Disruption of Bile Acid Metabolism in the Gut–Liver Axis Predisposes Mice to Inflammatory Bowel Disease

Hui Chang , Yang Jiang , Qiong Zhao , Zhen Su , Mingyang Chen , Qiufen He , Jingbo Lai , Yingru Jiang , Jing Zheng , Ruolang Pan , Jianzhong Shao , Robert Chunhua Zhao , Ye Chen

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70429

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70429 DOI: 10.1002/mco2.70429
ORIGINAL ARTICLE

Disruption of Bile Acid Metabolism in the Gut–Liver Axis Predisposes Mice to Inflammatory Bowel Disease

Author information +
History +
PDF

Abstract

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that is frequently associated with inflammatory bowel disease (IBD). However, the precise mechanisms linking these conditions remain unclear. In this study, we established a murine model of experimental sclerosing cholangitis (eSC) using a DDC (3,5-diethoxycarbonyl 1,4-dihydrocollidine) diet. We then demonstrated that eSC mice exhibited increased susceptibility to DSS-induced colitis, accompanied by severe intestinal pathology. Further integrated analyses revealed that eSC disrupted bile acid metabolism and gut microbiota composition, notably increasing Th17-inducing bacteria and altering bile acid profiles. Single-cell and bulk RNA-seq analyses identified a marked expansion of colonic Th17 cells and a loss of immune homeostasis in eSC mice. Therapeutically, rectal administration of lithocholic acid (LCA) and its derivative, 3-Oxo-5β-cholanoic acid (3-O-LCA), was found to restore farnesoid X receptor (FXR) signaling, reduce Th17 cell proportions, and alleviate liver and intestinal injury. Mechanistic studies show that LCA and 3-O-LCA modulate macrophage polarization and Th17 differentiation via FXR. These findings highlight the central role of the gut–liver axis, bile acid signaling, and Th17 responses in PSC–IBD pathogenesis, and suggest that targeting bile acid metabolism offers a promising therapeutic strategy. This work advances our understanding of PSC–IBD and provides a foundation for novel interventions in high-risk patients.

Keywords

primary sclerosing cholangitis / bile acid / gut–liver axis / immune cell homeostasis / susceptibility to IBD

Cite this article

Download citation ▾
Hui Chang, Yang Jiang, Qiong Zhao, Zhen Su, Mingyang Chen, Qiufen He, Jingbo Lai, Yingru Jiang, Jing Zheng, Ruolang Pan, Jianzhong Shao, Robert Chunhua Zhao, Ye Chen. Disruption of Bile Acid Metabolism in the Gut–Liver Axis Predisposes Mice to Inflammatory Bowel Disease. MedComm, 2025, 6(10): e70429 DOI:10.1002/mco2.70429

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. K. Dyson, U. Beuers, D. E. J. Jones, A. W. Lohse, and M. Hudson, “Primary Sclerosing Cholangitis,” Lancet 391, no. 10139 (2018): 2547-2559.

[2]

K. N. Lazaridis and N. F. LaRusso, “Primary Sclerosing Cholangitis Reply,” New England Journal of Medicine 375, no. 25 (2016): 2501-2502.

[3]

T. H. Karlsen, T. Folseraas, D. Thorburn, and M. Vesterhus, “Primary Sclerosing Cholangitis—A Comprehensive Review,” Journal of Hepatology 67, no. 6 (2017): 1298-1323.

[4]

K. N. van Munster, A. Bergquist, and C. Y. Ponsioen, “Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: One Disease or Two?,” Journal of Hepatology 80, no. 1 (2024): 155-168.

[5]

P. J. Trivedi and G. M. Hirschfield, “Recent Advances in Clinical Practice: Epidemiology of Autoimmune Liver Diseases,” Gut 70, no. 10 (2021): 1989-2003.

[6]

J. K. Dyson, U. Beuers, D. E. J. Jones, A. W. Lohse, and M. Hudson, “Primary Sclerosing Cholangitis,” The Lancet 391, no. 10139 (2018): 2547-2559.

[7]

K. N. Lazaridis and N. F. LaRusso, “Primary Sclerosing Cholangitis,” New England Journal of Medicine 375, no. 12 (2016): 1161-1170.

[8]

J. C. Marshall, “The Gut as a Potential Trigger of Exercise-induced Inflammatory Responses,” Canadian Journal of Physiology and Pharmacology 76, no. 5 (1998): 479-484.

[9]

A. Albillos, A. de Gottardi, and M. Rescigno, “The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy,” Journal of Hepatology 72, no. 3 (2020): 558-577.

[10]

S. Bala, M. Marcos, A. Gattu, D. Catalano, and G. Szabo, “Acute Binge Drinking Increases Serum Endotoxin and Bacterial DNA Levels in Healthy Individuals,” PLoS ONE 9, no. 5 (2014): e96864.

[11]

B. Eksteen, A. J. Grant, A. Miles, et al., “Hepatic Endothelial CCL25 Mediates the Recruitment of CCR9 Gut-Homing Lymphocytes to the Liver in Primary Sclerosing Cholangitis,” Journal of Experimental Medicine 200, no. 11 (2004): 1511-1517.

[12]

G. G. Kaplan, “The Global Burden of IBD: From 2015 to 2025,” Nature Reviews Gastroenterology and Hepatology 12, no. 12 (2015): 720-727.

[13]

A. N. Ananthakrishnan, C. N. Bernstein, D. Iliopoulos, et al., “Environmental Triggers in IBD: A Review of Progress and Evidence,” Nature Reviews Gastroenterology and Hepatology 15, no. 1 (2018): 39-49.

[14]

A. Gilliland, J. J. Chan, T. J. De Wolfe, H. Yang, and B. A. Vallance, “Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care,” Gastroenterology 166, no. 1 (2024): 44-58.

[15]

D. B. Graham and R. J. Xavier, “Pathway Paradigms Revealed From the Genetics of Inflammatory Bowel Disease,” Nature 578, no. 7796 (2020): 527-539.

[16]

J. Sabino, S. Vieira-Silva, K. Machiels, et al., “Primary Sclerosing Cholangitis Is Characterised by Intestinal Dysbiosis Independent From IBD,” Gut 65, no. 10 (2016): 1681-1689.

[17]

F. J. Gonzalez, “Nuclear Receptor Control of Enterohepatic Circulation,” Comprehensive Physiology 2, no. 4 (2012): 2811-2828.

[18]

J. S. Fleishman and S. Kumar, “Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 1191-1212.

[19]

C. D. Fuchs and M. Trauner, “Role of Bile Acids and Their Receptors in Gastrointestinal and Hepatic Pathophysiology,” Nature Reviews Gastroenterology and Hepatology 19, no. 7 (2022): 432-450.

[20]

H. Jones, G. Alpini, and H. Francis, “Bile Acid Signaling and Biliary Functions,” Acta Pharmaceutica Sinica B 5, no. 2 (2015): 123-128.

[21]

P. Hartmann, K. Hochrath, A. Horvath, et al., “Modulation of the Intestinal Bile Acid/Farnesoid X Receptor/Fibroblast Growth Factor 15 Axis Improves Alcoholic Liver Disease in Mice,” Hepatology 67, no. 6 (2018): 2150-2166.

[22]

J. P. Arab, S. J. Karpen, P. A. Dawson, M. Arrese, and M. Trauner, “Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives,” Hepatology 65, no. 1 (2017): 350-362.

[23]

J. L. Kuang, J. Y. Wang, Y. T. Li, et al., “Hyodeoxycholic Acid Alleviates Non-Alcoholic Fatty Liver Disease Through Modulating the Gut-Liver Axis,” Cell Metabolism 35, no. 10 (2023): 1752-1766.

[24]

Y. Y. Li, K. Jadhav, and Y. Q. Zhang, “Bile Acid Receptors in Non-Alcoholic Fatty Liver Disease,” Biochemical Pharmacology 86, no. 11 (2013): 1517-1524.

[25]

S. R. Sinha, Y. Haileselassie, L. P. Nguyen, et al., “Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation,” Cell Host & Microbe 27, no. 4 (2020): 659-670.

[26]

X. J. Zheng, T. L. Chen, R. Q. Jiang, et al., “Hyocholic Acid Species Improve Glucose Homeostasis Through a Distinct TGR5 and FXR Signaling Mechanism,” Cell Metabolism 33, no. 4 (2021): 791-803.

[27]

H. J. Sun, Y. K. Guo, H. D. Wang, et al., “Gut Commensal Alleviates Inflammatory Arthritis,” Gut 72, no. 9 (2023): 1664-1677.

[28]

O. Y. Mousa, B. D. Juran, B. M. McCauley, et al., “Bile Acid Profiles in Primary Sclerosing Cholangitis and Their Ability to Predict Hepatic Decompensation,” Hepatology 74, no. 1 (2021): 281-295.

[29]

P. R. Braadland, K. M. Schneider, A. Bergquist, et al., “Suppression of Bile Acid Synthesis as a Tipping Point in the Disease Course of Primary Sclerosing Cholangitis,” JHEP Reports 4, no. 11 (2022): 100561.

[30]

P. Fickert, U. Stöger, H. U. Marschall, et al., “A New Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary Fibrosis,” American Journal of Pathology 171, no. 2 (2007): 525-536.

[31]

A. R. Moschen, H. Tilg, and T. Raine, “IL-12, IL-23 and IL-17 in IBD: Immunobiology and Therapeutic Targeting,” Nature Reviews Gastroenterology and Hepatology 16, no. 3 (2019): 185-196.

[32]

J. Lloyd-Price, C. Arze, A. N. Ananthakrishnan, et al., “Multi-Omics of the Gut Microbial Ecosystem in Inflammatory Bowel Diseases,” Nature 569, no. 7758 (2019): 655-662.

[33]

J. Y. Lee, J. A. Hall, L. Kroehling, et al., “Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease (vol 180, pg 79, 2020),” Cell 183, no. 7 (2020): 2036-2039.

[34]

L. Jia, Y. Y. Jiang, L. L. Wu, et al., “Porphyromonas gingivalis Aggravates Colitis via a Gut Microbiota-Linoleic Acid Metabolism-Th17/Treg Cell Balance Axis,” Nature Communications 15, no. 1 (2024): 1617.

[35]

J. Cai, L. L. Sun, and F. J. Gonzalez, “Gut Microbiota-Derived Bile Acids in Intestinal Immunity, Inflammation, and Tumorigenesis,” Cell Host & Microbe 30, no. 3 (2022): 289-300.

[36]

A. Carambia, B. Freund, D. Schwinge, et al., “TGF-β-Dependent Induction of CD4+CD25+Foxp3+Tregs by Liver Sinusoidal Endothelial Cells,” Journal of Hepatology 61, no. 3 (2014): 594-599.

[37]

H. Tilg, T. E. Adolph, and M. Trauner, “Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications,” Cell Metabolism 34, no. 11 (2022): 1700-1718.

[38]

J. L. Staudinger, B. Goodwin, S. A. Jones, et al., “The Nuclear Receptor PXR Is a Lithocholic Acid Sensor That Protects Against Liver Toxicity,” Proceedings of the National Academy of Sciences USA 98, no. 6 (2001): 3369-3374.

[39]

Y. D. Wang, W. D. Chen, D. D. Moore, and W. D. Huang, “FXR: A Metabolic Regulator and Cell Protector,” Cell Research 18, no. 11 (2008): 1087-1095.

[40]

J. H. Yu, J. L. Lo, L. Huang, et al., “Lithocholic Acid Decreases Expression of Bile Salt Export Pump Through Farnesoid X Receptor Antagonist Activity,” Journal of Biological Chemistry 277, no. 35 (2002): 31441-31447.

[41]

K. A. Jablonski, S. A. Amici, L. M. Webb, et al., “Novel Markers to Delineate Murine M1 and M2 Macrophages,” PLoS ONE 10, no. 12 (2015): e0145342.

[42]

M. Hering, A. Madi, R. Sandhoff, et al., “Sphinganine Recruits TLR4 Adaptors in Macrophages and Promotes Inflammation in Murine Models of Sepsis and Melanoma,” Nature Communications 15, no. 1 (2024): 6067.

[43]

F. De Matteis and A. Gibbs, “Stimulation of Liver 5-Aminolaevulinate Synthetase by Drugs and Its Relevance to Drug-Induced Accumulation of Cytochrome P-450. Studies With Phenylbutazone and 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine,” Biochemical Journal 126, no. 5 (1972): 1149-1160.

[44]

P. Fickert, M. J. Pollheimer, U. Beuers, et al., “Characterization of Animal Models for Primary Sclerosing Cholangitis (PSC),” Journal of Hepatology 60, no. 6 (2014): 1290-1303.

[45]

M. J. Pollheimer and P. Fickert, “Animal Models in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis,” Clinical Reviews in Allergy & Immunology 48, no. 2-3 (2015): 207-217.

[46]

E. Aarntzen, R. Hermsen, J. P. H. Drenth, O. C. Boerman, and W. J. G. Oyen, “Tc-CXCL8 SPECT to Monitor Disease Activity in Inflammatory Bowel Disease,” Journal of Nuclear Medicine 57, no. 3 (2016): 398-403.

[47]

D. Favre, J. Mold, P. W. Hunt, et al., “Tryptophan Catabolism by Indoleamine 2,3-Dioxygenase 1 Alters the Balance of T17 to Regulatory T Cells in HIV Disease,” Science Translational Medicine 2, no. 32 (2010): 32ra36.

[48]

T. Kinugasa, T. Sakaguchi, X. B. Gu, and H. C. Reinecker, “Claudins Regulate the Intestinal Barrier in Response to Immune Mediators,” Gastroenterology 118, no. 6 (2000): 1001-1011.

[49]

S. Y. Hang, D. Paik, L. N. Yao, et al., “Bile Acid Metabolites Control Th17 and Treg Cell Differentiation,” Nature 576, no. 7785 (2019): 143-148.

[50]

W. Li, H. SY, Y. Fang, et al., “A Bacterial Bile Acid Metabolite Modulates Treg Activity Through the Nuclear Hormone Receptor NR4A1,” Cell Host & Microbe 29, no. 9 (2021): 1366-1377.

[51]

D. Paik, L. N. Yao, Y. C. Zhang, et al., “Human Gut Bacteria Produce TH17-Modulating Bile Acid Metabolites,” Nature 603, no. 7903 (2022): 907-912.

[52]

S. Takahashi, T. Fukami, Y. Masuo, et al., “Cyp2c70 is Responsible for the Species Difference in Bile Acid Metabolism Between Mice and Humans,” Journal of Lipid Research 57, no. 12 (2016): 2130-2137.

[53]

S. I. Sayin, A. Wahlström, J. Felin, et al., “Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist,” Cell Metabolism 17, no. 2 (2013): 225-235.

[54]

A. Wahlström, S. I. Sayin, H. U. Marschall, and F. Bäckhed, “Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism,” Cell Metabolism 24, no. 1 (2016): 41-50.

[55]

L. D. Beilke, D. G. Besselsen, Q. Q. Cheng, S. Kulkarni, A. L. Slitt, and N. J. Cherrington, “Minimal Role of Hepatic Transporters in the Hepatoprotection Against LCA-induced Intrahepatic Cholestasis,” Toxicological Sciences 102, no. 1 (2008): 196-204.

[56]

A. A. Khan, E. C. Y. Chow, R. J. Porte, K. S. Pang, and G. M. M. Groothuis, “The Role of Lithocholic Acid in the Regulation of Bile Acid Detoxication, Synthesis, and Transport Proteins in Rat and human Intestine and Liver Slices,” Toxicology in Vitro 25, no. 1 (2011): 80-90.

[57]

K. Li, W. Xu, Q. Guo, et al., “Differential Macrophage Polarization in Male and Female BALB/c Mice Infected with Coxsackievirus B3 Defines Susceptibility to Viral Myocarditis,” Circulation Research 105, no. 4 (2009): 353-364.

[58]

Y. Gu, J. Yang, X. Ouyang, et al., “Interleukin 10 Suppresses Th17 Cytokines Secreted by Macrophages and T Cells,” European Journal of Immunology 38, no. 7 (2008): 1807-1813.

[59]

L. W. Zhang, Q. Zhao, H. Cang, et al., “Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells Toward an Adipogenic Differentiation Propensity With Leukemia Promotion Capabilities,” Advancement of Science 9, no. 16 (2022): 2105811.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/