mRNA Vaccines: Current Applications and Future Directions

Jianmei Li , Yixin Liu , Jie Dai , Li Yang , Feng Xiong , Jing Xia , Jing Jin , Yangping Wu , Xingchen Peng

MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70434

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (11) : e70434 DOI: 10.1002/mco2.70434
REVIEW

mRNA Vaccines: Current Applications and Future Directions

Author information +
History +
PDF

Abstract

Messenger RNA (mRNA) vaccines, as a novel class of biotherapeutics, leverage mRNA technology to instruct cells to produce specific antigens, thereby inducing an immune response. In recent years, significant progress has been made in applying these vaccines to infectious disease prevention and cancer treatment. Compared with traditional vaccines, mRNA vaccines offer high programmability, as well as greatly enhanced stability and immunogenicity, achieved through nucleotide modifications and advanced delivery systems such as lipid nanoparticles. However, many challenges remain in the design and delivery of mRNA vaccines, particularly for complex conditions like cancer. This review explores the latest advances and future prospects of mRNA vaccines in both infectious disease prevention and cancer therapy. It discusses the mechanisms of tumor immune escape and examines the potential of mRNA vaccines to overcome tumor immune resistance. The review also analyzes strategies for tumor vaccine design and the development of novel delivery systems, projecting the future role of mRNA vaccines in cancer therapy. By providing theoretical guidance and technical insights, this review aims to expand the development of mRNA vaccines across broader disease areas. It offers both a theoretical framework and a practical reference for researchers focused on infectious disease control and precision cancer immunotherapy. Ultimately, these insights will help advance the clinical application of next-generation mRNA therapeutics.

Keywords

immune escape / mRNA vaccines / personalized vaccines / sequence optimization / targeted mRNA vaccines / vector optimization

Cite this article

Download citation ▾
Jianmei Li, Yixin Liu, Jie Dai, Li Yang, Feng Xiong, Jing Xia, Jing Jin, Yangping Wu, Xingchen Peng. mRNA Vaccines: Current Applications and Future Directions. MedComm, 2025, 6(11): e70434 DOI:10.1002/mco2.70434

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Dagan, N. Barda, E. Kepten, et al., “BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting, ” New England Journal of Medicine 384 (2021): 1412-1423.

[2]

L. W. Kwak, “Cancer Vaccines: Moving Toward Prevention?, ” Cancer Prevention Research 4 (2011): 954-956.

[3]

M. D. Vesely, T. Zhang, and L. Chen, “Resistance Mechanisms to Anti-PD Cancer Immunotherapy, ” Annual Review of Immunology 40 (2022): 45-74.

[4]

P. Sharma, S. Hu-Lieskovan, J. A. Wargo, and A. Ribas, “Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, ” Cell 168 (2017): 707-723.

[5]

S. M. Ansell, A. M. Lesokhin, I. Borrello, et al., “PD-1 Blockade With Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma, ” New England Journal of Medicine 372 (2015): 311-319.

[6]

D. Memon, A. J. Schoenfeld, D. Ye, et al., “Clinical and Molecular Features of Acquired Resistance to Immunotherapy in Non-small Cell Lung Cancer, ” Cancer Cell 42 (2024): 209-224.e9.

[7]

D. Liu, R. W. Jenkins, and R. J. Sullivan, “Mechanisms of Resistance to Immune Checkpoint Blockade, ” American Journal of Clinical Dermatology 20 (2019): 41-54.

[8]

J. L. Leal and T. John, “Immunotherapy in Advanced NSCLC without Driver Mutations: Available Therapeutic Alternatives after Progression and Future Treatment Options, ” Clinical Lung Cancer 23 (2022): 643-658.

[9]

E. Dolgin, “The Tangled History of mRNA Vaccines, ” Nature 597 (2021): 318-324.

[10]

N. Pardi, M. J. Hogan, F. W. Porter, and D. Weissman, “mRNA Vaccines-a New Era in Vaccinology, ” Nature Reviews Drug Discovery 17 (2018): 261-279.

[11]

M. Diken, L. M. Kranz, S. Kreiter, and U. Sahin, “mRNA: A Versatile Molecule for Cancer Vaccines, ” Current Issues in Molecular Biology 22 (2017): 113-128.

[12]

R. Yao, C. Xie, and X. Xia, “Recent Progress in mRNA Cancer Vaccines, ” Human Vaccines and Immunotherapeutics 20 (2024): 2307187.

[13]

J. Maynard Smith and E. SzathmáRy, “From the RNA World to the Modern World, ” The Origins of Life (2023): 37-46, https://doi.org/10.1093/oso/9780198504931.003.0004.

[14]

M. Saxena, S. H. van der Burg, C. J. M. Melief, and N. Bhardwaj, “Therapeutic Cancer Vaccines, ” Nature Reviews Cancer 21 (2021): 360-378.

[15]

K. Karikó, H. Muramatsu, J. Ludwig, and D. Weissman, “Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-modified, Protein-encoding mRNA, ” Nucleic Acids Research 39 (2011): 1-10.

[16]

Y. Jiang, M. Fan, Z. Yang, et al., “Recent Advances in Nanotechnology Approaches for Non-viral Gene Therapy, ” Biomaterials Science 10 (2022): 6862-6892.

[17]

R. Verbeke, M. J. Hogan, K. Loré, and N. Pardi, “Innate Immune Mechanisms of mRNA Vaccines, ” Immunity 55 (2022): 1993-2005.

[18]

U. Sahin, K. Karikó, and Ö. Türeci, “MRNA-based Therapeutics-developing a New Class of Drugs, ” Nature Reviews Drug Discovery 13 (2014): 759-780.

[19]

C. L. Lorentzen, J. B. Haanen, Ö. Met, and I. M. Svane, “Clinical Advances and Ongoing Trials of mRNA Vaccines for Cancer Treatment, ” Lancet Oncology (2020): 19-21.

[20]

L. S. Mbatha, J. Akinyelu, F. Maiyo, and T. Kudanga, “Future Prospects in mRNA Vaccine Development, ” Biomedical Materials (Bristol) 18 (2023).

[21]

F. P. Polack, S. J. Thomas, N. Kitchin, et al., “Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine, ” New England Journal of Medicine 383 (2020): 2603-2615.

[22]

B. Petsch, M. Schnee, A. B. Vogel, et al., “Protective Efficacy of in Vitro Synthesized, Specific mRNA Vaccines Against influenza A Virus Infection, ” Nature Biotechnology 30 (2012): 1210-1216.

[23]

A. J. Geall, A. Verma, G. R. Otten, et al., “Nonviral Delivery of Self-amplifying RNA Vaccines, ” Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 14604-14609.

[24]

N. Pardi, M. J. Hogan, R. S. Pelc, et al., “Zika Virus Protection by a Single Low-dose Nucleoside-modified mRNA Vaccination, ” Nature 543 (2017): 248-251.

[25]

Y. Cao and G. F. Gao, “mRNA Vaccines: A Matter of Delivery, ” EClinicalMedicine 32 (2021): 100746.

[26]

Z. Kis, C. Kontoravdi, A. K. Dey, R. Shattock, and N. Shah, “Rapid Development and Deployment of High-volume Vaccines for Pandemic Response, ” Journal of Advanced Manufacturing and Processing 2 (2020): 1-10.

[27]

M. He, Y. Liu, S. Chen, et al., “Serum Amyloid A Promotes Glycolysis of Neutrophils During PD-1 Blockade Resistance in Hepatocellular Carcinoma, ” Nature Communications 15 (2024): 1-19.

[28]

Z. N. Berneman, M. De Laere, P. Germonpré, et al., “WT1-mRNA Dendritic Cell Vaccination of Patients With Glioblastoma Multiforme, Malignant Pleural Mesothelioma, Metastatic Breast Cancer, and Other Solid Tumors: Type 1 T-lymphocyte Responses Are Associated With Clinical Outcome, ” Journal of Hematology and Oncology 18 (2025): 4-9.

[29]

C. Kurzeder, I. Bover, F. Marmé, et al., “Double-blind, Placebo-controlled, Randomized Phase III Trial Evaluating pertuzumab Combined With Chemotherapy for Low Tumor human Epidermal Growth Factor Receptor 3 mRNA-Expressing Platinum-resistant Ovarian Cancer (PENELOPE), ” Journal of Clinical Oncology 34 (2016): 2516-2525.

[30]

C. Bai, C. Wang, and Y. Lu, “Novel Vectors and Administrations for mRNA Delivery, ” Small 19 (2023): 1-36.

[31]

S. Kwon, M. Kwon, S. Im, K. Lee, and H. Lee, “mRNA Vaccines: The Most Recent Clinical Applications of Synthetic mRNA, ” Archives of Pharmacal Research 45 (2022): 245-262.

[32]

A. M. Bourke, A. Schwarz, and E. M. Schuman, “De-centralizing the Central Dogma: MRNA Translation in Space and Time, ” Molecular Cell 83 (2023): 452-468.

[33]

M. S. Attia, G. Kijanka, N. T. Nguyen, J. Zhang, and H. An, “Advances and Prospects of RNA Delivery Nanoplatforms for Cancer Therapy, ” Acta Pharmaceutica Sinica B 15 (2025): 52-96.

[34]

Y. Omidi, M. M. Pourseif, R. A. Ansari, and J. Barar, “Design and Development of mRNA and Self-amplifying mRNA Vaccine Nanoformulations, ” Nanomedicine 19, no. 30 (2024): 2699-2725.

[35]

L. Miao, Y. Zhang, and L. Huang, “mRNA Vaccine for Cancer Immunotherapy, ” Molecular Cancer 20 (2021): 1-23.

[36]

M. R. Bell and M. A. Kutzler, “An Old Problem With New Solutions: Strategies to Improve Vaccine Efficacy in the Elderly, ” Advanced Drug Delivery Reviews 183 (2022): 114175.

[37]

K. Karikó, H. Muramatsu, F. A. Welsh, et al., “Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability, ” Molecular Therapy 16 (2008): 1833-1840.

[38]

A. Thess, S. Grund, B. L. Mui, et al., “Sequence-engineered mRNA without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals, ” Molecular Therapy 23 (2015): 1456-1464.

[39]

K. J. Kauffman, M. J. Webber, and D. G. Anderson, “Materials for Non-viral Intracellular Delivery of Messenger RNA Therapeutics, ” Journal of Controlled Release 240 (2016): 227-234.

[40]

Y. K. Kim, “RNA Therapy: Rich History, Various Applications and Unlimited Future Prospects, ” Experimental and Molecular Medicine 54 (2022): 455-465.

[41]

Y. Qu, J. Xu, T. Zhang, Q. Chen, T. Sun, and C. Jiang, “Advanced Nano-based Strategies for mRNA Tumor Vaccine, ” Acta Pharmaceutica Sinica B 14 (2024): 170-189.

[42]

Y. Fan, R. Feng, X. Zhang, et al., “Encoding and Display Technologies for Combinatorial Libraries in Drug Discovery: The Coming of Age From Biology to Therapy, ” Acta Pharmaceutica Sinica B 14 (2024): 3362-3384.

[43]

A. J. Pollard and E. M. Bijker, “A Guide to Vaccinology: From Basic Principles to New Developments, ” Nature Reviews Immunology 21 (2021): 83-100.

[44]

Y. Wang, Z. Zhang, J. Luo, X. Han, Y. Wei, and X. Wei, “mRNA Vaccine: A Potential Therapeutic Strategy, ” Molecular Cancer 20 (2021): 1-23.

[45]

M. A. Liu, “A Comparison of Plasmid DNA and mRNA as Vaccine Technologies, ” Vaccines 7 (2019): 37.

[46]

R. Reindl-Schwaighofer, A. Heinzel, M. Mayrdorfer, et al., “Comparison of SARS-CoV-2 Antibody Response 4 Weeks after Homologous vs Heterologous Third Vaccine Dose in Kidney Transplant Recipients: A Randomized Clinical Trial, ” JAMA Internal Medicine 182 (2022): 165-171.

[47]

E. E. Walsh, R. W. Frenck, A. R. Falsey, et al., “Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates, ” New England Journal of Medicine 383 (2020): 2439-2450.

[48]

L. R. Baden, H. M. El Sahly, B. Essink, et al., “Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine, ” New England Journal of Medicine 384 (2021): 403-416.

[49]

A. W. Freyn, J. Ramos da Silva, V. C. Rosado, et al., “A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice, ” Molecular Therapy 28 (2020): 1569-1584.

[50]

M. McMahon, G. O'Dell, J. Tan, et al., “Assessment of a Quadrivalent Nucleoside-modified mRNA Vaccine That Protects Against Group 2 Influenza Viruses, ” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): 1-11.

[51]

N. Pardi, J. M. Carreño, G. O'Dell, et al., “Development of a Pentavalent Broadly Protective Nucleoside-modified mRNA Vaccine Against Influenza B Viruses, ” Nature Communications 13 (2022): 1-14.

[52]

J. A. Flynn, T. Weber, P. J. Cejas, et al., “Characterization of Humoral and Cell-mediated Immunity Induced by mRNA Vaccines Expressing Influenza Hemagglutinin Stem and Nucleoprotein in Mice and Nonhuman Primates, ” Vaccine 40 (2022): 4412-4423.

[53]

C. P. Arevalo, M. J. Bolton, V. Le Sage, et al., “A Multivalent Nucleoside-modified mRNA Vaccine Against all Known Influenza Virus Subtypes, ” Science 378 (2022): 899-904.

[54]

R. A. Feldman, R. Fuhr, I. Smolenov, et al., “mRNA Vaccines Against H10N8 and H7N9 Influenza Viruses of Pandemic Potential Are Immunogenic and Well Tolerated in Healthy Adults in Phase 1 Randomized Clinical Trials, ” Vaccine 37 (2019): 3326-3334.

[55]

I. T. Lee, R. Nachbagauer, D. Ensz, et al., “Safety and Immunogenicity of a Phase 1/2 Randomized Clinical Trial of a Quadrivalent, mRNA-based Seasonal Influenza Vaccine (mRNA-1010) in Healthy Adults: Interim Analysis, ” Nature Communications 14 (2023): 9-11.

[56]

A. C. Langedijk and L. J. Bont, “Respiratory Syncytial Virus Infection and Novel Interventions, ” Nature Reviews Microbiology 21 (2023): 734-749.

[57]

E. Wilson, J. Goswami, A. H. Baqui, et al., “Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults, ” New England Journal of Medicine 389 (2023): 2233-2244.

[58]

A. Mullard, “FDA Approves mRNA-based RSV Vaccine, ” Nat Rev Drug Discovery 23 (2024): 487.

[59]

B. F. Haynes, K. Wiehe, P. Borrow, et al., “Strategies for HIV-1 Vaccines That Induce Broadly Neutralizing Antibodies, ” Nature Reviews Immunology 23 (2023): 142-158.

[60]

M. Melo, E. Porter, Y. Zhang, et al., “Immunogenicity of RNA Replicons Encoding HIV Env Immunogens Designed for Self-Assembly Into Nanoparticles, ” Molecular Therapy 27 (2019): 2080-2090.

[61]

E. Melzi, J. R. Willis, K. M. Ma, et al., “Membrane-bound mRNA Immunogens Lower the Threshold to Activate HIV Env V2 Apex-directed Broadly Neutralizing B Cell Precursors in Humanized Mice, ” Immunity 55 (2022): 2168-2186.e6.

[62]

N. Moyo, E. Wee, B. Korber, et al., “Tetravalent Immunogen Assembled From Conserved Regions of HIV-1 and Delivered as mRNA Demonstrates Potent Preclinical T-cell Immunogenicity and Breadth, ” Vaccines 8 (2020): 1-10.

[63]

K. O. Saunders, N. Pardi, R. Parks, et al., “Lipid Nanoparticle Encapsulated Nucleoside-modified mRNA Vaccines Elicit Polyfunctional HIV-1 Antibodies Comparable to Proteins in Nonhuman Primates, ” Npj Vaccines 6 (2021): 1-14.

[64]

P. Zhang, E. Narayanan, Q. Liu, et al., “A Multiclade Env-gag VLP mRNA Vaccine Elicits Tier-2 HIV-1-neutralizing Antibodies and Reduces the Risk of Heterologous SHIV Infection in Macaques, ” Nature Medicine 27 (2021): 2234-2245.

[65]

J. R. Willis, M. Prabhakaran, M. Muthui, et al., “Vaccination With mRNA-encoded Nanoparticles Drives Early Maturation of HIV bnAb Precursors in Humans, ” Science 8382 (2025): 1-36.

[66]

S. A. Riddler, Z. Moodie, J. Clark, et al., “High Frequency of Chronic Urticaria Following an Investigational HIV-1 BG505 MD39.3 Trimer mRNA Vaccine in a Phase 1, Randomized, Open-Label Clinical Trial (HVTN 302), ” Annals of Internal Medicine 178 (2025), https://doi.org/10.7326/ANNALS-24-02701.

[67]

X. Hu, K. P. Karthigeyan, S. Herbek, et al., “Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses than the gB/MF59 Vaccine, ” Journal of Infectious Diseases 230 (2024): 455-466.

[68]

M. Alberer, U. Gnad-Vogt, H. S. Hong, et al., “Safety and Immunogenicity of a mRNA Rabies Vaccine in Healthy Adults: An Open-label, Non-randomised, Prospective, First-in-human Phase 1 Clinical Trial, ” The Lancet 390 (2017): 1511-1520.

[69]

S. Awasthi, L. M. Hook, N. Pardi, et al., “Nucleoside-modified mRNA Encoding HSV-2 Glycoproteins C, D, and E Prevents Clinical and Subclinical Genital herpes, ” Science Immunology 4 (2019): eaaw7083.

[70]

J. S. Chahal, O. F. Khan, C. L. Cooper, et al., “Dendrimer-RNA Nanoparticles Generate Protective Immunity Against Lethal Ebola, H1N1 Influenza, and Toxoplasma Gondii Challenges With a Single Dose, ” Proceedings of the National Academy of Sciences of the United States of America 113 (2016): E4133-E4142.

[71]

M. Meyer, E. Huang, O. Yuzhakov, P. Ramanathan, G. Ciaramella, and A. Bukreyev, “Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease, ” Journal of Infectious Diseases 217 (2018): 451-455.

[72]

A. J. Ronk, N. M. Lloyd, M. Zhang, et al., “A Lassa Virus mRNA Vaccine Confers Protection but Does Not Require Neutralizing Antibody in a guinea Pig Model of Infection, ” Nature Communications 14 (2023): 1-13.

[73]

A. W. Freyn, C. Atyeo, P. L. Earl, et al., “An Mpox Virus mRNA-lipid Nanoparticle Vaccine Confers Protection Against Lethal Orthopoxviral Challenge, ” Science Translational Medicine 15 (2023).

[74]

U. Sahin, P. Oehm, E. Derhovanessian, et al., “An RNA Vaccine Drives Immunity in Checkpoint-inhibitor-treated Melanoma, ” Nature 585 (2020): 107-112.

[75]

Y. Yuan, F. Gao, Y. Chang, Q. Zhao, and X. He, “Advances of mRNA Vaccine in Tumor: A Maze of Opportunities and Challenges, ” Biomarker Research 11 (2023).

[76]

B. E. Ferdows, D. N. Patel, W. Chen, X. Huang, N. Kong, and W. Tao, “RNA Cancer Nanomedicine: Nanotechnology-mediated RNA Therapy, ” Nanoscale 14 (2022): 4448-4455.

[77]

S. Pan, R. Fan, B. Han, A. Tong, and G. Guo, “The Potential of mRNA Vaccines in Cancer Nanomedicine and Immunotherapy, ” Trends in Immunology 45 (2024): 20-31.

[78]

A. M. Dudek, S. Martin, A. D. Garg, and P. Agostinis, “Immature, Semi-mature, and Fully Mature Dendritic Cells: Toward a DC-cancer Cells Interface That Augments Anticancer Immunity, ” Frontiers in Immunology 4 (2013): 1-14.

[79]

L. Zhou, W. Yi, Z. Zhang, et al., “STING Agonist-boosted mRNA Immunization via Intelligent Design of Nanovaccines for Enhancing Cancer Immunotherapy, ” National Science Review 10 (2023): nwad214.

[80]

N. Prokhnevska, M. A. Cardenas, R. M. Valanparambil, et al., “CD8+ T Cell Activation in Cancer Comprises an Initial Activation Phase in Lymph Nodes Followed by Effector Differentiation Within the Tumor, ” Immunity 56 (2023): 107-124.e5.

[81]

J. R. Melamed, S. S. Yerneni, M. L. Arral, et al., “Ionizable Lipid Nanoparticles Deliver mRNA to Pancreatic β Cells via Macrophage-mediated Gene Transfer, ” Science Advances 9 (2023): eade1444.

[82]

Q. He, H. Gao, D. Tan, H. Zhang, and J. Z. Wang, “mRNA Cancer Vaccines: Advances, Trends and Challenges, ” Annals of Oncology (2020): 19-21.

[83]

P. G. Coulie, B. J. Van Den Eynde, P. Van Der Bruggen, and T. Boon, “Tumour Antigens Recognized by T Lymphocytes: At the Core of Cancer Immunotherapy, ” Nature Reviews Cancer 14 (2014): 135-146.

[84]

R. E. Hollingsworth and K. Jansen, “Turning the Corner on Therapeutic Cancer Vaccines, ” Npj Vaccines 4 (2019): 1-10.

[85]

N. O. Alarcon, M. Jaramillo, H. M. Mansour, and B. Sun, “Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms, ” Pharmaceutics 14 (2022): 1448.

[86]

R. A. Hernandez-Lopez, W. Yu, K. A. Cabral, et al., “T Cell Circuits That Sense Antigen Density With an Ultrasensitive Threshold, ” Pharmacognosy Magazine 75 (2021): 399-405.

[87]

Z. A. Gibbs and A. W. Whitehurst, “Emerging Contributions of Cancer/Testis Antigens to Neoplastic Behaviors, ” Trends in Cancer 4 (2018): 701-712.

[88]

J. Liu, M. Fu, M. Wang, D. Wan, Y. Wei, and X. Wei, “Cancer Vaccines as Promising Immuno-therapeutics: Platforms and Current Progress, ” Journal of Hematology and Oncology 15 (2022): 1-26.

[89]

Y. N. Diep, T. J. Kim, H. Cho, and L. P. Lee, “Nanomedicine for Advanced Cancer Immunotherapy, ” Journal of Controlled Release 351 (2022): 1017-1037.

[90]

A. J. Barbier, A. Y. Jiang, P. Zhang, R. Wooster, and D. G. Anderson, “The Clinical Progress of mRNA Vaccines and Immunotherapies, ” Nature Biotechnology 40 (2022): 840-854.

[91]

Y. Guo, K. Lei, and L. Tang, “Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy, ” Frontiers in Immunology 9 (2018): 1-8.

[92]

D. K. Wells, M. M. van Buuren, K. K. Dang, et al., “Key Parameters of Tumor Epitope Immunogenicity Revealed through a Consortium Approach Improve Neoantigen Prediction, ” Cell 183 (2020): 818-834.e13.

[93]

E. Blass and P. A. Ott, “Advances in the Development of Personalized Neoantigen-based Therapeutic Cancer Vaccines, ” Nature Reviews Clinical Oncology 18 (2021): 215-229.

[94]

G. Cafri, J. J. Gartner, T. Zaks, et al., “mRNA Vaccine-induced Neoantigen-specific T Cell Immunity in Patients With Gastrointestinal Cancer, ” Journal of Clinical Investigation 130 (2020): 5976-5988.

[95]

A. Esprit, W. de Mey, R. Bahadur Shahi, K. Thielemans, L. Franceschini, and K. Breckpot, “Neo-antigen mRNA Vaccines, ” Vaccines 8 (2020): 1-24.

[96]

U. Sahin, E. Derhovanessian, M. Miller, et al., “Personalized RNA Mutanome Vaccines Mobilize Poly-specific Therapeutic Immunity Against Cancer, ” Nature 547 (2017): 222-226.

[97]

C. Pollard, S. De Koker, X. Saelens, G. Vanham, and J. Grooten, “Challenges and Advances towards the Rational Design of mRNA Vaccines, ” Trends in Molecular Medicine 19 (2013): 705-713.

[98]

P. A. Ott, Z. Hu, D. B. Keskin, et al., “An Immunogenic Personal Neoantigen Vaccine for Melanoma Patients, ” Nature Medicine 10 (2018): 1-13.

[99]

S. Wilgenhof, A. Van Nuffel, D. Benteyn, et al., “A Phase IB Study on Intravenous Synthetic mRNA Electroporated Dendritic Cell Immunotherapy in Pretreated Advanced Melanoma Patients, ” Annals of Oncology 24 (2013): 2686-2693.

[100]

D. J. Chung, R. D. Carvajal, M. A. Postow, et al., “Langerhans-type Dendritic Cells Electroporated With TRP-2 mRNA Stimulate Cellular Immunity Against Melanoma: Results of a Phase I Vaccine Trial, ” OncoImmunology 7 (2018): 0-36.

[101]

R. Tenchov, R. Bird, A. E. Curtze, and Q. Zhou, “Lipid Nanoparticles From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement, ” ACS Nano 15 (2021): 16982-17015.

[102]

Z. Hu, P. A. Ott, and C. J. Wu, “Towards Personalized, Tumour-specific, Therapeutic Vaccines for Cancer, ” Nature Reviews Immunology 18 (2018): 168-182.

[103]

T. N. Schumacher, W. Scheper, and P. Kvistborg, “Cancer Neoantigens, ” Annual Review of Immunology 37 (2019): 173-200.

[104]

T. K. Kim, R. S. Herbst, and L. Chen, “Defining and Understanding Adaptive Resistance in Cancer Immunotherapy, ” Trends in Immunology 39 (2018): 624-631.

[105]

S. L. Topalian, C. G. Drake, and D. M. Pardoll, “Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy, ” Cancer Cell 27 (2015): 450-461.

[106]

J. M. Taube, R. A. Anders, G. D. Young, et al., “Colocalization of Inflammatory Response With B7-H1 Expression in human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape, ” Science Translational Medicine 4 (2012).

[107]

J. L. Benci, B. Xu, Y. Qiu, et al., “Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade, ” Cell 167 (2016): 1540-1554.e12.

[108]

A. Kalbasi and A. Ribas, “Tumour-intrinsic Resistance to Immune Checkpoint Blockade, ” Nature Reviews Immunology 20 (2020): 25-39.

[109]

M. J. Hogan and N. Pardi, “MRNA Vaccines in the COVID-19 Pandemic and Beyond, ” Annual Review of Medicine 73 (2022): 17-39.

[110]

R. Weber, V. Fleming, X. Hu, et al., “Myeloid-derived Suppressor Cells Hinder the Anti-cancer Activity of Immune Checkpoint Inhibitors, ” Frontiers in Immunology 9 (2018): 1-9.

[111]

D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of Antitumor Immunity by CTLA-4 Blockade, ” Science 271 (1996): 1734-1736.

[112]

D. B. Page, M. A. Postow, and M. K. Callahan, J. P. Allison, and J. D. Wolchok, “Immune Modulation in Cancer With Antibodies, ” Annual Review of Medicine 65 (2014): 185-202.

[113]

N. McGranahan, A. J. S. Furness, R. Rosenthal, et al., “Clonal Neoantigens Elicit T Cell Immunoreactivity and Sensitivity to Immune Checkpoint Blockade, ” Science 351 (2016): 1463-1469.

[114]

S. Gettinger, J. Choi, K. Hastings, et al., “Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer, ” Cancer Discovery 7 (2017): 1420-1435.

[115]

S. Spranger, D. Dai, B. Horton, and T. F. Gajewski, “Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy, ” Cancer Cell 31 (2017): 711-723.e4.

[116]

S. Spranger, R. Bao, and T. F. Gajewski, “Melanoma-intrinsic β-catenin Signalling Prevents Anti-tumour Immunity, ” Nature 523 (2015): 231-235.

[117]

C. M. D'Urso, Z. G. Wang, Y. Cao, R. Tatake, R. A. Zeff, and S. Ferrone, “Lack of HLA Class I Antigen Expression by Cultured Melanoma Cells FO-1 due to a Defect in B2M Gene Expression, ” Journal of Clinical Investigation 87 (1991): 284-292.

[118]

K. A. Schalper, M. Carleton, M. Zhou, et al., “Elevated Serum Interleukin-8 Is Associated With Enhanced Intratumor Neutrophils and Reduced Clinical Benefit of Immune-checkpoint Inhibitors, ” Nature Medicine 26 (2020): 688-692.

[119]

B. Mirlekar, D. Michaud, S. J. Lee, et al., “Bcell-derived IL35 Drives STAT3-DependentCD8+ T-cell Exclusion in Pancreatic Cancer, ” Cancer Immunology Research 8 (2020): 292-308.

[120]

F. Arce Vargas, A. J. Furness, I. Solomon, et al., “Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes With PD-1 Blockade to Eradicate Established Tumors, ” Immunity 46 (2017): 577-586.

[121]

F. Veglia, M. Perego, and D. Gabrilovich, “Myeloid-derived Suppressor Cells Coming of Age, ” Nature Immunology 19 (2018): 108-119.

[122]

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, “Tumour-associated Macrophages as Treatment Targets in Oncology, ” Nature Reviews Clinical Oncology 14 (2017): 399-416.

[123]

B. Shang, Y. Liu, S. J. Jiang, and Y. Liu, “Prognostic Value of Tumor-infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-analysis, ” Scientific Reports 5 (2015): 1-9.

[124]

F. Ichihara, K. Kono, A. Takahashi, et al., “Increased Populations of Regulatory T Cells in Peripheral Blood and Tumor-infiltrating Lymphocytes in Patients With Gastric and Esophageal Cancers, ” Clinical Cancer Research 9 (2003): 4404-4408.

[125]

T. J. Curiel, G. Coukos, L. Zou, et al., “Specific Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune Privilege and Predicts Reduced Survival, ” Nature Medicine 10 (2004): 942-949.

[126]

N. Hiraoka, K. Onozato, T. Kosuge, and S. Hirohashi, “Prevalence of FOXP3+ Regulatory T Cells Increases During the Progression of Pancreatic Ductal Adenocarcinoma and Its Premalignant Lesions, ” Clinical Cancer Research 12 (2006): 5423-5434.

[127]

K. Wing, Y. Onishi, P. Prieto-Martin, et al., “CTLA-4 Control Over Foxp3+Regulatory T Cell Function, ” Science 322 (2008): 271-275.

[128]

H. S. Kuehn, W. Ouyang, B. Lo, et al., “Immune Dysregulation in human Subjects With Heterozygous Germline Mutations in CTLA4, ” Science 345 (2014): 1623-1627.

[129]

X. Du, F. Tang, M. Liu, et al., “A Reappraisal of CTLA-4 Checkpoint Blockade in Cancer Immunotherapy, ” Cell Research 28 (2018): 416-432.

[130]

T. R. Simpson, F. Li, W. Montalvo-Ortiz, et al., “Fc-dependent Depletion of Tumor-infiltrating Regulatory T Cells co-defines the Efficacy of Anti-CTLA-4 Therapy Against Melanoma, ” Journal of Experimental Medicine 210 (2013): 1695-1710.

[131]

E. Romano, M. Kusio-Kobialka, P. G. Foukas, et al., “Ipilimumab-dependent Cell-mediated Cytotoxicity of Regulatory T Cells Ex Vivo by Nonclassical Monocytes in Melanoma Patients, ” Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 6140-6145.

[132]

S. George, D. Miao, G. D. Demetri, et al., “Loss of PTEN Is Associated With Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma, ” Immunity 46 (2017): 197-204.

[133]

W. Peng, J. Q. Chen, C. Liu, et al., “Loss of PTEN Promotes Resistance to T Cell-mediated Immunotherapy, ” Cancer Discovery 6 (2016): 202-216.

[134]

G. Zhang, T. Tang, Y. Chen, X. Huang, and T. Liang, “mRNA Vaccines in Disease Prevention and Treatment, ” Signal Transduction and Targeted Therapy 8 (2023).

[135]

X. Wang, W. Wang, S. Zou, et al., “Combination Therapy of KRAS G12V mRNA Vaccine and Pembrolizumab: Clinical Benefit in Patients With Advanced Solid Tumors, ” Cell Research 34, no. 9 (2024): 661-664.

[136]

Z. Xu, Z. Xiao, J. Wang, et al., “Novel mRNA Adjuvant ImmunER Enhances Prostate Cancer Tumor-associated Antigen mRNA Therapy via Augmenting T Cell Activity, ” OncoImmunology 13 (2024): 1-15.

[137]

R. Rosell, E. Jantus-lewintre, P. Cao, et al., KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. 1-15 (2024).

[138]

X. Zhuang, Y. Qi, M. Wang, et al., “MRNA Vaccines Encoding the HA Protein of Influenza a H1N1 Virus Delivered by Cationic Lipid Nanoparticles Induce Protective Immune Responses in Mice, ” Vaccines 8 (2020): 1-16.

[139]

Q. Liu, Z. Sun, and L. Chen, “Memory T Cells: Strategies for Optimizing Tumor Immunotherapy, ” Protein and Cell 11 (2020): 549-564.

[140]

M. Shanmugasundaram, A. Senthilvelan, and A. R. Kore, “Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines, ” Chemical Record 22 (2022): e202200005.

[141]

S. Xu, K. Yang, R. Li, and L. Zhang, “mRNA Vaccine Era—mechanisms, Drug Platform and Clinical Prospection, ” International Journal of Molecular Sciences 21 (2020): 6582.

[142]

D. Weissman, “mRNA Transcript Therapy, ” Expert Review of Vaccines 14 (2014): 265-281.

[143]

D. R. Gallie, “The Cap and Poly(A) Tail Function Synergistically to Regulate mRNA Translational Efficiency, ” Genes and Development 5 (1991): 2108-2116.

[144]

J. Stepinski, C. Waddell, R. Stolarski, E. Darzynkiewicz, and R. E. Rhoads, “Synthesis and Properties of mRNAs Containing the Novel ‘Anti-reverse’ cap Analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG, ” Rna 7 (2001): 1486-1495.

[145]

R. W. Malone, P. L. Felgner, and I. M. Verma, “Cationic Liposome-mediated RNA Transfection, ” Proceedings of the National Academy of Sciences of the United States of America 86 (1989): 6077-6081.

[146]

S. Pascolo, “Synthetic Messenger Rna-based Vaccines: From Scorn to Hype, ” Viruses 13 (2021).

[147]

K. H. Asrani, J. D. Farelli, M. R. Stahley, et al., “Optimization of mRNA Untranslated Regions for Improved Expression of Therapeutic mRNA, ” RNA Biology 15 (2018): 756-762.

[148]

P. J. Sample, B. Wang, D. W. Reid, et al., “Human 5′ UTR Design and Variant Effect Prediction From a Massively Parallel Translation Assay, ” Nature Biotechnology 37 (2019): 803-809.

[149]

Z. Trepotec, M. K. Aneja, J. Geiger, G. Hasenpusch, C. Plank, and C. Rudolph, “Maximizing the Translational Yield of mRNA Therapeutics by Minimizing 5′-UTRs, ” Tissue Engineering—Part A 25 (2019): 69-79.

[150]

J. Carralot, J. Probst, I. Hoerr, et al., “Polarization of Immunity Induced by Direct Injection of Naked Sequence-stabilized mRNA Vaccines, ” Cellular and Molecular Life Sciences 61 (2004): 2418-2424.

[151]

Y. Weng, C. Li, T. Yang, et al., “The Challenge and Prospect of mRNA Therapeutics Landscape, ” Biotechnology Advances 40 (2020).

[152]

R. P. H. de Jongh, A. D. J. van Dijk, M. K. Julsing, P. J. Schaap, and D. de Ridder, “Designing Eukaryotic Gene Expression Regulation Using Machine Learning, ” Trends in Biotechnology 38 (2020): 191-201.

[153]

P. R. Araujo, K. Yoon, D. Ko, et al., “Before It Gets Started: Regulating Translation at the 5' UTR,” Comparative and Functional Genomics 2012 (2012).

[154]

D. D. Kang, H. Li, and Y. Dong, “Advancements of in Vitro Transcribed mRNA (IVT mRNA) to Enable Translation Into the Clinics, ” Advanced Drug Delivery Reviews 199 (2023): 114961.

[155]

M. Kozak, “At Least Six Nucleotides Preceding the AUG Initiator Codon Enhance Translation in Mammalian Cells, ” Journal of Molecular Biology 196 (1987): 947-950.

[156]

J. Pelletier and N. Sonenberg, “Insertion Mutagenesis to Increase Secondary Structure Within the 5′ Noncoding Region of a Eukaryotic mRNA Reduces Translational Efficiency, ” Cell 40 (1985): 515-526.

[157]

K. Leppek, G. W. Byeon, W. Kladwang, et al., “Combinatorial Optimization of mRNA Structure, Stability, and Translation for RNA-based Therapeutics, ” Nature Communications 13 (2022).

[158]

N. Pardi, M. J. Hogan, and D. Weissman, “Recent Advances in mRNA Vaccine Technology, ” Current Opinion in Immunology 65 (2020): 14-20.

[159]

M. Ferizi, C. Leonhardt, C. Meggle, et al., “Stability Analysis of Chemically Modified mRNA Using Micropattern-based Single-cell Arrays, ” Lab on a Chip 15 (2015): 3561-3571.

[160]

A. G. Orlandini von Niessen, M. A. Poleganov, C. Rechner, et al., “Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening, ” Molecular Therapy 27 (2019): 824-836.

[161]

E. L. Murray and D. R. Schoenberg, “A+U-Rich Instability Elements Differentially Activate 5′-3′ and 3′-5′ mRNA Decay, ” Molecular and Cellular Biology 27 (2007): 2791-2799.

[162]

I. Vlasova-St Louis and P. R. Bohjanen, “Coordinate Regulation of mRNA Decay Networks by GU-rich Elements and CELF1, ” Current Opinion in Genetics and Development 21 (2011): 444-451.

[163]

V. Presnyak, N. Alhusaini, Y. Chen, et al., “Codon Optimality Is a Major Determinant of mRNA Stability, ” Cell 160 (2015): 1111-1124.

[164]

S. Linares-Fernández, C. Lacroix, J. Y. Exposito, and B. Verrier, “Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response, ” Trends in Molecular Medicine 26 (2020): 311-323.

[165]

G. Kudla, A. W. Murray, D. Tollervey, and J. B. Plotkin, “Coding-sequence Determinants of Gene Expression in Escherichia coli, ” Bone 23 (2008): 1-7.

[166]

F. Buhr, S. Jha, M. Thommen, et al., “Synonymous Codons Direct Cotranslational Folding Toward Different Protein Conformations, ” Molecular Cell 61 (2016): 341-351.

[167]

C. Yu, Y. Dang, Z. Zhou, et al., “Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding, ” Molecular Cell 59 (2015): 744-754.

[168]

T. Schlake, A. Thess, M. Fotin-mleczek, and K. Kallen, “Developing mRNA-vaccine Technologies, ” RNA Biol 9 (2012): 1319-1330.

[169]

S. A. Lima, L. B. Chipman, A. L. Nicholson, et al., “Short Poly(A) Tails Are a Conserved Feature of Highly Expressed Genes, ” Nature Structural and Molecular Biology 24 (2017): 1057-1063.

[170]

S. C. Semple, A. Akinc, J. Chen, et al., “Rational Design of Cationic Lipids for siRNA Delivery, ” Nature Biotechnology 28 (2010): 172-176.

[171]

E. Samaridou, J. Heyes, and P. Lutwyche, “Lipid Nanoparticles for Nucleic Acid Delivery: Current Perspectives, ” Advanced Drug Delivery Reviews 154-155 (2020): 37-63.

[172]

M. F. Bachmann and G. T. Jennings, “Vaccine Delivery: A Matter of Size, Geometry, Kinetics and Molecular Patterns, ” Nature Reviews Immunology 10 (2010): 787-796.

[173]

N. Pardi, S. Tuyishime, H. Muramatsu, et al., “Expression Kinetics of Nucleoside-modified mRNA Delivered in Lipid Nanoparticles to Mice by Various Routes, ” Journal of Controlled Release 217 (2015): 345-351.

[174]

C. Roth, T. Cantaert, C. Colas, et al., “A Modified mRNA Vaccine Targeting Immunodominant NS Epitopes Protects Against Dengue Virus Infection in HLA Class I Transgenic Mice, ” Frontiers in Immunology 10 (2019): 1-14.

[175]

K. Bahl, J. J. Senn, O. Yuzhakov, et al., “Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines Against H10N8 and H7N9 Influenza Viruses, ” Molecular Therapy 25 (2017): 1316-1327.

[176]

B. W. Jagger, K. A. Dowd, R. E. Chen, et al., “Protective Efficacy of Nucleic Acid Vaccines against Transmission of Zika Virus during Pregnancy in Mice Brett, ” Nature Biotechnology 3 (2014): 1-16.

[177]

S. John, O. Yuzhakov, A. Woods, et al., “Multi-antigenic human cytomegalovirus mRNA Vaccines That Elicit Potent Humoral and Cell-Mediated Immunity, ” Vaccine 36 (2018): 1689-1699.

[178]

J. Lutz, S. Lazzaro, M. Habbeddine, et al., “Unmodified mRNA in LNPs Constitutes a Competitive Technology for Prophylactic Vaccines, ” Npj Vaccines 2 (2017): 1-9.

[179]

N. Pardi, M. J. Hogan, M. S. Naradikian, et al., “Nucleoside-modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal Center B Cell Responses, ” Journal of Experimental Medicine 215 (2018): 1571-1588.

[180]

N. Pardi, K. Parkhouse, E. Kirkpatrick, et al., “Nucleosidemodified mRNA Immunization Elicits Influenza Virus Hemagglutinin Stalk-specific Antibodies, ” Nature Communications 9 (2018): 1-12.

[181]

J. M. Richner, S. Himansu, K. A. Dowd, et al., “Modified mRNA Vaccines Protect Against Zika Virus Infection, ” Cell 169 (2017): 176.

[182]

S. L. Hewitt, A. Bai, D. Bailey, et al., “Durable Anticancer Immunity From Intratumoral Administration of IL-23, IL-36γ, and OX40L mRNAs, ” Science Translational Medicine 11 (2019).

[183]

J. Buck, P. Grossen, P. R. Cullis, J. Huwyler, and D. Witzigmann, “Lipid-based DNA Therapeutics: Hallmarks of Non-viral Gene Delivery, ” ACS Nano 13 (2019): 3754-3782.

[184]

Y. Zong, Y. Lin, T. Wei, and Q. Cheng, “Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy, ” Advanced Materials 35 (2023): e2303261. 0-2.

[185]

J. Kim, Y. Eygeris, M. Gupta, and G. Sahay, “Self-assembled mRNA Vaccines, ” Advanced Drug Delivery Reviews 170 (2021): 83-112.

[186]

S. Qin, X. Tang, Y. Chen, et al., “mRNA-based Therapeutics: Powerful and Versatile Tools to Combat Diseases, ” Signal Transduction and Targeted Therapy 7 (2022).

[187]

N. Al Fayez, M. S. Nassar, A. A. Alshehri, et al., “Recent Advancement in mRNA Vaccine Development and Applications, ” Pharmaceutics 15 (2023): 1-24.

[188]

C. Malburet, L. Leclercq, J. Cotte, et al., “Taylor Dispersion Analysis to Support Lipid-nanoparticle Formulations for mRNA Vaccines, ” Gene Therapy 30 (2023): 421-428.

[189]

E. Kon, U. Elia, and D. Peer Principles for designing an optimal mRNA lipid nanoparticle vaccine. (2020).

[190]

H. Kang, S. Rho, W. R. Stiles, et al., “Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting, ” Advanced Healthcare Materials 9 (2020): 8-15.

[191]

R. Simón-Vázquez, M. Peleteiro, and Á. González-Fernández, “Polymeric Nanostructure Vaccines: Applications and Challenges, ” Expert Opinion on Drug Delivery 17 (2020): 1007-1023.

[192]

A. Das and N. Ali, “Nanovaccine: An Emerging Strategy, ” Expert Review of Vaccines 20 (2021): 1273-1290.

[193]

P. Midoux and C. Pichon, “Lipid-based mRNA Vaccine Delivery Systems, ” Expert Review of Vaccines 14 (2014): 221-234.

[194]

J. A. Poliskey, S. T. Crowley, R. Ramanathan, C. W. White, B. Mathew, and K. G. Rice, “Metabolically Stabilized Double-stranded mRNA Polyplexes, ” Gene Therapy 25 (2018): 473-484.

[195]

L. Tan, T. Zheng, M. Li, et al., “Optimization of an mRNA Vaccine Assisted With Cyclodextrin-polyethyleneimine Conjugates, ” Drug Delivery and Translational Research 10 (2020): 678-689.

[196]

J. C. Kaczmarek, K. J. Kauffman, O. S. Fenton, et al., “Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells, ” Nano Letters 18 (2018): 6449-6454.

[197]

K. Zhou, L. H. Nguyen, J. B. Miller, et al., “Modular Degradable Dendrimers Enable Small RNAs to Extend Survival in an Aggressive Liver Cancer Model, ” Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 520-525.

[198]

R. Chintakunta, N. Buaron, N. Kahn, et al., “Synthesis, Characterization, and Self-assembly With Plasmid DNA of a Quaternary Ammonium Derivative of Pectic Galactan and Its Fluorescent Labeling for Bioimaging Applications, ” Carbohydrate Polymers 150 (2016): 308-318.

[199]

D. Wu, L. Zhu, Y. Li, et al., “Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review, ” Carbohydrate Polymers 238 (2020).

[200]

N. Butkovich, E. Li, A. Ramirez, A. M. Burkhardt, and S. W. Wang, “Advancements in Protein Nanoparticle Vaccine Platforms to Combat Infectious Disease, ” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 13 (2021): 1-29.

[201]

J. I. Solomun, G. Cinar, P. Mapfumo, et al., “Solely Aqueous Formulation of Hydrophobic Cationic Polymers for Efficient Gene Delivery, ” International Journal of Pharmaceutics 593 (2021): 120080.

[202]

M. Zhao, M. Li, Z. Zhang, T. Gong, and X. Sun, “Induction of HIV-1 Gag Specific Immune Responses by Cationic Micelles Mediated Delivery of Gag mRNA, ” Drug Delivery 23 (2016): 2596-2607.

[203]

M. Li, M. Zhao, Y. Fu, et al., “Enhanced Intranasal Delivery of mRNA Vaccine by Overcoming the Nasal Epithelial Barrier via Intra- A nd Paracellular Pathways, ” Journal of Controlled Release 228 (2016): 9-19.

[204]

H. Y. Choi, T. Lee, G. Yang, et al., “Efficient mRNA Delivery With Graphene Oxide-polyethylenimine for Generation of Footprint-free human Induced Pluripotent Stem Cells, ” Journal of Controlled Release 235 (2016): 222-235.

[205]

J. Karlsson, H. J. Vaughan, and J. J. Green, “Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments, ” Annual Review of Chemical and Biomolecular Engineering 9 (2018): 105-127.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/