Hydrogel Microspheres as Versatile Platforms for Biomedical Research: Design, Properties, and Applications

Meng Yang , Yuanyuan Shi , Feng Wang , Xin Zhang , Jiayi Shao , Fan Yang , Hao Sun , Chong Zhang , Zheng Zhou , Jianyong Huang , Pengyu Lv , Patrick Shu-Hang Yung , Jin Cheng , Hong-Jie Huang , Jian-Quan Wang

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70423

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70423 DOI: 10.1002/mco2.70423
REVIEW

Hydrogel Microspheres as Versatile Platforms for Biomedical Research: Design, Properties, and Applications

Author information +
History +
PDF

Abstract

Hydrogel microspheres (HMs) are versatile biomaterials with biocompatibility and controlled release properties, widely applied in drug delivery, cell carriers, and tissue engineering. Their tunable material compositions (natural, synthetic, or composite polymers) and diverse fabrication techniques (e.g., microfluidics, electrohydrodynamic spraying) allow precise regulation of size, morphology, and functionality, supporting applications from musculoskeletal repair to dermatological therapy. Despite rapid advancements, a comprehensive understanding of HM design, manufacturing, and biomedical applications is still lacking, as existing reviews mainly focus on single fields or specific scenarios. This review systematically summarizes HMs construction strategies (material selection and property modulation), fabrication technologies (batch emulsion, microfluidic chips, and emerging Artificial Intelligence (AI)-assisted methods), and multifunctional applications (drug and cell delivery, nanoparticle integration, and lubrication modification). It highlights the cross-system therapeutic potential of HMs and discusses challenges in clinical translation. By integrating these aspects, this review aims to bridge the gap between material design and clinical translation, providing researchers with an overview from basic research to clinical application, while exploring approaches to cross-system synergistic therapy and addressing bottlenecks in clinical translation.

Keywords

biomaterials / hydrogel microspheres / tissue engineering

Cite this article

Download citation ▾
Meng Yang, Yuanyuan Shi, Feng Wang, Xin Zhang, Jiayi Shao, Fan Yang, Hao Sun, Chong Zhang, Zheng Zhou, Jianyong Huang, Pengyu Lv, Patrick Shu-Hang Yung, Jin Cheng, Hong-Jie Huang, Jian-Quan Wang. Hydrogel Microspheres as Versatile Platforms for Biomedical Research: Design, Properties, and Applications. MedComm, 2025, 6(10): e70423 DOI:10.1002/mco2.70423

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. C. Daly, L. Riley, T. Segura, and J. A. Burdick, “Hydrogel Microparticles for Biomedical Applications,” Nature Reviews Materials 5, no. 1 (2020): 20-43.

[2]

J. Lin, S. Jia, F. Cao, et al., “Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis through Promotion of Cartilage Repair,” Advanced Functional Materials 34, no. 33 (2024): 2400585.

[3]

B. H. Shan and F. G. Wu, “Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances,” Advanced Materials 36, no. 5 (2024): e2210707.

[4]

A. Manz, D. J. Harrison, E. M. J. Verpoorte, et al., “Planar Chips Technology for Miniaturization and Integration of Separation Techniques Into Monitoring Systems: Capillary Electrophoresis on a Chip,” Journal of Chromatography A 593, no. 1 (1992): 253-258.

[5]

G. M. Whitesides, “The Origins and the Future of Microfluidics,” Nature 442, no. 7101 (2006): 368-373.

[6]

J. M. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems,” Electrophoresis 23, no. 20 (2002): 3461-3473.

[7]

J. Di, F. Xie, and Y. Xu, “When Liposomes Met Antibodies: Drug Delivery and Beyond,” Advanced Drug Delivery Reviews 154 (2020): 151-155.

[8]

R. Tenchov, R. Bird, A. E. Curtze, and Q. Zhou, “Lipid Nanoparticles─from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement,” ACS Nano 15, no. 11 (2021): 16982-17015.

[9]

L. Xuan, Z. Ju, M. Skonieczna, P. Zhou, and R. Huang, “Nanoparticles-induced Potential Toxicity on human Health: Applications, Toxicity Mechanisms, and Evaluation Models,” MedComm 4, no. 4 (2023): e327.

[10]

Y. Hao, Z. Ji, H. Zhou, et al., “Lipid-based Nanoparticles as Drug Delivery Systems for Cancer Immunotherapy,” MedComm 4, no. 4 (2023): e339.

[11]

J. Yue, Z. Liu, L. Wang, M. Wang, and G. Pan, “Recent Advances in Bioactive Hydrogel Microspheres: Material Engineering Strategies and Biomedical Prospects,” Materials Today Bio 25, no. 31 (2025): 101614.

[12]

J. Yang, Y. Zhu, F. Wang, L. Deng, X. Xu, and W. Cui, “Microfluidic Liposomes-anchored Microgels as Extended Delivery Platform for Treatment of Osteoarthritis,” Chemical Engineering Journal 400 (2020): 126004.

[13]

L. Bai, Q. Han, Z. Han, et al., “Stem Cells Expansion Vector via Bioadhesive Porous Microspheres for Accelerating Articular Cartilage Regeneration,” Advanced Healthcare Materials 13, no. 3 (2024): e2302327.

[14]

M. Hamilton, J. Wang, P. Dhar, and L. Stehno-Bittel, “Controlled-Release Hydrogel Microspheres to Deliver Multipotent Stem Cells for Treatment of Knee Osteoarthritis,” Bioengineering (Basel) 10, no. 11 (2023): 1315.

[15]

L. Xuan, Y. Hou, L. Liang, et al., “Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine,” Nano-Micro Letters 16, no. 1 (2024): 218.

[16]

C. L. Roberge, D. M. Kingsley, L. R. Cornely, C. J. Spain, A. G. Fortin, and D. T. Corr, “Viscoelastic Properties of Bioprinted Alginate Microbeads Compared to Their Bulk Hydrogel Analogs,” Journal of Biomechanical Engineering 145, no. 3 (2023): 031002.

[17]

C. H. Lin, J. R. Srioudom, W. Sun, et al., “The Use of Hydrogel Microspheres as Cell and Drug Delivery Carriers for Bone, Cartilage, and Soft Tissue Regeneration,” Biomaterials Translational 5, no. 3 (2024): 236-256.

[18]

S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, and C. Nastruzzi, “Preparation of Cell-encapsulation Devices in Confined Microenvironment,” Advanced Drug Delivery Reviews 65, no. 11-12 (2013): 1533-1555.

[19]

H. Chi, Y. Qiu, X. Ye, J. Shi, and Z. Li, “Preparation Strategy of Hydrogel Microsphere and Its Application in Skin Repair,” Frontiers in Bioengineering and Biotechnology 11 (2023): 12391832.

[20]

J. Liu, C. Du, S. Liu, et al., “Emerging Trends in Injectable Stimuli-Responsive Hydrogel Microspheres: Design Strategies and Therapeutic Innovations,” MedComm—Biomaterials and Applications 4, no. 2 (2025): e70017.

[21]

P. Bramhe, N. Rarokar, R. Kumbhalkar, S. Saoji, and P. Khedekar, “Natural and Synthetic Polymeric Hydrogel: A Bioink for 3D Bioprinting of Tissue Models,” Journal of Drug Delivery Science and Technology 101 (2024): 106204.

[22]

J. Mu, J. Lin, P. Huang, and X. Chen, “Development of Endogenous Enzyme-responsive Nanomaterials for Theranostics,” Chemical Society Reviews 47, no. 15 (2018): 5554-5573.

[23]

S. Ji, X. Li, S. Wang, et al., “Physically Entangled Antiswelling Hydrogels With High Stiffness,” Macromolecular Rapid Communications 43, no. 19 (2022): e2200272.

[24]

S. Asim, T. A. Tabish, U. Liaqat, I. T. Ozbolat, and M. Rizwan, “Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions,” Advanced Healthcare Materials 12, no. 17 (2023): e2203148.

[25]

T. Nii, “Strategies Using Gelatin Microparticles for Regenerative Therapy and Drug Screening Applications,” Molecules (Basel, Switzerland) 26, no. 22 (2021): 6795.

[26]

S. Murab, A. Gupta, M. K. Włodarczyk-Biegun, et al., “Alginate Based Hydrogel Inks for 3D Bioprinting of Engineered Orthopedic Tissues,” Carbohydrate Polymers 296 (2022): 119964.

[27]

I. Donati and B. E. Christensen, “Alginate-metal Cation Interactions: Macromolecular Approach,” Carbohydrate Polymers 321 (2023): 121280.

[28]

G. Luca, M. Calvitti, C. Nastruzzi, et al., “Encapsulation, in Vitro Characterization, and in Vivo Biocompatibility of Sertoli Cells in Alginate-based Microcapsules,” Tissue Engineering 13, no. 3 (2007): 641-648.

[29]

X. Xu, A. K. Jha, D. A. Harrington, M. C. Farach-Carson, and X. Jia, “Hyaluronic Acid-Based Hydrogels: From a Natural Polysaccharide to Complex Networks,” Soft Matter 8, no. 12 (2012): 3280-3294.

[30]

L. A. Pérez, R. Hernández, J. M. Alonso, R. Pérez-González, and V. Sáez-Martínez, “Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications,” Biomedicines 9, no. 9 (2021): 1113.

[31]

C. Holland, K. Numata, J. Rnjak-Kovacina, and F. P. Seib, “The Biomedical Use of Silk: Past, Present, Future,” Advanced Healthcare Materials 8, no. 1 (2019): e1800465.

[32]

Y. Qi, H. Wang, K. Wei, et al., “A Review of Structure Construction of Silk Fibroin Biomaterials From Single Structures to Multi-Level Structures,” International Journal of Molecular Sciences 18, no. 3 (2017): 237.

[33]

D. Lin, M. Li, L. Wang, et al., “Multifunctional Hydrogel Based on Silk Fibroin Promotes Tissue Repair and Regeneration,” Advanced Functional Materials 34, no. 39 (2024): 2405255.

[34]

S. Grabska-Zielińska and A. Sionkowska, “How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications? —Blending and Cross-Linking of Silk Fibroin—A Review,” Materials 14, no. 6 (2021): 1510.

[35]

J. Xu, L. Chang, Y. Xiong, and Q. Peng, “Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing,” Advanced Healthcare Materials 13, no. 30 (2024): e2401490.

[36]

T. Guan, J. Li, C. Chen, and Y. Liu, “Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair,” Advanced Science (Weinh) 9, no. 10 (2022): e2104165.

[37]

E. Patois, S. O. Cruz, J. Tille, B. Walpoth, R. Gurny, and O. Jordan, “Novel Thermosensitive Chitosan Hydrogels: In Vivo Evaluation,” Journal of Biomedical Materials Research Part A 91, no. 2 (2009): 324-330.

[38]

R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover, “Effective Drug Delivery by PEGylated Drug Conjugates,” Advanced Drug Delivery Reviews 55, no. 2 (2003): 217-250.

[39]

A. H. Isaac, S. Y. Recalde Phillips, E. Ruben, et al., “Impact of PEG Sensitization on the Efficacy of PEG Hydrogel-mediated Tissue Engineering,” Nature Communications 15, no. 1 (2024): 3283.

[40]

I. Ekladious, Y. L. Colson, and M. W. Grinstaff, “Polymer-drug Conjugate Therapeutics: Advances, Insights and Prospects,” Nature Reviews Drug Discovery 18, no. 4 (2019): 273-294.

[41]

J. Chen, D. Huang, L. Wang, et al., “3D bioprinted Multiscale Composite Scaffolds Based on Gelatin Methacryloyl (GelMA)/Chitosan Microspheres as a Modular Bioink for Enhancing 3D Neurite Outgrowth and Elongation,” Journal of Colloid & Interface Science 574 (2020): 162-173.

[42]

A. Hassani, A. B. Khoshfetrat, R. Rahbarghazi, and S. Sakai, “Collagen and Nano-hydroxyapatite Interactions in Alginate-based Microcapsule Provide an Appropriate Osteogenic Microenvironment for Modular Bone Tissue Formation,” Carbohydrate Polymers 277 (2022): 118807.

[43]

J. Shen, A. Chen, Z. Cai, et al., “Exhausted Local Lactate Accumulation via Injectable Nanozyme-functionalized Hydrogel Microsphere for Inflammation Relief and Tissue Regeneration,” Bioactive Materials 12 (2022): 153-168.

[44]

M. Shi, H. Zhang, T. Song, et al., “Sustainable Dual Release of Antibiotic and Growth Factor From pH-Responsive Uniform Alginate Composite Microparticles to Enhance Wound Healing,” ACS Applied Materials & Interfaces 11, no. 25 (2019): 22730-22744.

[45]

B. Kong, Y. Chen, R. Liu, et al., “Fiber Reinforced GelMA Hydrogel to Induce the Regeneration of Corneal Stroma,” Nature Communications 11, no. 1 (2020): 1435.

[46]

C. Lei, X. R. Liu, Q. B. Chen, et al., “Hyaluronic Acid and Albumin-based Nanoparticles for Drug Delivery,” Journal of Controlled Release 331 (2021): 416-433.

[47]

R. Yang, J. Huang, W. Zhang, et al., “Mechanoadaptive Injectable Hydrogel Based on Poly (γ-glutamic acid) and Hyaluronic Acid Regulates Fibroblast Migration for Wound Healing,” Carbohydrate Polymers 273 (2021): 118607.

[48]

I. Raghunath, M. Koland, C. Sarathchandran, S. Saoji, and N. Rarokar, “Design and Optimization of chitosan-coated Solid Lipid Nanoparticles Containing Insulin for Improved Intestinal Permeability Using Piperine,” International Journal of Biological Macromolecules 280 (2024): 135849.

[49]

D. Halarnekar, M. Ayyanar, P. Gangapriya, et al., “Eco Synthesized Chitosan/Zinc Oxide Nanocomposites as the next Generation of Nano-delivery for Antibacterial, Antioxidant, Antidiabetic Potential, and Chronic Wound Repair,” International Journal of Biological Macromolecules 242 (2023): 124764.

[50]

T. A. Einhorn and L. C. Gerstenfeld, “Fracture Healing: Mechanisms and Interventions,” Nature Reviews Rheumatology 11, no. 1 (2015): 45-54.

[51]

S. Muthu, J. V. Korpershoek, E. J. Novais, G. F. Tawy, A. P. Hollander, and I. Martin, “Failure of Cartilage Regeneration: Emerging Hypotheses and Related Therapeutic Strategies,” Nature Reviews Rheumatology 19, no. 7 (2023): 403-416.

[52]

L. Yu, I. J. Martin, R. M. Kasi, and M. Wei, “Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers,” ACS Applied Materials & Interfaces 10, no. 34 (2018): 28440-28449.

[53]

F. Lin, Y. Li, and W. Cui, “Injectable Hydrogel Microspheres in Cartilage Repair,” Biomedical Technology 1 (2023): 18-29.

[54]

L. Yu, C. J. Bennett, C. H. Lin, S. Yan, and J. Yang, “Scaffold Design Considerations for Peripheral Nerve Regeneration,” Journal of Neural Engineering 21, no. 4 (2024): 041001.

[55]

X. Wang, L. Ji, J. Wang, and C. Liu, “Matrix Stiffness Regulates Osteoclast Fate Through Integrin-dependent Mechanotransduction,” Bioactive Materials 27 (2023): 138-153.

[56]

L. Zeng, Y. Yao, D. A. Wang, and X. Chen, “Effect of Microcavitary Alginate Hydrogel With Different Pore Sizes on Chondrocyte Culture for Cartilage Tissue Engineering,” Materials Science & Engineering C, Materials for Biological Applications 34 (2014): 168-175.

[57]

J. Fu, C. Wiraja, H. B. Muhammad, C. Xu, and D. A. Wang, “Improvement of Endothelial Progenitor Outgrowth Cell (EPOC)-mediated Vascularization in Gelatin-based Hydrogels Through Pore Size Manipulation,” Acta Biomaterialia 58 (2017): 225-237.

[58]

Z. Xu, W. Tian, C. Wen, et al., “Cellulose-Based Cryogel Microspheres With Nanoporous and Controllable Wrinkled Morphologies for Rapid Hemostasis,” Nano Letters 22, no. 15 (2022): 6350-6358.

[59]

A. Khademhosseini, G. Eng, J. Yeh, et al., “Micromolding of Photocrosslinkable Hyaluronic Acid for Cell Encapsulation and Entrapment,” Journal of Biomedical Materials Research Part A 79, no. 3 (2006): 522-532.

[60]

K. Guo, Z. Song, J. Zhou, et al., “An Artificial Intelligence-assisted Digital Microfluidic System for Multistate Droplet Control,” Microsystems and Nanoengineering 10, no. 1 (2024): 138.

[61]

W. Leong, T. T. Lau, and D. A. Wang, “A Temperature-cured Dissolvable Gelatin Microsphere-based Cell Carrier for Chondrocyte Delivery in a Hydrogel Scaffolding System,” Acta Biomaterialia 9, no. 5 (2013): 6459-6467.

[62]

R. J. Stenekes, O. Franssen, E. M. van Bommel, D. J. Crommelin, and W. E. Hennink, “The Preparation of Dextran Microspheres in an All-aqueous System: Effect of the Formulation Parameters on Particle Characteristics,” Pharmaceutical Research 15, no. 4 (1998): 557-561.

[63]

C. L. Franco, J. Price, and J. L. West, “Development and Optimization of a Dual-photoinitiator, Emulsion-based Technique for Rapid Generation of Cell-laden Hydrogel Microspheres,” Acta Biomaterialia 7, no. 9 (2011): 3267-3276.

[64]

Q. Xu, M. Hashimoto, T. T. Dang, et al., “Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-focusing Device for Controlled Drug Delivery,” Small 5, no. 13 (2009): 1575-1581.

[65]

B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester, and S. C. De Smedt, “Synthesis of Monodisperse Biodegradable Microgels in Microfluidic Devices,” Langmuir 21, no. 23 (2005): 10275-10279.

[66]

T. Nisisako and T. Torii, “Microfluidic Large-scale Integration on a Chip for Mass Production of Monodisperse Droplets and Particles,” Lab on A Chip 8, no. 2 (2008): 287-293.

[67]

D. M. Headen, J. R. García, and A. J. García, “Parallel Droplet Microfluidics for High Throughput Cell Encapsulation and Synthetic Microgel Generation,” Microsystems & Nanoengineering 4, no. 1 (2018): 17076.

[68]

L. Zhang, K. Chen, H. Zhang, et al., “Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells,” Small 14, no. 9 (2018): 1702955.

[69]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow Lithography for High-throughput Microparticle Synthesis,” Nature Materials 5, no. 5 (2006): 365-369.

[70]

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Advanced Science (Weinh) 2, no. 10 (2015): 1500149.

[71]

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden Microengineered Gelatin Methacrylate Hydrogels,” Biomaterials 31, no. 21 (2010): 5536-5544.

[72]

P. Panda, S. Ali, E. Lo, et al., “Stop-flow Lithography to Generate Cell-laden Microgel Particles,” Lab on A Chip 8, no. 7 (2008): 1056-1061.

[73]

K. Pancholi, N. Ahras, E. Stride, and M. Edirisinghe, “Novel Electrohydrodynamic Preparation of Porous Chitosan Particles for Drug Delivery,” Journal of Materials Science Materials in Medicine 20, no. 4 (2009): 917-923.

[74]

A. S. Qayyum, E. Jain, G. Kolar, Y. Kim, S. A. Sell, and S. P. Zustiak, “Design of Electrohydrodynamic Sprayed Polyethylene Glycol Hydrogel Microspheres for Cell Encapsulation,” Biofabrication 9, no. 2 (2017): 025019.

[75]

J. Gansau, L. Kelly, and C. T. Buckley, “Influence of Key Processing Parameters and Seeding Density Effects of Microencapsulated Chondrocytes Fabricated Using Electrohydrodynamic Spraying,” Biofabrication 10, no. 3 (2018): 035011.

[76]

S. M. Naqvi, S. Vedicherla, J. Gansau, T. McIntyre, M. Doherty, and C. T. Buckley, “Living Cell Factories—Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery,” Advanced Materials 28, no. 27 (2016): 5662-5671.

[77]

Z. Deng, J. M. Perry, M. Weiss, et al., “Recovery of Phenotypically Sorted Cells Using Droplet-digital Microfluidics,” Lab on A Chip 25, no. 17 (2025): 4410.

[78]

T. Tang, H. Zhao, S. Shen, L. Yang, and C. T. Lim, “Enhancing Single-cell Encapsulation in Droplet Microfluidics With Fine-tunable on-chip Sample Enrichment,” Microsyst Nanoeng 10 (2024): 3.

[79]

M. Nakamura, M. Matsumoto, T. Ito, I. Hidaka, H. Tatsuta, and Y. Katsumoto, “Microfluidic Device for the High-throughput and Selective Encapsulation of Single Target Cells,” Lab on A Chip 24, no. 11 (2024): 2958-2967.

[80]

S. Sart, G. Ronteix, S. Jain, G. Amselem, and C. N. Baroud, “Cell Culture in Microfluidic Droplets,” Chemical Reviews 122, no. 7 (2022): 7061-7096.

[81]

Z. Tao, Z. Yuan, D. Zhou, et al., “Fabrication of Magnesium-doped Porous Polylactic Acid Microsphere for Bone Regeneration,” Biomaterials Translational 4, no. 4 (2023): 280-290.

[82]

J. Liu, C. Du, H. Chen, W. Huang, and Y. Lei, “Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications,” Macromolecular Rapid Communications 45, no. 11 (2024): e2300670.

[83]

W. Chen, A. Palazzo, W. E. Hennink, and R. J. Kok, “Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres,” Molecular Pharmaceutics 14, no. 2 (2017): 459-467.

[84]

S. L. Turgeon, C. Schmitt, and C. Sanchez, “Protein-polysaccharide Complexes and Coacervates,” Current Opinion in Colloid & Interface Science 12, no. 4 (2007): 166-178.

[85]

L. Chen, G. E. Remondetto, and M. Subirade, “Food Protein-based Materials as Nutraceutical Delivery Systems,” Trends in Food Science & Technology 17, no. 5 (2006): 272-283.

[86]

Y. Li and D. J. McClements, “Controlling Lipid Digestion by Encapsulation of Protein-stabilized Lipid Droplets Within Alginate-chitosan Complex Coacervates,” Food Hydrocolloids 25, no. 5 (2011): 1025-1033.

[87]

C. Schmitt, C. Sanchez, S. Desobry-Banon, and J. Hardy, “Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review,” Critical Reviews in Food Science and Nutrition 38, no. 8 (1998): 689-753.

[88]

B. Wu and D. J. McClements, “Functional Hydrogel Microspheres: Parameters Affecting Electrostatic Assembly of Biopolymer Particles Fabricated From Gelatin and Pectin,” Food Research International 72 (2015): 231-240.

[89]

Z. Zhang, R. Zhang, L. Zou, and D. J. McClements, “Protein Encapsulation in Alginate Hydrogel Beads: Effect of pH on Microgel Stability, Protein Retention and Protein Release,” Food Hydrocolloids 58 (2016): 308-315.

[90]

A. Matalanis, O. G. Jones, and D. J. McClements, “Structured Biopolymer-based Delivery Systems for Encapsulation, Protection, and Release of Lipophilic Compounds,” Food Hydrocolloids 25, no. 8 (2011): 1865-1880.

[91]

W. J. Frith, “Mixed Biopolymer Aqueous Solutions - phase Behaviour and Rheology,” Advances in Colloid and Interface Science 161, no. 1 (2010): 48-60.

[92]

A. Matalanis and D. J. McClements, “Factors Influencing the Formation and Stability of Filled Hydrogel Particles Fabricated by Protein/Polysaccharide Phase Separation and Enzymatic Cross-Linking,” Food Biophysics 7, no. 1 (2012): 72-83.

[93]

A. Matalanis, U. Lesmes, E. A. Decker, and D. J. McClements, “Fabrication and Characterization of Filled Hydrogel Particles Based on Sequential Segregative and Aggregative Biopolymer Phase Separation,” Food Hydrocolloids 24, no. 8 (2010): 689-701.

[94]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-generating Microfluidic Device,” Physical Review Letter 86, no. 18 (2001): 4163-4166.

[95]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of Dispersions Using “Flow Focusing” in Microchannels,” Applied Physics Letters 82, no. 3 (2003): 364-366.

[96]

A. Pittermannová, Z. Ruberová, A. Zadražil, N. Bremond, J. Bibette, and F. Štěpánek, “Microfluidic Fabrication of Composite Hydrogel Microparticles in the Size Range of Blood Cells,” RSC Advances 6, no. 105 (2016): 103532-103540.

[97]

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse Double Emulsions Generated From a Microcapillary Device,” Science 308, no. 5721 (2005): 537-541.

[98]

S. Seiffert, J. Thiele, A. R. Abate, and D. A. Weitz, “Smart Microgel Capsules From Macromolecular Precursors,” Journal of the American Chemical Society 132, no. 18 (2010): 6606-6609.

[99]

L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A. Weitz, “Controllable Monodisperse Multiple Emulsions,” Angewandte Chemie (International ed in English) 46, no. 47 (2007): 8970-8974.

[100]

K. O. Rojek, M. Ćwiklińska, J. Kuczak, and J. Guzowski, “Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering,” Chemical Reviews 122, no. 22 (2022): 16839-16909.

[101]

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction-scaling and Mechanism of Break-up,” Lab on A Chip 6, no. 3 (2006): 437-446.

[102]

M. de Menech, P. Garstecki, F. Jousse, and H. A. Stone, “Transition From Squeezing to Dripping in a Microfluidic T-shaped Junction,” Journal of Fluid Mechanics 595 (2008): 141.

[103]

G. F. Christopher, N. N. Noharuddin, J. A. Taylor, and S. L. Anna, “Experimental Observations of the Squeezing-to-dripping Transition in T-shaped Microfluidic Junctions,” Physical Review E Statistical, Nonlinear, and Soft Matter Physics 78, no. 3 Pt 2 (2008): 036317.

[104]

T. Cubaud and T. G. Mason, “Capillary Threads and Viscous Droplets in Square Microchannels,” Physics of Fluids 20, no. 5 (2008): 053302.

[105]

J. K. Nunes, S. S. Tsai, J. Wan, and H. A. Stone, “Dripping and Jetting in Microfluidic Multiphase Flows Applied to Particle and fiber Synthesis,” Journal of Physics D 46, no. 11 (2013): 114002.

[106]

Z. Nie, M. Seo, S. Xu, et al., “Emulsification in a Microfluidic Flow-focusing Device: Effect of the Viscosities of the Liquids,” Microfluidics and Nanofluidics 5 (2008): 585-594.

[107]

Y. Zhang, T. T. Li, Z. Wang, B. C. Shiu, J. H. Lin, and C. W. Lou, “Coaxial Microfluidic Spinning Design Produced High Strength Alginate Membranes for Antibacterial Activity and Drug Release,” International Journal of Biological Macromolecules 243 (2023): 124956.

[108]

S. Sugiura, M. Nakajima, J. Tong, H. Nabetani, and M. Seki, “Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique,” Journal of Colloid & Interface Science 227, no. 1 (2000): 95-103.

[109]

S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, and M. Seki, “Characterization of Spontaneous Transformation-Based Droplet Formation During Microchannel Emulsification,” The Journal of Physical Chemistry B 106, no. 36 (2002): 9405-9409.

[110]

I. Ziemecka, V. van Steijn, G. J. Koper, et al., “Monodisperse Hydrogel Microspheres by Forced Droplet Formation in Aqueous Two-phase Systems,” Lab on A Chip 11, no. 4 (2011): 620-624.

[111]

B. U. Moon, N. Abbasi, S. G. Jones, D. K. Hwang, and S. S. Tsai, “Water-in-Water Droplets by Passive Microfluidic Flow Focusing,” Analytical Chemistry 88, no. 7 (2016): 3982-3989.

[112]

B. U. Moon, S. G. Jones, D. K. Hwang, and S. S. Tsai, “Microfluidic Generation of Aqueous Two-phase System (ATPS) Droplets by Controlled Pulsating Inlet Pressures,” Lab on A Chip 15, no. 11 (2015): 2437-2444.

[113]

D. Bardin, M. R. Kendall, P. A. Dayton, and A. P. Lee, “Parallel Generation of Uniform Fine Droplets at Hundreds of Kilohertz in a Flow-focusing Module,” Biomicrofluidics 7, no. 3 (2013): 34112.

[114]

M. Muluneh and D. Issadore, “Hybrid Soft-lithography/Laser Machined Microchips for the Parallel Generation of Droplets,” Lab on A Chip 13, no. 24 (2013): 4750-4754.

[115]

J. M. de Rutte, J. Koh, and D. Di Carlo, “Scalable High-Throughput Production of Modular Microgels for in Situ Assembly of Microporous Tissue Scaffolds,” Advanced Functional Materials 29, no. 25 (2019): 1900071.

[116]

T. Kamperman, V. D. Trikalitis, M. Karperien, C. W. Visser, and J. Leijten, “Ultrahigh-Throughput Production of Monodisperse and Multifunctional Janus Microparticles Using in-Air Microfluidics,” ACS Applied Materials & Interfaces 10, no. 28 (2018): 23433-23438.

[117]

C. W. Visser, T. Kamperman, L. P. Karbaat, D. Lohse, and M. Karperien, “In-air Microfluidics Enables Rapid Fabrication of Emulsions, Suspensions, and 3D Modular (bio)Materials,” Science Advances 4, no. 1 (2018): eaao1175.

[118]

M. E. Helgeson, S. C. Chapin, and P. S. Doyle, “Hydrogel Microparticles From Lithographic Processes: Novel Materials for Fundamental and Applied Colloid Science,” Current Opinion in Colloid & Interface Science 16, no. 2 (2011): 106-117.

[119]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional Fabrication of Heterogeneous Microstructures Using Soft Membrane Deformation and Optofluidic Maskless Lithography,” Lab on A Chip 9, no. 12 (2009): 1670-1675.

[120]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and Fluidic Self-assembly of Microstructures Using Railed Microfluidic Channels,” Nature Materials 7, no. 7 (2008): 581-587.

[121]

M. Xie, Q. Gao, H. Zhao, et al., “Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets,” Small 15, no. 4 (2019): 1804216.

[122]

C. J. Young, L. A. Poole-Warren, and P. J. Martens, “Combining Submerged Electrospray and UV Photopolymerization for Production of Synthetic Hydrogel Microspheres for Cell Encapsulation,” Biotechnology and Bioengineering 109, no. 6 (2012): 1561-1570.

[123]

J. Z. Crouse, K. M. Mahuta, B. A. Mikulski, et al., “Development of a Microscale Red Blood Cell-shaped Pectin-oligochitosan Hydrogel System Using an Electrospray-vibration Method: Preparation and Characterization,” Journal of Applied Biomaterials & Functional Materials 13, no. 4 (2015): e326-331.

[124]

J. X. Wang, H. Wang, H. Lai, et al., “A Machine Vision Perspective on Droplet-Based Microfluidics,” Advanced Science (Weinh) 12, no. 8 (2025): e2413146.

[125]

W. Wei, S. Li, Y. Zhang, et al., “Analytical Validation of the DropXpert S6 System for Diagnosis of Chronic Myelocytic Leukemia,” Lab on A Chip 24, no. 12 (2024): 3080-3092.

[126]

N. Wang, Y. Wei, Y. Hu, X. Sun, and X. Wang, “Microfluidic Preparation of pH-Responsive Microsphere Fibers and Their Controlled Drug Release Properties,” Molecules (Basel, Switzerland) 29, no. 1 (2023): 193.

[127]

Y. Han, J. Yang, W. Zhao, et al., “Biomimetic Injectable Hydrogel Microspheres With Enhanced Lubrication and Controllable Drug Release for the Treatment of Osteoarthritis,” Bioactive Materials 6, no. 10 (2021): 3596-3607.

[128]

Y. Wang, Y. Fang, Y. Zhu, S. Bi, Y. Liu, and H. Ju, “Single Cell Multi-miRNAs Quantification With Hydrogel Microbeads for Liver Cancer Cell Subtypes Discrimination,” Chemical Science 13, no. 7 (2022): 2062-2070.

[129]

T. R. Hoare and D. S. Kohane, “Hydrogels in Drug Delivery: Progress and Challenges,” Polymer 49, no. 8 (2008): 1993-2007.

[130]

A. L. Caballero, S. M. Silva, and S. E. Moulton, “Growth Factor Delivery: Defining the next Generation Platforms for Tissue Engineering,” Journal of Controlled Release 306 (2019): 40-58.

[131]

N. E. Epstein, “Complications Due to the Use of BMP/INFUSE in Spine Surgery: The Evidence Continues to Mount,” Surgical Neurology International 4, no. Suppl 5 (2013): S343-352.

[132]

S. Freiberg and X. X. Zhu, “Polymer Microspheres for Controlled Drug Release,” International Journal of Pharmaceutics 282, no. 1-2 (2004): 1-18.

[133]

A. H. Nguyen, J. McKinney, T. Miller, T. Bongiorno, and T. C. McDevitt, “Gelatin Methacrylate Microspheres for Controlled Growth Factor Release,” Acta Biomaterialia 13 (2015): 101-110.

[134]

L. D. Solorio, C. D. Dhami, P. N. Dang, E. L. Vieregge, and E. Alsberg, “Spatiotemporal Regulation of Chondrogenic Differentiation With Controlled Delivery of Transforming Growth Factor-β1 From Gelatin Microspheres in Mesenchymal Stem Cell Aggregates,” Stem Cells Translational Medicine 1, no. 8 (2012): 632-639.

[135]

T. Vermonden, R. Censi, and W. E. Hennink, “Hydrogels for Protein Delivery,” Chemical Reviews 112, no. 5 (2012): 2853-2888.

[136]

J. Li and D. J. Mooney, “Designing Hydrogels for Controlled Drug Delivery,” Nature Reviews Materials 1, no. 12 (2016): 16071.

[137]

M. H. Hettiaratchi, T. Miller, J. S. Temenoff, R. E. Guldberg, and T. C. McDevitt, “Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2,” Biomaterials 35, no. 25 (2014): 7228-7238.

[138]

Ø. Arlov, F. L. Aachmann, A. Sundan, T. Espevik, and G. Skjåk-Bræk, “Heparin-Like Properties of Sulfated Alginates With Defined Sequences and Sulfation Degrees,” Biomacromolecules 15, no. 7 (2014): 2744-2750.

[139]

E. Öztürk, Ø. Arlov, S. Aksel, et al., “Sulfated Hydrogel Matrices Direct Mitogenicity and Maintenance of Chondrocyte Phenotype Through Activation of FGF Signaling,” Advanced Functional Materials 26, no. 21 (2016): 3649-3662.

[140]

Q. Feng, S. Lin, K. Zhang, et al., “Sulfated Hyaluronic Acid Hydrogels With Retarded Degradation and Enhanced Growth Factor Retention Promote hMSC Chondrogenesis and Articular Cartilage Integrity With Reduced Hypertrophy,” Acta Biomaterialia 53 (2017): 329-342.

[141]

I. Freeman, A. Kedem, and S. Cohen, “The Effect of Sulfation of Alginate Hydrogels on the Specific Binding and Controlled Release of Heparin-binding Proteins,” Biomaterials 29, no. 22 (2008): 3260-3268.

[142]

I. Freeman and S. Cohen, “The Influence of the Sequential Delivery of Angiogenic Factors From Affinity-binding Alginate Scaffolds on Vascularization,” Biomaterials 30, no. 11 (2009): 2122-2131.

[143]

M. Graille, M. Pagano, T. Rose, M. R. Ravaux, and H. van Tilbeurgh, “Zinc Induces Structural Reorganization of Gelatin Binding Domain From human Fibronectin and Affects Collagen Binding,” Structure (London, England) 18, no. 6 (2010): 710-718.

[144]

M. Yang, C. Zhang, B. Y. Lu, et al., “Injectable Composite Microspheres/Hydrogel Membranes for Achilles Tendon Regeneration,” Materials Today Bio 34 (2025): 102129.

[145]

W. Zhang, Y. Wu, Q. Chen, et al., “Statistic Copolymers Working as Growth Factor-Binding Mimics of Fibronectin,” Advanced Science (Weinh) 9, no. 21 (2022): e2200775.

[146]

K. Johnson, S. Zhu, M. S. Tremblay, et al., “A Stem Cell-based Approach to Cartilage Repair,” Science 336, no. 6082 (2012): 717-721.

[147]

P. Meena, P. Singh, and S. G. Warkar, “Degradable pH-Sensitive Calcium-Crosslinked Tragacanth Gum/β-Cyclodextrin/Sodium Alginate Hydrogel Microspheres Prepared via Ionotropic Gelation Technique for Hydrophobic Drug Delivery,” Journal of Polymers and the Environment 33, no. 2 (2025): 928-944.

[148]

Y. Yang, J. Guo, H. Cao, et al., “Seeds-and-soil Inspired Hydrogel Microspheres: A Dual-action Antioxidant and Cellular Therapy for Reversing Intervertebral Disc Degeneration,” Biomaterials 321 (2025): 123326.

[149]

K. Miao, Y. Zhou, X. He, et al., “Microenvironment-responsive Bilayer Hydrogel Microspheres With Gelatin-shell for Osteoarthritis Treatment,” International Journal of Biological Macromolecules 261, no. Pt 2 (2024): 129862.

[150]

T. Zhou, H. Xiong, S. Y. Yao, et al., “Hypoxia and Matrix Metalloproteinase 13-Responsive Hydrogel Microspheres Alleviate Osteoarthritis Progression in Vivo,” Small 20, no. 19 (2024): e2308599.

[151]

H. Yu, C. Huang, X. Kong, et al., “Nanoarchitectonics of Cartilage-Targeting Hydrogel Microspheres With Reactive Oxygen Species Responsiveness for the Repair of Osteoarthritis,” ACS Applied Materials & Interfaces 14, no. 36 (2022): 40711-40723.

[152]

S. Zhu, X. Shou, G. Kuang, et al., “Stimuli-responsive Hydrogel Microspheres Encapsulated With Tumor-cell-derived Microparticles for Malignant Ascites Treatment,” Acta Biomaterialia 192 (2025): 328-339.

[153]

S. Huo, Y. Liu, Z. Xu, et al., “Specific Activation of the STING Pathway by Engineering Piezoelectric Hydrogel Microspheres for Boosting Implant Infection Immunotherapy,” ACS Nano 19, no. 17 (2025): 16383-16404.

[154]

M. Mohamed, S. Kheiri, S. Islam, H. Kumar, A. Yang, and K. Kim, “An Integrated Microfluidic Flow-focusing Platform for on-chip Fabrication and Filtration of Cell-laden Microgels,” Lab on A Chip 19, no. 9 (2019): 1621-1632.

[155]

Y. Deng, N. Zhang, L. Zhao, et al., “Rapid Purification of Cell Encapsulated Hydrogel Beads From Oil Phase to Aqueous Phase in a Microfluidic Device,” Lab on A Chip 11, no. 23 (2011): 4117-4121.

[156]

S. Yoshida, M. Takinoue, and H. Onoe, “Compartmentalized Spherical Collagen Microparticles for Anisotropic Cell Culture Microenvironments,” Advanced Healthcare Materials 6, no. 8 (2017): 1601463.

[157]

K. Maeda, H. Onoe, M. Takinoue, and S. Takeuchi, “Controlled Synthesis of 3D Multi-compartmental Particles With Centrifuge-based Microdroplet Formation From a Multi-barrelled Capillary,” Advanced Materials 24, no. 10 (2012): 1340-1346.

[158]

S. Mohanty, Y. Wu, N. Chakraborty, P. Mohanty, and G. Ghosh, “Impact of Alginate Concentration on the Viability, Cryostorage, and Angiogenic Activity of Encapsulated Fibroblasts,” Materials Science & Engineering C, Materials for Biological Applications 65 (2016): 269-277.

[159]

D. M. Headen, G. Aubry, H. Lu, and A. J. García, “Microfluidic-based Generation of Size-controlled, Biofunctionalized Synthetic Polymer Microgels for Cell Encapsulation,” Advanced Materials 26, no. 19 (2014): 3003-3008.

[160]

S. Allazetta, L. Kolb, S. Zerbib, J. Bardy, and M. P. Lutolf, “Cell-Instructive Microgels With Tailor-Made Physicochemical Properties,” Small 11, no. 42 (2015): 5647-5656.

[161]

M. Chen, Y. Lu, Y. Liu, et al., “Injectable Microgels With Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing and Self-Renewable Lubrication for Osteoarthritis Therapy,” Advanced Materials 36, no. 16 (2024): e2312559.

[162]

J. Chen, R. Sheng, Q. Mo, et al., “Controlled TPCA-1 Delivery Engineers a Pro-tenogenic Niche to Initiate Tendon Regeneration by Targeting IKKβ/NF-κB Signaling,” Bioactive Materials 44 (2025): 319-338.

[163]

S. Zhu, B. Zhao, M. Li, et al., “Microenvironment Responsive Nanocomposite Hydrogel With NIR Photothermal Therapy, Vascularization and Anti-inflammation for Diabetic Infected Wound Healing,” Bioactive Materials 26 (2023): 306-320.

[164]

X. Luo, L. Zhang, Y. Luo, et al., “Charge-Driven Self-Assembled Microspheres Hydrogel Scaffolds for Combined Drug Delivery and Photothermal Therapy of Diabetic Wounds,” Advanced Functional Materials 33, no. 26 (2023): 2214036.

[165]

J. Yang, Y. Han, J. Lin, et al., “Ball-Bearing-Inspired Polyampholyte-Modified Microspheres as Bio-Lubricants Attenuate Osteoarthritis,” Small 16, no. 44 (2020): e2004519.

[166]

T. Wang, Y. Li, J. Liu, et al., “Intraarticularly Injectable Silk Hydrogel Microspheres With Enhanced Mechanical and Structural Stability to Attenuate Osteoarthritis,” Biomaterials 286 (2022): 121611.

[167]

L. Yang, X. Zhao, Y. Kong, et al., “Injectable Carboxymethyl Chitosan/Nanosphere-based Hydrogel With Dynamic Crosslinking Network for Efficient Lubrication and Sustained Drug Release,” International Journal of Biological Macromolecules 229 (2023): 814-824.

[168]

J. Hou, Y. Lin, C. Zhu, et al., “Zwitterion-Lubricated Hydrogel Microspheres Encapsulated With Metformin Ameliorate Age-Associated Osteoarthritis,” Advanced Science (Weinh) 11, no. 30 (2024): e2402477.

[169]

Y. Lei, X. Wang, J. Liao, et al., “Shear-responsive Boundary-lubricated Hydrogels Attenuate Osteoarthritis,” Bioactive Materials 16 (2022): 472-484.

[170]

X. He, S. He, G. Xiang, et al., “Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere,” Advanced Materials 36, no. 40 (2024): 2405943.

[171]

L. Yang, Y. Liu, X. Shou, D. Ni, T. Kong, and Y. Zhao, “Bio-inspired Lubricant Drug Delivery Particles for the Treatment of Osteoarthritis,” Nanoscale 12, no. 32 (2020): 17093-17102.

[172]

Y. Lei, Y. Wang, J. Shen, et al., “Injectable Hydrogel Microspheres With Self-renewable Hydration Layers Alleviate Osteoarthritis,” Science Advances 8, no. 5 (2022): eabl6449.

[173]

Y. Zhang, T. Wang, H. Guo, et al., “An Ion-coordination Hydrogel-based Sensor Array for Point-of-care Identification and Removal of Multiple Tetracyclines,” Biosensors & Bioelectronics 231 (2023): 115266.

[174]

X. Wang, G. Xing, Z. Wu, et al., “Microfluidic-engineered Portable Microsphere Sensors for Multi-mycotoxins Detection,” Chemical Engineering Journal 506 (2025): 159834.

[175]

F. Li, A. Zhao, Z. Li, et al., “Multifunctionalized Hydrogel Beads for Label-Free Chemiluminescence Imaging Immunoassay of Acute Myocardial Infarction Biomarkers,” Analytical Chemistry 94, no. 5 (2022): 2665-2675.

[176]

Z. S. Patel, M. Yamamoto, H. Ueda, Y. Tabata, and A. G. Mikos, “Biodegradable Gelatin Microparticles as Delivery Systems for the Controlled Release of Bone Morphogenetic Protein-2,” Acta Biomaterialia 4, no. 5 (2008): 1126-1138.

[177]

D. P. Link, J. van den Dolder, J. J. van den Beucken, J. G. Wolke, A. G. Mikos, and J. A. Jansen, “Bone Response and Mechanical Strength of Rabbit Femoral Defects Filled With Injectable CaP Cements Containing TGF-beta 1 Loaded Gelatin Microparticles,” Biomaterials 29, no. 6 (2008): 675-682.

[178]

M. Li, X. Liu, X. Liu, and B. Ge, “Calcium Phosphate Cement With BMP-2-loaded Gelatin Microspheres Enhances Bone Healing in Osteoporosis: A Pilot Study,” Clinical Orthopaedics and Related Research 468, no. 7 (2010): 1978-1985.

[179]

Z. S. Patel, S. Young, Y. Tabata, J. A. Jansen, M. E. Wong, and A. G. Mikos, “Dual Delivery of an Angiogenic and an Osteogenic Growth Factor for Bone Regeneration in a Critical Size Defect Model,” Bone 43, no. 5 (2008): 931-940.

[180]

M. Dai, X. Lin, P. Hua, et al., “Antibacterial Sequential Growth Factor Delivery From Alginate/Gelatin Methacryloyl Microspheres for Bone Regeneration,” International Journal of Biological Macromolecules 275, no. Pt 1 (2024): 133557.

[181]

F. Yu, D. Geng, Z. Kuang, et al., “Sequentially Releasing Self-healing Hydrogel Fabricated With TGFβ3-microspheres and bFGF to Facilitate Rat Alveolar Bone Defect Repair,” Asian Journal of Pharmaceutical Sciences 17, no. 3 (2022): 425-434.

[182]

B. Cai, Q. Zou, Y. Zuo, et al., “Injectable Gel Constructs With Regenerative and Anti-Infective Dual Effects Based on Assembled Chitosan Microspheres,” ACS Applied Materials & Interfaces 10, no. 30 (2018): 25099-25112.

[183]

A. J. DeFail, C. R. Chu, N. Izzo, and K. G. Marra, “Controlled Release of Bioactive TGF-beta 1 From Microspheres Embedded Within Biodegradable Hydrogels,” Biomaterials 27, no. 8 (2006): 1579-1585.

[184]

T. A. Holland, Y. Tabata, and A. G. Mikos, “Dual Growth Factor Delivery From Degradable Oligo (poly(ethylene glycol) Fumarate) Hydrogel Scaffolds for Cartilage Tissue Engineering,” Journal of Controlled Release 101, no. 1-3 (2005): 111-125.

[185]

T. A. Holland, J. K. Tessmar, Y. Tabata, and A. G. Mikos, “Transforming Growth Factor-beta 1 Release From Oligo(poly(ethylene glycol) Fumarate) Hydrogels in Conditions That Model the Cartilage Wound Healing Environment,” Journal of Controlled Release 94, no. 1 (2004): 101-114.

[186]

T. A. Holland, Y. Tabata, and A. G. Mikos, “In Vitro Release of Transforming Growth Factor-beta 1 From Gelatin Microparticles Encapsulated in Biodegradable, Injectable Oligo (poly(ethylene glycol) Fumarate) Hydrogels,” Journal of Controlled Release 91, no. 3 (2003): 299-313.

[187]

H. Park, J. S. Temenoff, T. A. Holland, Y. Tabata, and A. G. Mikos, “Delivery of TGF-beta1 and Chondrocytes via Injectable, Biodegradable Hydrogels for Cartilage Tissue Engineering Applications,” Biomaterials 26, no. 34 (2005): 7095-7103.

[188]

H. Park, J. S. Temenoff, Y. Tabata, A. I. Caplan, and A. G. Mikos, “Injectable Biodegradable Hydrogel Composites for Rabbit Marrow Mesenchymal Stem Cell and Growth Factor Delivery for Cartilage Tissue Engineering,” Biomaterials 28, no. 21 (2007): 3217-3227.

[189]

Y. Yang, C. Huang, H. Zheng, et al., “Superwettable and Injectable GelMA-MSC Microspheres Promote Cartilage Repair in Temporomandibular Joints,” Frontiers in Bioengineering and Biotechnology 10 (2022): 1026911.

[190]

T. Ogawa, T. Akazawa, and Y. Tabata, “In Vitro Proliferation and Chondrogenic Differentiation of Rat Bone Marrow Stem Cells Cultured With Gelatin Hydrogel Microspheres for TGF-beta1 Release,” Journal of Biomaterials Science, Polymer Edition 21, no. 5 (2010): 609-621.

[191]

L. Bian, D. Y. Zhai, E. Tous, R. Rai, R. L. Mauck, and J. A. Burdick, “Enhanced MSC Chondrogenesis Following Delivery of TGF-β3 From Alginate Microspheres Within Hyaluronic Acid Hydrogels in Vitro and in Vivo,” Biomaterials 32, no. 27 (2011): 6425-6434.

[192]

J. Lin, L. Wang, J. Lin, and Q. Liu, “Dual Delivery of TGF-β3 and Ghrelin in Microsphere/Hydrogel Systems for Cartilage Regeneration,” Molecules (Basel, Switzerland) 26, no. 19 (2021): 5732.

[193]

Y. Zhou, X. He, W. Zhang, et al., “Cell-recruited Microspheres for OA Treatment by Dual-modulating Inflammatory and Chondrocyte Metabolism,” Materials Today Bio 27 (2024): 101127.

[194]

X. Li, X. Li, J. Yang, et al., “Living and Injectable Porous Hydrogel Microsphere With Paracrine Activity for Cartilage Regeneration,” Small 19, no. 17 (2023): e2207211.

[195]

Y. Lei, Y. Wang, J. Shen, et al., “Stem Cell-Recruiting Injectable Microgels for Repairing Osteoarthritis,” Advanced Functional Materials 31, no. 48 (2021): 2105084.

[196]

Y. Hong, Y. Duan, Z. Zhu, et al., “IL-1ra Loaded Chondroitin Sulfate-functionalized Microspheres for Minimally Invasive Treatment of Intervertebral Disc Degeneration,” Acta Biomaterialia 185 (2024): 336-349.

[197]

Z. Chen, Z. Lv, Y. Zhuang, et al., “Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation,” Advanced Materials 35, no. 40 (2023): e2300180.

[198]

R. Wang, F. Wang, S. Lu, et al., “Adipose-derived Stem Cell/FGF19-loaded Microfluidic Hydrogel Microspheres for Synergistic Restoration of Critical Ischemic Limb,” Bioactive Materials 27 (2023): 394-408.

[199]

M. L. Kang, J. Y. Ko, J. E. Kim, and G. I. Im, “Intra-articular Delivery of Kartogenin-conjugated Chitosan Nano/Microparticles for Cartilage Regeneration,” Biomaterials 35, no. 37 (2014): 9984-9994.

[200]

X. Ji, H. Shao, X. Li, et al., “Injectable Immunomodulation-based Porous Chitosan Microspheres/HPCH Hydrogel Composites as a Controlled Drug Delivery System for Osteochondral Regeneration,” Biomaterials 285 (2022): 121530.

[201]

J. Jin, Y. Liu, C. Jiang, et al., “Arbutin-modified Microspheres Prevent Osteoarthritis Progression by Mobilizing Local Anti-inflammatory and Antioxidant Responses,” Materials Today Bio 16 (2022): 100370.

[202]

Y. He, M. Sun, J. Wang, et al., “Chondroitin Sulfate Microspheres Anchored With Drug-loaded Liposomes Play a Dual Antioxidant Role in the Treatment of Osteoarthritis,” Acta Biomaterialia 151 (2022): 512-527.

[203]

Z. Zhu, Q. Yu, H. Li, et al., “Vanillin-based Functionalization Strategy to Construct Multifunctional Microspheres for Treating Inflammation and Regenerating Intervertebral Disc,” Bioactive Materials 28 (2023): 167-182.

[204]

X. Xia, Y. Liu, Y. Lu, et al., “Retuning Mitochondrial Apoptosis/Mitophagy Balance via SIRT3-Energized and Microenvironment-Modulated Hydrogel Microspheres to Impede Osteoarthritis,” Advanced Healthcare Materials 12, no. 32 (2023): e2302475.

[205]

L. Chen, J. Yang, Z. Cai, et al., “Mitochondrial-Oriented Injectable Hydrogel Microspheres Maintain Homeostasis of Chondrocyte Metabolism to Promote Subcellular Therapy in Osteoarthritis,” Research (Wash D C) 7 (2024): 0306.

[206]

D. Dehghan-Baniani, B. Mehrjou, D. Wang, et al., “A Dual Functional Chondro-inductive Chitosan Thermogel With High Shear Modulus and Sustained Drug Release for Cartilage Tissue Engineering,” International Journal of Biological Macromolecules 205 (2022): 638-650.

[207]

W. Jiang, X. Xiang, M. Song, et al., “An all-silk-derived Bilayer Hydrogel for Osteochondral Tissue Engineering,” Materials Today Bio 17 (2022): 100485.

[208]

W. Dai, Q. Liu, S. Li, et al., “Functional Injectable Hydrogel With Spatiotemporal Sequential Release for Recruitment of Endogenous Stem Cells and in Situ Cartilage Regeneration,” Journal of Materials Chemistry B 11, no. 18 (2023): 4050-4064.

[209]

Y. Yao, G. Wei, L. Deng, and W. Cui, “Visualizable and Lubricating Hydrogel Microspheres via NanoPOSS for Cartilage Regeneration,” Advanced Science (Weinh) 10, no. 15 (2023): e2207438.

[210]

F. Lin, Z. Wang, L. Xiang, L. Deng, and W. Cui, “Charge-Guided Micro/Nano-Hydrogel Microsphere for Penetrating Cartilage Matrix,” Advanced Functional Materials 31, no. 49 (2021): 2107678.

[211]

J. Lin, L. Chen, J. Yang, et al., “Injectable Double Positively Charged Hydrogel Microspheres for Targeting-Penetration-Phagocytosis,” Small 18, no. 40 (2022): e2202156.

[212]

Y. Zeng, C. Huang, D. Duan, et al., “Injectable Temperature-sensitive Hydrogel System Incorporating Deferoxamine-loaded Microspheres Promotes H-type Blood Vessel-related Bone Repair of a Critical Size Femoral Defect,” Acta Biomaterialia 153 (2022): 108-123.

[213]

X. Han, M. Sun, B. Chen, et al., “Lotus Seedpod-inspired Internal Vascularized 3D Printed Scaffold for Bone Tissue Repair,” Bioactive Materials 6, no. 6 (2021): 1639-1652.

[214]

Z. Yuan, Z. Wan, C. Gao, Y. Wang, J. Huang, and Q. Cai, “Controlled Magnesium Ion Delivery System for in Situ Bone Tissue Engineering,” Journal of Controlled Release 350 (2022): 360-376.

[215]

J. Liu, Z. Zhou, M. Hou, et al., “Capturing Cerium Ions via Hydrogel Microspheres Promotes Vascularization for Bone Regeneration,” Materials Today Bio 25 (2024): 100956.

[216]

X. Zhao, S. Liu, L. Yildirimer, et al., “Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs,” Advanced Functional Materials 26, no. 17 (2016): 2809-2819.

[217]

R. T. Annamalai, X. Hong, N. G. Schott, G. Tiruchinapally, B. Levi, and J. P. Stegemann, “Injectable Osteogenic Microtissues Containing Mesenchymal Stromal Cells Conformally Fill and Repair Critical-size Defects,” Biomaterials 208 (2019): 32-44.

[218]

M. D. Patrick, J. F. Keys, K. H. Suresh, and R. T. Annamalai, “Injectable Nanoporous Microgels Generate Vascularized Constructs and Support Bone Regeneration in Critical-sized Defects,” Scientific Reports 12, no. 1 (2022): 15811.

[219]

S. Jiang, H. Jing, Y. Zhuang, et al., “BMSCs-laden Mechanically Reinforced Bioactive Sodium Alginate Composite Hydrogel Microspheres for Minimally Invasive Bone Repair,” Carbohydrate Polymers 332 (2024): 121933.

[220]

Z. Yuan, X. Yuan, Y. Zhao, et al., “Injectable GelMA Cryogel Microspheres for Modularized Cell Delivery and Potential Vascularized Bone Regeneration,” Small 17, no. 11 (2021): e2006596.

[221]

J. Sun, C. Xu, K. Wo, et al., “Wireless Electric Cues Mediate Autologous DPSC-Loaded Conductive Hydrogel Microspheres to Engineer the Immuno-Angiogenic Niche for Homologous Maxillofacial Bone Regeneration,” Advanced Healthcare Materials 13, no. 6 (2024): e2303405.

[222]

F. Li, V. X. Truong, P. Fisch, et al., “Cartilage Tissue Formation Through Assembly of Microgels Containing Mesenchymal Stem Cells,” Acta Biomaterialia 77 (2018): 48-62.

[223]

F. Li, V. X. Truong, H. Thissen, J. E. Frith, and J. S. Forsythe, “Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration,” ACS Applied Materials & Interfaces 9, no. 10 (2017): 8589-8601.

[224]

C. Yu, J. Liu, G. Lu, et al., “Repair of Osteochondral Defects in a Rabbit Model With Artificial Cartilage Particulates Derived From Cultured Collagen-chondrocyte Microspheres,” Journal of Materials Chemistry B 6, no. 31 (2018): 5164-5173.

[225]

J. Liu, C. Yu, Y. Chen, et al., “Fast Fabrication of Stable Cartilage-Like Tissue Using Collagen Hydrogel Microsphere Culture,” Journal of Materials Chemistry B 5, no. 46 (2017): 9130-9140.

[226]

P. Xiao, X. Han, Y. Huang, et al., “Reprogramming Macrophages via Immune Cell Mobilized Hydrogel Microspheres for Osteoarthritis Treatments,” Bioactive Materials 32 (2024): 242-259.

[227]

C. J. Panebianco, S. Rao, W. W. Hom, et al., “Genipin-crosslinked Fibrin Seeded With Oxidized Alginate Microbeads as a Novel Composite Biomaterial Strategy for Intervertebral Disc Cell Therapy,” Biomaterials 287 (2022): 121641.

[228]

J. Bian, F. Cai, H. Chen, et al., “Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres,” Nano Letters 21, no. 6 (2021): 2690-2698.

[229]

X. Yang, H. Meng, J. Peng, et al., “Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden With Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model,” International Journal of Nanomedicine 15 (2020): 7155-7171.

[230]

Q. Zhou, J. Liu, J. Yan, Z. Guo, and F. Zhang, “Magnetic Microspheres Mimicking Certain Functions of Macrophages: Towards Precise Antibacterial Potency for Bone Defect Healing,” Materials Today Bio 20 (2023): 100651.

[231]

J. Yan, Y. Miao, H. Tan, et al., “Injectable Alginate/Hydroxyapatite Gel Scaffold Combined With Gelatin Microspheres for Drug Delivery and Bone Tissue Engineering,” Materials Science & Engineering C, Materials for Biological Applications 63 (2016): 274-284.

[232]

Z. Zhao, G. Li, H. Ruan, et al., “Capturing Magnesium Ions via Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration,” ACS Nano 15, no. 8 (2021): 13041-13054.

[233]

G. Zuo, P. Zhuang, X. Yang, et al., “Regulating Chondro-Bone Metabolism for Treatment of Osteoarthritis via High-Permeability Micro/Nano Hydrogel Microspheres,” Advanced Science (Weinh) 11, no. 5 (2024): e2305023.

[234]

H. Yu, P. Ren, X. Pan, et al., “Intracellular Delivery of Itaconate by Metal-Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy,” Pharmaceutics 15, no. 3 (2023): 724.

[235]

J. Li, G. Wei, G. Liu, et al., “Regulating Type H Vessel Formation and Bone Metabolism via Bone-Targeting Oral Micro/Nano-Hydrogel Microspheres to Prevent Bone Loss,” Advanced Science (Weinh) 10, no. 15 (2023): e2207381.

[236]

L. Zhou, F. Cai, H. Zhu, et al., “Immune-defensive Microspheres Promote Regeneration of the Nucleus Pulposus by Targeted Entrapment of the Inflammatory Cascade During Intervertebral Disc Degeneration,” Bioactive Materials 37 (2024): 132-152.

[237]

Z. Li, F. Cai, J. Tang, et al., “Oxygen Metabolism-balanced Engineered Hydrogel Microspheres Promote the Regeneration of the Nucleus Pulposus by Inhibiting Acid-sensitive Complexes,” Bioactive Materials 24 (2023): 346-360.

[238]

Y. Peng, X. Chen, Q. Zhang, et al., “Enzymatically Bioactive Nucleus Pulposus Matrix Hydrogel Microspheres for Exogenous Stem Cells Therapy and Endogenous Repair Strategy to Achieve Disc Regeneration,” Advanced Science (Weinh) 11, no. 10 (2024): e2304761.

[239]

D. Zheng, W. Chen, T. Chen, et al., “Hydrogen Ion Capturing Hydrogel Microspheres for Reversing Inflammaging,” Advanced Materials 36, no. 5 (2024): e2306105.

[240]

C. Cai, X. Zhang, Y. Li, et al., “Self-Healing Hydrogel Embodied With Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion,” Advanced Materials 34, no. 5 (2022): e2106564.

[241]

S. Wang, Y. Niu, P. Jia, et al., “Alkaline Activation of Endogenous Latent TGFβ1 by an Injectable Hydrogel Directs Cell Homing for in Situ Complex Tissue Regeneration,” Bioactive Materials 15 (2022): 316-329.

[242]

T. Yang, Q. Zhang, L. Xie, et al., “hDPSC-laden GelMA Microspheres Fabricated Using Electrostatic Microdroplet Method for Endodontic Regeneration,” Materials Science & Engineering C, Materials for Biological Applications 121 (2021): 111850.

[243]

V. Zolfagharzadeh, J. Ai, H. Soltani, S. Hassanzadeh, and M. Khanmohammadi, “Sustain Release of Loaded Insulin Within Biomimetic Hydrogel Microsphere for Sciatic Tissue Engineering in Vivo,” International Journal of Biological Macromolecules 225 (2023): 687-700.

[244]

W. Wu, S. Jia, H. Xu, et al., “Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery From Spinal Cord Injury,” ACS Nano 17, no. 4 (2023): 3818-3837.

[245]

X. Li, R. Ji, L. Duan, et al., “MG53/GMs/HA-Dex Neural Scaffold Promotes the Functional Recovery of Spinal Cord Injury by Alleviating Neuroinflammation,” International Journal of Biological Macromolecules 267, no. Pt 2 (2024): 131520.

[246]

Y. Li, Y. Chen, Y. Xue, et al., “Injectable Hydrogel Delivery System With High Drug Loading for Prolonging Local Anesthesia,” Advanced Science (Weinh) 11, no. 24 (2024): e2309482.

[247]

W. Zhang, W. Xu, C. Ning, et al., “Long-acting Hydrogel/Microsphere Composite Sequentially Releases Dexmedetomidine and Bupivacaine for Prolonged Synergistic Analgesia,” Biomaterials 181 (2018): 378-391.

[248]

L. Wang, X. Ding, L. Fan, et al., “Self-Healing Dynamic Hydrogel Microparticles With Structural Color for Wound Management,” Nano-Micro Letters 16, no. 1 (2024): 232.

[249]

J. Jia, J. Liu, W. Shi, et al., “Microalgae-loaded Biocompatible Alginate Microspheres for Tissue Repair,” International Journal of Biological Macromolecules 271, no. Pt 2 (2024): 132534.

[250]

Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang, and S. Zhou, “Wound Microenvironment Self-adaptive Hydrogel With Efficient Angiogenesis for Promoting Diabetic Wound Healing,” Bioactive Materials 20 (2023): 561-573.

[251]

Z. Ming, L. Han, M. Bao, et al., “Living Bacterial Hydrogels for Accelerated Infected Wound Healing,” Advanced Science 8, no. 24 (2021): 2102545.

[252]

T. Cui, J. Yu, C. F. Wang, et al., “Micro-Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation,” Advanced Science (Weinh) 9, no. 22 (2022): e2201254.

[253]

C. Yang, X. Ma, P. Wu, L. Shang, Y. Zhao, and L. Zhong, “Adhesive Composite Microspheres With Dual Antibacterial Strategies for Infected Wound Healing,” Small 19, no. 32 (2023): e2301092.

[254]

Y. Ju, H. Zeng, X. Ye, M. Dai, B. Fang, and L. Liu, “Zn(2+) Incorporated Composite Polysaccharide Microspheres for Sustained Growth Factor Release and Wound Healing,” Materials Today Bio 22 (2023): 100739.

[255]

Z. Yuan, Z. Wan, Z. Tian, et al., “In Situ Fused Granular Hydrogels With Ultrastretchability, Strong Adhesion, and Mutli-bioactivities for Efficient Chronic Wound Care,” Chemical Engineering Journal 450 (2022): 138076.

[256]

T. Ding, Y. Xiao, Q. Saiding, et al., “Capture and Storage of Cell-Free DNA via Bio-Informational Hydrogel Microspheres,” Advanced Materials 36, no. 33 (2024): e2403557.

[257]

Y. Xiao, T. Ding, H. Fang, et al., “Innovative Bio-based Hydrogel Microspheres Micro-Cage for Neutrophil Extracellular Traps Scavenging in Diabetic Wound Healing,” Advanced Science (Weinh) 11, no. 21 (2024): e2401195.

[258]

K. Hoshino, T. Kimura, A. M. De Grand, et al., “Three Catheter-based Strategies for Cardiac Delivery of Therapeutic Gelatin Microspheres,” Gene Therapy 13, no. 18 (2006): 1320-1327.

[259]

A. Iwakura, M. Fujita, K. Kataoka, et al., “Intramyocardial Sustained Delivery of Basic Fibroblast Growth Factor Improves Angiogenesis and Ventricular Function in a Rat Infarct Model,” Heart and Vessels 18, no. 2 (2003): 93-99.

[260]

Y. Sakakibara, K. Tambara, G. Sakaguchi, et al., “Toward Surgical Angiogenesis Using Slow-released Basic Fibroblast Growth Factor,” European Journal of Cardio-Thoracic Surgery 24, no. 1 (2003): 105-111.

[261]

Y. Liu, L. Sun, Y. Huan, H. Zhao, and J. Deng, “Effects of Basic Fibroblast Growth Factor Microspheres on Angiogenesis in Ischemic Myocardium and Cardiac Function: Analysis With Dobutamine Cardiovascular Magnetic Resonance Tagging,” European Journal of Cardio-Thoracic Surgery 30, no. 1 (2006): 103-107.

[262]

J. Rodness, A. Mihic, Y. Miyagi, J. Wu, R. D. Weisel, and R. K. Li, “VEGF-loaded Microsphere Patch for Local Protein Delivery to the Ischemic Heart,” Acta Biomaterialia 45 (2016): 169-181.

[263]

A. Uitterdijk, T. Springeling, M. van Kranenburg, et al., “VEGF165A microsphere Therapy for Myocardial Infarction Suppresses Acute Cytokine Release and Increases Microvascular Density but Does Not Improve Cardiac Function,” American Journal of Physiology Heart and Circulatory Physiology 309, no. 3 (2015): H396-406.

[264]

J. Feng, Y. Wu, W. Chen, et al., “Sustained Release of Bioactive IGF-1 From a Silk Fibroin Microsphere-based Injectable Alginate Hydrogel for the Treatment of Myocardial Infarction,” Journal of Materials Chemistry B 8, no. 2 (2020): 308-315.

[265]

M. H. Chen, J. J. Chung, J. E. Mealy, et al., “Injectable Supramolecular Hydrogel/Microgel Composites for Therapeutic Delivery,” Macromolecular Bioscience 19, no. 1 (2019): e1800248.

[266]

S. M. Jay, B. R. Shepherd, J. W. Andrejecsk, T. R. Kyriakides, J. S. Pober, and W. M. Saltzman, “Dual Delivery of VEGF and MCP-1 to Support Endothelial Cell Transplantation for Therapeutic Vascularization,” Biomaterials 31, no. 11 (2010): 3054-3062.

[267]

J. Shen, Y. Ji, M. Xie, et al., “Cell-modified Bioprinted Microspheres for Vascular Regeneration,” Materials Science & Engineering C, Materials for Biological Applications 112 (2020): 110896.

[268]

J. Liu, Y. J. Chuah, J. Fu, W. Zhu, and D. A. Wang, “Co-culture of human Umbilical Vein Endothelial Cells and human Bone Marrow Stromal Cells Into a Micro-cavitary Gelatin-methacrylate Hydrogel System to Enhance Angiogenesis,” Materials Science & Engineering C, Materials for Biological Applications 102 (2019): 906-916.

[269]

Q. Zhang, T. Yang, R. Zhang, et al., “Platelet Lysate Functionalized Gelatin Methacrylate Microspheres for Improving Angiogenesis in Endodontic Regeneration,” Acta Biomaterialia 136 (2021): 441-455.

[270]

J. Du, P. Du, and H. D. Smyth, “Hydrogels for Controlled Pulmonary Delivery,” Therapeutic Delivery 4, no. 10 (2013): 1293-1305.

[271]

Qurrat-ul-Ain, S. Sharma, G. K. Khuller, and S. K. Garg, “Alginate-based Oral Drug Delivery System for Tuberculosis: Pharmacokinetics and Therapeutic Effects,” Journal of Antimicrobial Chemotherapy 51, no. 4 (2003): 931-938.

[272]

J. H. Park, H. E. Jin, D. D. Kim, S. J. Chung, W. S. Shim, and C. K. Shim, “Chitosan Microspheres as an Alveolar Macrophage Delivery System of Ofloxacin via Pulmonary Inhalation,” International Journal of Pharmaceutics 441, no. 1-2 (2013): 562-569.

[273]

R. Pandey and G. K. Khuller, “Chemotherapeutic Potential of Alginate-chitosan Microspheres as Anti-tubercular Drug Carriers,” Journal of Antimicrobial Chemotherapy 53, no. 4 (2004): 635-640.

[274]

P. Selvam, I. M. El-Sherbiny, and H. D. Smyth, “Swellable Hydrogel Particles for Controlled Release Pulmonary Administration Using Propellant-driven Metered Dose Inhalers,” Journal of Aerosol Medicine and Pulmonary Drug Delivery 24, no. 1 (2011): 25-34.

[275]

I. M. El-Sherbiny, S. McGill, and H. D. Smyth, “Swellable Microparticles as Carriers for Sustained Pulmonary Drug Delivery,” Journal of Pharmaceutical Sciences 99, no. 5 (2010): 2343-2356.

[276]

S. M. Hwang, D. D. Kim, S. J. Chung, and C. K. Shim, “Delivery of Ofloxacin to the Lung and Alveolar Macrophages via Hyaluronan Microspheres for the Treatment of Tuberculosis,” Journal of Controlled Release 129, no. 2 (2008): 100-106.

[277]

E. Secret, K. E. Crannell, S. J. Kelly, M. Villancio-Wolter, and J. S. Andrew, “Matrix Metalloproteinase-sensitive Hydrogel Microparticles for Pulmonary Drug Delivery of Small Molecule Drugs or Proteins,” Journal of Materials Chemistry B 3, no. 27 (2015): 5629-5634.

[278]

E. Secret, S. J. Kelly, K. E. Crannell, and J. S. Andrew, “Enzyme-responsive Hydrogel Microparticles for Pulmonary Drug Delivery,” ACS Applied Materials & Interfaces 6, no. 13 (2014): 10313-10321.

[279]

R. Luo, J. Liu, Q. Cheng, M. Shionoya, C. Gao, and R. Wang, “Oral Microsphere Formulation of M2 Macrophage-mimetic Janus Nanomotor for Targeted Therapy of Ulcerative Colitis,” Science Advances 10, no. 26 (2024): eado6798.

[280]

H. Liu, Z. Cai, F. Wang, et al., “Colon-Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora,” Advanced Science (Weinh) 8, no. 18 (2021): e2101619.

[281]

S. Qiao, W. Chen, X. Zheng, and L. Ma, “Preparation of pH-sensitive Alginate-based Hydrogel by Microfluidic Technology for Intestinal Targeting Drug Delivery,” International Journal of Biological Macromolecules 254, no. Pt 2 (2024): 127649.

[282]

Y. Li, X. E. Luo, M. J. Tan, et al., “Preparation of Carboxymethylcellulose /ZnO / Chitosan Composite Hydrogel Microbeads and Its Drug Release Behaviour,” International Journal of Biological Macromolecules 247 (2023): 125716.

[283]

S. Zhang, L. Kang, S. Hu, et al., “Carboxymethyl Chitosan Microspheres Loaded Hyaluronic Acid/Gelatin Hydrogels for Controlled Drug Delivery and the Treatment of Inflammatory Bowel Disease,” International Journal of Biological Macromolecules 167 (2021): 1598-1612.

[284]

R. Sun, Z. Lv, Y. Wang, et al., “Preparation and Characterization of Pectin-alginate-based Microbeads Reinforced by Nano Montmorillonite Filler for Probiotics Encapsulation: Improving Viability and Colonic Colonization,” International Journal of Biological Macromolecules 264, no. Pt 1 (2024): 130543.

[285]

L. Qiu, R. Shen, L. Wei, et al., “Designing a Microbial Fermentation-functionalized Alginate Microsphere for Targeted Release of 5-ASA Using Nano Dietary fiber Carrier for Inflammatory Bowel Disease Treatment,” Journal of Nanobiotechnology 21, no. 1 (2023): 344.

[286]

S. Wang, C. Guan, P. Wang, et al., “A Thiolated Oxidized Guar Gum and Sodium Lginate Dual-network Microspheres With Enhanced Gastric Acid Resistance and Mucoadhesion for Delivery of Probiotics,” International Journal of Biological Macromolecules 275, no. Pt 2 (2024): 133395.

[287]

J. Ouyang, B. Deng, B. Zou, et al., “Oral Hydrogel Microbeads-Mediated in Situ Synthesis of Selenoproteins for Regulating Intestinal Immunity and Microbiota,” Journal of the American Chemical Society 145, no. 22 (2023): 12193-12205.

[288]

H. Wang, Z. Zhao, Y. Liu, C. Shao, F. Bian, and Y. Zhao, “Biomimetic Enzyme Cascade Reaction System in Microfluidic Electrospray Microcapsules,” Science Advances 4, no. 6 (2018): eaat2816.

[289]

Z. Wu, Y. Zheng, J. Lin, et al., “On-microparticle Construction of Endothelialized Liver Microtissues for Drug Testing,” Chemical Engineering Journal 481 (2024): 148403.

[290]

X. Xie, X. Zhou, T. Liu, et al., “Direct Differentiation of Human Embryonic Stem Cells to 3D Functional Hepatocyte-Like Cells in Alginate Microencapsulation Sphere,” Cells 11, no. 19 (2022): 3134.

[291]

E. Montanari, R. Meier, R. Mahou, et al., “Multipotent Mesenchymal Stromal Cells Enhance Insulin Secretion From human Islets via N-cadherin Interaction and Prolong Function of Transplanted Encapsulated Islets in Mice,” Stem Cell Research & Therapy 8, no. 1 (2017): 199.

[292]

Y. Pan, Z. Luo, S. Chen, et al., “A Multicenter, Randomized, Double-Blind, Parallel-Grouped, Positive-Controlled, Non-Inferiority Clinical Study to Evaluate the Efficacy and Safety of Injectable Calcium Hydroxylapatite Microsphere Hydrogel Fillers in the Correction of Nasolabial Fold in Chinese Subjects,” Aesthetic Plastic Surgery 49, no. 6 (2025): 1661-1668.

[293]

A. Marui, Y. Tabata, S. Kojima, et al., “A Novel Approach to Therapeutic Angiogenesis for Patients With Critical Limb Ischemia by Sustained Release of Basic Fibroblast Growth Factor Using Biodegradable Gelatin Hydrogel: An Initial Report of the Phase I-IIa Study,” Circulation Journal 71, no. 8 (2007): 1181-1186.

[294]

M. Kumagai, A. Marui, Y. Tabata, et al., “Safety and Efficacy of Sustained Release of Basic Fibroblast Growth Factor Using Gelatin Hydrogel in Patients With Critical Limb Ischemia,” Heart and Vessels 31, no. 5 (2016): 713-721.

[295]

T. Hashimoto, H. Koyama, T. Miyata, et al., “Selective and Sustained Delivery of Basic Fibroblast Growth Factor (bFGF) for Treatment of Peripheral Arterial Disease: Results of a Phase I Trial,” European Journal of Vascular and Endovascular Surgery 38, no. 1 (2009): 71-75.

[296]

X. Hu, Q. Hu, S. Liu, and H. Zhang, “Synergy of Engineered Gelatin Methacrylate-based Porous Microspheres and Multicellular Assembly to Promote Osteogenesis and Angiogenesis in Bone Tissue Reconstruction,” International Journal of Biological Macromolecules 283 (2024): 137228.

[297]

J. Guo, X. Shu, S. Yu, et al., “Injectable Hydrogel Microsphere-bomb for MRSA-infected Chronic Osteomyelitis,” Journal of Controlled Release 376 (2024): 337-353.

[298]

Y. Ai, C. Hu, Y. Wang, et al., “Core-shell Hydrogel Microspheres With Sequential Delivery of Cerium Oxide Nanoparticles and Spinal White Matter Extracellular Matrix for Improved Functional Recovery in Spinal Cord Injury,” Chemical Engineering Journal 508 (2025): 160861.

[299]

Y. Wang, Y. Wang, X. Wang, et al., “Biodegradable and Electroactive Cryogel Microspheres for Neurovascularized Bone Regeneration,” Matter 8, no. 9 (2025): 102366.

[300]

J. Jie, J. Ju, Z. Wang, J. Chen, L. Wu, and J. Sun, “Organoid-Like Neurovascular Spheroids Promote the Recovery of Hypoxic-Ischemic Skin Flaps through the Activation of Autophagy,” Advanced Healthcare Materials 14, no. 15 (2025): 2405154.

[301]

M. Yang, Z. C. Zhang, F. Z. Yuan, et al., “An Immunomodulatory Polypeptide Hydrogel for Osteochondral Defect Repair,” Bioactive Materials 19 (2023): 678-689.

[302]

Z. Yuan, R. Yan, Z. Fu, T. Wu, and C. Ren, “Impact of Physicochemical Properties on Biological Effects of Lipid Nanoparticles: Are They Completely Safe,” Science of the Total Environment 927 (2024): 172240.

[303]

X. Wang, H. Gu, H. Zhang, et al., “Oral Core-Shell Nanoparticles Embedded in Hydrogel Microspheres for the Efficient Site-Specific Delivery of Magnolol and Enhanced Antiulcerative Colitis Therapy,” ACS Applied Materials & Interfaces 13, no. 29 (2021): 33948-33961.

[304]

L. K. Beura, S. E. Hamilton, K. Bi, et al., “Normalizing the Environment Recapitulates Adult human Immune Traits in Laboratory Mice,” Nature 532, no. 7600 (2016): 512-516.

[305]

F. Hugenholtz and W. M. de Vos, “Mouse Models for human Intestinal Microbiota Research: A Critical Evaluation,” Cellular and Molecular Life Sciences 75, no. 1 (2018): 149-160.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/