Intracerebral Hemorrhage: Advances, Knowledge Gaps, and Future Directions

Tao Liu , Weiwei Jiang , Minzhi Zhang , Shangzhi Xiong , Linan Chen , Xiaoying Chen , Rongcai Jiang

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70436

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70436 DOI: 10.1002/mco2.70436
REVIEW

Intracerebral Hemorrhage: Advances, Knowledge Gaps, and Future Directions

Author information +
History +
PDF

Abstract

Acute spontaneous intracerebral hemorrhage (ICH) remains a severe and challenging cerebrovascular condition, associated with high rates of morbidity and mortality. The pathophysiology of injury following ICH involves mass effect, increased intracranial pressure, hematoma expansion, and toxicity from blood-breakdown products. Over the past decade, substantial progress has been made in risk stratification, therapeutic strategies, and outcome prognostication. Although case-fatality rates have declined with advances in neuroimaging, acute care, and surgical techniques, functional outcomes remain poor, with little improvement. Several trials have investigated the optimal medical and surgical treatments for ICH, but none have shown significant improvements in outcomes or survival. This review aims to provide a comprehensive overview of ICH, including its epidemiology, associated costs, pathophysiological mechanisms, and management approaches. Herein, we explored recent advancements in neuroimaging techniques and their roles in diagnosing ICH and predicting patient outcomes. Additionally, we assessed the impact of prehospital and in-hospital management practices, such as pharmacological and surgical interventions, and discussed the implications of delays before final treatment. By summarizing current research and evidence-based practices, this review aims to highlight established and emerging strategies for improving outcomes for patients with ICH and identify areas for future research and development in the field.

Keywords

intracerebral hemorrhage / management / neural repair and recovery / neuroimaging / pathophysiology

Cite this article

Download citation ▾
Tao Liu, Weiwei Jiang, Minzhi Zhang, Shangzhi Xiong, Linan Chen, Xiaoying Chen, Rongcai Jiang. Intracerebral Hemorrhage: Advances, Knowledge Gaps, and Future Directions. MedComm, 2025, 6(11): e70436 DOI:10.1002/mco2.70436

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

“Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019, ” Lancet Neurology 20, no. 10 (2021): 795-820.

[2]

R. V. Krishnamurthi, V. L. Feigin, M. H. Forouzanfar, et al., “Global and Regional Burden of First-ever Ischaemic and Haemorrhagic Stroke During 1990-2010: Findings From the Global Burden of Disease Study 2010, ” The Lancet Global Health 1, no. 5 (2013): e259-281.

[3]

C. Cordonnier, A. Demchuk, W. Ziai, et al., “Intracerebral Haemorrhage: Current Approaches to Acute Management, ” Lancet 392, no. 10154 (2018): 1257-1268.

[4]

C. Foerch, I. Curdt, B. Yan, et al., “Serum Glial Fibrillary Acidic Protein as a Biomarker for Intracerebral Haemorrhage in Patients With Acute Stroke, ” Journal of Neurology, Neurosurgery, and Psychiatry 77, no. 2 (2006): 181-184.

[5]

C. Foerch, M. Niessner, T. Back, et al., “Diagnostic Accuracy of Plasma Glial Fibrillary Acidic Protein for Differentiating Intracerebral Hemorrhage and Cerebral Ischemia in Patients With Symptoms of Acute Stroke, ” Clinical Chemistry 58, no. 1 (2012): 237-245.

[6]

V. Llombart, T. Garcia-Berrocoso, A. Bustamante, et al., “Plasmatic Retinol-binding Protein 4 and Glial Fibrillary Acidic Protein as Biomarkers to Differentiate Ischemic Stroke and Intracerebral Hemorrhage, ” Journal of Neurochemistry 136, no. 2 (2016): 416-424.

[7]

R. Wada, R. I. Aviv, A. J. Fox, et al., “CT Angiography “Spot Sign” Predicts Hematoma Expansion in Acute Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 38, no. 4 (2007): 1257-1262.

[8]

S. Chilamkurthy, R. Ghosh, S. Tanamala, et al., “Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans: A Retrospective Study, ” Lancet 392, no. 10162 (2018): 2388-2396.

[9]

P. Hu, T. Yan, B. Xiao, et al., “Deep Learning-assisted Detection and Segmentation of Intracranial Hemorrhage in Noncontrast Computed Tomography Scans of Acute Stroke Patients: A Systematic Review and Meta-analysis, ” International Journal of Surgery 110, no. 6 (2024): 3839-3847.

[10]

B. He, Z. Xu, D. Zhou, et al., “Deep Multiscale Convolutional Feature Learning for Intracranial Hemorrhage Classification and Weakly Supervised Localization, ” Heliyon 10, no. 9 (2024): e30270.

[11]

C. S. Anderson, E. Heeley, Y. Huang, et al., “Rapid Blood-pressure Lowering in Patients With Acute Intracerebral Hemorrhage, ” New England Journal of Medicine 368, no. 25 (2013): 2355-2365.

[12]

C. S. Anderson, Y. Huang, J. G. Wang, et al., “Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT): A Randomised Pilot Trial, ” Lancet Neurology 7, no. 5 (2008): 391-399.

[13]

R. Al-Shahi Salman, J. Frantzias, and R. J. Lee, “Absolute Risk and Predictors of the Growth of Acute Spontaneous Intracerebral Haemorrhage: A Systematic Review and Meta-analysis of Individual Patient Data, ” Lancet Neurology 17, no. 10 (2018): 885-894.

[14]

L. Ma, X. Hu, L. Song, et al., “The Third Intensive Care Bundle With Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): An International, Stepped Wedge Cluster Randomised Controlled Trial, ” Lancet 402, no. 10395 (2023): 27-40.

[15]

C. Suarez-Monteagudo, P. Hernandez-Ramirez, L. Alvarez-Gonzalez, et al., “Autologous Bone Marrow Stem Cell Neurotransplantation in Stroke Patients. An Open Study, ” Restorative Neurology and Neuroscience 27, no. 3 (2009): 151-161.

[16]

Z. M. Li, Z. T. Zhang, C. J. Guo, et al., “Autologous Bone Marrow Mononuclear Cell Implantation for Intracerebral Hemorrhage-a Prospective Clinical Observation, ” Clinical Neurology and Neurosurgery 115, no. 1 (2013): 72-76.

[17]

K. S. Tsang, C. P. S. Ng, X. L. Zhu, et al., “Phase I/II Randomized Controlled Trial of Autologous Bone Marrow-derived Mesenchymal Stem Cell Therapy for Chronic Stroke, ” World Journal of Stem Cells 9, no. 8 (2017): 133-143.

[18]

C. W. Tsao, A. W. Aday, Z. I. Almarzooq, et al., “Heart Disease and Stroke Statistics-2023 Update: A Report from the American Heart Association, ” Circulation 147, no. 8 (2023): e93-e621.

[19]

A. T. Bako, A. Pan, T. Potter, et al., “Contemporary Trends in the Nationwide Incidence of Primary Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 53, no. 3 (2022): e70-e74.

[20]

W. J. Tu and L. D. Wang, “China Stroke Surveillance Report 2021, ” Military Medical Research 10, no. 1 (2023): 33.

[21]

J. Magid-Bernstein, R. Girard, S. Polster, et al., “Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions, ” Circulation Research 130, no. 8 (2022): 1204-1229.

[22]

A. Cochrane, C. Chen, J. Stephen, et al., “Antithrombotic Treatment After Stroke due to Intracerebral Haemorrhage, ” Cochrane Database of Systematic Reviews (Online) 1, no. 1 (2023): Cd012144.

[23]

Effects of Antiplatelet Therapy After Stroke due to Intracerebral Haemorrhage (RESTART): A Randomised, Open-label Trial. Lancet 2019, 393(10191): 2613-2623.

[24]

R. V. Krishnamurthi, A. E. Moran, V. L. Feigin, et al., “Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Adults Aged 20-64 Years in 1990-2013: Data From the Global Burden of Disease 2013 Study, ” Neuroepidemiology 45, no. 3 (2015): 190-202.

[25]

R. V. Krishnamurthi, G. deVeber, V. L. Feigin, et al., “Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Children and Youth Aged 0-19 Years: Data From the Global and Regional Burden of Stroke 2013, ” Neuroepidemiology 45, no. 3 (2015): 177-189.

[26]

S. J. Kittner, P. Sekar, M. E. Comeau, et al., “Ethnic and Racial Variation in Intracerebral Hemorrhage Risk Factors and Risk Factor Burden, ” JAMA Network Open 4, no. 8 (2021): e2121921.

[27]

M. Simonetto, K. N. Sheth, W. C. Ziai, et al., “Racial and Ethnic Differences in the Risk of Ischemic Stroke after Nontraumatic Intracerebral Hemorrhage, ” Stroke 54, no. 9 (2023): 2401-2408.

[28]

Y. Bo, Y. Zhu, X. Zhang, et al., “Spatiotemporal Trends of Stroke Burden Attributable to Ambient PM(2.5) in 204 Countries and Territories, 1990-2019: A Global Analysis, ” Neurology 101, no. 7 (2023): e764-e776.

[29]

H. Lu, Z. Tan, Z. Liu, et al., “Spatiotemporal Trends in Stroke Burden and Mortality Attributable to Household Air Pollution From Solid Fuels in 204 Countries and territories From 1990 to 2019, ” Science of the Total Environment 775 (2021): 145839.

[30]

L. Puy, A. R. Parry-Jones, and E. C. Sandset, “Intracerebral Haemorrhage, ” Nature Reviews Disease Primers 9, no. 1 (2023): 14.

[31]

K. N. Sheth, “Spontaneous Intracerebral Hemorrhage, ” New England Journal of Medicine 387, no. 17 (2022): 1589-1596.

[32]

J. V. E. Gerstl, S. E. Blitz, Q. R. Qu, et al., “Global, Regional, and National Economic Consequences of Stroke, ” Stroke 54, no. 9 (2023): 2380-2389.

[33]

S. M. Fernando, D. Qureshi, R. Talarico, et al., “Short- and Long-term Health Care Resource Utilization and Costs Following Intracerebral Hemorrhage, ” Neurology 97, no. 6 (2021): e608-e618.

[34]

T. Brott, J. Broderick, R. Kothari, et al., “Early Hemorrhage Growth in Patients With Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 28, no. 1 (1997): 1-5.

[35]

Y. Sakamoto, M. Koga, H. Yamagami, et al., “Systolic Blood Pressure After Intravenous Antihypertensive Treatment and Clinical Outcomes in Hyperacute Intracerebral Hemorrhage: The Stroke Acute Management With Urgent Risk-factor Assessment and Improvement-intracerebral Hemorrhage Study, ” Stroke; A Journal of Cerebral Circulation 44, no. 7 (2013): 1846-1851.

[36]

K. R. Wagner, F. R. Sharp, T. D. Ardizzone, et al., “Heme and Iron Metabolism: Role in Cerebral Hemorrhage, ” Journal of Cerebral Blood Flow and Metabolism 23, no. 6 (2003): 629-652.

[37]

J. Wu, Y. Hua, R. F. Keep, et al., “Iron and Iron-handling Proteins in the Brain After Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 34, no. 12 (2003): 2964-2969.

[38]

S. M. Sadrzadeh, D. K. Anderson, S. S. Panter, et al., “Hemoglobin Potentiates central Nervous System Damage, ” Journal of Clinical Investigation 79, no. 2 (1987): 662-664.

[39]

X. Wang, T. Mori, T. Sumii, et al., “Hemoglobin-induced Cytotoxicity in Rat Cerebral Cortical Neurons: Caspase Activation and Oxidative Stress, ” Stroke; A Journal of Cerebral Circulation 33, no. 7 (2002): 1882-1888.

[40]

J. M. Gebel, E. C. Jauch, and T. G. Brott, “Natural History of Perihematomal Edema in Patients With Hyperacute Spontaneous Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 33, no. 11 (2002): 2631-2635.

[41]

P. J. Vaughan, C. J. Pike, C. W. Cotman, et al., “Thrombin Receptor Activation Protects Neurons and Astrocytes From Cell Death Produced by Environmental Insults, ” Journal of Neuroscience 15, no. 7 Pt 2 (1995): 5389-5401.

[42]

D. Z. Liu, B. P. Ander, H. Xu, et al., “Blood-brain Barrier Breakdown and Repair by Src After Thrombin-induced Injury, ” Annals of Neurology 67, no. 4 (2010): 526-533.

[43]

F. Striggow, M. Riek, J. Breder, et al., “The Protease Thrombin Is an Endogenous Mediator of Hippocampal Neuroprotection Against Ischemia at Low Concentrations but Causes Degeneration at High Concentrations, ” PNAS 97, no. 5 (2000): 2264-2269.

[44]

X. Lan, X. Han, Q. Li, et al., “Modulators of Microglial Activation and Polarization After Intracerebral Haemorrhage, ” Nature Reviews Neurology 13, no. 7 (2017): 420-433.

[45]

Z. Zhang, Z. Zhang, H. Lu, et al., “Microglial Polarization and Inflammatory Mediators after Intracerebral Hemorrhage, ” Molecular Neurobiology 54, no. 3 (2017): 1874-1886.

[46]

N. N. Haj-Yasein, G. F. Vindedal, M. Eilert-Olsen, et al., “Glial-conditional Deletion of Aquaporin-4 (Aqp4) Reduces Blood-brain Water Uptake and Confers Barrier Function on Perivascular Astrocyte Endfeet, ” PNAS 108, no. 43 (2011): 17815-17820.

[47]

I. Moxon-Emre and L. C. Schlichter, “Neutrophil Depletion Reduces Blood-brain Barrier Breakdown, Axon Injury, and Inflammation After Intracerebral Hemorrhage, ” Journal of Neuropathology and Experimental Neurology 70, no. 3 (2011): 218-235.

[48]

X. Zhao, S. M. Ting, G. Sun, et al., “Beneficial Role of Neutrophils through Function of Lactoferrin after Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 49, no. 5 (2018): 1241-1247.

[49]

C. F. Chang, B. A. Goods, M. H. Askenase, et al., “Divergent Functions of Tissue-Resident and Blood-Derived Macrophages in the Hemorrhagic Brain, ” Stroke; A Journal of Cerebral Circulation 52, no. 5 (2021): 1798-1808.

[50]

M. D. Hammond, R. A. Taylor, M. T. Mullen, et al., “CCR2+ Ly6C(hi) inflammatory Monocyte Recruitment Exacerbates Acute Disability Following Intracerebral Hemorrhage, ” Journal of Neuroscience 34, no. 11 (2014): 3901-3909.

[51]

M. Xue and M. R. Del Bigio, “Comparison of Brain Cell Death and Inflammatory Reaction in Three Models of Intracerebral Hemorrhage in Adult Rats, ” J Stroke Cerebrovasc Dis 12, no. 3 (2003): 152-159.

[52]

M. C. Loftspring, J. McDole, A. Lu, et al., “Intracerebral Hemorrhage Leads to Infiltration of Several Leukocyte Populations With Concomitant Pathophysiological Changes, ” Journal of Cerebral Blood Flow and Metabolism 29, no. 1 (2009): 137-143.

[53]

Z. Li, M. Li, S. X. Shi, et al., “Brain Transforms Natural Killer Cells That Exacerbate Brain Edema After Intracerebral Hemorrhage, ” Journal of Experimental Medicine 217, no. 12 (2020): e20200213.

[54]

Y. Hua, J. Wu, R. F. Keep, et al., “Tumor Necrosis Factor-alpha Increases in the Brain After Intracerebral Hemorrhage and Thrombin Stimulation, ” Neurosurgery 58, no. 3 (2006): 542-550. discussion 542-550.

[55]

Q. Ma, A. Manaenko, N. H. Khatibi, et al., “Vascular Adhesion Protein-1 Inhibition Provides Antiinflammatory Protection After an Intracerebral Hemorrhagic Stroke in Mice, ” Journal of Cerebral Blood Flow and Metabolism 31, no. 3 (2011): 881-893.

[56]

A. I. Qureshi, G. S. Ling, J. Khan, et al., “Quantitative Analysis of Injured, Necrotic, and Apoptotic Cells in a New Experimental Model of Intracerebral Hemorrhage, ” Critical Care Medicine 29, no. 1 (2001): 152-157.

[57]

R. A. Felberg, J. C. Grotta, A. L. Shirzadi, et al., “Cell Death in Experimental Intracerebral Hemorrhage: The “Black Hole” Model of Hemorrhagic Damage, ” Annals of Neurology 51, no. 4 (2002): 517-524.

[58]

X. C. Duan, W. Wang, D. X. Feng, et al., “Roles of Autophagy and Endoplasmic Reticulum Stress in Intracerebral Hemorrhage-induced Secondary Brain Injury in Rats, ” CNS Neuroscience & Therapeutics 23, no. 7 (2017): 554-566.

[59]

H. Li, J. Wu, H. Shen, et al., “Autophagy in Hemorrhagic Stroke: Mechanisms and Clinical Implications, ” Progress in Neurobiology 163-164 (2018): 79-97.

[60]

K. Fu, W. Xu, C. Lenahan, et al., “Autophagy Regulates Inflammation in Intracerebral Hemorrhage: Enemy or Friend?, ” Front Cell Neurosci 16 (2022): 1036313.

[61]

J. N. S. Vargas, M. Hamasaki, T. Kawabata, et al., “The Mechanisms and Roles of Selective Autophagy in Mammals, ” Nature Reviews Molecular Cell Biology 24, no. 3 (2023): 167-185.

[62]

G. Li, Y. Lin, J. Yang, et al., “Intensive Ambulance-Delivered Blood-Pressure Reduction in Hyperacute Stroke, ” New England Journal of Medicine 390, no. 20 (2024): 1862-1872.

[63]

A. I. Qureshi, Y. Y. Palesch, W. G. Barsan, et al., “Intensive Blood-Pressure Lowering in Patients With Acute Cerebral Hemorrhage, ” New England Journal of Medicine 375, no. 11 (2016): 1033-1043.

[64]

Prehospital Transdermal Glyceryl Trinitrate in Patients With Ultra-acute Presumed Stroke (RIGHT-2): An Ambulance-based, Randomised, Sham-controlled, Blinded, Phase 3 Trial. Lancet 2019, 393(10175): 1009-1020.

[65]

S. A. van den Berg, S. M. Uniken Venema, and H. Reinink, “Prehospital Transdermal Glyceryl Trinitrate in Patients With Presumed Acute Stroke (MR ASAP): An Ambulance-based, Multicentre, Randomised, Open-label, Blinded Endpoint, Phase 3 Trial, ” Lancet Neurology 21, no. 11 (2022): 971-981.

[66]

N. Yassi, H. Zhao, L. Churilov, et al., “Tranexamic Acid versus Placebo in Individuals With Intracerebral Haemorrhage Treated Within 2 h of Symptom Onset (STOP-MSU): An International, Double-blind, Randomised, Phase 2 Trial, ” Lancet Neurology 23, no. 6 (2024): 577-587.

[67]

J. L. Saver, S. Starkman, M. Eckstein, et al., “Prehospital Use of Magnesium Sulfate as Neuroprotection in Acute Stroke, ” New England Journal of Medicine 372, no. 6 (2015): 528-536.

[68]

F. Yuan, F. Yang, J. Zhao, et al., “Controlling Hypertension after Severe Cerebrovascular Event (CHASE): A Randomized, Multicenter, Controlled Study, ” Int J Stroke 16, no. 4 (2021): 456-465.

[69]

R. Dong, F. Li, B. Li, et al., “Effects of an Early Intensive Blood Pressure-lowering Strategy Using Remifentanil and Dexmedetomidine in Patients With Spontaneous Intracerebral Hemorrhage: A Multicenter, Prospective, Superiority, Randomized Controlled Trial, ” Anesthesiology 141, no. 1 (2024): 100-115.

[70]

S. A. Mayer, N. C. Brun, K. Begtrup, et al., “Recombinant Activated Factor VII for Acute Intracerebral Hemorrhage, ” New England Journal of Medicine 352, no. 8 (2005): 777-785.

[71]

S. A. Mayer, N. C. Brun, K. Begtrup, et al., “Efficacy and Safety of Recombinant Activated Factor VII for Acute Intracerebral Hemorrhage, ” New England Journal of Medicine 358, no. 20 (2008): 2127-2137.

[72]

M. I. Baharoglu, C. Cordonnier, and R. Al-Shahi Salman, “Platelet Transfusion versus Standard Care After Acute Stroke due to Spontaneous Cerebral Haemorrhage Associated With Antiplatelet Therapy (PATCH): A Randomised, Open-label, Phase 3 Trial, ” Lancet 387, no. 10038 (2016): 2605-2613.

[73]

A. Y. Fouda, A. S. Newsome, S. Spellicy, et al., “Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial, ” Stroke; A Journal of Cerebral Circulation 48, no. 10 (2017): 2885-2887.

[74]

N. Sprigg, K. Flaherty, J. P. Appleton, et al., “Tranexamic Acid for Hyperacute Primary IntraCerebral Haemorrhage (TICH-2): An International Randomised, Placebo-controlled, Phase 3 Superiority Trial, ” Lancet 391, no. 10135 (2018): 2107-2115.

[75]

M. Selim, L. D. Foster, C. S. Moy, et al., “Deferoxamine Mesylate in Patients With Intracerebral Haemorrhage (i-DEF): A Multicentre, Randomised, Placebo-controlled, Double-blind Phase 2 Trial, ” Lancet Neurology 18, no. 5 (2019): 428-438.

[76]

D. J. Gladstone, R. I. Aviv, A. M. Demchuk, et al., “Effect of Recombinant Activated Coagulation Factor VII on Hemorrhage Expansion among Patients with Spot Sign-Positive Acute Intracerebral Hemorrhage: The SPOTLIGHT and STOP-IT Randomized Clinical Trials, ” JAMA Neurology 76, no. 12 (2019): 1493-1501.

[77]

A. Meretoja, N. Yassi, T. Y. Wu, et al., “Tranexamic Acid in Patients With Intracerebral Haemorrhage (STOP-AUST): A Multicentre, Randomised, Placebo-controlled, Phase 2 Trial, ” Lancet Neurology 19, no. 12 (2020): 980-987.

[78]

Safety and Efficacy of Fluoxetine on Functional Recovery After Acute Stroke (EFFECTS): A Randomised, Double-blind, Placebo-controlled Trial. Lancet Neurology 2020, 19(8): 661-669.

[79]

S. Takeuchi, K. Kumagai, T. Toyooka, et al., “Intravenous Hydrogen Therapy with Intracisternal Magnesium Sulfate Infusion in Severe Aneurysmal Subarachnoid Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 52, no. 1 (2021): 20-27.

[80]

J. Zhao, C. Song, D. Li, et al., “Efficacy and Safety of glibenclamide Therapy After Intracerebral Haemorrhage (GATE-ICH): A Multicentre, Prospective, Randomised, Controlled, Open-label, Blinded-endpoint, Phase 2 Clinical Trial, ” EClinicalMedicine 53 (2022): 101666.

[81]

A. A. Polymeris, G. M. Karwacki, B. M. Siepen, et al., “Tranexamic Acid for Intracerebral Hemorrhage in Patients on Non-Vitamin K Antagonist Oral Anticoagulants (TICH-NOAC): A Multicenter, Randomized, Placebo-Controlled, Phase 2 Trial, ” Stroke; A Journal of Cerebral Circulation 54, no. 9 (2023): 2223-2234.

[82]

M. J. R. Desborough, R. Al-Shahi Salman, and S. J. Stanworth, “Desmopressin for Patients With Spontaneous Intracerebral Haemorrhage Taking Antiplatelet Drugs (DASH): A UK-based, Phase 2, Randomised, Placebo-controlled, Multicentre Feasibility Trial, ” Lancet Neurology 22, no. 7 (2023): 557-567.

[83]

S. J. Connolly, M. Sharma, A. T. Cohen, et al., “Andexanet for Factor Xa Inhibitor-Associated Acute Intracerebral Hemorrhage, ” New England Journal of Medicine 390, no. 19 (2024): 1745-1755.

[84]

A. D. Mendelow, B. A. Gregson, H. M. Fernandes, et al., “Early Surgery versus Initial Conservative Treatment in Patients With Spontaneous Supratentorial Intracerebral Haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A Randomised Trial, ” Lancet 365, no. 9457 (2005): 387-397.

[85]

A. D. Mendelow, B. A. Gregson, E. N. Rowan, et al., “Early Surgery versus Initial Conservative Treatment in Patients With Spontaneous Supratentorial Lobar Intracerebral Haematomas (STICH II): A Randomised Trial, ” Lancet 382, no. 9890 (2013): 397-408.

[86]

D. F. Hanley, R. E. Thompson, J. Muschelli, et al., “Safety and Efficacy of Minimally Invasive Surgery plus Alteplase in Intracerebral Haemorrhage Evacuation (MISTIE): A Randomised, Controlled, Open-label, Phase 2 Trial, ” Lancet Neurology 15, no. 12 (2016): 1228-1237.

[87]

D. F. Hanley, R. E. Thompson, M. Rosenblum, et al., “Efficacy and Safety of Minimally Invasive Surgery With Thrombolysis in Intracerebral Haemorrhage Evacuation (MISTIE III): A Randomised, Controlled, Open-label, Blinded Endpoint Phase 3 Trial, ” Lancet 393, no. 10175 (2019): 1021-1032.

[88]

X. Xu, H. Zhang, J. Zhang, et al., “Minimally Invasive Surgeries for Spontaneous Hypertensive Intracerebral Hemorrhage (MISICH): A Multicenter Randomized Controlled Trial, ” BMC Medicine [Electronic Resource] 22, no. 1 (2024): 244.

[89]

J. Beck, C. Fung, D. Strbian, et al., “Decompressive Craniectomy plus Best Medical Treatment versus Best Medical Treatment Alone for Spontaneous Severe Deep Supratentorial Intracerebral Haemorrhage: A Randomised Controlled Clinical Trial, ” Lancet 403, no. 10442 (2024): 2395-2404.

[90]

G. Pradilla, J. J. Ratcliff, A. J. Hall, et al., “Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage, ” New England Journal of Medicine 390, no. 14 (2024): 1277-1289.

[91]

C. Zhang, S. Zhang, Y. Yin, et al., “Clot removAl With or Without decompRessive Craniectomy Under ICP Monitoring for Supratentorial IntraCerebral Hemorrhage (CARICH): A Randomized Controlled Trial, ” Int J Surg 110, no. 8 (2024): 4804-4809.

[92]

Q. Wang, D. Zhang, Y. Y. Zhao, et al., “Effects of High-frequency Repetitive Transcranial Magnetic Stimulation Over the Contralesional Motor Cortex on Motor Recovery in Severe Hemiplegic Stroke: A Randomized Clinical Trial, ” Brain Stimul 13, no. 4 (2020): 979-986.

[93]

L. Peter-Derex, F. Philippeau, P. Garnier, et al., “Safety and Efficacy of Prophylactic Levetiracetam for Prevention of Epileptic Seizures in the Acute Phase of Intracerebral Haemorrhage (PEACH): A Randomised, Double-blind, Placebo-controlled, Phase 3 Trial, ” Lancet Neurology 21, no. 9 (2022): 781-791.

[94]

J. J. T. Vink, E. C. C. van Lieshout, W. M. Otte, et al., “Continuous Theta-Burst Stimulation of the Contralesional Primary Motor Cortex for Promotion of Upper Limb Recovery after Stroke: A Randomized Controlled Trial, ” Stroke; A Journal of Cerebral Circulation 54, no. 8 (2023): 1962-1971.

[95]

S. M. Greenberg, W. C. Ziai, C. Cordonnier, et al., “2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline from the American Heart Association/American Stroke Association, ” Stroke; A Journal of Cerebral Circulation 53, no. 7 (2022): e282-e361.

[96]

A. M. Demchuk, D. Dowlatshahi, D. Rodriguez-Luna, et al., “Prediction of Haematoma Growth and Outcome in Patients With Intracerebral Haemorrhage Using the CT-angiography Spot Sign (PREDICT): A Prospective Observational Study, ” Lancet Neurology 11, no. 4 (2012): 307-314.

[97]

W. Zhu, J. Zhou, B. Ma, et al., “Predictors of Early Neurological Deterioration in Patients With Intracerebral Hemorrhage: A Systematic Review and Meta-analysis, ” Journal of Neurology 271, no. 6 (2024): 2980-2991.

[98]

H. B. Brouwers, M. R. Raffeld, K. M. van Nieuwenhuizen, et al., “CT Angiography Spot Sign in Intracerebral Hemorrhage Predicts Active Bleeding During Surgery, ” Neurology 83, no. 10 (2014): 883-889.

[99]

S. D. Singh, M. Pasi, F. Schreuder, et al., “Computed Tomography Angiography Spot Sign, Hematoma Expansion, and Functional Outcome in Spontaneous Cerebellar Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 52, no. 9 (2021): 2902-2909.

[100]

D. Dowlatshahi, H. B. Brouwers, A. M. Demchuk, et al., “Predicting Intracerebral Hemorrhage Growth with the Spot Sign: The Effect of Onset-to-Scan Time, ” Stroke; A Journal of Cerebral Circulation 47, no. 3 (2016): 695-700.

[101]

O. Hussein, K. Sawalha, M. Hamed, et al., “The Intraventricular-spot Sign: Prevalence, Significance, and Relation to Hematoma Expansion and Outcomes, ” Journal of Neurology 265, no. 10 (2018): 2201-2210.

[102]

N. Valyraki, A. Goujon, M. Mateos, et al., “MRI Spot Sign in Acute Intracerebral Hemorrhage: An Independent Biomarker of Hematoma Expansion and Poor Functional Outcome, ” Journal of Neurology 270, no. 3 (2023): 1531-1542.

[103]

F. Fu, S. Sun, L. Liu, et al., “Iodine Concentration: A New, Important Characteristic of the Spot Sign That Predicts Haematoma Expansion, ” European Radiology 28, no. 10 (2018): 4343-4349.

[104]

F. Fu, S. Sun, L. Liu, et al., “Iodine Sign as a Novel Predictor of Hematoma Expansion and Poor Outcomes in Primary Intracerebral Hemorrhage Patients, ” Stroke; A Journal of Cerebral Circulation 49, no. 9 (2018): 2074-2080.

[105]

C. O. Tan, S. Lam, D. Kuppens, et al., “Spot and Diffuse Signs: Quantitative Markers of Intracranial Hematoma Expansion at Dual-Energy CT, ” Radiology 290, no. 1 (2019): 179-186.

[106]

M. T. J. Peeters, K. J. D. Kort, R. Houben, et al., “Dual-Energy CT Angiography Improves Accuracy of Spot Sign for Predicting Hematoma Expansion in Intracerebral Hemorrhage, ” J Stroke 23, no. 1 (2021): 82-90.

[107]

K. Shkirkova, J. L. Saver, S. Starkman, et al., “Frequency, Predictors, and Outcomes of Prehospital and Early Postarrival Neurological Deterioration in Acute Stroke: Exploratory Analysis of the FAST-MAG Randomized Clinical Trial, ” JAMA Neurology 75, no. 11 (2018): 1364-1374.

[108]

A. S. Randhawa, F. Pariona-Vargas, S. Starkman, et al., “Beyond the Golden Hour: Treating Acute Stroke in the Platinum 30 Min, ” Stroke 53, no. 8 (2022): 2426-2434.

[109]

L. C. Gioia, G. N. Mendes, A. Y. Poppe, et al., “Advances in Prehospital Management of Intracerebral Hemorrhage, ” Cerebrovascular Diseases 54, no. 2 (2025): 184-193.

[110]

T. Almqvist, A. Falk Delgado, and C. Sjöstrand, “Impact of Prehospital Stroke Triage Implementation on Patients With Intracerebral Hemorrhage, ” Ther Adv Neurol Disord 16 (2023): 17562864231168278.

[111]

M. Almubayyidh, I. Alghamdi, and A. R. Parry-Jones, “Clinical Features and Novel Technologies for Prehospital Detection of Intracerebral Haemorrhage: A Scoping Review Protocol, ” BMJ Open 13, no. 5 (2023): e070228.

[112]

S. R. Cooley, H. Zhao, B. C. V. Campbell, et al., “Mobile Stroke Units Facilitate Prehospital Management of Intracerebral Hemorrhage, ” Stroke 52, no. 10 (2021): 3163-3166.

[113]

K. B. Walsh, “Non-invasive Sensor Technology for Prehospital Stroke Diagnosis: Current Status and Future Directions, ” Int J Stroke 14, no. 6 (2019): 592-602.

[114]

C. T. Richards, J. A. Oostema, S. N. Chapman, et al., “Prehospital Stroke Care Part 2: On-Scene Evaluation and Management by Emergency Medical Services Practitioners, ” Stroke 54, no. 5 (2023): 1416-1425.

[115]

O. S. Mattila, H. Harve, S. Pihlasviita, et al., “Ultra-acute Diagnostics for Stroke: Large-scale Implementation of Prehospital Biomarker Sampling, ” Acta Neurologica Scandinavica 136, no. 1 (2017): 17-23.

[116]

S. Chennareddy, R. Kalagara, C. Smith, et al., “Portable Stroke Detection Devices: A Systematic Scoping Review of Prehospital Applications, ” BMC Emerg Med 22, no. 1 (2022): 111.

[117]

K. T. Larsen, E. C. Sandset, M. N. Selseth, et al., “Antithrombotic Treatment, Prehospital Blood Pressure, and Outcomes in Spontaneous Intracerebral Hemorrhage, ” Journal of the American Heart Association 12, no. 5 (2023): e028336.

[118]

F. T. Gong, L. P. Yu, Y. H. Gong, et al., “Blood Pressure Control in Ultra-early Basal Ganglia Intracerebral Hemorrhage, ” European Review for Medical and Pharmacological Sciences 19, no. 3 (2015): 412-415.

[119]

P. W. Chung, J. T. Kim, N. Sanossian, et al., “Association between Hyperacute Stage Blood Pressure Variability and Outcome in Patients with Spontaneous Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 49, no. 2 (2018): 348-354.

[120]

D. Rodriguez-Luna, N. Rodriguez-Villatoro, J. M. Juega, et al., “Prehospital Systolic Blood Pressure Is Related to Intracerebral Hemorrhage Volume on Admission, ” Stroke; A Journal of Cerebral Circulation 49, no. 1 (2018): 204-206.

[121]

P. M. Bath, L. J. Woodhouse, K. Krishnan, et al., “Prehospital Transdermal Glyceryl Trinitrate for Ultra-Acute Intracerebral Hemorrhage: Data from the RIGHT-2 Trial, ” Stroke; A Journal of Cerebral Circulation 50, no. 11 (2019): 3064-3071.

[122]

J. L. Saver, C. Kidwell, M. Eckstein, et al., “Prehospital Neuroprotective Therapy for Acute Stroke: Results of the Field Administration of Stroke Therapy-Magnesium (FAST-MAG) Pilot Trial, ” Stroke 35, no. 5 (2004): e106-108.

[123]

A. M. Naidech, K. Shkirkova, J. P. Villablanca, et al., “Magnesium Sulfate and Hematoma Expansion: An Ancillary Analysis of the FAST-MAG Randomized Trial, ” Stroke; A Journal of Cerebral Circulation 53, no. 5 (2022): 1516-1519.

[124]

S. B. Murthy, C. Zhang, S. Shah, et al., “Antithrombotic and Statin Prescription after Intracerebral Hemorrhage in the Get with the Guidelines-Stroke Registry, ” Stroke; A Journal of Cerebral Circulation 54, no. 12 (2023): 2972-2980.

[125]

K. N. Sheth, N. Solomon, B. Alhanti, et al., “Time to Anticoagulation Reversal and Outcomes after Intracerebral Hemorrhage, ” JAMA neurology 81, no. 4 (2024): 363-372.

[126]

D. Liu, H. Gu, Y. Pu, et al., “Prior Antithrombotic Therapy Is Associated With Increased Risk of Death in Patients With Intracerebral Hemorrhage: Findings From the Chinese Stroke Center Alliance (CSCA) Study, ” Aging Dis 12, no. 5 (2021): 1263-1271.

[127]

J. B. Kuramatsu, S. T. Gerner, P. D. Schellinger, et al., “Anticoagulant Reversal, Blood Pressure Levels, and Anticoagulant Resumption in Patients With Anticoagulation-related Intracerebral Hemorrhage, ” Jama 313, no. 8 (2015): 824-836.

[128]

S. B. Murthy, A. Biffi, G. J. Falcone, et al., “Antiplatelet Therapy after Spontaneous Intracerebral Hemorrhage and Functional Outcomes, ” Stroke; A Journal of Cerebral Circulation 50, no. 11 (2019): 3057-3063.

[129]

Al-Shahi Salman R, M. S. Dennis and P. A. G. Sandercock, “Effects of Antiplatelet Therapy after Stroke Caused by Intracerebral Hemorrhage: Extended Follow-up of the RESTART Randomized Clinical Trial, ” JAMA Neurology 78, no. 10 (2021): 1179-1186.

[130]

T. P. Ottosen, M. Grijota, M. L. Hansen, et al., “Use of Antithrombotic Therapy and Long-Term Clinical Outcome among Patients Surviving Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 47, no. 7 (2016): 1837-1843.

[131]

Y. Sakamoto, C. Nito, Y. Nishiyama, et al., “Safety of Anticoagulant Therapy Including Direct Oral Anticoagulants in Patients with Acute Spontaneous Intracerebral Hemorrhage, ” Circulation Journal 83, no. 2 (2019): 441-446.

[132]

Al-Shahi Salman R, D. P. Minks and D. Mitra, “Effects of Antiplatelet Therapy on Stroke Risk by Brain Imaging Features of Intracerebral Haemorrhage and Cerebral Small Vessel Diseases: Subgroup Analyses of the RESTART Randomised, Open-label Trial, ” Lancet Neurology 18, no. 7 (2019): 643-652.

[133]

L. Poli, M. Grassi, M. Zedde, et al., “Anticoagulants Resumption After Warfarin-Related Intracerebral Haemorrhage: The Multicenter Study on Cerebral Hemorrhage in Italy (MUCH-Italy), ” Thromb Haemost 118, no. 3 (2018): 572-580.

[134]

A. Biffi, J. B. Kuramatsu, A. Leasure, et al., “Oral Anticoagulation and Functional Outcome After Intracerebral Hemorrhage, ” Annals of Neurology 82, no. 5 (2017): 755-765.

[135]

N. Y. Jung and J. Cho, “Clinical Effects of Restarting Antiplatelet Therapy in Patients With Intracerebral Hemorrhage, ” Clinical Neurology and Neurosurgery 220 (2022): 107361.

[136]

B. T. Grainger, J. D. McFadyen, and H. Tran, “Between a Rock and a Hard Place: Resumption of Oral Anticoagulant Therapy After Intracranial Hemorrhage, ” Journal of Thrombosis and Haemostasis 22, no. 3 (2024): 594-603.

[137]

A. Zazulia, “Antiplatelet and Anticoagulant Therapy After Intracerebral Hemorrhage, ” Neurologic Clinics 33, no. 2 (2015): 329-345.

[138]

B. Ianosi, M. Gaasch, V. Rass, et al., “Early Thrombosis Prophylaxis With enoxaparin Is Not Associated With Hematoma Expansion in Patients With Spontaneous Intracerebral Hemorrhage, ” European Journal of Neurology 26, no. 2 (2019): 333-341.

[139]

C. H. Liu, Y. L. Wu, C. C. Hsu, et al., “Early Antiplatelet Resumption and the Risks of Major Bleeding after Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 54, no. 2 (2023): 537-545.

[140]

P. Balali, A. H. Katsanos, and A. Shoamanesh, “Timing of Antiplatelet Resumption after Intracerebral Hemorrhage: A Sophie's Choice, ” Stroke; A Journal of Cerebral Circulation 54, no. 2 (2023): 546-548.

[141]

L. Franco, M. Paciaroni, M. L. Enrico, et al., “Mortality in Patients With Intracerebral Hemorrhage Associated With Antiplatelet Agents, Oral Anticoagulants or no Antithrombotic Therapy, ” Eur J Intern Med 75 (2020): 35-43.

[142]

K. El Naamani, R. Abbas, M. Ghanem, et al., “Resuming Anticoagulants in Patients with Intracranial Hemorrhage: A Meta-Analysis and Literature Review, ” Neurosurgery 94, no. 1 (2024): 14-19.

[143]

J. B. Kuramatsu, J. A. Sembill, S. T. Gerner, et al., “Management of Therapeutic Anticoagulation in Patients With Intracerebral Haemorrhage and Mechanical Heart Valves, ” European Heart Journal 39, no. 19 (2018): 1709-1723.

[144]

E. Ivany, L. A. Ritchie, G. Y. H. Lip, et al., “Effectiveness and Safety of Antithrombotic Medication in Patients with Atrial Fibrillation and Intracranial Hemorrhage: Systematic Review and Meta-Analysis, ” Stroke; A Journal of Cerebral Circulation 53, no. 10 (2022): 3035-3046.

[145]

M. J. Alberts and I. C. H. After, “starting Long-term Therapeutic Oral Anticoagulation in Patients With AF Reduces MACE at 1 to 3 y, ” Annals of Internal Medicine 176, no. 6 (2023): Jc71.

[146]

P. Merella and G. Casu, “Spontaneous Intracerebral Hemorrhage, ” New England Journal of Medicine 388, no. 2 (2023): 191.

[147]

K. Nomura, S. Suda, A. Abe, et al., “Vitamin K Antagonists but Not Non-vitamin K Antagonists in Addition on Antiplatelet Therapy Should be Associated With Increase of Hematoma Volume and Mortality in Patients With Intracerebral Hemorrhage: A Sub-analysis of PASTA Registry Study, ” Journal of the Neurological Sciences 448 (2023): 120643.

[148]

B. M. Siepen, E. Forfang, M. Branca, et al., “Intracerebral Haemorrhage in Patients Taking Different Types of Oral Anticoagulants: A Pooled Individual Patient Data Analysis From Two National Stroke Registries, ” Stroke Vasc Neurol 9, no. 6 (2024): 640-651.

[149]

T. Inohara, Y. Xian, L. Liang, et al., “Association of Intracerebral Hemorrhage among Patients Taking Non-Vitamin K Antagonist vs Vitamin K Antagonist Oral Anticoagulants with in-Hospital Mortality, ” Jama 319, no. 5 (2018): 463-473.

[150]

J. C. Purrucker, K. Haas, T. Rizos, et al., “Early Clinical and Radiological Course, Management, and Outcome of Intracerebral Hemorrhage Related to New Oral Anticoagulants, ” JAMA neurology 73, no. 2 (2016): 169-177.

[151]

Y. G. Li and G. Y. H. Lip, “Anticoagulation Resumption after Intracerebral Hemorrhage, ” Current Atherosclerosis Reports 20, no. 7 (2018): 32.

[152]

M. Tallroth, R. Udumyan, A. Büki, et al., “Antithrombotic Treatment and Clinical Outcomes after Intracerebral Hemorrhage: A Retrospective Cohort Study From the Swedish Stroke Register, ” Journal of the American Heart Association 13, no. 10 (2024): e034716.

[153]

D. Giakoumettis, G. A. Alexiou, D. A. Vrachatis, et al., “Antithrombotic Treatment Management in Patients With Intracerebral Hemorrhage: Reversal and Restart, ” Current Pharmaceutical Design 23, no. 9 (2017): 1392-1405.

[154]

J. Inamasu, S. Moriya, M. Oheda, et al., “Role of Catecholamines in Acute Hypertensive Response: Subarachnoid Hemorrhage versus Spontaneous Intracerebral Hemorrhage, ” Blood Pressure Monitoring 20, no. 3 (2015): 132-137.

[155]

J. S. Minhas, T. J. Moullaali, G. J. E. Rinkel, et al., “Blood Pressure Management after Intracerebral and Subarachnoid Hemorrhage: The Knowns and Known Unknowns, ” Stroke; A Journal of Cerebral Circulation 53, no. 4 (2022): 1065-1073.

[156]

C. Pan, Y. Hu, N. Liu, et al., “Aggressive Blood Pressure Lowing Therapy in Patients With Acute Intracerebral Hemorrhage Is Safe: A Systematic Review and Meta-analysis, ” Chinese Medical Journal 128, no. 18 (2015): 2524-2529.

[157]

G. Tsivgoulis, A. H. Katsanos, K. S. Butcher, et al., “Intensive Blood Pressure Reduction in Acute Intracerebral Hemorrhage: A Meta-analysis, ” Neurology 83, no. 17 (2014): 1523-1529.

[158]

D. Rodriguez-Luna, O. Pancorbo, L. Llull, et al., “Effects of Achieving Rapid, Intensive, and Sustained Blood Pressure Reduction in Intracerebral Hemorrhage Expansion and Functional Outcome, ” Neurology 102, no. 9 (2024): e209244.

[159]

Q. Li, A. Morotti, A. Warren, et al., “Intensive Blood Pressure Reduction Is Associated With Reduced Hematoma Growth in Fast Bleeding Intracerebral Hemorrhage, ” Annals of Neurology (2023).

[160]

L. Song, E. C. Sandset, H. Arima, et al., “Early Blood Pressure Lowering in Patients With Intracerebral Haemorrhage and Prior Use of Antithrombotic Agents: Pooled Analysis of the INTERACT Studies, ” Journal of Neurology, Neurosurgery, and Psychiatry 87, no. 12 (2016): 1330-1335.

[161]

Y. Sakamoto, M. Koga, K. Todo, et al., “Relative Systolic Blood Pressure Reduction and Clinical Outcomes in Hyperacute Intracerebral Hemorrhage: The SAMURAI-ICH Observational Study, ” Journal of Hypertension 33, no. 5 (2015): 1069-1073.

[162]

N. A. Leshko, R. F. Lamore, M. K. Zielke, et al., “Adherence to Established Blood Pressure Targets and Associated Complications in Patients Presenting With Acute Intracerebral Hemorrhage, ” Neurocrit Care 39, no. 2 (2023): 378-385.

[163]

L. Manning, Y. Hirakawa, H. Arima, et al., “Blood Pressure Variability and Outcome After Acute Intracerebral Haemorrhage: A Post-hoc Analysis of INTERACT2, a Randomised Controlled Trial, ” Lancet Neurology 13, no. 4 (2014): 364-373.

[164]

T. J. Moullaali, X. Wang, R. H. Martin, et al., “Blood Pressure Control and Clinical Outcomes in Acute Intracerebral Haemorrhage: A Preplanned Pooled Analysis of Individual Participant Data, ” Lancet Neurology 18, no. 9 (2019): 857-864.

[165]

E. Tanaka, M. Koga, J. Kobayashi, et al., “Blood Pressure Variability on Antihypertensive Therapy in Acute Intracerebral Hemorrhage: The Stroke Acute Management With Urgent Risk-factor Assessment and Improvement-intracerebral Hemorrhage Study, ” Stroke; A Journal of Cerebral Circulation 45, no. 8 (2014): 2275-2279.

[166]

C. B. Wright, A. P. Auchus, A. Lerner, et al., “Effect of Intensive versus Standard Blood Pressure Control on Stroke Subtypes, ” Hypertension 77, no. 4 (2021): 1391-1398.

[167]

K. O. Appiah, J. S. Minhas, and T. G. Robinson, “Managing High Blood Pressure During Acute Ischemic Stroke and Intracerebral Hemorrhage, ” Current Opinion in Neurology 31, no. 1 (2018): 8-13.

[168]

J. Zhao, F. Yuan, F. Fu, et al., “Hypertension Management in Elderly With Severe Intracerebral Hemorrhage, ” Ann Clin Transl Neurol 8, no. 10 (2021): 2059-2069.

[169]

J. Zheng, H. Li, S. Lin, et al., “Perioperative Antihypertensive Treatment in Patients with Spontaneous Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 48, no. 1 (2017): 216-218.

[170]

M. Ridha, Y. Hannawi, S. Murthy, et al., “Premorbid Blood Pressure Control Modifies Risk of DWI Lesions with Acute Blood Pressure Reduction in Intracerebral Hemorrhage, ” Hypertension 81, no. 10 (2024): 2113-2123.

[171]

X. Wang, J. Yang, T. J. Moullaali, et al., “Influence of Time to Achieve Target Systolic Blood Pressure on Outcome after Intracerebral Hemorrhage: The Blood Pressure in Acute Stroke Collaboration, ” Stroke; A Journal of Cerebral Circulation 55, no. 4 (2024): 849-855.

[172]

A. Morotti, H. B. Brouwers, J. M. Romero, et al., “Intensive Blood Pressure Reduction and Spot Sign in Intracerebral Hemorrhage: A Secondary Analysis of a Randomized Clinical Trial, ” JAMA neurology 74, no. 8 (2017): 950-960.

[173]

A. Shoamanesh, A. Morotti, J. M. Romero, et al., “Cerebral Microbleeds and the Effect of Intensive Blood Pressure Reduction on Hematoma Expansion and Functional Outcomes: A Secondary Analysis of the ATACH-2 Randomized Clinical Trial, ” JAMA neurology 75, no. 7 (2018): 850-859.

[174]

J. A. Falcone, A. Lopez, D. Stradling, et al., “Blood Pressure and Spot Sign in Spontaneous Supratentorial Subcortical Intracerebral Hemorrhage, ” Neurocrit Care 37, no. 1 (2022): 246-254.

[175]

M. Fukuda-Doi, H. Yamamoto, M. Koga, et al., “Impact of Renal Impairment on Intensive Blood-Pressure-Lowering Therapy and Outcomes in Intracerebral Hemorrhage: Results from ATACH-2, ” Neurology 97, no. 9 (2021): e913-e921.

[176]

K. Toyoda, S. Yoshimura, M. Fukuda-Doi, et al., “Intensive Blood Pressure Lowering With Nicardipine and Outcomes After Intracerebral Hemorrhage: An Individual Participant Data Systematic Review, ” Int J Stroke 17, no. 5 (2022): 494-505.

[177]

C. S. Anderson, A. Rodgers, H. A. de Silva, et al., “Triple Therapy Prevention of Recurrent Intracerebral Disease Events Trial: Rationale, Design and Progress, ” Int J Stroke 17, no. 10 (2022): 1156-1162.

[178]

Y. Ng, W. Qi, N. K. K. King, et al., “Initial Antihypertensive Agent Effects on Acute Blood Pressure After Intracerebral Haemorrhage, ” Stroke Vasc Neurol 7, no. 5 (2022): 367-374.

[179]

M. T. Mullen and C. S. Anderson, “Review of Long-Term Blood Pressure Control after Intracerebral Hemorrhage: Challenges and Opportunities, ” Stroke; A Journal of Cerebral Circulation 53, no. 7 (2022): 2142-2151.

[180]

A. Biffi, C. D. Anderson, T. W. Battey, et al., “Association between Blood Pressure Control and Risk of Recurrent Intracerebral Hemorrhage, ” Jama 314, no. 9 (2015): 904-912.

[181]

M. Schrag and H. Kirshner, “Management of Intracerebral Hemorrhage: JACC Focus Seminar, ” Journal of the American College of Cardiology 75, no. 15 (2020): 1819-1831.

[182]

H. Arima, “Three Rules for Blood Pressure Management in Acute Intracerebral Hemorrhage: Fast, Intense and Stable, ” Hypertension Research 46, no. 1 (2023): 264-265.

[183]

J. Zheng, Z. Yu, L. Ma, et al., “Association between Blood Glucose and Functional Outcome in Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis, ” World neurosurgery 114 (2018): e756-e765.

[184]

M. Koga, H. Yamagami, S. Okuda, et al., “Blood Glucose Levels During the Initial 72 h and 3-month Functional Outcomes in Acute Intracerebral Hemorrhage: The SAMURAI-ICH Study, ” Journal of the Neurological Sciences 350, no. 1-2 (2015): 75-78.

[185]

S. Sun, Y. Pan, X. Zhao, et al., “The Association Between Impaired Glucose Regulation and Prognosis of Chinese Patients With Intracerebral Hemorrhage, ” Scientific Reports 6 (2016): 36220.

[186]

S. Chen, Y. Wan, H. Guo, et al., “Diabetic and Stress-induced Hyperglycemia in Spontaneous Intracerebral Hemorrhage: A Multicenter Prospective Cohort (CHEERY) Study, ” CNS neuroscience & therapeutics 29, no. 4 (2023): 979-987.

[187]

S. Liang, X. Tian, F. Gao, et al., “Prognostic Significance of the Stress Hyperglycemia Ratio and Admission Blood Glucose in Diabetic and Nondiabetic Patients With Spontaneous Intracerebral Hemorrhage, ” Diabetol Metab Syndr 16, no. 1 (2024): 58.

[188]

H. Chu, C. Huang, Y. Tang, et al., “The Stress Hyperglycemia Ratio Predicts Early Hematoma Expansion and Poor Outcomes in Patients With Spontaneous Intracerebral Hemorrhage, ” Ther Adv Neurol Disord 15 (2022): 17562864211070681.

[189]

G. Li, S. Wang, Y. Xiong, et al., “Higher Fasting Blood Glucose Was Associated With Worse in-hospital Clinical Outcomes in Patients With Primary Intracerebral Hemorrhage: From a Large-scale Nationwide Longitudinal Registry, ” CNS neuroscience & therapeutics 28, no. 12 (2022): 2260-2267.

[190]

Y. Zhou, Z. Luo, M. Yu, et al., “Acute Phase Blood Glucose Levels and Functional Outcomes in Patients With Spontaneous Intracerebral Hemorrhage, ” Neuropsychiatr Dis Treat 19 (2023): 2697-2707.

[191]

J. B. Lusk, A. Covington, L. Liu, et al., “Hyperglycemia, Ischemic Lesions, and Functional Outcomes after Intracerebral Hemorrhage, ” Journal of the American Heart Association 12, no. 13 (2023): e028632.

[192]

A. M. Southerland, S. A. Mayer, and N. A. Chiota-McCollum, “Glucose Control and Risk of Symptomatic Intracerebral Hemorrhage following Thrombolysis for Acute Ischemic Stroke: A SHINE Trial Analysis, ” Neurology 102, no. 9 (2024): e209323.

[193]

C. E. van Donkelaar, S. A. Dijkland, W. M. van den Bergh, et al., “Early Circulating Lactate and Glucose Levels after Aneurysmal Subarachnoid Hemorrhage Correlate with Poor Outcome and Delayed Cerebral Ischemia: A Two-Center Cohort Study, ” Critical Care Medicine 44, no. 5 (2016): 966-972.

[194]

F. Zhang, Y. Ren, W. Fu, et al., “Association Between Neutrophil to Lymphocyte Ratio and Blood Glucose Level at Admission in Patients With Spontaneous Intracerebral Hemorrhage, ” Scientific Reports 9, no. 1 (2019): 15623.

[195]

C. Jin, G. Li, and K. M. Rexrode, et al., “Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk, ” Stroke; A Journal of Cerebral Circulation 49, no. 1 (2018): 27-33.

[196]

S. You, Y. Wang, Z. Lu, et al., “Dynamic Change of Heart Rate in the Acute Phase and Clinical Outcomes After Intracerebral Hemorrhage: A Cohort Study, ” J Intensive Care 9, no. 1 (2021): 28.

[197]

M. Qiu, S. Sato, D. Zheng, et al., “Admission Heart Rate Predicts Poor Outcomes in Acute Intracerebral Hemorrhage: The Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Studies, ” Stroke; A Journal of Cerebral Circulation 47, no. 6 (2016): 1479-1485.

[198]

Y. Qu, Y. Yang, X. Sun, et al., “Heart Rate Variability in Patients With Spontaneous Intracerebral Hemorrhage and Its Relationship With Clinical Outcomes, ” Neurocrit Care 40, no. 1 (2024): 282-291.

[199]

L. Marino, R. Badenes, and F. Bilotta, “Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review, ” Journal of Clinical Medicine 12, no. 13 (2023): 4355.

[200]

V. Rass, A. Lindner, B. A. Ianosi, et al., “Early Alterations in Heart Rate Are Associated With Poor Outcome in Patients With Intracerebral Hemorrhage, ” Journal of Critical Care 61 (2021): 199-206.

[201]

K. Miwa, M. Koga, M. Fukuda-Doi, et al., “Effect of Heart Rate Variabilities on Outcome after Acute Intracerebral Hemorrhage: A Post Hoc Analysis of ATACH-2, ” Journal of the American Heart Association 10, no. 16 (2021): e020364.

[202]

J. Szabo, P. Smielewski, M. Czosnyka, et al., “Heart Rate Variability Is Associated With Outcome in Spontaneous Intracerebral Hemorrhage, ” Journal of Critical Care 48 (2018): 85-89.

[203]

A. Malavera, S. You, D. Zheng, et al., “Prognostic Significance of Early Pyrexia in Acute Intracerebral Haemorrhage: The INTERACT2 Study, ” Journal of the Neurological Sciences 423 (2021): 117364.

[204]

M. Fischer, A. Schiefecker, P. Lackner, et al., “Targeted Temperature Management in Spontaneous Intracerebral Hemorrhage: A Systematic Review, ” Current Drug Targets 18, no. 12 (2017): 1430-1440.

[205]

A. Lavinio, J. Andrzejowski, I. Antonopoulou, et al., “Targeted Temperature Management in Patients With Intracerebral Haemorrhage, Subarachnoid Haemorrhage, or Acute Ischaemic Stroke: Updated Consensus Guideline Recommendations by the Neuroprotective Therapy Consensus Review (NTCR) Group, ” British Journal of Anaesthesia 131, no. 2 (2023): 294-301.

[206]

A. J. Cadena and F. Rincon, “Hypothermia and Temperature Modulation for Intracerebral Hemorrhage (ICH): Pathophysiology and Translational Applications, ” Frontiers in neuroscience 18 (2024): 1289705.

[207]

E. Suehiro, H. Sadahiro, H. Goto, et al., “Importance of Early Postoperative Body Temperature Management for Treatment of Subarachnoid Hemorrhage, ” J Stroke Cerebrovasc Dis 25, no. 6 (2016): 1482-1488.

[208]

H. Kobata, A. Tucker, G. Sarapuddin, et al., “Targeted Temperature Management for Severe Subarachnoid Hemorrhage Using Endovascular and Surface Cooling Systems: A Nonrandomized Interventional Study Using Historical Control, ” Neurosurgery 91, no. 6 (2022): 863-871.

[209]

L. J. Liddle, C. A. Dirks, M. Almekhlafi, et al., “An Ambiguous Role for Fever in Worsening Outcome after Intracerebral Hemorrhage, ” Transl Stroke Res 14, no. 2 (2023): 123-136.

[210]

T. Svedung Wettervik, A. Hånell, and E. Ronne-Engström, “Temperature Changes in Poor-Grade Aneurysmal Subarachnoid Hemorrhage: Relation to Injury Pattern, Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome, ” Neurocrit Care 39, no. 1 (2023): 145-154.

[211]

A. Drewry and N. M. Mohr, “Temperature Management in the ICU, ” Critical Care Medicine 50, no. 7 (2022): 1138-1147.

[212]

T. Liu, L. Wu, R. Xue, et al., “Efficacy and Safety of Tranexamic Acid in Aneurysmal Subarachnoid Hemorrhage: A Meta-analysis of Randomized Controlled Trials, ” American Journal of Emergency Medicine 50 (2021): 646-653.

[213]

M. Zhang and T. Liu, “Efficacy and Safety of Tranexamic Acid in Acute Traumatic Brain Injury: A Meta-analysis of Randomized Controlled Trials, ” American Journal of Emergency Medicine 80 (2024): 35-43.

[214]

V. Yogendrakumar, T. Y. Wu, L. Churilov, et al., “Does Tranexamic Acid Affect Intraventricular Hemorrhage Growth in Acute ICH? An Analysis of the STOP-AUST Trial, ” Eur Stroke J 7, no. 1 (2022): 15-19.

[215]

Z. K. Law, C. S. Menon, L. J. Woodhouse, et al., “Outcome 1 Year After ICH: Data From the Tranexamic Acid for IntraCerebral Haemorrhage 2 (TICH-2) Trial, ” Eur Stroke J (2024): 23969873241265939.

[216]

S. Pszczolkowski, N. Sprigg, L. J. Woodhouse, et al., “Effect of Tranexamic Acid Administration on Remote Cerebral Ischemic Lesions in Acute Spontaneous Intracerebral Hemorrhage: A Substudy of a Randomized Clinical Trial, ” JAMA neurology 79, no. 5 (2022): 468-477.

[217]

T. Liu and M. Zhang, “Time to Antifibrinolytic Therapy and Outcomes After Acute Traumatic Brain Injury:Perils and Pitfalls, ” American Journal of Emergency Medicine 83 (2024): 129-130.

[218]

F. S. Al-Ajlan, D. J. Gladstone, D. Song, et al., “Time Course of Early Hematoma Expansion in Acute Spot-Sign Positive Intracerebral Hemorrhage: Prespecified Analysis of the SPOTLIGHT Randomized Clinical Trial, ” Stroke; A Journal of Cerebral Circulation 54, no. 3 (2023): 715-721.

[219]

B. M. Siepen, A. Polymeris, A. Shoamanesh, et al., “Andexanet alfa versus Non-specific Treatments for Intracerebral Hemorrhage in Patients Taking Factor Xa Inhibitors—Individual Patient Data Analysis of ANNEXA-4 and TICH-NOAC, ” Int J Stroke 19, no. 5 (2024): 506-514.

[220]

F. Angriman, B. K. Tirupakuzhi Vijayaraghavan, and L. Dragoi, “Antiepileptic Drugs to Prevent Seizures after Spontaneous Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 50, no. 5 (2019): 1095-1099.

[221]

J. P. Mota Telles, R. B. Rocha, G. I. Cenci, et al., “Prophylactic Antiseizure Drugs for Spontaneous Intracerebral Hemorrhage: An Updated Systematic Review and Meta-analysis, ” Int J Stroke 18, no. 7 (2023): 773-782.

[222]

D. J. Roh, F. C. Poyraz, E. Mao, et al., “Anemia from Inflammation after Intracerebral Hemorrhage and Relationships with Outcome, ” Journal of the American Heart Association 13, no. 14 (2024): e035524.

[223]

M. Xue and V. W. Yong, “Neuroinflammation in Intracerebral Haemorrhage: Immunotherapies With Potential for Translation, ” Lancet Neurology 19, no. 12 (2020): 1023-1032.

[224]

A. R. Parry-Jones, K. Stocking, and M. J. MacLeod, “Phase II Randomised, Placebo-controlled, Clinical Trial of Interleukin-1 Receptor Antagonist in Intracerebral Haemorrhage: BLOcking the Cytokine IL-1 in ICH (BLOC-ICH), ” Eur Stroke J 8, no. 3 (2023): 819-827.

[225]

M. P. Cliteur, A. G. van der Kolk, G. Hannink, et al., “Anakinra in Cerebral Haemorrhage to Target Secondary Injury Resulting From Neuroinflammation (ACTION): Study Protocol of a Phase II Randomised Clinical Trial, ” Eur Stroke J 9, no. 1 (2024): 265-273.

[226]

Y. J. Li, G. Q. Chang, Y. Liu, et al., “Fingolimod Alters Inflammatory Mediators and Vascular Permeability in Intracerebral Hemorrhage, ” Neurosci Bull 31, no. 6 (2015): 755-762.

[227]

Y. Fu, J. Hao, N. Zhang, et al., “Fingolimod for the Treatment of Intracerebral Hemorrhage: A 2-arm Proof-of-concept Study, ” JAMA neurology 71, no. 9 (2014): 1092-1101.

[228]

J. Galea, K. Ogungbenro, S. Hulme, et al., “Reduction of Inflammation After Administration of Interleukin-1 Receptor Antagonist Following Aneurysmal Subarachnoid Hemorrhage: Results of the Subcutaneous Interleukin-1Ra in SAH (SCIL-SAH) Study, ” Journal of Neurosurgery 128, no. 2 (2018): 515-523.

[229]

B. Y. Sciscent, D. R. Hallan, D. Bhanja, et al., “Early Celecoxib Use in Spontaneous Intracerebral Hemorrhage Is Associated With Reduced Mortality, ” Neurocrit Care 41, no. 3 (2024): 788-797.

[230]

T. Liu, Z. Zhao, M. Liu, et al., “The Pharmacological Landscape of Chronic Subdural Hematoma: A Systematic Review and Network Meta-analysis of Randomized and Non-randomized Controlled Studies, ” Burns Trauma 12 (2024): tkae034.

[231]

T. Liu, S. Zhong, Q. Zhai, et al., “Optimal Course of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Is Longer Treatment Better?, ” A Meta-Analysis of Randomized Controlled Trials 15 (2021): 757505.

[232]

S. Zhong, T. Liu, Q. Zhai, et al., “Impacts of Statin Therapy Strategies on Incidence of Ischemic Cerebrovascular Events in Patients with Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Bayesian Network Meta-Analysis, ” Neurosurgery 93, no. 1 (2023): 24-32.

[233]

L. T. Zz, W. Jiao, C. Xiaoying, et al., MR-CSDH Trial Investigators, “Characteristics and Outcomes in Atorvastatin Therapy for Chronic Subdural Hematoma: A National, Observational Real-world Study in China, 2019-2024, ” The Lancet Regional Health—Western Pacific 63 (2025): 101688.

[234]

K. Malhotra, J. J. Chang, A. Khunger, et al., “Minocycline for Acute Stroke Treatment: A Systematic Review and Meta-analysis of Randomized Clinical Trials, ” Journal of Neurology 265, no. 8 (2018): 1871-1879.

[235]

J. J. Chang, M. Kim-Tenser, B. A. Emanuel, et al., “Minocycline and Matrix Metalloproteinase Inhibition in Acute Intracerebral Hemorrhage: A Pilot Study, ” European Journal of Neurology 24, no. 11 (2017): 1384-1391.

[236]

R. Zhang, V. W. Yong, and M. Xue, “Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation, ” Frontiers in immunology 13 (2022): 844163.

[237]

L. Foster, L. Robinson, S. D. Yeatts, et al., “Effect of Deferoxamine on Trajectory of Recovery after Intracerebral Hemorrhage: A Post Hoc Analysis of the i-DEF Trial, ” Stroke; A Journal of Cerebral Circulation 53, no. 7 (2022): 2204-2210.

[238]

C. Wei, J. Wang, L. D. Foster, et al., “Effect of Deferoxamine on Outcome According to Baseline Hematoma Volume: A Post Hoc Analysis of the i-DEF Trial, ” Stroke; A Journal of Cerebral Circulation 53, no. 4 (2022): 1149-1156.

[239]

N. Ding, R. Luo, Q. Zhang, et al., “Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage, ” Transl Stroke Res 16, no. 2 (2025): 512-534.

[240]

S. Takamiya, M. Kawabori, and M. Fujimura, “Stem Cell Therapies for Intracerebral Hemorrhage: Review of Preclinical and Clinical Studies, ” Cell Transplantation 32 (2023): 9636897231158153.

[241]

G. Yang, X. Fan, M. Mazhar, et al., “Mesenchymal Stem Cell Application and Its Therapeutic Mechanisms in Intracerebral Hemorrhage, ” Front Cell Neurosci 16 (2022): 898497.

[242]

X. Y. Li, W. S. Deng, Z. Q. Wang, et al., “Injectable Collagen Scaffold With human Umbilical Cord-derived Mesenchymal Stem Cells Promotes Functional Recovery in Patients With Spontaneous Intracerebral Hemorrhage: Phase I Clinical Trial, ” Neural Regen Res 18, no. 9 (2023): 1999-2004.

[243]

S. Y. Ahn, Y. S. Chang, S. I. Sung, et al., “Mesenchymal Stem Cells for Severe Intraventricular Hemorrhage in Preterm Infants: Phase I Dose-Escalation Clinical Trial, ” Stem Cells Transl Med 7, no. 12 (2018): 847-856.

[244]

N. C. Durand, H. G. Kim, V. N. Patel, et al., “Mesenchymal Stem Cell Therapy in Acute Intracerebral Hemorrhage: A Dose-Escalation Safety and Tolerability Trial, ” Neurocrit Care 41, no. 1 (2024): 59-69.

[245]

A. M. Naidech, M. B. Maas, K. E. Levasseur-Franklin, et al., “Desmopressin Improves Platelet Activity in Acute Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 45, no. 8 (2014): 2451-2453.

[246]

E. A. Feldman, G. Meola, S. Zyck, et al., “Retrospective Assessment of Desmopressin Effectiveness and Safety in Patients with Antiplatelet-Associated Intracranial Hemorrhage, ” Critical Care Medicine 47, no. 12 (2019): 1759-1765.

[247]

F. Carvalho Poyraz, A. Boehme, A. Cottarelli, et al., “Red Blood Cell Transfusions Are Not Associated with Incident Complications or Poor Outcomes in Patients with Intracerebral Hemorrhage, ” Journal of the American Heart Association 12, no. 11 (2023): e028816.

[248]

C. J. Chen, D. Ding, N. Ironside, et al., “Statins for Neuroprotection in Spontaneous Intracerebral Hemorrhage, ” Neurology 93, no. 24 (2019): 1056-1066.

[249]

B. Jiang, L. Li, Q. Chen, et al., “Role of Glibenclamide in Brain Injury after Intracerebral Hemorrhage, ” Transl Stroke Res 8, no. 2 (2017): 183-193.

[250]

J. Liu, N. Li, Z. Zhu, et al., “Vitamin D Enhances Hematoma Clearance and Neurologic Recovery in Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 53, no. 6 (2022): 2058-2068.

[251]

Y. Chen, X. Liu, J. Yuan, et al., “Vitamin D Accelerates the Subdural Hematoma Clearance Through Improving the Meningeal Lymphatic Vessel Function, ” Molecular and Cellular Biochemistry 479, no. 11 (2024): 3129-3140.

[252]

M. Kim, J. Byun, Y. Chung, et al., “Reactive Oxygen Species Scavenger in Acute Intracerebral Hemorrhage Patients: A Multicenter, Randomized Controlled Trial, ” Stroke; A Journal of Cerebral Circulation 52, no. 4 (2021): 1172-1181.

[253]

A. Haseeb, M. A. Shafique, M. S. Mustafa, et al., “Neuro Endoscopic Vs Craniotomy Approach in Supratentorial Hypertensive Intracerebral Hemorrhage: An Updated Meta-analysis, ” World neurosurgery 190 (2024): e721-e747.

[254]

I. A. Awad, S. P. Polster, J. Carrión-Penagos, et al., “Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure, ” Neurosurgery 84, no. 6 (2019): 1157-1168.

[255]

P. Vespa, D. Hanley, J. Betz, et al., “ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for Brain Hemorrhage: A Multicenter Randomized Controlled Trial, ” Stroke; A Journal of Cerebral Circulation 47, no. 11 (2016): 2749-2755.

[256]

R. Noiphithak, V. Yindeedej, W. Ratanavinitkul, et al., “Treatment Outcomes Between Endoscopic Surgery and Conventional Craniotomy for Spontaneous Supratentorial Intracerebral Hemorrhage: A Randomized Controlled Trial, ” Neurosurgical Review 46, no. 1 (2023): 136.

[257]

K. Lin, Z. Cheng Lin, and Y. Hai Tang, “Comparison of Endoscopic and Open Surgery in Life-threatening Large Spontaneous Supratentorial Intracerebral Hemorrhage: A Propensity-matched Analysis, ” Int J Stroke 18, no. 5 (2023): 569-577.

[258]

C. J. Smith, C. P. Rossitto, M. Manhart, et al., “Minimally Invasive Intracerebral Hemorrhage Evacuation Improves Pericavity Cerebral Blood Volume, ” Transl Stroke Res 15, no. 3 (2024): 599-605.

[259]

J. Guo, D. Wang, A. Wang, et al., “Long-Term Outcomes Following Freehand Minimally Invasive Aspiration for Deep Supratentorial Intracerebral Hemorrhage: A Multicenter Cohort Study, ” Neurocrit Care 40, no. 3 (2024): 1036-1044.

[260]

S. Tahara, Y. Hattori, S. Aso, et al., “Outcomes after Endoscopic Evacuation versus Evacuation Using Craniotomy or Stereotactic Aspiration for Spontaneous Intracerebral Hemorrhage: Analysis Using a Japanese Nationwide Database, ” Neurocrit Care 38, no. 3 (2023): 667-675.

[261]

S. Sun, X. Huang, X. Fei, et al., “Neuroendoscopic Surgery versus Stereotactic Aspiration in the Treatment of Supratentorial Intracerebral Hemorrhage: A Meta-Analysis, ” World neurosurgery 187 (2024): e585-e597.

[262]

J. B. Kuramatsu, A. Biffi, S. T. Gerner, et al., “Association of Surgical Hematoma Evacuation vs Conservative Treatment with Functional Outcome in Patients with Cerebellar Intracerebral Hemorrhage, ” Jama 322, no. 14 (2019): 1392-1403.

[263]

T. M. Welte, J. Steidl, J. Stritzelberger, et al., “Surgical Hematoma Evacuation of Cortical Intracerebral Hemorrhage ≥10 Ml Reduces Risk of Subsequent Epilepsy by More Than 70%: A Retrospective Monocenter Study, ” European Journal of Neurology 30, no. 7 (2023): 2099-2105.

[264]

A. S. Pandey, B. J. Daou, N. Chaudhary, et al., “A Combination of Deferoxamine Mesylate and Minimally Invasive Surgery With Hematoma Lysis for Evacuation of Intracerebral Hemorrhage, ” Journal of Cerebral Blood Flow and Metabolism 40, no. 2 (2020): 456-458.

[265]

D. Chen, Z. Zhao, S. Zhang, et al., “Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques, ” Transl Stroke Res 16, no. 3 (2024): 975-989.

[266]

Z. Wu, D. Chen, C. Pan, et al., “Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions, ” Annals of Biomedical Engineering 51, no. 9 (2023): 1933-1941.

[267]

Y. Zhang, S. Zhu, Y. Hu, et al., “Correlation Between Early Intracranial Pressure and Cerebral Perfusion Pressure With 28-day Intensive Care Unit Mortality in Patients With Hemorrhagic Stroke, ” Eur Stroke J 9, no. 3 (2024): 648-657.

[268]

C. Robba, F. Graziano, P. Rebora, et al., “Intracranial Pressure Monitoring in Patients With Acute Brain Injury in the intensive Care Unit (SYNAPSE-ICU): An International, Prospective Observational Cohort Study, ” Lancet Neurology 20, no. 7 (2021): 548-558.

[269]

S. Dallagiacoma, C. Robba, F. Graziano, et al., “Intracranial Pressure Monitoring in Patients with Spontaneous Intracerebral Hemorrhage: Insights from the SYNAPSE-ICU Study, ” Neurology 99, no. 2 (2022): e98-e108.

[270]

G. Zhang, Y. Li, D. Chen, et al., “The Role of ICP Monitoring in Minimally Invasive Surgery for the Management of Intracerebral Hemorrhage, ” Transl Stroke Res 16, no. 2 (2023): 547-556.

[271]

S. Duan, Q. Yuan, M. Wang, et al., “Intracranial Pressure Monitoring in Patients With Spontaneous Intracerebral Hemorrhage: A Systematic Review With Meta-Analysis, ” World neurosurgery 189 (2024): 447-455.e4.

[272]

S. Cardona, H. Baqai, F. Mikdashi, et al., “Intracranial and Blood Pressure Variability and in-Hospital Outcomes in Intracranial Device-Monitored Patients With Spontaneous Intracerebral Hemorrhage, ” Neurocrit Care 39, no. 2 (2023): 357-367.

[273]

W. Z. Fan, J. R. Jiang, H. L. Zang, et al., “Advancements in Ultrasound Techniques for Evaluating Intracranial Pressure through Optic Nerve Sheath Diameter Measurement, ” World neurosurgery 189 (2024): 285-290.

[274]

A. J. Schiefecker, M. Kofler, M. Gaasch, et al., “Brain Temperature but Not Core Temperature Increases During Spreading Depolarizations in Patients With Spontaneous Intracerebral Hemorrhage, ” Journal of Cerebral Blood Flow and Metabolism 38, no. 3 (2018): 549-558.

[275]

A. Addis, M. Gaasch, A. J. Schiefecker, et al., “Brain Temperature Regulation in Poor-grade Subarachnoid Hemorrhage Patients—A Multimodal Neuromonitoring Study, ” Journal of Cerebral Blood Flow and Metabolism 41, no. 2 (2021): 359-368.

[276]

M. Earl and R. Maharaj, “Association between Early Hyperoxemia Exposure and Intensive Care Unit Mortality in Intracerebral Hemorrhage: An Observational Cohort Analysis, ” Neurocrit Care 41, no. 3 (2024): 963-973.

[277]

J. Bösel, W. D. Niesen, F. Salih, et al., “Effect of Early vs Standard Approach to Tracheostomy on Functional Outcome at 6 Months among Patients with Severe Stroke Receiving Mechanical Ventilation: The SETPOINT2 Randomized Clinical Trial, ” Jama 327, no. 19 (2022): 1899-1909.

[278]

J. Claassen, F. S. Taccone, P. Horn, et al., “Recommendations on the Use of EEG Monitoring in Critically Ill Patients: Consensus Statement From the Neurointensive Care Section of the ESICM, ” Intensive Care Medicine 39, no. 8 (2013): 1337-1351.

[279]

Y. Chen, W. Xu, L. Wang, et al., “Transcranial Doppler Combined With Quantitative EEG Brain Function Monitoring and Outcome Prediction in Patients With Severe Acute Intracerebral Hemorrhage, ” Critical Care (London, England) 22, no. 1 (2018): 36.

[280]

K. R. Evenson, R. E. Foraker, D. L. Morris, et al., “A Comprehensive Review of Prehospital and in-hospital Delay Times in Acute Stroke Care, ” Int J Stroke 4, no. 3 (2009): 187-199.

[281]

H. Kamal, S. Assaf, M. Kabalan, et al., “Evaluation of Stroke Pre-hospital Management in Lebanon From Symptoms Onset to Hospital Arrival and Impact on Patients' status at Discharge: A Pilot Study, ” BMC Neurology [Electronic Resource] 22, no. 1 (2022): 494.

[282]

A. B. Iversen, R. A. Blauenfeldt, S. P. Johnsen, et al., “Understanding the Seriousness of a Stroke Is Essential for Appropriate Help-seeking and Early Arrival at a Stroke Centre: A Cross-sectional Study of Stroke Patients and Their Bystanders, ” Eur Stroke J 5, no. 4 (2020): 351-361.

[283]

C. D. Ovenden, J. Hewitt, J. Kovoor, et al., “Time to Hospital Presentation Following Intracerebral Haemorrhage: Proportion of Patients Presenting Within Eight Hours and Factors Associated With Delayed Presentation, ” J Stroke Cerebrovasc Dis 31, no. 11 (2022): 106758.

[284]

M. Dixon, J. P. Appleton, P. Scutt, et al., “Time Intervals and Distances Travelled for Prehospital Ambulance Stroke Care: Data From the Randomised-controlled Ambulance-based Rapid Intervention With Glyceryl trinitrate in Hypertensive Stroke Trial-2 (RIGHT-2), ” BMJ Open 12, no. 11 (2022): e060211.

[285]

L. Goertz, M. Pflaeging, C. Hamisch, et al., “Delayed Hospital Admission of Patients With Aneurysmal Subarachnoid Hemorrhage: Clinical Presentation, Treatment Strategies, and Outcome, ” Journal of Neurosurgery 134, no. 3 (2020): 1182-1189.

[286]

A. K. Gupta, K. Kaur, L. Bhatia, et al., “Causes of Pre-hospital Delay in Acute Stroke in Punjab, ” Cureus 15, no. 5 (2023): e39180.

[287]

A. Ramos-Pachón, D. Rodríguez-Luna, J. Martí-Fàbregas, et al., “Effect of Bypassing the Closest Stroke Center in Patients With Intracerebral Hemorrhage: A Secondary Analysis of the RACECAT Randomized Clinical Trial, ” JAMA neurology 80, no. 10 (2023): 1028-1036.

[288]

B. Y. Chen, H. Gupta, C. Yacas, et al., “Effects of Delay to Stroke Unit Admission in Patients With Ischemic and Hemorrhagic Stroke, ” Canadian Journal of Neurological Sciences 50, no. 1 (2023): 10-16.

[289]

A. Ois, E. Vivas, G. Figueras-Aguirre, et al., “Misdiagnosis Worsens Prognosis in Subarachnoid Hemorrhage with Good Hunt and Hess Score, ” Stroke; A Journal of Cerebral Circulation 50, no. 11 (2019): 3072-3076.

[290]

J. M. Wardlaw, S. L. Keir, and M. S. Dennis, “The Impact of Delays in Computed Tomography of the Brain on the Accuracy of Diagnosis and Subsequent Management in Patients With minor Stroke, ” Journal of Neurology, Neurosurgery, and Psychiatry 74, no. 1 (2003): 77-81.

[291]

H. J. Han, K. Y. Park, J. Kim, et al., “Delays in Intracerebral Hemorrhage Management Is Associated With Hematoma Expansion and Worse Outcomes: Changes in COVID-19 Era, ” Yonsei Medical Journal 62, no. 10 (2021): 911-917.

[292]

M. J. Buscot, R. V. Chandra, J. Maingard, et al., “Association of Onset-to-Treatment Time with Discharge Destination, Mortality, and Complications among Patients with Aneurysmal Subarachnoid Hemorrhage, ” JAMA Network Open 5, no. 1 (2022): e2144039.

[293]

T. Liu, Z. Zhao, C. Wu, et al., “Impact of COVID-19 Infection Experience on Mental Health Status of Intensive Care Unit Patients' family Members: A Real-world Study, ” Qjm 116, no. 11 (2023): 903-910.

[294]

J. L. Ruiz-Sandoval, J. Aceves-Montoya, E. Chiquete, et al., “Hospital Arrival and Functional Outcome After Intracerebral Hemorrhage, ” Revista De Investigacion Clinica 74, no. 1 (2022): 51-60.

[295]

J. M. Ospel, A. A. Dmytriw, R. W. Regenhardt, et al., “Recent Developments in Pre-hospital and in-hospital Triage for Endovascular Stroke Treatment, ” J Neurointerv Surg 15, no. 11 (2023): 1065-1071.

[296]

S. Suda, B. Yang, K. Schaar, et al., “Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents With Intracerebral Hemorrhage, ” Stem Cells and Development 24, no. 23 (2015): 2756-2766.

[297]

J. Xie, B. Wang, L. Wang, et al., “Intracerebral and Intravenous Transplantation Represents a Favorable Approach for Application of Human Umbilical Cord Mesenchymal Stromal Cells in Intracerebral Hemorrhage Rats, ” Medical Science Monitor 22 (2016): 3552-3561.

[298]

J. Cui, C. Cui, Y. Cui, et al., “Bone Marrow Mesenchymal Stem Cell Transplantation Increases GAP-43 Expression via ERK1/2 and PI3K/Akt Pathways in Intracerebral Hemorrhage, ” Cellular Physiology and Biochemistry 42, no. 1 (2017): 137-144.

[299]

B. Y. Choi, O. J. Kim, S. H. Min, et al., “Human Placenta-Derived Mesenchymal Stem Cells Reduce Mortality and Hematoma Size in a Rat Intracerebral Hemorrhage Model in an Acute Phase, ” Stem Cells Int 2018 (2018): 1658195.

[300]

Y. Zhang, H. Deng, Y. Hu, et al., “Adipose-derived Mesenchymal Stem Cells Stereotactic Transplantation Alleviate Brain Edema From Intracerebral Hemorrhage, ” Journal of Cellular Biochemistry 120, no. 9 (2019): 14372-14382.

[301]

T. G. Mello, P. H. Rosado-de-Castro, R. M. P. Campos, et al., “Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage, ” Stem Cells and Development 29, no. 9 (2020): 586-598.

[302]

J. Liu, J. He, Y. Huang, et al., “Hypoxia-preconditioned Mesenchymal Stem Cells Attenuate Microglial Pyroptosis After Intracerebral Hemorrhage, ” Annals of translational medicine 9, no. 17 (2021): 1362.

[303]

S. Takamiya, M. Kawabori, T. Kitahashi, et al., “Intracerebral Transplantation of Mesenchymal Stromal Cell Compounded With Recombinant Peptide Scaffold Against Chronic Intracerebral Hemorrhage Model, ” Stem Cells Int 2022 (2022): 8521922.

[304]

G. Yang, J. Kantapan, M. Mazhar, et al., “Mesenchymal Stem Cells Transplantation Combined With IronQ Attenuates ICH-induced Inflammation Response via Mincle/Syk Signaling Pathway, ” Stem Cell Res Ther 14, no. 1 (2023): 131.

[305]

L. Gao, L. Peng, H. Tang, et al., “Screening and Identification of Differential-expressed RNAs in Thrombin-induced in Vitro Model of Intracerebral Hemorrhage, ” Molecular and Cellular Biochemistry 479, no. 10 (2024): 2755-2767.

[306]

J. He, Y. Luo, C. Wang, et al., “DeSUMOylation of IGF2BP2 Promotes Neuronal Differentiation of OM-MSCs by Stabilizing SOX11 to Ameliorate Brain Injury after Intracerebral Hemorrhage, ” CNS Neuroscience & Therapeutics 31, no. 6 (2025): e70463.

[307]

L. Deng, X. Gao, G. Fan, et al., “Effects of GDNF-Transfected Marrow Stromal Cells on Rats With Intracerebral Hemorrhage, ” J Stroke Cerebrovasc Dis 28, no. 9 (2019): 2555-2562.

[308]

W. Xu, L. Gao, T. Li, et al., “Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Protects against Neuronal Apoptosis via Activation of Akt/MDM2/p53 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage, ” Front Mol Neurosci 11 (2018): 176.

[309]

Y. Han, D. Seyfried, Y. Meng, et al., “Multipotent Mesenchymal Stromal Cell-derived Exosomes Improve Functional Recovery After Experimental Intracerebral Hemorrhage in the Rat, ” Journal of Neurosurgery 131, no. 1 (2019): 290-300.

[310]

X. Yi and X. Tang, “Exosomes from miR-19b-3p-Modified ADSCs Inhibit Ferroptosis in Intracerebral Hemorrhage Mice, ” Frontiers in Cell and Developmental Biology 9 (2021): 661317.

[311]

T. C. Lin, Y. C. Tsai, Y. A. Chen, et al., “Brain-derived Neurotrophic Factor Contributes to Neurogenesis After Intracerebral Hemorrhage: A Rodent Model and human Study, ” Front Cell Neurosci 17 (2023): 1170251.

[312]

K. Y. Tseng, V. Stratoulias, W. F. Hu, et al., “Augmenting Hematoma-scavenging Capacity of Innate Immune Cells by CDNF Reduces Brain Injury and Promotes Functional Recovery After Intracerebral Hemorrhage, ” Cell death & disease 14, no. 2 (2023): 128.

[313]

M. Guo, X. Ge, C. Wang, et al., “Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes After Intracerebral Hemorrhage by Regulating Neuroinflammation, ” Brain Sci 13, no. 4 (2023): 639.

[314]

W. Yang, N. Ding, R. Luo, et al., “Exosomes From Young Healthy human Plasma Promote Functional Recovery From Intracerebral Hemorrhage via Counteracting Ferroptotic Injury, ” Bioact Mater 27 (2023): 1-14.

[315]

Y. Hou, Y. Xie, X. Liu, et al., “Oxygen Glucose Deprivation-pretreated Astrocyte-derived Exosomes Attenuates Intracerebral Hemorrhage (ICH)-induced BBB Disruption Through miR-27a-3p /ARHGAP25/Wnt/Beta-catenin Axis, ” Fluids Barriers CNS 21, no. 1 (2024): 8.

[316]

X. Lai, Y. Xiong, X. Guo, et al., “Neuroprotective Effect of PBCA Nanoparticles Delivering pEGFP-BDNF in a Mouse Model of Intracerebral Hemorrhage, ” Journal of Integrative Neuroscience 24, no. 5 (2025): 26971.

[317]

C. Nan, Y. Zhang, A. Zhang, et al., “Exosomes Derived From human Umbilical Cord Mesenchymal Stem Cells Decrease Neuroinflammation and Facilitate the Restoration of Nerve Function in Rats Suffering From Intracerebral Hemorrhage, ” Molecular and Cellular Biochemistry 480, no. 1 (2025): 309-323.

[318]

J. H. Roh, I. G. Ko, S. E. Kim, et al., “Treadmill Exercise Ameliorates Intracerebral Hemorrhage-induced Depression in Rats, ” J Exerc Rehabil 12, no. 4 (2016): 299-307.

[319]

M. Wang, L. Cheng, Z. L. Chen, et al., “Hyperbaric Oxygen Preconditioning Attenuates Brain Injury After Intracerebral Hemorrhage by Regulating Microglia Polarization in Rats, ” CNS neuroscience & therapeutics 25, no. 10 (2019): 1126-1133.

[320]

K. Kinoshita, G. Hamanaka, R. Ohtomo, et al., “Mature Adult Mice with Exercise-Preconditioning Show Better Recovery after Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 52, no. 5 (2021): 1861-1865.

[321]

B. Q. Wang, M. He, Y. Wang, et al., “Hyperbaric Oxygen Ameliorates Neuronal Injury and Neurological Function Recovery in Rats With Intracerebral Hemorrhage by Silencing microRNA-204-5p-targeted Chloride Channel Protein 3, ” Journal of Physiology and Pharmacology 74, no. 3 (2023).

[322]

Y. Kong, S. Li, M. Zhang, et al., “Acupuncture Ameliorates Neuronal Cell Death, Inflammation, and Ferroptosis and Downregulated miR-23a-3p after Intracerebral Hemorrhage in Rats, ” Journal of Molecular Neuroscience 71, no. 9 (2021): 1863-1875.

[323]

S. S. Dong, M. Y. Li, X. P. Yu, et al., “Baihui-Penetrating-Qubin Acupuncture Attenuates Neurological Deficits through SIRT1/FOXO1 Reducing Oxidative Stress and Neuronal Apoptosis in Intracerebral Hemorrhage Rats, ” Brain Behav 14, no. 12 (2024): e70095.

[324]

P. Wang, Y. Zhang, Z. Li, et al., “Mesenchymal Stem Cells Derived From Human Urine-Derived iPSCs Exhibit Low Immunogenicity and Reduced Immunomodulatory Profile, ” International Journal of Molecular Sciences 25, no. 19 (2024): 10394.

[325]

Z. Dong, Y. Fu, Z. Cai, et al., “Recent Advances in Adipose-derived Mesenchymal Stem Cell-derived Exosomes for Regulating Macrophage Polarization, ” Frontiers in immunology 16 (2025): 1525466.

[326]

S. Aghajani, S. A. Maboudi, I. Seyhoun, et al., “Review of Mesenchymal Stem Cell-derived Exosomes and Their Potential Therapeutic Roles in Treating Rheumatoid Arthritis, ” Molecular Biology Reports 52, no. 1 (2025): 229.

[327]

S. Song, C. Li, Y. Xiao, et al., “Beyond Conventional Therapies: MSCs in the Battle Against Nerve Injury, ” Regen Ther 28 (2025): 280-291.

[328]

L. Gao, W. Xu, T. Li, et al., “Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage, ” Cell Transplantation 27, no. 12 (2018): 1809-1824.

[329]

H. J. Kim, D. Bayarsaikhan, J. Lee, et al., “Brain-Derived Neurotrophic Factor Secreting Human Mesenchymal Stem Cells Improve Outcomes in Rett Syndrome Mouse Models, ” Frontiers in neuroscience 15 (2021): 725398.

[330]

C. Yang, L. Zhou, X. Gao, et al., “Neuroprotective Effects of Bone Marrow Stem Cells Overexpressing Glial Cell Line-derived Neurotrophic Factor on Rats With Intracerebral Hemorrhage and Neurons Exposed to Hypoxia/Reoxygenation, ” Neurosurgery 68, no. 3 (2011): 691-704.

[331]

L. Deng, L. Zhou, Y. Zhu, et al., “Electroacupuncture Enhance Therapeutic Efficacy of Mesenchymal Stem Cells Transplantation in Rats with Intracerebral Hemorrhage, ” Stem Cell Rev Rep 18, no. 2 (2022): 570-584.

[332]

B. Du, M. Liang, H. Zheng, et al., “Anti-mouse CX3CR1 Antibody Alleviates Cognitive Impairment, Neuronal Loss and Myelin Deficits in an Animal Model of Brain Ischemia, ” Neuroscience 438 (2020): 169-181.

[333]

G. Li, H. Yu, N. Liu, et al., “Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery after Experimental Intracerebral Hemorrhage, ” Frontiers in neuroscience 13 (2019): 462.

[334]

X. Chen, C. X. Xu, H. Liang, et al., “Bone Marrow Mesenchymal Stem Cells Transplantation Alleviates Brain Injury After Intracerebral Hemorrhage in Mice Through the Hippo Signaling Pathway, ” Aging (Albany NY) 12, no. 7 (2020): 6306-6323.

[335]

X. Chen, H. Liang, Z. Xi, et al., “BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis, ” Frontiers in Cell and Developmental Biology 8 (2020): 302.

[336]

J. Quan, Q. Liu, P. Li, et al., “Mesenchymal Stem Cell Exosome Therapy: Current Research Status in the Treatment of Neurodegenerative Diseases and the Possibility of Reversing Normal Brain Aging, ” Stem Cell Res Ther 16, no. 1 (2025): 76.

[337]

G. Bedini, A. Bersano, E. R. Zanier, et al., “Mesenchymal Stem Cell Therapy in Intracerebral Haemorrhagic Stroke, ” Current Medicinal Chemistry 25, no. 19 (2018): 2176-2197.

[338]

J. Chen, Y. X. Tang, Y. M. Liu, et al., “Transplantation of Adipose-derived Stem Cells Is Associated With Neural Differentiation and Functional Improvement in a Rat Model of Intracerebral Hemorrhage, ” CNS neuroscience & therapeutics 18, no. 10 (2012): 847-854.

[339]

Z. Chang, G. Mao, L. Sun, et al., “Cell Therapy for Cerebral Hemorrhage: Five Year Follow-up Report, ” Exp Ther Med 12, no. 6 (2016): 3535-3540.

[340]

J. A. Gutierrez-Vargas and G. P. Cardona-Gomez, “Considering Risk Factors for the Effectiveness of Translational Therapies in Brain Stroke, ” Journal of the Neurological Sciences 408 (2020): 116547.

[341]

T. Squillaro, G. Peluso, and U. Galderisi, “Clinical Trials with Mesenchymal Stem Cells: An Update, ” Cell Transplantation 25, no. 5 (2016): 829-848.

[342]

J. Qin, X. Ma, H. Qi, et al., “Transplantation of Induced Pluripotent Stem Cells Alleviates Cerebral Inflammation and Neural Damage in Hemorrhagic Stroke, ” PLoS ONE 10, no. 6 (2015): e0129881.

[343]

A. Gonzalez, G. Moya-Alvarado, C. Gonzalez-Billaut, et al., “Cellular and Molecular Mechanisms Regulating Neuronal Growth by Brain-derived Neurotrophic Factor, ” Cytoskeleton (Hoboken) 73, no. 10 (2016): 612-628.

[344]

S. Y. Ahn, D. K. Sung, Y. E. Kim, et al., “Brain-derived Neurotropic Factor Mediates Neuroprotection of Mesenchymal Stem Cell-derived Extracellular Vesicles Against Severe Intraventricular Hemorrhage in Newborn Rats, ” Stem Cells Transl Med 10, no. 3 (2021): 374-384.

[345]

T. Inoue, Y. Takamatsu, M. Okamura, et al., “Ipsilateral BDNF mRNA Expression in the Motor Cortex Positively Correlates With Motor Function of the Affected Forelimb After Intracerebral Hemorrhage, ” Brain Research 1767 (2021): 147536.

[346]

A. Horton, G. Laramee, S. Wyatt, et al., “NGF Binding to p75 Enhances the Sensitivity of Sensory and Sympathetic Neurons to NGF at Different Stages of Development, ” Molecular and Cellular Neuroscience 10, no. 3-4 (1997): 162-172.

[347]

L. Capossela, A. Gatto, S. Ferretti, et al., “Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review With a Special Insight Into Pediatric Perspectives, ” Biology (Basel) 13, no. 7 (2024): 546.

[348]

M. L. Rocco, M. Soligo, L. Manni, et al., “Nerve Growth Factor: Early Studies and Recent Clinical Trials, ” Current Neuropharmacology 16, no. 10 (2018): 1455-1465.

[349]

X. Jiang, L. Zhou, Z. Sun, et al., “MSCs Overexpressing GDNF Restores Brain Structure and Neurological Function in Rats With Intracerebral Hemorrhage, ” Mol Biomed 4, no. 1 (2023): 43.

[350]

D. M. Pegtel and S. J. Gould, “Exosomes, ” Annual Review of Biochemistry 88 (2019): 487-514.

[351]

G. Zhang, Z. Zhu, H. Wang, et al., “Exosomes Derived From human Neural Stem Cells Stimulated by Interferon Gamma Improve Therapeutic Ability in Ischemic Stroke Model, ” Journal of Advanced Research 24 (2020): 435-445.

[352]

M. Li, X. Li, D. Wang, et al., “Inhibition of Exosome Release Augments Neuroinflammation Following Intracerebral Hemorrhage, ” Faseb Journal 35, no. 6 (2021): e21617.

[353]

P. Venkat, C. Cui, M. Chopp, et al., “MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects after Stroke in Type 2 Diabetes Mellitus Mice, ” Stroke 50, no. 10 (2019): 2865-2874.

[354]

Y. Zhang, M. Chopp, X. S. Liu, et al., “Exosomes Derived From Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons, ” Molecular Neurobiology 54, no. 4 (2017): 2659-2673.

[355]

Q. Ji, Y. Ji, J. Peng, et al., “Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients, ” PLoS ONE 11, no. 9 (2016): e0163645.

[356]

L. G. Penna, J. P. Pinheiro, S. H. R. Ramalho, et al., “Effects of Aerobic Physical Exercise on Neuroplasticity After Stroke: Systematic Review, ” Arquivos De Neuro-Psiquiatria 79, no. 9 (2021): 832-843.

[357]

M. V. Santos, A. S. Pagnussat, R. G. Mestriner, et al., “Motor Skill Training Promotes Sensorimotor Recovery and Increases Microtubule-Associated Protein-2 (MAP-2) Immunoreactivity in the Motor Cortex After Intracerebral Hemorrhage in the Rat, ” ISRN Neurol 2013 (2013): 159184.

[358]

J. C. Chen and F. Z. Shaw, “Progress in Sensorimotor Rehabilitative Physical Therapy Programs for Stroke Patients, ” World J Clin Cases 2, no. 8 (2014): 316-326.

[359]

C. S. Mang, K. L. Campbell, C. J. Ross, et al., “Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-derived Neurotrophic Factor, ” Physical Therapy 93, no. 12 (2013): 1707-1716.

[360]

Z. R. Peng, A. L. Yang, and Q. D. Yang, “The Effect of Hyperbaric Oxygen on Intracephalic Angiogenesis in Rats With Intracerebral Hemorrhage, ” Journal of the Neurological Sciences 342, no. 1-2 (2014): 114-123.

[361]

R. P. Ostrowski, K. Stepien, E. Pucko, et al., “The Efficacy of Hyperbaric Oxygen in Hemorrhagic Stroke: Experimental and Clinical Implications, ” Arch Med Sci 13, no. 5 (2017): 1217-1223.

[362]

L. Yang, J. Tang, Q. Chen, et al., “Hyperbaric Oxygen Preconditioning Attenuates Neuroinflammation After Intracerebral Hemorrhage in Rats by Regulating Microglia Characteristics, ” Brain Research 1627 (2015): 21-30.

[363]

J. Veldema and A. Gharabaghi, “Non-invasive Brain Stimulation for Improving Gait, Balance, and Lower Limbs Motor Function in Stroke, ” J Neuroeng Rehabil 19, no. 1 (2022): 84.

[364]

M. Cui, H. Ge, H. Zeng, et al., “Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation and Differentiation After Intracerebral Hemorrhage in Mice, ” Cell Transplantation 28, no. 5 (2019): 568-584.

[365]

E. Caceres, P. Salazar, S. Shidoh, et al., “Noninvasive Vagus Nerve Stimulation Protects Neurons in the Perihematomal Region and Improves the Outcomes in a Rat Model of Intracerebral Hemorrhage, ” Neurocrit Care 43, no. 1 (2025): 277-289.

[366]

T. Chen, W. W. Zhang, Y. X. Chu, et al., “Acupuncture for Pain Management: Molecular Mechanisms of Action, ” American Journal of Chinese Medicine 48, no. 4 (2020): 793-811.

[367]

Z. Liu, L. Guan, Y. Wang, et al., “History and Mechanism for Treatment of Intracerebral Hemorrhage With Scalp Acupuncture, ” Evid Based Complement Alternat Med 2012 (2012): 895032.

[368]

H. Q. Li, Y. Li, Z. X. Chen, et al., “Electroacupuncture Exerts Neuroprotection Through Caveolin-1 Mediated Molecular Pathway in Intracerebral Hemorrhage of Rats, ” Neural Plasticity 2016 (2016): 7308261.

[369]

U. Hammerbeck, A. Abdulle, C. Heal, et al., “Hyperacute Prediction of Functional Outcome in Spontaneous Intracerebral Haemorrhage: Systematic Review and Meta-analysis, ” Eur Stroke J 7, no. 1 (2022): 6-14.

[370]

C. Chaisawasthomrong and K. Saetia, “Independent Factors Associated With 30-Day in-Hospital Mortality From Acute Spontaneous Intracerebral Hemorrhage, ” World neurosurgery 184 (2024): e774-e783.

[371]

J. P. Broderick, M. N. Diringer, M. D. Hill, et al., “Determinants of Intracerebral Hemorrhage Growth: An Exploratory Analysis, ” Stroke; A Journal of Cerebral Circulation 38, no. 3 (2007): 1072-1075.

[372]

A. Morotti, Q. Li, J. Nawabi, et al., “Predictors of Severe Intracerebral Hemorrhage Expansion, ” Eur Stroke J 9, no. 3 (2024): 623-629.

[373]

A. J. Schupper, M. Khorasanizadeh, C. P. Rossitto, et al., “Cigarette Smoking as a Risk Factor for Hematoma Expansion in Primary Intracerebral Hemorrhage: Analysis from a Randomized Clinical Trial, ” Journal of the American Heart Association 12, no. 15 (2023): e030431.

[374]

Y. Jia, X. Ye, G. Song, et al., “Direct Bilirubin: A Predictor of Hematoma Expansion After Intracerebral Hemorrhage, ” American Journal of Emergency Medicine 71 (2023): 150-156.

[375]

C. Delcourt, S. Zhang, H. Arima, et al., “Significance of Hematoma Shape and Density in Intracerebral Hemorrhage: The Intensive Blood Pressure Reduction in Acute Intracerebral Hemorrhage Trial Study, ” Stroke; A Journal of Cerebral Circulation 47, no. 5 (2016): 1227-1232.

[376]

A. Morotti, G. Boulouis, J. M. Romero, et al., “Blood Pressure Reduction and Noncontrast CT Markers of Intracerebral Hemorrhage Expansion, ” Neurology 89, no. 6 (2017): 548-554.

[377]

Q. Li, Q. J. Liu, W. S. Yang, et al., “Island Sign: An Imaging Predictor for Early Hematoma Expansion and Poor Outcome in Patients with Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 48, no. 11 (2017): 3019-3025.

[378]

A. Morotti, Q. Li, V. Mazzoleni, et al., “Non-contrast CT Markers of Intracerebral Hemorrhage Expansion: The Influence of Onset-to-CT Time, ” Int J Stroke 18, no. 6 (2023): 704-711.

[379]

L. Song, J. Cheng, C. Zhang, et al., “The Frequency of Imaging Markers Adjusted for Time Since Symptom Onset in Intracerebral Hemorrhage: A Novel Predictor for Hematoma Expansion, ” Int J Stroke 19, no. 2 (2024): 226-234.

[380]

M. Horn, E. Teleg, K. Tanaka, et al., “Timing of Spot Sign Appearance, Spot Sign Volume, and Leakage Rate Among Phases of Multiphase CTA Predict Intracerebral Hemorrhage Growth, ” Ajnr American Journal of Neuroradiology 45, no. 6 (2024): 693-700.

[381]

G. Boulouis, A. Morotti, H. B. Brouwers, et al., “Noncontrast Computed Tomography Hypodensities Predict Poor Outcome in Intracerebral Hemorrhage Patients, ” Stroke; A Journal of Cerebral Circulation 47, no. 10 (2016): 2511-2516.

[382]

A. Nehme, C. Ducroux, M. A. Panzini, et al., “Non-contrast CT Markers of Intracerebral Hematoma Expansion: A Reliability Study, ” European Radiology 32, no. 9 (2022): 6126-6135.

[383]

K. Wiegertjes, L. Dinsmore, J. Drever, et al., “Diffusion-weighted Imaging Lesions and Risk of Recurrent Stroke After Intracerebral Haemorrhage, ” Journal of Neurology, Neurosurgery, and Psychiatry 92, no. 9 (2021): 950-955.

[384]

L. Rivera-Lara, S. M. Cho, Y. Li, et al., “Mechanistic Evaluation of Diffusion Weighted Hyperintense Lesions after Large Spontaneous Intracerebral Hemorrhage: A Subgroup Analysis of MISTIE III, ” Neurocrit Care 40, no. 3 (2024): 1140-1150.

[385]

S. Kaffashian, C. Tzourio, Y. C. Zhu, et al., “Differential Effect of White-Matter Lesions and Covert Brain Infarcts on the Risk of Ischemic Stroke and Intracerebral Hemorrhage, ” Stroke 47, no. 7 (2016): 1923-1925.

[386]

M. P. Cliteur, L. Sondag, L. Cunningham, et al., “The Association Between Perihaematomal Oedema and Functional Outcome After Spontaneous Intracerebral Haemorrhage: A Systematic Review and Meta-analysis, ” Eur Stroke J 8, no. 2 (2023): 423-433.

[387]

J. Yang, H. Arima, G. Wu, et al., “Prognostic Significance of Perihematomal Edema in Acute Intracerebral Hemorrhage: Pooled Analysis From the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Studies, ” Stroke; A Journal of Cerebral Circulation 46, no. 4 (2015): 1009-1013.

[388]

S. B. Murthy, Y. Moradiya, J. Dawson, et al., “Perihematomal Edema and Functional Outcomes in Intracerebral Hemorrhage: Influence of Hematoma Volume and Location, ” Stroke; A Journal of Cerebral Circulation 46, no. 11 (2015): 3088-3092.

[389]

F. Dierksen, A. T. Tran, T. Zeevi, et al., “Peri-hematomal Edema Shape Features Related to 3-month Outcome in Acute Supratentorial Intracerebral Hemorrhage, ” Eur Stroke J 9, no. 2 (2024): 383-390.

[390]

R. McCourt, B. Gould, M. Kate, et al., “Blood-brain Barrier Compromise Does Not Predict Perihematoma Edema Growth in Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 46, no. 4 (2015): 954-960.

[391]

N. Li, J. Guo, K. Kang, et al., “Cytotoxic Edema and Adverse Clinical Outcomes in Patients With Intracerebral Hemorrhage, ” Neurocrit Care 38, no. 2 (2023): 414-421.

[392]

S. Marchina, J. A. Trevino-Calderon, S. Hassani, et al., “Perihematomal Edema and Clinical Outcome after Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis, ” Neurocrit Care 37, no. 1 (2022): 351-362.

[393]

A. Giede-Jeppe, S. T. Gerner, J. A. Sembill, et al., “Peak Edema Extension Distance: An Edema Measure Independent From Hematoma Volume Associated With Functional Outcome in Intracerebral Hemorrhage, ” Neurocrit Care 40, no. 3 (2024): 1089-1098.

[394]

K. H. Lee, V. A. Lioutas, S. Marchina, et al., “The Prognostic Roles of Perihematomal Edema and Ventricular Size in Patients With Intracerebral Hemorrhage, ” Neurocrit Care 37, no. 2 (2022): 455-462.

[395]

D. J. Roh, I. S. Asonye, and F. Carvalho Poyraz, “Intraventricular Hemorrhage Expansion in the CLEAR III Trial: A Post Hoc Exploratory Analysis, ” Stroke; A Journal of Cerebral Circulation 53, no. 6 (2022): 1847-1853.

[396]

E. Chan, C. S. Anderson, X. Wang, et al., “Significance of Intraventricular Hemorrhage in Acute Intracerebral Hemorrhage: Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Results, ” Stroke; A Journal of Cerebral Circulation 46, no. 3 (2015): 653-658.

[397]

S. H. Ahn, J. H. Hong, G. L. Torres, et al., “The Spot Sign and Intraventricular Hemorrhage Are Associated With Baseline Coagulopathy and Outcome in Intracerebral Hemorrhage, ” Neurocrit Care 37, no. 3 (2022): 660-669.

[398]

X. N. Lv, J. Cheng, X. Y. Liu, et al., “Ultraearly Intraventricular Hemorrhage Growth Predicts Early Neurologic Deterioration and Poor Functional Outcome after Acute Intracerebral Hemorrhage, ” Journal of the American Heart Association 12, no. 21 (2023): e031214.

[399]

V. Vyas, S. I. Savitz, S. B. Boren, et al., “Serial Diffusion Tensor Imaging and Rate of Ventricular Blood Clearance in Patients With Intraventricular Hemorrhage, ” Neurocrit Care 42, no. 1 (2024): 48-58.

[400]

K. C. Teo, S. M. Fong, W. C. Y. Leung, et al., “Location-Specific Hematoma Volume Cutoff and Clinical Outcomes in Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 54, no. 6 (2023): 1548-1557.

[401]

J. R. Senff, S. D. Singh, M. Pasi, et al., “Long-Term Outcomes in Patients with Spontaneous Cerebellar Hemorrhage: An International Cohort Study, ” Stroke; A Journal of Cerebral Circulation 55, no. 5 (2024): 1210-1217.

[402]

L. R. Kuohn, J. Witsch, T. Steiner, et al., “Early Deterioration, Hematoma Expansion, and Outcomes in Deep versus Lobar Intracerebral Hemorrhage: The FAST Trial, ” Stroke; A Journal of Cerebral Circulation 53, no. 8 (2022): 2441-2448.

[403]

E. P. Myserlis, E. Mayerhofer, J. R. Abramson, et al., “Lobar Intracerebral Hemorrhage and Risk of Subsequent Uncontrolled Blood Pressure, ” Eur Stroke J 7, no. 3 (2022): 280-288.

[404]

L. Song, X. Wang, M. Ouyang, et al., “Associations of an Abnormal Physiological Score with Outcomes in Acute Intracerebral Hemorrhage: INTERACT2 Study, ” Stroke; A Journal of Cerebral Circulation 52, no. 2 (2021): 722-725.

[405]

C. D. Nouh, B. Ray, C. Xu, et al., “Quantitative Analysis of Stress-Induced Hyperglycemia and Intracranial Blood Volumes for Predicting Mortality after Intracerebral Hemorrhage, ” Transl Stroke Res 13, no. 4 (2022): 595-603.

[406]

C. Wang, W. Wang, and G. Li, “Prognostic Value of Glycemic Gap in Patients With Spontaneous Intracerebral Hemorrhage, ” European Journal of Neurology 29, no. 9 (2022): 2725-2733.

[407]

J. Zhang, Q. Zhang, H. Gu, et al., “Comparison of Stress Hyperglycemia Ratio and Glycemic Gap on Acute ICH in-hospital Outcomes, ” Ann Clin Transl Neurol 11, no. 6 (2024): 1492-1501.

[408]

D. Yang, X. Luo, S. Sun, et al., “Abnormal Dynamic Functional Connectivity in Young Nondisabling Intracerebral Hemorrhage Patients, ” Ann Clin Transl Neurol 11, no. 6 (2024): 1567-1578.

[409]

L. Wu, A. Wang, K. Kang, et al., “Low LDL-C/HDL-C Ratio Is Associated With Poor Clinical Outcome after Intracerebral Hemorrhage: A Retrospective Analysis of Multicenter, Prospective Cohort Data in China, ” Neurocrit Care 41, no. 1 (2024): 29-37.

[410]

J. Wang, W. Wang, and A. Wang, “Slightly Elevated Lymphocyte to Monocyte Ratio Predicting Favorable Outcomes in Patients With Spontaneous Intracerebral Hemorrhage, ” J Inflamm Res 15 (2022): 6773-6783.

[411]

S. Kaleem, C. Zhang, A. M. Gusdon, et al., “Association between Neutrophil-Lymphocyte Ratio and 30-Day Infection and Thrombotic Outcomes after Intraventricular Hemorrhage: A CLEAR III Analysis, ” Neurocrit Care 40, no. 2 (2024): 529-537.

[412]

A. I. Qureshi, W. Huang, and D. F. Hanley, et al., “Early Hyperchloremia Is Independently Associated With Death or Disability in Patients With Intracerebral Hemorrhage, ” Neurocrit Care 37, no. 2 (2022): 487-496.

[413]

J. He, Y. Zhang, X. Cheng, et al., “White Blood Cell Count Predicts Mortality in Patients With Spontaneous Intracerebral Hemorrhage, ” Neurocrit Care 39, no. 2 (2023): 445-454.

[414]

W. Wang, H. Cheng, Y. Zhang, et al., “Skin Sympathetic Nerve Activity as a Biomarker for Outcomes in Spontaneous Intracerebral Hemorrhage, ” Ann Clin Transl Neurol 10, no. 7 (2023): 1136-1145.

[415]

A. C. Leasure, L. R. Kuohn, K. N. Vanent, et al., “Association of Serum IL-6 (Interleukin 6) with Functional Outcome after Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 52, no. 5 (2021): 1733-1740.

[416]

K. Rådholm, H. Arima, R. I. Lindley, et al., “Older Age Is a Strong Predictor for Poor Outcome in Intracerebral Haemorrhage: The INTERACT2 Study, ” Age and Ageing 44, no. 3 (2015): 422-427.

[417]

J. Takahashi, K. Sakai, T. Sato, et al., “Serum Arachidonic Acid Levels Is a Predictor of Poor Functional Outcome in Acute Intracerebral Hemorrhage, ” Clinical Biochemistry 98 (2021): 42-47.

[418]

G. Wang, B. F. Wu, W. J. Zhao, et al., “C-reactive Protein Is a Predictor for Lower-extremity Deep Venous Thrombosis in Patients With Primary Intracerebral Hemorrhage, ” European Journal of Medical Research 29, no. 1 (2024): 311.

[419]

D. Woo, M. E. Comeau, S. U. Venema, et al., “Risk Factors Associated with Mortality and Neurologic Disability after Intracerebral Hemorrhage in a Racially and Ethnically Diverse Cohort, ” JAMA Network Open 5, no. 3 (2022): e221103.

[420]

J. Witsch, Q. Cao, J. W. Song, et al., “Sex Differences in Perihematomal Edema Volume and Outcome after Intracerebral Hemorrhage, ” Neurocrit Care 41, no. 1 (2024): 208-217.

[421]

E. C. Sandset, X. Wang, C. Carcel, et al., “Sex Differences in Treatment, Radiological Features and Outcome After Intracerebral Haemorrhage: Pooled Analysis of Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trials 1 and 2, ” Eur Stroke J 5, no. 4 (2020): 345-350.

[422]

M. Foschi, L. D'Anna, and C. Gabriele, “Sex Differences in the Epidemiology of Intracerebral Hemorrhage over 10 Years in a Population-Based Stroke Registry, ” Journal of the American Heart Association 13, no. 5 (2024): e032595.

[423]

S. Somani, H. Nanavati, X. Zhou, et al., “African Americans and Women Have Lower Functional Gains during Acute Inpatient Rehabilitation after Hemorrhagic Stroke, ” American Journal of Physical Medicine & Rehabilitation 101, no. 12 (2022): 1099-1103.

[424]

K. Toyoda, Y. Y. Palesch, M. Koga, et al., “Regional Differences in the Response to Acute Blood Pressure Lowering after Cerebral Hemorrhage, ” Neurology 96, no. 5 (2021): e740-e751.

[425]

X. Wang, H. Sun, X. Wang, et al., “More Severe Initial Manifestations and Worse Short-term Functional Outcome of Intracerebral Hemorrhage in the Plateau Than in the Plain, ” Journal of Cerebral Blood Flow and Metabolism 44, no. 1 (2024): 94-104.

[426]

M. B. Downer, L. Li, S. Carter, et al., “Associations of Multimorbidity with Stroke Severity, Subtype, Premorbid Disability, and Early Mortality: Oxford Vascular Study, ” Neurology 101, no. 6 (2023): e645-e652.

[427]

M. Hevesi, E. M. Bershad, M. Jafari, et al., “Untreated Hypertension as Predictor of in-hospital Mortality in Intracerebral Hemorrhage: A Multi-center Study, ” Journal of Critical Care 43 (2018): 235-239.

[428]

K. B. Walsh, D. Woo, P. Sekar, et al., “Untreated Hypertension: A Powerful Risk Factor for Lobar and Nonlobar Intracerebral Hemorrhage in Whites, Blacks, and Hispanics, ” Circulation 134, no. 19 (2016): 1444-1452.

[429]

J. Lin, M. He, B. Tan, et al., “Impact and Risk Factors of Sepsis on Long-term Outcomes After Spontaneous Intracerebral Hemorrhage, ” Chinese Medical Journal 135, no. 8 (2022): 1006-1008.

[430]

A. Pezzini, B. Tarantino, M. Zedde, et al., “Early Seizures and Risk of Epilepsy and Death After Intracerebral Haemorrhage: The MUCH Italy, ” Eur Stroke J 9, no. 3 (2024): 630-638.

[431]

L. Liu, A. Wang, D. Wang, et al., “Systemic Inflammatory Response Syndrome on Admission and Clinical Outcomes after Intracerebral Hemorrhage, ” J Inflamm Res 16 (2023): 917-926.

[432]

Q. Wang, S. Li, M. Sun, et al., “Systemic Immune-inflammation Index May Predict the Acute Kidney Injury and Prognosis in Patients With Spontaneous Cerebral Hemorrhage Undergoing Craniotomy: A Single-center Retrospective Study, ” BMC Nephrology [Electronic Resource] 24, no. 1 (2023): 73.

[433]

K. L. Hoad, H. Jones, G. Miller, et al., “Stroke-heart Syndrome: Incidence and Clinical Outcomes of Cardiac Complications Following Intracerebral Haemorrhage, ” Eur Stroke J (2024): 23969873241264115.

[434]

W. Cao, Z. Yang, X. Liu, et al., “A Kidney-brain Neural Circuit Drives Progressive Kidney Damage and Heart Failure, ” Signal Transduct Target Ther 8, no. 1 (2023): 184.

[435]

L. Sieh, E. Peasley, E. Mao, et al., “Admission Viscoelastic Hemostatic Assay Parameters Predict Poor Long-Term Intracerebral Hemorrhage Outcomes, ” Neurocrit Care 42, no. 1 (2024): 100-107.

[436]

P. Wang, S. Yang, M. Guoji, et al., “The Predictive Role of the Nomogram Based on Clinical Characteristics and Thromboelastography Markers for Rebleeding After Hypertensive Intracerebral Hemorrhage, ” Biochem Biophys Rep 37 (2024): 101638.

[437]

F. A. Dias, M. C. Z. Zotin, A.-A. FF, et al., “Dilated Optic Nerve Sheath by Ultrasound Predicts Mortality Among Patients With Acute Intracerebral Hemorrhage, ” Arquivos De Neuro-Psiquiatria 81, no. 10 (2023): 861-867.

[438]

Q. Zhang, Y. Chen, Y. Li, et al., “Neutrophil Extracellular Trap-mediated Impairment of Meningeal Lymphatic Drainage Exacerbates Secondary Hydrocephalus After Intraventricular Hemorrhage, ” Theranostics 14, no. 5 (2024): 1909-1938.

[439]

H. H. Tsai, Y. C. Hsieh, J. S. Lin, et al., “Functional Investigation of Meningeal Lymphatic System in Experimental Intracerebral Hemorrhage, ” Stroke; A Journal of Cerebral Circulation 53, no. 3 (2022): 987-998.

[440]

M. T. Poon, A. F. Fonville, and R. Al-Shahi Salman, “Long-term Prognosis After Intracerebral Haemorrhage: Systematic Review and Meta-analysis, ” Journal of Neurology, Neurosurgery, and Psychiatry 85, no. 6 (2014): 660-667.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/