UFMylation System: Biological Functions, Molecular Mechanisms, Diseases, and Drug Discovery

Huiyan Li , Fei Meng , Junjie Liang , Yijie Wang , Changliang Shan , Yan Chen

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70424

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70424 DOI: 10.1002/mco2.70424
REVIEW

UFMylation System: Biological Functions, Molecular Mechanisms, Diseases, and Drug Discovery

Author information +
History +
PDF

Abstract

UFMylation, a novel ubiquitin-like modification, plays a critical role in various intertwined cellular processes, such as the immune response, DNA damage repair, unfolded protein response (UPR), autophagy, endoplasmic reticulum (ER)-phagy, stem cell self-renewal, apoptosis, and metastasis. Dysfunction of UFMylation has been implicated in a variety of human diseases, including neurogenesis, hematopoiesis, liver development, and cancer. While this field is just emerging, research on UFMylation has escalated rapidly in recent years, with great advances having been made. However, only a few substrates of UFMylation have been identified so far, and the biological functions as well as the molecular mechanisms of the UFMylation system in tumorigenesis and the tumor microenvironment remain poorly understood. In this review, we first summarize current knowledge of the components, biochemical peculiarities, and working principles of the UFMylation system. Second, we provide a multidisciplinary review of the cellular functions, molecular mechanisms, and pathophysiological roles of the UFMylation system, with a particular emphasis on the intricate relationship between UFMylation and cancer. Finally, we discuss the potential of targeting UFMylation in cancer treatment and highlight outstanding questions for future investigation in this field.

Keywords

diseases / drugs / post-translational modification / signaling pathways / UFMylation

Cite this article

Download citation ▾
Huiyan Li, Fei Meng, Junjie Liang, Yijie Wang, Changliang Shan, Yan Chen. UFMylation System: Biological Functions, Molecular Mechanisms, Diseases, and Drug Discovery. MedComm, 2025, 6(10): e70424 DOI:10.1002/mco2.70424

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Pan and R. Chen, “Pathological Implication of Protein Post-Translational Modifications in Cancer,” Molecular Aspects of Medicine 86 (2022): 101097.

[2]

L. Herhaus and I. Dikic, “Expanding the Ubiquitin Code Through Post-Translational Modification,” EMBO Reports 16, no. 9 (2015): 1071-1083.

[3]

Y. Wang, X. Liu, W. Huang, J. Liang, and Y. Chen, “The Intricate Interplay Between HIFs, ROS, and the Ubiquitin System in the Tumor Hypoxic Microenvironment,” Pharmacology & Therapeutics 240 (2022): 108303.

[4]

A. Vertegaal, “Signalling Mechanisms and Cellular Functions of SUMO,” Nature Reviews Molecular Cell Biology 23, no. 11 (2022): 715-731.

[5]

L. Claessens and A. Vertegaal, “SUMO Proteases: From Cellular Functions to Disease,” Trends in Cell Biology 34, no. 11 (2024): 901-912.

[6]

I. R. Watson, M. S. Irwin, and M. Ohh, “NEDD8 Pathways in Cancer, Sine Quibus Non,” Cancer Cell 19, no. 2 (2011): 168-176.

[7]

D. Fu and T. Wang, “Targeting NEDD8-Activating Enzyme for Cancer Therapy: Developments, Clinical Trials, Challenges and Future Research Directions,” Journal of Hematology & Oncology 16, no. 1 (2023): 87.

[8]

Y. Perng and D. Lenschow, “ISG15 in Antiviral Immunity and Beyond,” Nature Reviews Microbiology 16, no. 7 (2018): 423-439.

[9]

J. L. Nieto-Torres, A. M. Leidal, J. Debnath, and M. Hansen, “Beyond Autophagy: The Expanding Roles of ATG8 Proteins,” Trends in Biochemical Sciences 46, no. 8 (2021): 673-686.

[10]

M. Jacquet, M. Guittaut, A. Fraichard, and G. Despouy, “The Functions of Atg8-Family Proteins in Autophagy and Cancer: Linked or Unrelated?,” Autophagy 17, no. 3 (2021): 599-611.

[11]

H. Popelka and D. Klionsky, “When an Underdog Becomes a Major Player: The Role of Protein Structural Disorder in the Atg8 Conjugation System,” Autophagy 20, no. 10 (2024): 2338-2345.

[12]

L. Murrow and J. Debnath, “ATG12-ATG3 Connects Basal Autophagy and Late Endosome Function,” Autophagy 11, no. 6 (2015): 961-962.

[13]

M. Termathe and S. Leidel, “Urm1: A Non-Canonical UBL,” Biomolecules 11, no. 2 (2021): 139.

[14]

F. Wang, M. Liu, R. Qiu, and C. Ji, “The Dual Role of Ubiquitin-Like Protein Urm1 as a Protein Modifier and Sulfur Carrier,” Protein Cell 2, no. 8 (2011): 612-619.

[15]

S. Xiang, X. Shao, J. Cao, B. Yang, Q. He, and M. Ying, “FAT10: Function and Relationship With Cancer,” Current Molecular Pharmacology 13, no. 3 (2020): 182-191.

[16]

S. Chanarat, “UBL5/Hub1: An Atypical Ubiquitin-Like Protein With a Typical Role as a Stress-Responsive Regulator,” International Journal of Molecular Sciences 22, no. 17 (2021): 9384.

[17]

M. Komatsu, T. Inada, and N. N. Noda, “The UFM1 System: Working Principles, Cellular Functions, and Pathophysiology,” Molecular Cell 84, no. 1 (2024): 156-169.

[18]

X. Zhou, S. J. Mahdizadeh, M. Le Gallo, L. A. Eriksson, E. Chevet, and E. Lafont, “UFMylation: A Ubiquitin-Like Modification,” Trends in Biochemical Sciences 49, no. 1 (2024): 52-67.

[19]

X. Wang, X. Lv, J. Ma, and G. Xu, “UFMylation: An Integral Post-Translational Modification for the Regulation of Proteostasis and Cellular Functions,” Pharmacology & Therapeutics 260 (2024): 108680.

[20]

Y. Gerakis, M. Quintero, H. Li, and C. Hetz, “The UFMylation System in Proteostasis and Beyond,” Trends in Cell Biology 29, no. 12 (2019): 974-986.

[21]

B. Velez, A. Razi, R. D. Hubbard, et al., “Rational Design of Proteasome Inhibitors Based on the Structure of the Endogenous Inhibitor PI31/Fub1,” PNAS 120, no. 51 (2023): e2308417120.

[22]

O. Kerscher, R. Felberbaum, and M. Hochstrasser, “Modification of Proteins by Ubiquitin and Ubiquitin-Like Proteins,” Annual Review of Cell and Developmental Biology 22 (2006): 159-180.

[23]

L. Cappadocia and C. Lima, “Ubiquitin-Like Protein Conjugation: Structures, Chemistry, and Mechanism,” Chemical Reviews 118, no. 3 (2018): 889-918.

[24]

M. Komatsu, T. Chiba, K. Tatsumi, et al., “A Novel Protein-conjugating System for Ufm1, a Ubiquitin-Fold Modifier,” EMBO Journal 23, no. 9 (2004): 1977-1986.

[25]

D. Millrine, J. J. Peter, and Y. Kulathu, “A Guide to UFMylation, an Emerging Posttranslational Modification,” FEBS Journal 290, no. 21 (2023): 5040-5056.

[26]

G. Liu, F. Forouhar, A. Eletsky, et al., “NMR and X-RAY Structures of Human E2-Like Ubiquitin-Fold Modifier Conjugating Enzyme 1 (UFC1) Reveal Structural and Functional Conservation in the Metazoan UFM1-UBA5-UFC1 Ubiquination Pathway,” Journal of Structural and Functional Genomics 10, no. 2 (2009): 127-136.

[27]

K. Tatsumi, Y. Sou, N. Tada, et al., “A Novel Type of E3 Ligase for the Ufm1 Conjugation System,” Journal of Biological Chemistry 285, no. 8 (2010): 5417-5427.

[28]

L. Wang, Y. Xu, T. Fukushige, et al., “Mono-UFMylation Promotes Misfolding-Associated Secretion of α-Synuclein,” Science Advances 10, no. 11 (2024): eadk2542.

[29]

J. J. Peter, H. M. Magnussen, P. A. DaRosa, et al., “A Non-Canonical Scaffold-Type E3 Ligase Complex Mediates Protein UFMylation,” EMBO Journal 41, no. 21 (2022): e111015.

[30]

C. Chen, C. Lu, F. Li, et al., “Preparation of UFM1-Derived Probes Through Highly Optimized Total Chemical Synthesis,” Chemistry (Weinheim An Der Bergstrasse, Germany) 29, no. 37 (2023): e202300414.

[31]

B. H. Ha, K. H. Kim, H. M. Yoo, W. Lee, and E. EunKyeong Kim, “The MPN Domain of Caenorhabditis elegans UfSP Modulates Both Substrate Recognition and Deufmylation Activity,” Biochemical and Biophysical Research Communications 476, no. 4 (2016): 450-456.

[32]

S. H. Kang, G. R. Kim, M. Seong, et al., “Two Novel Ubiquitin-Fold Modifier 1 (Ufm1)-Specific Proteases, UfSP1 and UfSP2,” Journal of Biological Chemistry 282, no. 8 (2007): 5256-5262.

[33]

B. H. Ha, H. Ahn, S. H. Kang, K. Tanaka, C. H. Chung, and E. E. Kim, “Structural Basis for Ufm1 Processing by UfSP1,” Journal of Biological Chemistry 283, no. 21 (2008): 14893-14900.

[34]

D. Millrine, T. Cummings, S. P. Matthews, et al., “Human UFSP1 Is an Active Protease That Regulates UFM1 Maturation and UFMylation,” Cell Reports 40, no. 5 (2022): 111168.

[35]

L. Ding, X. Jiang, T. Li, and S. Wang, “Role of UFMylation in Tumorigenesis and Cancer Immunotherapy,” Frontiers in Immunology 15 (2024): 1454823.

[36]

R. Mousa, D. Shkolnik, Y. Alalouf, and A. Brik, “Chemical Approaches to Explore Ubiquitin-Like Proteins,” RSC Chemical Biology 6, no. 4 (2025): 492-509.

[37]

Z. Liang, R. Ning, Z. Wang, et al., “The Emerging Roles of UFMylation in the Modulation of Immune Responses,” Clinical and Translational Medicine 14, no. 9 (2024): e70019.

[38]

B. A. Schulman and J. Wade Harper, “Ubiquitin-Like Protein Activation by E1 Enzymes: The Apex for Downstream Signalling Pathways,” Nature Reviews Molecular Cell Biology 10, no. 5 (2009): 319-331.

[39]

K. A. Tolmachova, J. Farnung, J. R. Liang, J. E. Corn, and J. W. Bode, “Facile Preparation of UFMylation Activity-Based Probes by Chemoselective Installation of Electrophiles at the C-Terminus of Recombinant UFM1,” ACS Central Science 8, no. 6 (2022): 756-762.

[40]

X. Wang, X. Xu, and Z. Wang, “The Post-Translational Role of UFMylation in Physiology and Disease,” Cells 12, no. 21 (2023): 2543.

[41]

B. Qin, J. Yu, F. Zhao, J. Huang, Q. Zhou, and Z. Lou, “Dynamic Recruitment of UFM1-Specific Peptidase 2 to the DNA Double-Strand Breaks Regulated by WIP1,” Genome Instability & Disease 3, no. 4 (2022): 217-226.

[42]

Y. Merbl, P. Refour, H. Patel, M. Springer, and M. Kirschner, “Profiling of Ubiquitin-Like Modifications Reveals Features of Mitotic Control,” Cell 152, no. 5 (2013): 1160-1172.

[43]

K. Swatek and D. Komander, “Ubiquitin Modifications,” Cell Research 26, no. 4 (2016): 399-422.

[44]

H. Yoo, S. Kang, J. Kim, et al., “Modification of ASC1 by UFM1 Is Crucial for ERα Transactivation and Breast Cancer Development,” Molecular Cell 56, no. 2 (2014): 261-274.

[45]

P. Padala, W. Oweis, B. Mashahreh, et al., “Novel Insights Into the Interaction of UBA5 With UFM1 via a UFM1-Interacting Sequence,” Scientific Reports 7, no. 1 (2017): 508.

[46]

H. Sasakawa, E. Sakata, Y. Yamaguchi, et al., “Solution Structure and Dynamics of Ufm1, a Ubiquitin-Fold Modifier 1,” Biochemical and Biophysical Research Communications 343, no. 1 (2006): 21-26.

[47]

S. Habisov, J. Huber, Y. Ichimura, et al., “Structural and Functional Analysis of a Novel Interaction Motif Within UFM1-Activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-Like Proteins and Ufmylation,” Journal of Biological Chemistry 291, no. 17 (2016): 9025-9041.

[48]

W. Oweis, P. Padala, F. Hassouna, et al., “Trans-Binding Mechanism of Ubiquitin-Like Protein Activation Revealed by a UBA5-UFM1 Complex,” Cell Reports 16, no. 12 (2016): 3113-3120.

[49]

J. Bacik, J. R. Walker, M. Ali, A. D. Schimmer, and S. Dhe-Paganon, “Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP: Mechanistic Insights Into a Minimalistic E1 Enzyme,” Journal of Biological Chemistry 285, no. 26 (2010): 20273-20280.

[50]

J. M. Gavin, K. Hoar, Q. Xu, et al., “Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway,” Journal of Biological Chemistry 289, no. 33 (2014): 22648-22658.

[51]

B. Mashahreh, F. Hassouna, N. Soudah, et al., “Trans-Binding of UFM1 to UBA5 Stimulates UBA5 Homodimerization and ATP Binding,” FASEB Journal 32, no. 5 (2018): 2794-2802.

[52]

M. Kumar, P. Padala, J. Fahoum, et al., “Structural Basis for UFM1 Transfer From UBA5 to UFC1,” Nature Communications 12, no. 1 (2021): 5708.

[53]

N. Wesch, F. Löhr, N. Rogova, V. Dötsch, and V. V. Rogov, “A Concerted Action of UBA5 C-Terminal Unstructured Regions Is Important for Transfer of Activated UFM1 to UFC1,” International Journal of Molecular Sciences 22, no. 14 (2021): 7390.

[54]

N. Soudah, P. Padala, F. Hassouna, et al., “An N-Terminal Extension to UBA5 Adenylation Domain Boosts UFM1 Activation: Isoform-Specific Differences in Ubiquitin-Like Protein Activation,” Journal of Molecular Biology 431, no. 3 (2019): 463-478.

[55]

M. Muona, R. Ishimura, A. Laari, et al., “Biallelic Variants in UBA5 Link Dysfunctional UFM1 Ubiquitin-Like Modifier Pathway to Severe Infantile-Onset Encephalopathy,” American Journal of Human Genetics 99, no. 3 (2016): 683-694.

[56]

K. Tatsumi, H. Yamamoto-Mukai, R. Shimizu, et al., “The Ufm1-Activating Enzyme Uba5 Is Indispensable for Erythroid Differentiation in Mice,” Nature Communications 2 (2011): 181.

[57]

S. Kumari, S. Banerjee, M. Kumar, et al., “Overexpression of UBA5 in Cells Mimics the Phenotype of Cells Lacking UBA5,” International Journal of Molecular Sciences 23, no. 13 (2022): 7445.

[58]

J. Huber, M. Obata, J. Gruber, et al., “An Atypical LIR Motif Within UBA5 (Ubiquitin Like Modifier Activating Enzyme 5) Interacts With GABARAP Proteins and Mediates Membrane Localization of UBA5,” Autophagy 16, no. 2 (2020): 256-270.

[59]

M. Zheng, X. Gu, D. Zheng, et al., “UBE1DC1, an Ubiquitin-activating Enzyme, Activates Two Different Ubiquitin-Like Proteins,” Journal of Cellular Biochemistry 104, no. 6 (2008): 2324-2334.

[60]

P. Wu, M. Hanlon, M. Eddins, et al., “A Conserved Catalytic Residue in the Ubiquitin-Conjugating Enzyme Family,” EMBO Journal 22, no. 19 (2003): 5241-5250.

[61]

B. Cook and G. Shaw, “Architecture of the Catalytic HPN Motif Is Conserved in all E2 Conjugating Enzymes,” Biochemical Journal 445, no. 2 (2012): 167-174.

[62]

A. Plechanovová, E. G. Jaffray, M. H. Tatham, J. H. Naismith, and R. T. Hay, “Structure of a RING E3 Ligase and Ubiquitin-Loaded E2 Primed for Catalysis,” Nature 489, no. 7414 (2012): 115-120.

[63]

R. Ishimura, S. Ito, G. Mao, et al., “Mechanistic Insights Into the Roles of the UFM1 E3 Ligase Complex in Ufmylation and Ribosome-Associated Protein Quality Control,” Science Advances 9, no. 33 (2023): eadh3635.

[64]

Z. M. Eletr, D. T. Huang, D. M. Duda, B. A. Schulman, and B. Kuhlman, “E2 conjugating Enzymes Must Disengage From Their E1 Enzymes Before E3-Dependent Ubiquitin and Ubiquitin-Like Transfer,” Nature Structural & Molecular Biology 12, no. 10 (2005): 933-934.

[65]

S. Banerjee, J. K. Varga, M. Kumar, et al., “Structural Study of UFL1-UFC1 Interaction Uncovers the Role of UFL1 N-Terminal Helix in Ufmylation,” EMBO Reports 24, no. 12 (2023): e56920.

[66]

T. Mizushima, K. Tatsumi, Y. Ozaki, et al., “Crystal Structure of Ufc1, the Ufm1-Conjugating Enzyme,” Biochemical and Biophysical Research Communications 362, no. 4 (2007): 1079-1084.

[67]

H. Shiwaku, N. Yoshimura, T. Tamura, et al., “Suppression of the Novel ER Protein Maxer by Mutant Ataxin-1 in Bergman glia Contributes to Non-Cell-Autonomous Toxicity,” EMBO Journal 29, no. 14 (2010): 2446-2460.

[68]

G. M. Harami, M. Gyimesi, and M. Kovács, “From Keys to Bulldozers: Expanding Roles for Winged Helix Domains in Nucleic-Acid-Binding Proteins,” Trends in Biochemical Sciences 38, no. 7 (2013): 364-371.

[69]

Q. Liang, Y. Jin, S. Xu, et al., “Human UFSP1 Translated From an Upstream Near-Cognate Initiation Codon Functions as an Active UFM1-Specific Protease,” Journal of Biological Chemistry 298, no. 6 (2022): 102016.

[70]

X. Chen, T. Shen, S. Fang, X. Sun, G. Li, and Y. Li, “Protein Homeostasis in Aging and Cancer,” Frontiers in Cell and Developmental Biology 11 (2023): 1143532.

[71]

R. Liang, H. Tan, H. Jin, J. Wang, Z. Tang, and X. Lu, “The Tumour-Promoting Role of Protein Homeostasis: Implications for Cancer Immunotherapy,” Cancer Letters 573 (2023): 216354.

[72]

D. Simsek, G. C. Tiu, R. A. Flynn, et al., “The Mammalian Ribo-Interactome Reveals Ribosome Functional Diversity and Heterogeneity,” Cell 169, no. 6 (2017): 1051-1065.e18.

[73]

I. A. Gak, D. Vasiljevic, T. Zerjatke, et al. (2020) UFMylation regulates translational homeostasis and cell cycle progression. 2020.02.03.931196.

[74]

C. P. Walczak, D. E. Leto, L. Zhang, et al., “Ribosomal Protein RPL26 Is the Principal Target of UFMylation,” PNAS 116, no. 4 (2019): 1299-1308.

[75]

K. Braunger, S. Pfeffer, S. Shrimal, et al., “Structural Basis for Coupling Protein Transport and N-Glycosylation at the Mammalian Endoplasmic Reticulum,” Science 360, no. 6385 (2018): 215-219.

[76]

J. Kulsuptrakul, R. Wang, N. L. Meyers, M. Ott, and A. S. Puschnik, “A Genome-Wide CRISPR Screen Identifies UFMylation and TRAMP-Like Complexes as Host Factors Required for Hepatitis A Virus Infection,” Cell Reports 34, no. 11 (2021): 108859.

[77]

A. Schuller and R. Green, “Roadblocks and Resolutions in Eukaryotic Translation,” Nature Reviews Molecular Cell Biology 19, no. 8 (2018): 526-541.

[78]

C. Joazeiro, “Mechanisms and Functions of Ribosome-Associated Protein Quality Control,” Nature Reviews Molecular Cell Biology 20, no. 6 (2019): 368-383.

[79]

L. Wang, Y. Xu, H. Rogers, et al., “UFMylation of RPL26 Links Translocation-Associated Quality Control to Endoplasmic Reticulum Protein Homeostasis,” Cell Research 30, no. 1 (2020): 5-20.

[80]

F. Scavone, S. Gumbin, P. Da Rosa, and R. Kopito, “RPL26/uL24 UFMylation Is Essential for Ribosome-Associated Quality Control at the Endoplasmic Reticulum,” PNAS 120, no. 16 (2023): e2220340120.

[81]

P. A. DaRosa, I. Penchev, S. C. Gumbin, et al., “UFM1 E3 Ligase Promotes Recycling of 60S Ribosomal Subunits From the ER,” Nature 627, no. 8003 (2024): 445-452.

[82]

L. Makhlouf, J. J. Peter, H. M. Magnussen, et al., “The UFM1 E3 Ligase Recognizes and Releases 60S Ribosomes From ER Translocons,” Nature 627, no. 8003 (2024): 437-444.

[83]

L. Wang, Y. Xu, S. Yun, Q. Yuan, P. Satpute-Krishnan, and Y. Ye, “SAYSD1 Senses UFMylated Ribosome to Safeguard Co-Translational Protein Translocation at the Endoplasmic Reticulum,” Cell Reports 42, no. 1 (2023): 112028.

[84]

X. Xu, W. Huang, C. N. Bryant, Z. Dong, H. Li, and G. Wu, “The Ufmylation Cascade Controls COPII Recruitment, Anterograde Transport, and Sorting of Nascent GPCRs at ER,” Science Advances 10, no. 25 (2024): eadm9216.

[85]

K. Mochida and H. Nakatogawa, “ER-phagy: Selective Autophagy of the Endoplasmic Reticulum,” EMBO Reports 23, no. 8 (2022): e55192.

[86]

F. Reggiori and M. Molinari, “ER-phagy: Mechanisms, Regulation, and Diseases Connected to the Lysosomal Clearance of the Endoplasmic Reticulum,” Physiological Reviews 102, no. 3 (2022): 1393-1448.

[87]

S. Costantini, F. Capone, A. Polo, P. Bagnara, and A. Budillon, “Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer,” International Journal of Molecular Sciences 22, no. 18 (2021): 10177.

[88]

Z. Wang, S. Xiong, Z. Wu, et al., “VCP/p97 UFMylation Stabilizes BECN1 and Facilitates the Initiation of Autophagy,” Autophagy 20, no. 9 (2024): 2041-2054.

[89]

J. R. Liang, E. Lingeman, T. Luong, et al., “A Genome-Wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation,” Cell 180, no. 6 (2020): 1160-1177.e20.

[90]

L. Picchianti, V. Sánchez de Medina Hernández, N. Zhan, et al., “Shuffled ATG8 Interacting Motifs Form an Ancestral Bridge Between UFMylation and Autophagy,” EMBO Journal 42, no. 10 (2023): e112053.

[91]

M. Percy and T. Lappin, “Recessive Congenital Methaemoglobinaemia: Cytochrome b(5) Reductase Deficiency,” British Journal of Haematology 141, no. 3 (2008): 298-308.

[92]

R. Ishimura, A. H. El-Gowily, D. Noshiro, et al., “The UFM1 System Regulates ER-phagy Through the Ufmylation of CYB5R3,” Nature Communications 13, no. 1 (2022): 7857.

[93]

R. Zhuo, Z. Zhang, Y. Chen, et al., “CDK5RAP3 is a Novel Super-Enhancer-Driven Gene Activated by Master TFs and Regulates ER-Phagy in Neuroblastoma,” Cancer Letters 591 (2024): 216882.

[94]

K. Féral, M. Jaud, C. Philippe, et al., “ER Stress and Unfolded Protein Response in Leukemia: Friend, Foe, or Both?,” Biomolecules 11, no. 2 (2021): 199.

[95]

L. Ozcan and I. Tabas, “Calcium Signalling and ER Stress in Insulin Resistance and Atherosclerosis,” Journal of Internal Medicine 280, no. 5 (2016): 457-464.

[96]

M. Śniegocka, F. Liccardo, F. Fazi, and S. Masciarelli, “Understanding ER Homeostasis and the UPR to Enhance Treatment Efficacy of Acute Myeloid Leukemia,” Drug Resistance Updates 64 (2022): 100853.

[97]

C. Hetz, K. Zhang, and R. J. Kaufman, “Mechanisms, Regulation and Functions of the Unfolded Protein Response,” Nature Reviews Molecular Cell Biology 21, no. 8 (2020): 421-438.

[98]

H. Vanacker, J. Vetters, L. Moudombi, C. Caux, S. Janssens, and M. Michallet, “Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance,” Trends in Cancer 3, no. 7 (2017): 491-505.

[99]

J. Liu, Y. Wang, L. Song, et al., “A Critical Role of DDRGK1 in Endoplasmic Reticulum Homoeostasis via Regulation of IRE1α Stability,” Nature Communications 8 (2017): 14186.

[100]

P. van Galen, A. Kreso, N. Mbong, et al., “The Unfolded Protein Response Governs Integrity of the Haematopoietic Stem-Cell Pool During Stress,” Nature 510, no. 7504 (2014): 268-272.

[101]

J. Zhu, X. Ma, Y. Jing, et al., “P4HB UFMylation Regulates Mitochondrial Function and Oxidative Stress,” Free Radical Biology and Medicine 188 (2022): 277-286.

[102]

Y. Liu, W. Ji, A. Shergalis, et al., “Activation of the Unfolded Protein Response via Inhibition of Protein Disulfide Isomerase Decreases the Capacity for DNA Repair to Sensitize Glioblastoma to Radiotherapy,” Cancer Research 79, no. 11 (2019): 2923-2932.

[103]

H. Luo, Q. Jiao, C. Shen, et al., “UFMylation of HRD1 Regulates Endoplasmic Reticulum Homeostasis,” FASEB Journal 37, no. 11 (2023): e23221.

[104]

H. Terai, S. Kitajima, D. S. Potter, et al., “ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors,” Cancer Research 78, no. 4 (2018): 1044-1057.

[105]

S. Wang, M. Jia, M. Su, et al., “Ufmylation Is Activated in Renal Cancer and Is Not Associated With von Hippel-Lindau Mutation,” DNA and Cell Biology 39, no. 4 (2020): 654-660.

[106]

K. Mukaigasa, T. Tsujita, V. T. Nguyen, et al., “Nrf2 Activation Attenuates Genetic Endoplasmic Reticulum Stress Induced by a Mutation in the Phosphomannomutase 2 Gene in Zebrafish,” PNAS 115, no. 11 (2018): 2758-2763.

[107]

Z. Hu, X. Wang, D. Li, L. Cao, H. Cui, and G. Xu, “UFBP1, a Key Component in Ufmylation, Enhances Drug Sensitivity by Promoting Proteasomal Degradation of Oxidative Stress-Response Transcription Factor Nrf2,” Oncogene 40, no. 3 (2021): 647-662.

[108]

L. R. Ferguson, H. Chen, A. R. Collins, et al., “Genomic Instability in Human Cancer: Molecular Insights and Opportunities for Therapeutic Attack and Prevention Through Diet and Nutrition,” Seminars in Cancer Biology 35 (2015): S5-S24.

[109]

A. Maslov and J. Vijg, “Genome Instability, Cancer and Aging,” Biochimica Et Biophysica Acta 1790, no. 10 (2009): 963-969.

[110]

F. J. Groelly, M. Fawkes, R. A. Dagg, A. N. Blackford, and M. Tarsounas, “Targeting DNA Damage Response Pathways in Cancer,” Nature Reviews Cancer 23, no. 2 (2023): 78-94.

[111]

J. Hoeijmakers, “Genome Maintenance Mechanisms for Preventing Cancer,” Nature 411, no. 6835 (2001): 366-374.

[112]

H. Jiang, S. Luo, and H. Li, “Cdk5 Activator-Binding Protein C53 Regulates Apoptosis Induced by Genotoxic Stress via Modulating the G2/M DNA Damage Checkpoint,” Journal of Biological Chemistry 280, no. 21 (2005): 20651-20659.

[113]

H. Jiang, J. Wu, C. He, W. Yang, and H. Li, “Tumor Suppressor Protein C53 Antagonizes Checkpoint Kinases to Promote Cyclin-Dependent Kinase 1 Activation,” Cell Research 19, no. 4 (2009): 458-468.

[114]

H. An, X. Lu, D. Liu, and W. G. Yarbrough, “LZAP Inhibits p38 MAPK (p38) Phosphorylation and Activity by Facilitating p38 Association With the Wild-Type p53 Induced Phosphatase 1 (WIP1),” PLoS ONE 6, no. 1 (2011): e16427.

[115]

J. J. Wamsley, N. Issaeva, H. An, X. Lu, L. A. Donehower, and W. G. Yarbrough, “LZAP Is a Novel Wip1 Binding Partner and Positive Regulator of Its Phosphatase Activity in Vitro,” Cell Cycle 16, no. 2 (2017): 213-223.

[116]

M. Zhang, X. Zhu, Y. Zhang, et al., “RCAD/Ufl1, a Ufm1 E3 Ligase, Is Essential for Hematopoietic Stem Cell Function and Murine Hematopoiesis,” Cell Death and Differentiation 22, no. 12 (2015): 1922-1934.

[117]

T. Uziel, Y. Lerenthal, L. Moyal, Y. Andegeko, L. Mittelman, and Y. Shiloh, “Requirement of the MRN Complex for ATM Activation by DNA Damage,” EMBO Journal 22, no. 20 (2003): 5612-5621.

[118]

B. Qin, J. Yu, S. Nowsheen, et al., “UFL1 Promotes Histone H4 Ufmylation and ATM Activation,” Nature Communications 10, no. 1 (2019): 1242.

[119]

B. Qin, J. Yu, S. Nowsheen, F. Zhao, L. Wang, and Z. Lou, “STK38 Promotes ATM Activation by Acting as a Reader of Histone H4 Ufmylation,” Science Advances 6, no. 23 (2020): eaax8214.

[120]

Z. Wang, Y. Gong, B. Peng, et al., “MRE11 UFMylation Promotes ATM Activation,” Nucleic Acids Research 47, no. 8 (2019): 4124-4135.

[121]

L. Lee, A. B. Perez Oliva, E. Martinez-Balsalobre, et al., “UFMylation of MRE11 Is Essential for Telomere Length Maintenance and Hematopoietic Stem Cell Survival,” Science Advances 7, no. 39 (2021): eabc7371.

[122]

T. Tian, J. Chen, H. Zhao, et al., “UFL1 triggers Replication Fork Degradation by MRE11 in BRCA1/2-Deficient Cells,” Nature Chemical Biology 20, no. 12 (2024): 1650-1661.

[123]

A. Bowry, R. D. Kelly, and E. Petermann, “Hypertranscription and Replication Stress in Cancer,” Trends in Cancer 7, no. 9 (2021): 863-877.

[124]

Y. Gong, Z. Wang, W. Zong, et al., “PARP1 UFMylation Ensures the Stability of Stalled Replication Forks,” PNAS 121, no. 18 (2024): e2322520121.

[125]

Q. Tan and X. Xu, “PTIP UFMylation Promotes Replication Fork Degradation in BRCA1-Deficient Cells,” Journal of Biological Chemistry 300, no. 6 (2024): 107312.

[126]

P. Vaddavalli and B. Schumacher, “The p53 Network: Cellular and Systemic DNA Damage Responses in Cancer and Aging,” Trends in Genetics 38, no. 6 (2022): 598-612.

[127]

A. Williams and B. Schumacher, “p53 in the DNA-Damage-Repair Process,” Cold Spring Harbor Perspectives in Medicine 6, no. 5 (2016): a026070.

[128]

J. Liu, D. Guan, M. Dong, et al., “UFMylation Maintains Tumour Suppressor p53 Stability by Antagonizing Its Ubiquitination,” Nature Cell Biology 22, no. 9 (2020): 1056-1063.

[129]

J. Cha, L. Chan, C. Li, J. L. Hsu, and M. Hung, “Mechanisms Controlling PD-L1 Expression in Cancer,” Molecular Cell 76, no. 3 (2019): 359-370.

[130]

N. Zhang and M. Bevan, “CD8(+) T Cells: Foot Soldiers of the Immune System,” Immunity 35, no. 2 (2011): 161-168.

[131]

L. Chen and X. Han, “Anti-PD-1/PD-L1 Therapy of Human Cancer: Past, Present, and Future,” Journal of Clinical Investigation 125, no. 9 (2015): 3384-3391.

[132]

D. Thommen and T. Schumacher, “T Cell Dysfunction in Cancer,” Cancer Cell 33, no. 4: 547-562.

[133]

M. Mao, Y. Chen, J. Yang, et al., “Modification of PLAC8 by UFM1 Affects Tumorous Proliferation and Immune Response by Impacting PD-L1 Levels in Triple-Negative Breast Cancer,” Journal for ImmunoTherapy of Cancer 10, no. 12 (2022): e005668.

[134]

M. Mao, Y. Chen, Y. Jia, et al., “PLCA8 Suppresses Breast Cancer Apoptosis by Activating the PI3k/AKT/NF-kappaB Pathway,” Journal of Cellular and Molecular Medicine 23, no. 10 (2019): 6930-6941.

[135]

J. Zhou, X. Ma, X. He, et al., “Dysregulation of PD-L1 by UFMylation Imparts Tumor Immune Evasion and Identified as a Potential Therapeutic Target,” PNAS 120, no. 11 (2023): e2215732120.

[136]

C. He, X. Xing, H. Chen, et al., “UFL1 Ablation in T Cells Suppresses PD-1 UFMylation to Enhance Anti-Tumor Immunity,” Molecular Cell 84, no. 6 (2024): 1120-1138.e8.

[137]

S. P. T. Yiu, C. Zerbe, D. Vanderwall, E. L. Huttlin, M. P. Weekes, and B. E. Gewurz, “An Epstein-Barr Virus Protein Interaction Map Reveals NLRP3 Inflammasome Evasion via MAVS UFMylation,” Molecular Cell 83, no. 13 (2023): 2367-2386.e15.

[138]

P. Farrell, “Epstein-Barr Virus and Cancer,” Annual Review of Pathology 14 (2019): 29-53.

[139]

Y. Tao, S. Yin, Y. Liu, et al., “UFL1 Promotes Antiviral Immune Response by Maintaining STING Stability Independent of UFMylation,” Cell Death and Differentiation 30, no. 1 (2023): 16-26.

[140]

D. L. Snider, M. Park, K. A. Murphy, D. C. Beachboard, and S. M. Horner, “Signaling From the RNA Sensor RIG-I Is Regulated by Ufmylation,” PNAS 119, no. 15 (2022): e2119531119.

[141]

Y. Liu, H. Ma, and J. Yao, “ERα, a Key Target for Cancer Therapy: A Review,” OncoTargets and Therapy 13 (2020): 2183-2191.

[142]

P. Fan and V. Jordan, “Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer,” Targeted Oncology 17, no. 2 (2022): 111-124.

[143]

B. Katzenellenbogen, “Estrogen Receptor Gets a Grip on RNA,” Cell 184, no. 20 (2021): 5086-5088.

[144]

V. Felzen, C. Hiebel, I. Koziollek-Drechsler, et al., “Estrogen Receptor α Regulates Non-Canonical Autophagy That Provides Stress Resistance to Neuroblastoma and Breast Cancer Cells and Involves BAG3 Function,” Cell Death & Disease 6, no. 7 (2015): e1812.

[145]

S. Yan, J. Ji, Z. Zhang, et al., “Targeting the Crosstalk Between Estrogen Receptors and Membrane Growth Factor Receptors in Breast Cancer Treatment: Advances and Opportunities,” Biomedicine & Pharmacotherapy 175 (2024): 116615.

[146]

C. Klinge, “Estrogen Receptor Interaction With Estrogen Response Elements,” Nucleic Acids Research 29, no. 14 (2001): 2905-2919.

[147]

S. Nilsson, S. Mäkelä, E. Treuter, et al., “Mechanisms of Estrogen Action,” Physiological Reviews 81, no. 4 (2001): 1535-1565.

[148]

A. Capietto, S. R. Chan, B. Ricci, et al., “Novel ERα Positive Breast Cancer Model With Estrogen Independent Growth in the Bone Microenvironment,” Oncotarget 7, no. 31 (2016): 49751-49764.

[149]

H. Yoo, S. Kang, J. Kim, et al., “Modification of ASC1 by UFM1 Is Crucial for ERalpha Transactivation and Breast Cancer Development,” Molecular Cell 56, no. 2 (2014): 261-274.

[150]

H. M. Yoo, J. H. Park, J. Y. Kim, and C. H. Chung, “Modification of ERalpha by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development,” Molecules and Cells 45, no. 6 (2022): 425-434.

[151]

S. Dixon and D. Pratt, “Ferroptosis: A Flexible Constellation of Related Biochemical Mechanisms,” Molecular Cell 83, no. 7 (2023): 1030-1042.

[152]

X. Mi, B. Liu, L. Qu, et al., “Intranasal Iron Administration Induces Iron Deposition, Immunoactivation, and Cell-Specific Vulnerability in the Olfactory Bulb of C57BL/6 Mice,” Zoological Research 46, no. 1 (2025): 209-224.

[153]

Q. Tuo and P. Lei, “Ferroptosis in Ischemic Stroke: Animal Models and Mechanisms,” Zoological Research 45, no. 6 (2024): 1235-1248.

[154]

H. Yan, Q. Tuo, Q. Yin, and P. Lei, “The Pathological Role of Ferroptosis in Ischemia/Reperfusion-Related Injury,” Zoological Research 41, no. 3 (2020): 220-230.

[155]

S. Dixon, K. Lemberg, M. Lamprecht, et al., “Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death,” Cell 149, no. 5 (2012): 1060-1072.

[156]

D. Liang, A. M. Minikes, and X. Jiang, “Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling,” Molecular Cell 82, no. 12 (2022): 2215-2227.

[157]

F. Zeng, S. Nijiati, L. Tang, J. Ye, Z. Zhou, and X. Chen, “Ferroptosis Detection: From Approaches to Applications,” Angewandte Chemie (International ed in English) 62, no. 35 (2023): e202300379.

[158]

D. Tang, X. Chen, R. Kang, and G. Kroemer, “Ferroptosis: Molecular Mechanisms and Health Implications,” Cell Research 31, no. 2 (2021): 107-125.

[159]

J. Liu, R. Kang, and D. Tang, “Signaling Pathways and Defense Mechanisms of Ferroptosis,” FEBS Journal 289, no. 22 (2022): 7038-7050.

[160]

Y. Sun, P. Chen, B. Zhai, et al., “The Emerging Role of Ferroptosis in Inflammation,” Biomedicine & Pharmacotherapy 127 (2020): 110108.

[161]

J. Li, Y. Jia, Y. Ding, J. Bai, F. Cao, and F. Li, “The Crosstalk Between Ferroptosis and Mitochondrial Dynamic Regulatory Networks,” International Journal of Biological Sciences 19, no. 9 (2023): 2756-2771.

[162]

J. Yang, Y. Zhou, S. Xie, et al., “Metformin Induces Ferroptosis by Inhibiting UFMylation of SLC7A11 in Breast Cancer,” Journal of Experimental & Clinical Cancer Research 40, no. 1 (2021): 206.

[163]

J. Li, X. Tang, X. Tu, et al., “UFL1 Alleviates ER Stress and Apoptosis Stimulated by LPS via Blocking the Ferroptosis Pathway in human Granulosa-Like Cells,” Cell Stress & Chaperones 27, no. 5 (2022): 485-497.

[164]

G. Li, C. Liao, J. Chen, et al., “Targeting the MCP-GPX4/HMGB1 Axis for Effectively Triggering Immunogenic Ferroptosis in Pancreatic Ductal Adenocarcinoma,” Advanced Science (Weinh) 11, no. 21 (2024): e2308208.

[165]

J. Kang, N. Brajanovski, K. T. Chan, J. Xuan, R. B. Pearson, and E. Sanij, “Ribosomal Proteins and Human Diseases: Molecular Mechanisms and Targeted Therapy,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 323.

[166]

K. Wang, S. Chen, Y. Wu, et al., “The Ufmylation Modification of Ribosomal Protein L10 in the Development of Pancreatic Adenocarcinoma,” Cell Death & Disease 14, no. 6 (2023): 350.

[167]

G. MacLeod, D. A. Bozek, N. Rajakulendran, et al., “Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells,” Cell Reports 27, no. 3 (2019): 971-986.e9.

[168]

J. Lin, X. Xie, X. Weng, et al., “Correction: UFM1 Suppresses Invasive Activities of Gastric Cancer Cells by Attenuating the Expression of PDK1 Through PI3K/AKT Signaling,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 307.

[169]

D. Hanahan, “Hallmarks of Cancer: New Dimensions,” Cancer Discovery 12, no. 1 (2022): 31-46.

[170]

M. Martin-Perez, U. Urdiroz-Urricelqui, C. Bigas, and S. A. Benitah, “The Role of Lipids in Cancer Progression and Metastasis,” Cell Metabolism 34, no. 11 (2022): 1675-1699.

[171]

F. Eck, S. Phuyal, M. D. Smith, et al., “ACSL3 is a Novel GABARAPL2 Interactor That Links Ufmylation and Lipid Droplet Biogenesis,” Journal of Cell Science 133, no. 18 (2020): jcs243477.

[172]

D. Li and Y. Li, “The Interaction Between Ferroptosis and Lipid Metabolism in Cancer,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 108.

[173]

X. Bian, R. Liu, Y. Meng, D. Xing, D. Xu, and Z. Lu, “Lipid Metabolism and Cancer,” Journal of Experimental Medicine 218, no. 1 (2021): e20201606.

[174]

F. Chen, L. Sheng, T. Zhou, et al., “Loss of Ufl1/Ufbp1 in Hepatocytes Promotes Liver Pathological Damage and Carcinogenesis Through Activating mTOR Signaling,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 110.

[175]

Z. Mao, X. Ma, Y. Jing, et al., “Ufmylation on UFBP1 Alleviates Non-Alcoholic Fatty Liver Disease by Modulating Hepatic Endoplasmic Reticulum Stress,” Cell Death & Disease 14, no. 9 (2023): 584.

[176]

C. Li, L. Li, I. Ali, M. Kuang, X. Wang, and G. Wang, “UFL1 Regulates Milk Protein and Fat Synthesis-Related Gene Expression of Bovine Mammary Epithelial Cells Probably via the mTOR Signaling Pathway,” In Vitro Cellular & Developmental Biology Animal 57, no. 5 (2021): 550-559.

[177]

G. Li, Y. Huang, W. Han, et al., “Eg5 UFMylation Promotes Spindle Organization During Mitosis,” Cell Death & Disease 15, no. 7 (2024): 544.

[178]

J. Ran, G. Guo, S. Zhang, et al., “KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis,” Advanced Science (Weinh) 11, no. 25 (2024): e2400569.

[179]

P. Mill, S. T. Christensen, and L. B. Pedersen, “Primary Cilia as Dynamic and Diverse Signalling Hubs in Development and Disease,” Nature Reviews Genetics 24, no. 7 (2023): 421-441.

[180]

D. Silva and C. Cavadas, “Primary Cilia Shape Hallmarks of Health and Aging,” Trends in Molecular Medicine 29, no. 7 (2023): 567-579.

[181]

M. S. Nahorski, S. Maddirevula, R. Ishimura, et al., “Biallelic UFM1 and UFC1 Mutations Expand the Essential Role of Ufmylation in Brain Development,” Brain 141, no. 7 (2018): 1934-1945.

[182]

J. Zhang, H. Zhu, S. Liu, et al., “Deficiency of Murine UFM1-Specific E3 Ligase Causes Microcephaly and Inflammation,” Molecular Neurobiology 59, no. 10 (2022): 6363-6372.

[183]

Z. Szűcs, R. Fitala, Á. R. Nyuzó, et al., “Four New Cases of Hypomyelinating Leukodystrophy Associated With the UFM1 c.-155_-153delTCA Founder Mutation in Pediatric Patients of Roma Descent in Hungary,” Genes (Basel) 12, no. 9 (2021): 1331.

[184]

C. Parra Bravo, A. M. Giani, J. Madero-Perez, et al., “Human iPSC 4R Tauopathy Model Uncovers Modifiers of Tau Propagation,” Cell 187, no. 10 (2024): 2446-2464.e22.

[185]

M. Cabrera-Serrano, D. J. Coote, D. Azmanov, et al., “A Homozygous UBA5 Pathogenic Variant Causes a Fatal Congenital Neuropathy,” Journal of Medical Genetics 57, no. 12 (2020): 835-842.

[186]

L. C. Briere, M. A. Walker, F. A. High, et al., “A Description of Novel Variants and Review of Phenotypic Spectrum in UBA5-Related Early Epileptic Encephalopathy,” Cold Spring Harbor Molecular Case Studies 7, no. 3 (2021): a005827.

[187]

S. Yang, N. Moy, and R. Yang, “The UFM1 Conjugation System in Mammalian Development,” Developmental Dynamics 252, no. 7 (2023): 976-985.

[188]

M. Weisz-Hubshman, A. T. Egunsula, B. Dawson, et al., “DDRGK1 is Required for the Proper Development and Maintenance of the Growth Plate Cartilage,” Human Molecular Genetics 31, no. 16 (2022): 2820-2830.

[189]

R. Winter and B. Bloom, “Spine Deformity in Spondyloepimetaphyseal Dysplasia,” Journal of Pediatric Orthopedics 10, no. 4 (1990): 535-539.

[190]

G. Zhang, S. Tang, H. Wang, et al., “UFSP2-Related Spondyloepimetaphyseal Dysplasia: A Confirmatory Report,” European Journal of Medical Genetics 63, no. 11 (2020): 104021.

[191]

M. Di Rocco, M. Rusmini, F. Caroli, et al., “Novel Spondyloepimetaphyseal Dysplasia due to UFSP2 Gene Mutation,” Clinical Genetics 93, no. 3 (2018): 671-674.

[192]

L. Mattern, M. Begemann, H. Delbrück, et al., “Variant of the Catalytic Cysteine of UFSP2 Leads to Spondyloepimetaphyseal Dysplasia Type Di Rocco,” Bone Reports 18 (2023): 101683.

[193]

R. Yang, H. Wang, B. Kang, et al., “CDK5RAP3, a UFL1 Substrate Adaptor, Is Crucial for Liver Development,” Development (Cambridge, England) 146, no. 2 (2019): dev169235.

[194]

S. Yang, R. Yang, H. Wang, Y. Huang, and Y. Jia, “CDK5RAP3 Deficiency Restrains Liver Regeneration After Partial Hepatectomy Triggering Endoplasmic Reticulum Stress,” American Journal of Pathology 190, no. 12 (2020): 2403-2416.

[195]

J. Sutherland and R. Barrio, “Putting the Stress on UFM1 (Ubiquitin-Fold Modifier 1),” Circulation: Heart Failure 11, no. 10 (2018): e005455.

[196]

J. Li, G. Yue, W. Ma, et al., “Ufm1-Specific Ligase Ufl1 Regulates Endoplasmic Reticulum Homeostasis and Protects Against Heart Failure,” Circulation: Heart Failure 11, no. 10 (2018): e004917.

[197]

A. M. Roberts, D. K. Miyamoto, T. R. Huffman, et al., “Chemoproteomic Screening of Covalent Ligands Reveals UBA5 as a Novel Pancreatic Cancer Target,” ACS Chemical Biology 12, no. 4 (2017): 899-904.

[198]

S. R. da Silva, S. Paiva, M. Bancerz, et al., “A Selective Inhibitor of the UFM1-Activating Enzyme, UBA5,” Bioorganic & Medicinal Chemistry Letters 26, no. 18 (2016): 4542-4547.

[199]

B. Fang, Z. Li, Y. Qiu, N. Cho, and H. M. Yoo, “Inhibition of UBA5 Expression and Induction of Autophagy in Breast Cancer Cells by Usenamine A,” Biomolecules 11, no. 9 (2021): 1348.

[200]

B. Dale, M. Cheng, K. Park, H. Ü. Kaniskan, Y. Xiong, and J. Jin, “Advancing Targeted Protein Degradation for Cancer Therapy,” Nature Reviews Cancer 21, no. 10 (2021): 638-654.

[201]

Z. Yang, Q. Pang, J. Zhou, C. Xuan, and S. Xie, “Leveraging Aptamers for Targeted Protein Degradation,” Trends in Pharmacological Sciences 44, no. 11 (2023): 776-785.

[202]

H. M. Yoo, J. H. Park, J. Y. Kim, and C. H. Chung, “Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development,” Molecules and Cells 45, no. 6 (2022): 425-434.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/