usage,” Science Immunology 3, no. 25 (2018): eaao2556.

[352]

Y. S. Chang, S. P. Jalgaonkar, J. D. Middleton, and T. Hai, “Stress-inducible Gene Atf3 in the Noncancer Host Cells Contributes to Chemotherapy-exacerbated Breast Cancer Metastasis,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 34 (2017): E7159-e7168.

[353]

I. Keklikoglou, C. Cianciaruso, E. Güç, et al., “Chemotherapy Elicits Pro-metastatic Extracellular Vesicles in Breast Cancer Models,” Nature Cell Biology 21, no. 2 (2019): 190-202.

[354]

J. B. Mitchem, D. J. Brennan, B. L. Knolhoff, et al., “Targeting Tumor-infiltrating Macrophages Decreases Tumor-initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses,” Cancer Research 73, no. 3 (2013): 1128-1241.

[355]

C. J. Turtle, H. M. Swanson, N. Fujii, E. H. Estey, and S. R. Riddell, “A Distinct Subset of Self-renewing human Memory CD8+ T Cells Survives Cytotoxic Chemotherapy,” Immunity 31, no. 5 (2009): 834-844.

[356]

M. Neuenhahn and D. H. Busch, “The Quest for CD8+ Memory Stem Cells,” Immunity 31, no. 5 (2009): 702-704.

[357]

J. R. Fergusson, J. E. Ussher, A. Kurioka, P. Klenerman, and L. J. Walker, “High MDR-1 Expression by MAIT Cells Confers Resistance to Cytotoxic but Not Immunosuppressive MDR-1 Substrates,” Clinical and Experimental Immunology 194, no. 2 (2018): 180-191.

[358]

L. H. Butterfield and Y. G. Najjar, “Immunotherapy Combination Approaches: Mechanisms, Biomarkers and Clinical Observations,” Nature Reviews Immunology 24, no. 6 (2023): 399-416.

[359]

S. C. Sasson, J. J. Zaunders, K. Nahar, et al., “Mucosal-associated Invariant T (MAIT) Cells Are Activated in the Gastrointestinal Tissue of Patients With Combination ipilimumab and nivolumab Therapy-related Colitis in a Pathology Distinct From Ulcerative Colitis,” Clinical and Experimental Immunology 202, no. 3 (2020): 335-352.

[360]

S. De Biasi, L. Gibellini, D. Lo Tartaro, et al., “Circulating Mucosal-associated Invariant T Cells Identify Patients Responding to anti-PD-1 Therapy,” Nature Communications 12, no. 1 (2021): 1669.

[361]

K. E. Yost, A. T. Satpathy, D. K. Wells, et al., “Clonal Replacement of Tumor-specific T Cells Following PD-1 Blockade,” Nature Medicine 25, no. 8 (2019): 1251-1259.

[362]

L. F. Mager, R. Burkhard, N. Pett, et al., “Microbiome-derived Inosine Modulates Response to Checkpoint Inhibitor Immunotherapy,” Science 369, no. 6510 (2020): 1481-1489.

[363]

R. C. Simpson, E. R. Shanahan, R. A. Scolyer, and G. V. Long, “Towards Modulating the Gut Microbiota to Enhance the Efficacy of Immune-checkpoint Inhibitors,” Nature Reviews Clinical Oncology 20, no. 10 (2023): 697-715.

[364]

A. O. Brien, N. Kedia-Mehta, L. Tobin, et al., “Targeting Mitochondrial Dysfunction in MAIT Cells Limits IL-17 Production in Obesity,” Cellular & Molecular Immunology 17, no. 11 (2020): 1193-1195.

[365]

N. Kedia-Mehta, M. M. Pisarska, C. Rollings, et al., “The Proliferation of human Mucosal-associated Invariant T Cells Requires a MYC-SLC7A5-glycolysis Metabolic Axis,” Science Signaling 16, no. 781 (2023): eabo2709.

[366]

R. Bergin, D. Kinlen, N. Kedia-Mehta, et al., “Mucosal-associated Invariant T Cells Are Associated With Insulin Resistance in Childhood Obesity, and Disrupt Insulin Signalling via IL-17,” Diabetologia 65, no. 6 (2022): 1012-1017.

[367]

S. Chandra, G. Ascui, T. Riffelmacher, et al., “Transcriptomes and Metabolism Define Mouse and human MAIT Cell Populations,” Science Immunology 8, no. 89 (2023): eabn8531.

[368]

T. W. Mak, M. Grusdat, G. S. Duncan, et al., “Glutathione Primes T Cell Metabolism for Inflammation,” Immunity 46, no. 4 (2017): 675-689.

[369]

N. A. Gherardin, J. McCluskey, J. Rossjohn, and D. I. Godfrey, “The Diverse Family of MR1-Restricted T Cells,” The Journal of Immunology 201, no. 10 (2018): 2862-2871.

[370]

J. Peng, B.-F. Sun, C.-Y. Chen, et al., “Single-cell RNA-seq Highlights Intra-tumoral Heterogeneity and Malignant Progression in Pancreatic Ductal Adenocarcinoma,” Cell Research 29, no. 9 (2019): 725-738.

[371]

N. Caronni, F. La Terza, and F. M. Vittoria, “IL-1β+ Macrophages Fuel Pathogenic Inflammation in Pancreatic Cancer,” Nature 623, no. 7986 (2023): 415-422.

[372]

S. Kim, G. Leem, J. Choi, et al., “Integrative Analysis of Spatial and Single-cell Transcriptome Data From human Pancreatic Cancer Reveals an Intermediate Cancer Cell Population Associated With Poor Prognosis,” Genome Medicine 16, no. 1 (2024): 20.

[373]

N. G. Steele, E. S. Carpenter, S. B. Kemp, et al., “Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer,” Nature Cancer 1, no. 11 (2020): 1097-1112.

[374]

E. P. Storrs, P. Chati, A. Usmani, et al., “High-dimensional Deconstruction of Pancreatic Cancer Identifies Tumor Microenvironmental and Developmental Stemness Features That Predict Survival,” NPJ Precision Oncology 7, no. 1 (2023): 105.

[375]

G. Werba, D. Weissinger, E. A. Kawaler, et al., “Single-cell RNA Sequencing Reveals the Effects of Chemotherapy on human Pancreatic Adenocarcinoma and Its Tumor Microenvironment,” Nature Communications 14, no. 1 (2023): 797.

[376]

S. Zhang, W. Fang, S. Zhou, et al., “Single Cell Transcriptomic Analyses Implicate an Immunosuppressive Tumor Microenvironment in Pancreatic Cancer Liver Metastasis,” Nature Communications 14, no. 1 (2023): 5123.

[377]

J. Zhang, R. Bajari, D. Andric, et al., “The International Cancer Genome Consortium Data Portal,” Nature Biotechnology 37, no. 4 (2019): 367-369.

[378]

M. J. Goldman, B. Craft, M. Hastie, et al., “Visualizing and Interpreting Cancer Genomics Data via the Xena Platform,” Nature Biotechnology 38, no. 6 (2020): 675-678.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/