Design Strategies for Novel Lipid Nanoparticle for mRNA Vaccine and Therapeutics: Current Understandings and Future Perspectives

Xiaochi Li , Junli Li , Jiazheng Wei , Weixin Du , Cheng Su , Xiaobin Shen , Aihua Zhao , Miao Xu

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70414

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70414 DOI: 10.1002/mco2.70414
REVIEW

Design Strategies for Novel Lipid Nanoparticle for mRNA Vaccine and Therapeutics: Current Understandings and Future Perspectives

Author information +
History +
PDF

Abstract

Messenger RNA (mRNA) vaccines have revolutionized infectious disease prevention and cancer immunotherapy due to their rapid development, potent immunogenicity, and flexible design. Central to the clinical success of mRNA vaccines, lipid nanoparticles (LNPs) function as efficient, nonviral delivery systems capable of protecting mRNA and facilitating its uptake by target cells. Recent advances have demonstrated that LNP-formulated mRNA vaccines and therapeutics elicit robust immune responses and confer effective protection against a broad spectrum of pathogens, including viruses and bacteria. Moreover, LNP-based therapies have shown promising therapeutic efficacy in various cancers and rare diseases, as evidenced by both preclinical models and clinical trials. This review provides a comprehensive overview of the key components, structural features, and preparation technologies of LNPs. It further discusses ongoing challenges in LNP design, such as delivery efficiency, tissue targeting, and safety, and proposes rational strategies to address these limitations. Additionally, recent progress in the analytical methods used to characterize the critical quality attributes of LNPs is highlighted. This review aims to guide the rational design of next-generation LNPs and to support the broader application of mRNA-based vaccines and therapeutics.

Keywords

adverse reactions / endosomal escape / lipid nanoparticle / manufacture and quality control / mRNA vaccine / targeted / therapeutics

Cite this article

Download citation ▾
Xiaochi Li, Junli Li, Jiazheng Wei, Weixin Du, Cheng Su, Xiaobin Shen, Aihua Zhao, Miao Xu. Design Strategies for Novel Lipid Nanoparticle for mRNA Vaccine and Therapeutics: Current Understandings and Future Perspectives. MedComm, 2025, 6(10): e70414 DOI:10.1002/mco2.70414

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Brenner, F. Jacob, and M. Meselson, “An Unstable Intermediate Carrying Information From Genes to Ribosomes for Protein Synthesis,” Nature 190 (1961): 576-581.

[2]

J. A. Wolff, R. W. Malone, P. Williams, et al., “Direct Gene Transfer Into Mouse Muscle in Vivo,” Science 247, no. 4949 Pt 1 (1990): 1465-1468.

[3]

F. P. Polack, S. J. Thomas, N. Kitchin, et al., “Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine,” New England Journal of Medicine 383, no. 27 (2020): 2603-2615.

[4]

H. M. Sahly, L. R. Baden, B. Essink, et al., “Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase,” New England Journal of Medicine 385, no. 19 (2021): 1774-1785.

[5]

L. Huang, Z. Guo, F. Wang, et al., “KRAS Mutation: From Undruggable to Druggable in Cancer,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 386.

[6]

L. Yang, L. Gong, P. Wang, et al., “Recent Advances in Lipid Nanoparticles for Delivery of mRNA,” Pharmaceutics 14, no. 12 (2022): 2682.

[7]

A. Dirisala, S. Uchida, T. A. Tockary, et al., “Precise Tuning of Disulphide Crosslinking in mRNA Polyplex Micelles for Optimising Extracellular and Intracellular Nuclease Tolerability,” Journal of Drug Targeting 27, no. 5-6 (2019): 670-680.

[8]

A. Yen, Y. Cheng, M. Sylvestre, et al., “Serum Nuclease Susceptibility of mRNA Cargo in Condensed Polyplexes,” Molecular Pharmaceutics 15, no. 6 (2018): 2268-2276.

[9]

O. Andries, S. M. Cafferty, S. C. D. Smedt, et al., “N (1)-Methylpseudouridine-Incorporated mRNA Outperforms Pseudouridine-Incorporated mRNA by Providing Enhanced Protein Expression and Reduced Immunogenicity in Mammalian Cell Lines and Mice,” Journal of Controlled Release 217 (2015): 337-344.

[10]

R. Wagner, M. Graf, K. Bieler, et al., “Rev-Independent Expression of Synthetic Gag-Pol Genes of Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus: Implications for the Safety of Lentiviral Vectors,” Human Gene Therapy 11, no. 17 (2000): 2403-2413.

[11]

C. J. Wilusz, M. Wormington, and S. W. Peltz, “The Cap-to-Tail Guide to mRNA Turnover,” Nature Reviews Molecular Cell Biology 2, no. 4 (2001): 237-246.

[12]

P. Bernstein and J. Ross, “Poly(A), Poly(A) Binding Protein and the Regulation of mRNA Stability,” Trends in Biochemical Sciences 14, no. 9 (1989): 373-377.

[13]

F. Mignone, C. Gissi, S. Liuni, and G. Pesole, “Untranslated Regions of mRNAs,” Genome Biology 3, no. 9 (2002): REVIEWS0004.

[14]

T. E. Arnold, J. Yu, and J. G. Belasco, “mRNA Stabilization by the ompA 5' Untranslated Region: Two Protective Elements Hinder Distinct Pathways for mRNA Degradation,” RNA 4, no. 3 (1998): 319-330.

[15]

K. Karikó, M. Buckstein, H. Ni, and D. Weissman, “Suppression of RNA Recognition by Toll-Like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA,” Immunity 23, no. 2 (2005): 165-175.

[16]

A. Wadhwa, A. Aljabbari, A. Lokras, et al., “Opportunities and Challenges in the Delivery of mRNA-Based Vaccines,” Pharmaceutics 12, no. 2 (2020): 102.

[17]

S. L. Ginn, A. K. Amaya, I. E. Alexander, et al., “Gene Therapy Clinical Trials Worldwide to 2017: An Update,” The Journal of Gene Medicine 20, no. 5 (2018): e3015.

[18]

J. L. Shirley, Y. P. de Jong, C. Terhorst, and R. W. Herzog, “Immune Responses to Viral Gene Therapy Vectors,” Molecular Therapy 28, no. 3 (2020): 709-722.

[19]

Y. F. Chen, F. Luh, Y. S. Ho, and Y. Yen, “Exosomes: A Review of Biologic Function, Diagnostic and Targeted Therapy Applications, and Clinical Trials,” Journal of Biomedical Science 31, no. 1 (2024): 67.

[20]

J. S. Wang, S. J. Schellenberg, A. Demeros, and A. Y. Lin, “Exosomes in Review: A New Frontier in CAR-T Cell Therapies,” Neoplasia 62 (2025): 101147.

[21]

S. Gelibter, G. Marostica, A. Mandelli, et al., “The Impact of Storage on Extracellular Vesicles: A Systematic Study,” Journal of Extracellular Vesicles 11, no. 2 (2022): e12162.

[22]

J. Bader, F. Brigger, and J. C. Leroux, “Extracellular Vesicles Versus Lipid Nanoparticles for the Delivery of Nucleic Acids,” Advanced Drug Delivery Reviews 215 (2024): 115461.

[23]

A. Amiri, R. Bagherifar, E. Ansari Dezfouli, et al., “Exosomes as Bio-Inspired Nanocarriers for RNA Delivery: Preparation and Applications,” Journal of Translational Medicine 20, no. 1 (2022): 125.

[24]

M. Elmowafy, K. Shalaby, M. H. Elkomy, et al., “Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges,” Polymers (Basel) 15, no. 5 (2023): 1123.

[25]

J. Kim, Y. Choi, S. Yang, et al., “Sustained and Long-Term Release of Doxorubicin From PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses,” Pharmaceutics 14, no. 3 (2022): 474.

[26]

W. Yang, L. Mixich, E. Boonstra, and H. Cabral, “Polymer-Based mRNA Delivery Strategies for Advanced Therapies,” Advanced Healthcare Materials 12, no. 15 (2023): e2202688.

[27]

Z. Zhao, S. Qiao, Z. Jin, et al., “Acidified Sucralfate Encapsulated Chitosan Derivative Nanoparticles as Oral Vaccine Adjuvant Delivery Enhancing Mucosal and Systemic Immunity,” International Journal of Biological Macromolecules 279, no. Pt 3 (2024): 135424.

[28]

J. W. Lee, J. Choi, Y. Choi, et al., “Molecularly Engineered siRNA Conjugates for Tumor-Targeted RNAi Therapy,” Journal of Controlled Release 351 (2022): 713-726.

[29]

S. J. Shepherd, D. Issadore, and M. J. Mitchell, “Microfluidic Formulation of Nanoparticles for Biomedical Applications,” Biomaterials 274 (2021): 120826.

[30]

K. R. Gajbhiye, R. Salve, M. Narwade, et al., “Lipid Polymer Hybrid Nanoparticles: A Custom-Tailored Next-Generation Approach for Cancer Therapeutics,” Molecular Cancer 22, no. 1 (2023): 160.

[31]

P. R. Cullis and P. L. Felgner, “The 60-Year Evolution of Lipid Nanoparticles for Nucleic Acid Delivery,” Nature Reviews Drug Discovery 23, no. 9 (2024): 709-722.

[32]

A. Prachi and R. Syed, “A Brief Overview of Quality by Design Approach for Developing Pharmaceutical Liposomes as Nano-Sized Parenteral Drug Delivery Systems,” RSC Pharmaceutics 1, no. 4 (2024): 675-688.

[33]

K. Aloss and P. Hamar, “Recent Preclinical and Clinical Progress in Liposomal Doxorubicin,” Pharmaceutics 15, no. 3 (2023): 893.

[34]

N. Jung, Y. Lee, S. Lee, et al., “Lipid Nanoparticles for Delivery of RNA Therapeutics: Current Status and the Role of in Vivo Imaging,” Theranostics 12, no. 17 (2022): 7509-7531.

[35]

J. Martinez, A. Patkaniowska, H. Urlaub, et al., “Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi,” Cell 110, no. 5 (2002): 563-574.

[36]

T. S. Zimmermann, A. C. Lee, A. Akinc, et al., “RNAi-Mediated Gene Silencing in Non-Human Primates,” Nature 441, no. 7089 (2006): 111-114.

[37]

S. Ramachandran, S. R. Satapathy, and T. Dutta, “Delivery Strategies for mRNA Vaccines,” Pharmaceutical Medicine 36, no. 1 (2022): 11-20.

[38]

B. Hu, L. Zhong, Y. Weng, et al., “Therapeutic siRNA: State of the Art,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 101.

[39]

M. J. Carrasco, S. Alishetty, M. G. Alameh, et al., “Ionization and Structural Properties of mRNA Lipid Nanoparticles Influence Expression in Intramuscular and Intravascular Administration,” Communications Biology 4, no. 1 (2021): 956.

[40]

T. Terada, J. A. Kulkarni, A. Huynh, et al., “Protective Effect of Edaravone Against Cationic Lipid-Mediated Oxidative Stress and Apoptosis,” Biological & Pharmaceutical Bulletin 44, no. 1 (2021): 144-149.

[41]

R. Zhang, S. Shao, Y. Piao, et al., “Esterase-Labile Quaternium Lipidoid Enabling Improved mRNA-LNP Stability and Spleen-Selective mRNA Transfection,” Advanced Materials 35, no. 46 (2023): e2303614.

[42]

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking Down Barriers: Advances in SiRNA Delivery,” Nature Reviews Drug Discovery 8, no. 2 (2009): 129-138.

[43]

X. Hou, T. Zaks, R. Langer, and Y. Dong, “Lipid Nanoparticles for MRNA Delivery,” Nature Reviews Materials 6 (2021): 1078-1094.

[44]

Y. Granot and D. Peer, “Delivering the Right Message: Challenges and Opportunities in Lipid Nanoparticles-Mediated Modified MRNA Therapeutics-An Innate Immune System Standpoint,” Seminars in Immunology 34 (2017): 68-77.

[45]

L. Zhang, W. Lou, and J. Wang, “Advances in Nucleic Acid Therapeutics: Structures, Delivery Systems, and Future Perspectives in Cancer Treatment,” Clinical and Experimental Medicine 24, no. 1 (2024): 200.

[46]

T. M. Allen and P. R. Cullis, “Liposomal Drug Delivery Systems: From Concept to Clinical Applications,” Advanced Drug Delivery Reviews 65, no. 1 (2013): 36-48.

[47]

F. Ponti, M. Campolungo, C. Melchiori, et al., “Cationic Lipids for Gene Delivery: Many Players, One Goal,” Chemistry and Physics of Lipids 235 (2021): 105032.

[48]

Y. Zhang, C. Sun, C. Wang, et al., “Lipids and Lipid Derivatives for RNA Delivery,” Chemical Reviews 121, no. 20 (2021): 12181-12277.

[49]

M. D. Buschmann, M. J. Carrasco, S. Alishetty, et al., “Nanomaterial Delivery Systems for MRNA Vaccines,” Vaccines 9, no. 1 (2021): 65.

[50]

J. Kim, Y. Eygeris, M. Gupta, et al., “Self-Assembled mRNA Vaccines,” Advanced Drug Delivery Reviews 170 (2021): 83-112.

[51]

J. Heyes, L. Palmer, K. Bremner, et al., “Cationic Lipid Saturation Influences Intracellular Delivery of Encapsulated Nucleic Acids,” Journal of Controlled Release 107, no. 2 (2005): 276-287.

[52]

S. C. Semple, A. Akinc, J. Chen, et al., “Rational Design of Cationic Lipids for siRNA Delivery,” Nature Biotechnology 28, no. 2 (2010): 172-176.

[53]

M. Jayaraman, S. M. Ansell, B. L. Mui, et al., “Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing in Vivo,” Angewandte Chemie (International ed in English) 51, no. 34 (2012): 8529-8533.

[54]

D. Adams, A. Gonzalez-Duarte, W. D. O'Riorda, et al., “Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis,” New England Journal of Medicine 379, no. 1 (2018): 11-21.

[55]

L. Zhang, K. R. More, A. Ojha, et al., “Effect of mRNA-LNP Components of Two Globally—marketed COVID-19 Vaccines on Efficacy and Stability,” NPJ Vaccines 8, no. 1 (2023): 156.

[56]

T. Yang, C. Li, X. Wang, et al., “Efficient Hepatic Delivery and Protein Expression Enabled by Optimized mRNA and Ionizable Lipid Nanoparticle,” Bioactive Materials 5 (2020): 1053-1061.

[57]

X. X. Zhang, C. M. Lamanna, and R. E. Kohman, “Lipid-Mediated DNA and siRNA Transfection Efficiency Depends on Peptide Headgroup,” Soft Matter 9, no. 17 (2013), https://doi.org/10.1039/C3SM27633C.

[58]

C. H. Jones, C. K. Chen, A. Ravikrishnan, et al., “Overcoming Nonviral Gene Delivery Barriers: Perspective and Future,” Molecular Pharmaceutics 10, no. 11 (2013): 4082-4098.

[59]

K. Chen, N. Fan, H. Huang, et al., “mRNA Vaccines Against SARS-CoV-2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids,” Advanced Functional Materials 32, no. 39 (2022): 2204692.

[60]

M. A. Oberli, A. M. Reichmuth, J. R. Dorkin, et al., “Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy,” Nano Letters 17 (2017): 1326-1335.

[61]

R. Zhang, R. El-Mayta, T. J. Murdoch, et al., “Helper Lipid Structure Influences Protein Adsorption and Delivery of Lipid Nanoparticles to Spleen and Liver,” Biomaterials Science 9, no. 4 (2021): 1449-1463.

[62]

I. Ermilova and J. Swenson, “DOPC Versus DOPE as a Helper Lipid for Gene-Therapies: Molecular Dynamics Simulations With DLin-MC3-DMA,” Physical Chemistry Chemical Physics 22, no. 48 (2020): 28256-28268.

[63]

X. Cheng and R. J. Lee, “The Role of Helper Lipids in Lipid Nanoparticles (LNPs) Designed for Oligonucleotide Delivery,” Advanced Drug Delivery Reviews 99, no. Pt A (2016): 129-137.

[64]

M. Yanez Arteta, T. Kjellman, and S. Bartesaghi, “Successful Reprogramming of Cellular Protein Production Through MRNA Delivered by Functionalized Lipid Nanoparticles,” PNAS 115, no. 15 (2018): E3351-E3360.

[65]

J. A. Kulkarni, D. Witzigmann, J. Leung, et al., “On the Role of Helper Lipids in Lipid Nanoparticle Formulations of SiRNA,” Nanoscale 11, no. 45 (2019): 21733-21739.

[66]

K. J. Kauffman, J. R. Dorkin, J. H. Yang, et al., “Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo With Fractional Factorial and Definitive Screening Designs,” Nano Letters 15 (2015): 7300-7306.

[67]

Q. Cheng, T. Wei, L. Farbiak, et al., “Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific MRNA Delivery and CRISPR−Cas Gene Editing,” Nature Nanotechnology 15, no. 4 (2020): 313-320.

[68]

C. D. Sago, M. P. Lokugamage, K. Paunovska, et al., “High-Throughput in Vivo Screen of Functional MRNA Delivery Identifies Nanoparticles for Endothelial Cell Gene Editing,” PNAS 115, no. 42 (2018): E9944-E9952.

[69]

H. Takahashi, K. Sinoda, and I. Hatta, “Effects of Cholesterol on the Lamellar and the Inverted Hexagonal Phases of Dielaidoylphos-Phatidylethanolamine,” Biochimica Et Biophysica Acta 1289 (1996): 209-216.

[70]

K. Paunovska, A. J. Da Silva Sanchez, and C. D. Sago, “Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses,” Advanced Materials 31, no. 14 (2019): e1807748.

[71]

O. Jung, H. Y. Jung, L. T. Thuy, et al., “Modulating Lipid Nanoparticles With Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA,” Advanced Healthcare Materials 13, no. 14 (2024): e2303857.

[72]

H. Dong, Z. He, S. Cai, et al., “Methylprednisolone Substituted Lipid Nanoparticles Deliver C3 Transferase mRNA for Combined Treatment of Spinal Cord Injury,” Journal of Nanobiotechnology 23, no. 1 (2025): 98.

[73]

Q. Xiao, X. Li, C. Liu, et al., “Liposome-Based Anchoring and Core-Encapsulation for Combinatorialcancer Therapy,” Chinese Chemical Letters 33 (2022): 4191-4196.

[74]

J. Hu, X. Yuan, F. Wang, et al., “The Progress and Perspective of Strategies to Improve Tumor Penetration of Nanomedicines,” Chinese Chemical Letters 32 (2021): 1341-1347.

[75]

A. Akinc, W. Querbes, S. De, et al., “Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms,” Molecular Therapy 18, no. 7 (2010): 1357-1364.

[76]

B. L. Mui, Y. K. Tam, M. Jayaraman, et al., “Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of SiRNA Lipid Nanoparticles,” Molecular Therapy Nucleic Acids 2, no. 12 (2013): e139.

[77]

T. Suzuki, Y. Suzuki, T. Hihara, et al., “PEG Shedding-Rate-Dependent Blood Clearance of PEGylated Lipid Nanoparticles in Mice: Faster PEG Shedding Attenuates Anti-PEG IgM Production,” International Journal of Pharmaceutics 15 (2020): 119792.

[78]

R. C. Ryals, S. Patel, and C. Acosta, “The Effects of PEGylation on LNP Based mRNA Delivery to the Eye,” PLoS ONE 15, no. 10 (2020): e0241006.

[79]

M. P. Lokugamage, D. Vanover, J. Beyersdorf, et al., “Optimization of Lipid Nanoparticles for the Delivery of Nebulized Therapeutic mRNA to the Lungs,” Nature Biomedical Engineering 5, no. 9 (2021): 1059-1068.

[80]

H. Parhiz, V. V. Shuvaev, N. Pardi, et al., “PECAM-1 Directed Re-Targeting of Exogenous mRNA Providing Two Orders of Magnitude Enhancement of Vascular Delivery and Expression in Lungs Independent of Apolipoprotein E-Mediated Uptake,” Journal of Controlled Release 10 (2018): 106-115.

[81]

M. S. Singh, S. Ramishetti, D. Landesman-Milo, et al., “Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer,” Small 7, no. 19 (2021): e2100287.

[82]

S. M. Mortazavi, M. R. Mohammadabadi, K. Khosravi-Darani, and M. R. Mozafari, “Preparation of Liposomal Gene Therapy Vectors by a Scalable Method Without Using Volatile Solvents or Detergents,” Journal of Biotechnology 129, no. 4 (2007): 604-613.

[83]

C. Has and P. Sunthar, “A Comprehensive Review on Recent Preparation Techniques of Liposomes,” Journal of Liposome Research 30, no. 4 (2020): 336-365.

[84]

B. Zeng, L. Pian, Y. Liu, et al., “Preparation and Effects of Functionalized Liposomes Targeting Breast Cancer Tumors Using Chemotherapy, Phototherapy, and Immunotherapy,” Journal of Nanobiotechnology 22, no. 1 (2024): 558.

[85]

C. Jaafar-Maalej, R. Diab, V. Andrieu, et al., “Ethanol Injection Method for Hydrophilic and Lipophilic Drug-Loaded Liposome Preparation,” Journal of Liposome Research 20, no. 3 (2010): 228-243.

[86]

P. Gentine, L. Bourel-Bonnet, B. Frisch, et al., “Modified and Derived Ethanol Injection Toward Liposomes: Development of the Process,” Journal of Liposome Research 23, no. 1 (2013): 11-19.

[87]

M. A. Tomeh and X. Zhao, “Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems,” Molecular Pharmaceutics 17, no. 12 (2020): 4421-4434.

[88]

K. Illath, S. Kar, P. Gupta, et al., “Microfluidic Nanomaterials: From Synthesis to Biomedical Applications,” Biomaterials 280 (2022): 121247.

[89]

D. van Swaay and A. deMello, “Microfluidic Methods for Forming Liposomes,” Lab on A Chip 13, no. 5 (2013): 752-767.

[90]

H. C. Shum, D. Lee, I. Yoon, et al., “Double Emulsion Templated Monodisperse Phospholipid Vesicles,” Langmuir 24, no. 15 (2008): 7651-7653.

[91]

E. Lorenceau, A. S. Utada, D. R. Link, et al., “Generation of Polymerosomes From Double-Emulsions,” Langmuir 21, no. 20 (2005): 9183-9186.

[92]

S. Sugiura, T. Kuroiwa, T. Kagota, et al., “Novel Method for Obtaining Homogeneous Giant Vesicles From a Monodisperse Water-in-Oil Emulsion Prepared With a Microfluidic Device,” Langmuir 24, no. 9 (2008): 4581-4588.

[93]

A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids,” Journal of Molecular Biology 13, no. 1 (1965): 238-252.

[94]

S. Batzri and E. D. Korn, “Single Bilayer Liposomes Prepared Without Sonication,” Biochimica Et Biophysica Acta 298, no. 4 (1973): 1015-1019.

[95]

K. S. Ahmed, S. A. Hussein, A. H. Ali, et al., “Liposome: Composition, Characterisation, Preparation, and Recent Innovation in Clinical Applications,” Journal of Drug Targeting 27, no. 7 (2019): 742-761.

[96]

B. Yu, R. J. Lee, and L. J. Lee, “Microfluidic Methods for Production of Liposomes,” Methods in Enzymology 465 (2009): 129-141.

[97]

Y. C. Tan, K. Hettiarachchi, M. Siu, et al., “Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles,” Journal of the American Chemical Society 128 (2006): 5656-5658.

[98]

N. Chaudhary, D. Weissman, and K. A. Whitehead, “mRNA Vaccines for Infectious Diseases: Principles, Delivery and Clinical Translation,” Nature Reviews Drug Discovery 20, no. 3 (2021): 817-838.

[99]

D. Hsu, A. Jayaraman, A. Pucci, et al., “Safety and Immunogenicity of mRNA-Based Seasonal Influenza Vaccines Formulated to Include Multiple A/H3N2 Strains With or Without the B/Yamagata Strain in US Adults Aged 50-75 Years: A Phase 1/2, Open-Label, Randomised Trial,” The Lancet Infectious Diseases 25, no. 1 (2025): 25-35.

[100]

M. Soens, J. Ananworanich, B. Hicks, et al., “A Phase 3 Randomized Safety and Immunogenicity Trial of mRNA-1010 Seasonal Influenza Vaccine in Adults,” Vaccine 50 (2025): 126847.

[101]

S. Schnyder Ghamloush, B. Essink, and B. Hu, “Safety and Immunogenicity of an mRNA-Based hMPV/PIV3 Combination Vaccine in Seropositive Children,” Pediatric 153, no. 6 (2024): e2023064748.

[102]

E. M. Mucker, A. W. Freyn, S. L. Bixler, et al., “Comparison of Protection Against Mpox Following mRNA or Modified Vaccinia Ankara Vaccination in Nonhuman Primates,” Cell 187, no. 20 (2024): 5540-5553.e10.

[103]

A. Zuiani, C. L. Dulberger, N. S. De Silva, and M. Marquette, “A Multivalent mRNA Monkeypox Virus Vaccine (BNT166) Protects Mice and Macaques From Orthopoxvirus Disease,” Cell 187, no. 6 (2024): 1363-1373.e12.

[104]

Y. Tian, M. Li, Y. Yang, et al., “An MPXV mRNA-LNP Vaccine Candidate Elicits Protective Immune Responses Against Monkeypox Virus,” Chinese Chemical Letters 35, no. 8 (2024): 1001-8417.

[105]

C. Aldrich, I. Leroux-Roels, K. B. Huang, et al., “Proof-of-Concept of a Low-Dose Unmodified mRNA-Based Rabies Vaccine Formulated With Lipid Nanoparticles in Human Volunteers: A Phase 1 Trial,” Vaccine 39, no. 8 (2021): 1310-1318.

[106]

X. Hu, K. P. Karthigeyan, S. Herbek, et al., “Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine,” Journal of Infectious Diseases 230, no. 2 (2024): 455-466.

[107]

J. Li, D. Liu, X. Li, et al., “RNA Vaccines: The Dawn of a New Age for Tuberculosis?,” Human Vaccines & Immunotherapeutics 21, no. 1 (2025): 2469333.

[108]

H. Lukeman, H. Al-Wassiti, S. A. Fabb, et al., “An LNP-mRNA Vaccine Modulates Innate Cell Trafficking and Promotes Polyfunctional Th1 CD4+ T Cell Responses to Enhance BCG-Induced Protective Immunity Against Mycobacterium Tuberculosis,” EBioMedicine 113 (2025): 105599.

[109]

U. Elia, Y. Levy, H. Cohen, et al., “Novel Bivalent mRNA-LNP Vaccine for Highly Effective Protection Against Pneumonic Plague,” Advanced Science (Weinh) 12, no. 26 (2025): e2501286.

[110]

H. Zhang, H. Jiang, W. Xie, et al., “LNPs-Mediated VEGF-C mRNA Delivery Promotes Heart Repair and Attenuates Inflammation by Stimulating Lymphangiogenesis Post-Myocardial Infarction,” Biomaterials 322 (2025): 123410.

[111]

H. Parhiz, E. N. Atochina-Vasserman, and D. Weissman, “mRNA-Based Therapeutics: Looking Beyond COVID-19 Vaccines,” Lancet 403, no. 10432 (2024): 1192-1204.

[112]

E. A. Aunins, A. T. Phan, M. G. Alameh, et al., “An Il12 mRNA-LNP Adjuvant Enhances mRNA Vaccine-Induced CD8 T Cell Responses,” Science Immunology 10, no. 108 (2025): eads1328.

[113]

M. A. Oberli, A. M. Reichmuth, J. R. Dorkin, et al., “Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy,” Nano Letters 17, no. 3 (2017): 1326-1335.

[114]

“mRNA Vaccine Slows Melanoma Recurrence,” Cancer Discovery 13, no. 6 (2023): 1278.

[115]

Z. Sethna, P. Guasp, C. Reiche, et al., “RNA Neoantigen Vaccines Prime Long-Lived CD8+ T Cells in Pancreatic Cancer,” Nature 639, no. 8056 (2025): 1042-1051.

[116]

U. Sahin, P. Oehm, E. Derhovanessian, et al., “An RNA Vaccine Drives Immunity in Checkpoint-Inhibitor-Treated Melanoma,” Nature 585, no. 7823 (2020): 107-112.

[117]

Z. Chen, Y. Hu, and H. Mei, “Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies,” Advanced Science (Weinh) 10, no. 35 (2023): e2303215.

[118]

L. Shao, R. Shi, Y. Zhao, et al., “Genome-Wide Profiling of Retroviral DNA Integration and Its Effect on Clinical Pre-Infusion CAR T-Cell Products,” Journal of Translational Medicine 20, no. 1 (2022): 514.

[119]

Z. Chen, A. Ren, Y. Li, et al., “mRNA-Laden Lipid Nanoparticle-Enabled Humanized CD19 CAR-T-Cell Engineering for the Eradication of Leukaemic Cells,” British Journal of Haematology 206, no. 1 (2025): 628-643.

[120]

L. Hunter, Y. Bao, Y. Zhang, et al., “In Vivo CAR T Cell Generation to Treat Cancer and Autoimmune Disease,” Science (New York, NY) 388, no. 6753 (2025): 1311-1317.

[121]

K. Reinhard, B. Rengstl, P. Oehm, et al., “An RNA Vaccine Drives Expansion and Efficacy of Claudin-CAR-T Cells Against Solid Tumors,” Science 367, no. 6476 (2020): 446-453.

[122]

A. Mackensen, J. Haanen, C. Koenecke, et al., “CLDN6-Specific CAR-T Cells Plus Amplifying RNA Vaccine in Relapsed or Refractory Solid Tumors: The Phase 1 BNT211-01 Trial,” Nature Medicine 29, no. 11 (2023): 2844-2853.

[123]

H. Li, H. Gao, and W. Zhang, “Nose-to-Brain Delivery of Targeted Lipid Nanoparticles as Two-Pronged β-Amyloid Nanoscavenger for Alzheimer's Disease Therapy,” Acta Pharmaceutica Sinica B 15, no. 6 (2025): 2884-2899.

[124]

S. R. J. Hofstraat, T. Anbergen, R. Zwolsman, et al., “Nature-Inspired Platform Nanotechnology for RNA Delivery to Myeloid Cells and Their Bone Marrow Progenitors,” Nature Nanotechnology 20, no. 4 (2025): 532-542.

[125]

N. Yang, Q. Sun, Y. Wang, et al., “Endosomal Disruption by Co-Encapsulating Gentamicin in Lipid Nanoparticles for Efficient siRNA Delivery and Cancer Therapy,” Asian Journal of Pharmaceutical Sciences 20, no. 3 (2025): 101011.

[126]

D. Rosenblum, A. Gutkin, R. Kedmi, et al., “CRISPR-Cas9 Genome Editing Using Targeted Lipid Nanoparticles for Cancer Therapy,” Science Advances 6, no. 47 (2020): eabc9450.

[127]

J. D. Gillmore, E. Gane, J. Taubel, et al., “CRISPR-Cas9 in Vivo Gene Editing for Transthyretin Amyloidosis,” New England Journal of Medicine 385, no. 6 (2021): 493-502.

[128]

L. Xue, G. Zhao, N. Gong, et al., “Combinatorial Design of Siloxane-Incorporated Lipid Nanoparticles Augments Intracellular Processing for Tissue-Specific mRNA Therapeutic Delivery,” Nature Nanotechnology 20, no. 1 (2025): 132-143.

[129]

A. Chan and A. Tsourkas, “Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications,” BME Frontiers 5 (2024): 0035.

[130]

S. Ambati, Y. Li, M. K. Whittaker, et al., “Anionic Lipids Direct Efficient Microfluidic Encapsulation of Stable and Functionally Active Proteins in Lipid Nanoparticles,” Communications Materials 6 (2025): 34.

[131]

J. Walther, D. Porenta, D. Wilbie, et al., “Comparative Analysis of Lipid Nanoparticle-Mediated Delivery of CRISPR-Cas9 RNP Versus mRNA/sgRNA for Gene Editing in Vitro and in Vivo,” European Journal of Pharmaceutics and Biopharmaceutics 196 (2024): 114207.

[132]

T. Ye, Y. Chen, Z. Zhong, et al., “Galloyl Dialkyl Lipids Drive Encapsulation of Peptides Into Lipid Nanoparticles by Hydrogen Bonding,” Journal of the American Chemical Society 147, no. 1 (2025): 1307-1318.

[133]

Y. Liu, Y. Wang, Y. Yao, et al., “Glucose-Responsive Charge-Switchable Lipid Nanoparticles for Insulin Delivery,” Angewandte Chemie (International ed in English) 62, no. 20 (2023): e202303097.

[134]

A. Chan, R. M. Haley, M. A. Najar, et al., “Lipid-Mediated Intracellular Delivery of Recombinant bioPROTACs for the Rapid Degradation of Undruggable Proteins,” Nature Communications 15, no. 1 (2024): 5808.

[135]

W. Li, L. Chen, Z. Gu, et al., “Co-Delivery of microRNA-150 and Quercetin by Lipid Nanoparticles (LNPs) for the Targeted Treatment of Age-Related Macular Degeneration (AMD),” Journal of Controlled Release 355 (2023): 358-370.

[136]

R. van, S. Chen, J. Zaifman, et al., “Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery,” Small 17, no. 37 (2021): e2103025.

[137]

S. Khoja, X. B. Liu, B. Truong, et al., “Intermittent Lipid Nanoparticle mRNA Administration Prevents Cortical Dysmyelination Associated With Arginase Deficiency,” Molecular Therapy Nucleic Acids 28 (2022): 859-874.

[138]

M. Gautam, A. Jozic, G. L. Su, et al., “Lipid Nanoparticles With PEG-Variant Surface Modifications Mediate Genome Editing in the Mouse Retina,” Nature Communications 14, no. 1 (2023): 6468.

[139]

M. L. Cacicedo, C. Weinl-Tenbruck, D. Frank, et al., “Phenylalanine Hydroxylase mRNA Rescues the Phenylketonuria Phenotype in Mice,” Frontiers in Bioengineering and Biotechnology 10 (2022): 993298.

[140]

D. Koeberl, A. Schulze, N. Sondheimer, et al., “Interim Analyses of a First-in-Human Phase 1/2 mRNA Trial for Propionic Acidaemia,” Nature 629, no. 8011 (2024): E10.

[141]

S. Gurung, O. V. Timmermand, D. Perocheau, et al., “mRNA Therapy Corrects Defective Glutathione Metabolism and Restores Ureagenesis in Preclinical Argininosuccinic Aciduria,” Science Translational Medicine 16, no. 729 (2024): eadh1334.

[142]

F. DeRosa, L. Smith, Y. Shen, et al., “Improved Efficacy in a Fabry Disease Model Using a Systemic mRNA Liver Depot System as Compared to Enzyme Replacement Therapy,” Molecular Therapy 27, no. 4 (2019): 878-889.

[143]

L. Jiang, P. Berraondo, D. Jericó, et al., “Systemic Messenger RNA as an Etiological Treatment for Acute Intermittent Porphyria,” Nature Medicine 24, no. 12 (2018): 1899-1909.

[144]

D. S. Roseman, T. Khan, F. Rajas, et al., “G6PC mRNA Therapy Positively Regulates Fasting Blood Glucose and Decreases Liver Abnormalities in a Mouse Model of Glycogen Storage Disease 1a,” Molecular Therapy 26, no. 3 (2018): 814-821.

[145]

A. K. M. A. Haque, A. Dewerth, J. S. Antony, et al., “Chemically Modified hCFTR mRNAs Recuperate Lung Function in a Mouse Model of Cystic Fibrosis,” Scientific Reports 8, no. 1 (2018): 16776.

[146]

S. Guan, A. Munder, S. Hedtfeld, et al., “Self-Assembled Peptide-Poloxamine Nanoparticles Enable in Vitro and in Vivo Genome Restoration for Cystic Fibrosis,” Nature Nanotechnology 14, no. 3 (2019): 287-297.

[147]

J. Cao, D. An, M. Galduroz, et al., “mRNA Therapy Improves Metabolic and Behavioral Abnormalities in a Murine Model of Citrin Deficiency,” Molecular Therapy 27, no. 7 (2019): 1242-1251.

[148]

M. S. Kormann, G. Hasenpusch, M. K. Aneja, et al., “Expression of Therapeutic Proteins After Delivery of Chemically Modified mRNA in Mice,” Nature Biotechnology 29, no. 2 (2011): 154-157.

[149]

A. J. Mahiny, A. Dewerth, L. E. Mays, et al., “In Vivo Genome Editing Using Nuclease-Encoding mRNA Corrects SP-B Deficiency,” Nature Biotechnology 33, no. 6 (2015): 584-586.

[150]

N. D. Volkow and C. Blanco, “The Changing Opioid Crisis: Development, Challenges and Opportunities,” Molecular Psychiatry 26, no. 1 (2021): 218-233.

[151]

S. H. Snyder and G. W. Pasternak, “Historical Review: Opioid Receptors,” Trends in Pharmacological Sciences 24, no. 4 (2003): 198-205.

[152]

Z. Zhong, M. H. Deventer, Y. Chen, et al., “A Fentanyl Hapten-Displaying Lipid Nanoparticle Vaccine That Non-Covalently Encapsulates a TLR7/8 Agonist and T-Helper Epitope Induces Protective Anti-Fentanyl Immunity,” Angewandte Chemie (International ed in English) 64, no. 7 (2025): e202419031.

[153]

H. Yang, Z. Liu, F. Liu, et al., “TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation,” International Journal of Nanomedicine 19 (2024): 4759-4777.

[154]

G. B. Schober, S. Story, and D. P. Arya, “A Careful Look at Lipid Nanoparticle Characterization: Analysis of Benchmark Formulations for Encapsulation of RNA Cargo Size Gradient,” Scientific Reports 14, no. 1 (2024): 2403.

[155]

H. Zhang, L. Zhang, A. Lin, et al., “Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity,” Nature 621, no. 7978 (2023): 396-403.

[156]

K. Kobiyama, K. J. Ishii, et al., “Making Innate Sense of mRNA Vaccine Adjuvanticity,” Nature Immunology 23, no. 4 (2022): 474-476.

[157]

A. Rubio-Casillas, D. Cowley, M. Raszek, et al., “Review: N1-Methyl-Pseudouridine (m1Ψ): Friend or Foe of Cancer?,” International Journal of Biological Macromolecules 270, no. Pt 2 (2024): 132447.

[158]

H. Sun, K. Li, C. Liu, et al., “Regulation and Functions of Non-m6A mRNA Modifications,” Nature Reviews Molecular Cell Biology 24, no. 10 (2023): 714-731.

[159]

K. D. Meyer, D. P. Patil, J. Zhou, et al., “UTR m(6)A Promotes Cap-Independent Translation,” Cell 163, no. 4 (2015): 999-1010.

[160]

R. Verbeke, I. Lentacker, S. C. De Smedt, et al., “The Dawn of mRNA Vaccines: The COVID-19 Case,” Journal of Controlled Release 333 (2021): 511-520.

[161]

X. Hou, T. Zaks, R. Langer, et al., “Lipid Nanoparticles for mRNA Delivery,” Nature Reviews Materials 6, no. 12 (2021): 1078-1094.

[162]

A. B. Vogel, I. Kanevsky, Y. Che, et al., “BNT162b Vaccines Protect Rhesus Macaques From SARS-CoV-2,” Nature 592, no. 7853 (2021): 283-289.

[163]

K. Karikó, H. Muramatsu, J. Ludwig, et al., “Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding mRNA,” Nucleic Acids Research 39, no. 21 (2011): e142.

[164]

Y. Jiang, S. Huo, T. Mizuhara, et al., “The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 Nm Gold Nanoparticles,” ACS Nano 9, no. 10 (2015): 9986-9993.

[165]

T. Wei, Q. Cheng, and L. Farbiak, “Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for in Vivo CRISPR/Cas-Based Genome Editing,” ACS Nano 14, no. 8 (2020): 9243-9262.

[166]

S. Raj, S. Khurana, R. Choudhari, et al., “Specific Targeting Cancer Cells With Nanoparticles and Drug Delivery in Cancer Therapy,” Seminars in Cancer Biology 69 (2021): 166-177.

[167]

W. H. De Jong, W. I. Hagens, and P. Krystek, “Particle Size-Dependent Organ Distribution of Gold Nanoparticles After Intravenous Administration,” Biomaterials 29, no. 12 (2008): 1912-1919.

[168]

T. Nakamura, M. Kawai, Y. Sato, et al., “The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution,” Molecular Pharmaceutics 17, no. 3 (2020): 944-953.

[169]

S. Luozhong, Z. Yuan, T. Sarmiento, et al., “Phosphatidylserine Lipid Nanoparticles Promote Systemic RNA Delivery to Secondary Lymphoid Organs,” Nano Letters 22, no. 20 (2022): 8304-8311.

[170]

A. Takanashi, C. W. Pouton, and H. Al-Wassiti, “Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines After Intramuscular Injection,” Molecular Pharmaceutics 20, no. 8 (2023): 3876-3885.

[171]

K. Lam, A. Leung, A. Martin, et al., “Unsaturated, Trialkyl Ionizable Lipids Are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications,” Advanced Materials 35, no. 15 (2023): e2209624.

[172]

N. B. Hamilton, S. Arns, M. Shelley, et al., “Calculating Apparent pKa Values of Ionizable Lipids in Lipid Nanoparticles,” Molecular Pharmaceutics 22, no. 1 (2025): 588-593.

[173]

Y. Xu, A. Golubovic, S. Xu, et al., “Rational Design and Combinatorial Chemistry of Ionizable Lipids for RNA Delivery,” Journal of Materials Chemistry B 11, no. 28 (2023): 6527-6539.

[174]

J. B. Simonsen and P. Larsson, “A Perspective on the Apparent pKa of Ionizable Lipids in mRNA-LNPs,” Journal of Controlled Release 384 (2025): 113879.

[175]

K. Okuda, Y. Sato, K. Iwakawa, et al., “On the Size-Regulation of RNA-Loaded Lipid Nanoparticles Synthesized by Microfluidic Device,” Journal of Controlled Release 348 (2022): 648-659.

[176]

S. A. Dilliard, Q. Cheng, D. J. Siegwart, et al., “On the Mechanism of Tissue-Specific mRNA Delivery by Selective Organ Targeting Nanoparticles,” PNAS 118, no. 52 (2021): e2109256118.

[177]

O. S. Fenton, K. J. Kauffman, J. C. Kaczmarek, et al., “Synthesis and Biological Evaluation of Ionizable Lipid Materials for the in Vivo Delivery of Messenger RNA to B Lymphocytes,” Advanced Materials 29, no. 33 (2017): 1606944.

[178]

R. Pattipeiluhu, G. Arias-Alpizar, G. Basha, et al., “Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System,” Advanced Materials 34, no. 16 (2022): e2201095.

[179]

P. Patel, N. M. Ibrahim, K. Cheng, et al., “The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA,” Trends in Pharmacological Sciences 42, no. 6 (2021): 448-460.

[180]

M. Jayaraman, S. M. Ansell, B. L. Mu, et al., “Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing in Vivo,” Angewandte Chemie (International ed in English) 51, no. 34 (2012): 8529-8533.

[181]

N. Shobaki, Y. Sato, and H. Harashima, “Mixing Lipids to Manipulate the Ionization Status of Lipid Nanoparticles for Specific Tissue Targeting,” International Journal of Nanomedicine 13 (2018): 8395-8410.

[182]

X. Wang, S. Liu, Y. Sun, et al., “Preparation of Selective Organ-Targeting (SORT) Lipid Nanoparticles (LNPs) Using Multiple Technical Methods for Tissue-Specific mRNA Delivery,” Nature Protocols 18, no. 1 (2023): 265-291.

[183]

M. Kim, E. S. Song, J. C. Chen, et al., “Dual SORT LNPs for Multi-Organ Base Editing,” Nature Biotechnology (2025).

[184]

P. S. Kowalski, U. Capasso Palmiero, and Y. Huang, “Ionizable Amino-Polyesters Synthesized via Ring Opening Polymerization of Tertiary Amino-Alcohols for Tissue Selective mRNA Delivery,” Advanced Materials 30, no. 34 (2018): e1801151.

[185]

O. S. Fenton, K. J. Kauffman, and R. L. McClellan, “Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs,” Angewandte Chemie (International ed in English) 57, no. 41 (2018): 13582-13586.

[186]

M. Gomi, Y. Sakurai, M. Sato, et al., “Delivering mRNA to Secondary Lymphoid Tissues by Phosphatidylserine-Loaded Lipid Nanoparticles,” Advanced Healthcare Materials 12, no. 9 (2023): e2202528.

[187]

B. Li, X. Luo, B. Deng, et al., “Effects of Local Structural Transformation of Lipid-Like Compounds on Delivery of Messenger RNA,” Scientific Reports 6 (2016): 22137.

[188]

S. Wu, L. Shi, K. Su, et al., “Carbonate-Bearing Ionizable Lipids for mRNA Delivery to Splenic NK Cells,” Journal of the American Chemical Society 147, no. 32 (2025): 28665-28673.

[189]

H. Ni, M. Z. C. Hatit, K. Zhao, et al., “Piperazine-Derived Lipid Nanoparticles Deliver mRNA to Immune Cells in Vivo,” Nature Communications 13, no. 1 (2022): 4766.

[190]

N. Veiga, M. Goldsmith, Y. Granot, et al., “Cell Specific Delivery of Modified mRNA Expressing Therapeutic Proteins to Leukocytes,” Nature Communications 9, no. 1 (2018): 4493.

[191]

I. Tombácz, D. Laczkó, H. Shahnawaz, et al., “Highly Efficient CD4+ T-Cell Targeting and Genetic Recombination Using Engineered CD4+ Cell-Homing mRNA-LNPs,” Molecular Therapy 29, no. 11 (2021): 3293-3304.

[192]

J. G. Rurik, I. Tombácz, A. Yadegari, et al., “CAR T Cells Produced in Vivo to Treat Cardiac Injury,” Science 375, no. 6576 (2022): 91-96.

[193]

J. A. Katakowski, G. Mukherjee, S. E. Wilner, et al., “Delivery of siRNAs to Dendritic Cells Using DEC205-Targeted Lipid Nanoparticles to Inhibit Immune Responses,” Molecular Therapy 24, no. 1 (2016): 146-155.

[194]

M. Qiu, Y. Tang, J. Chen, et al., “Lung-Selective mRNA Delivery of Synthetic Lipid Nanoparticles for the Treatment of Pulmonary Lymphangioleiomyomatosis,” PNAS 119, no. 8 (2022): e2116271119.

[195]

J. Chen, Z. Ye, C. Huang, et al., “Lipid Nanoparticle-Mediated Lymph Node-Targeting Delivery of mRNA Cancer Vaccine Elicits Robust CD8+ T Cell Response,” PNAS 119, no. 34 (2022): e2207841119.

[196]

C. Wang, Y. Xue, T. Markovic, et al., “Blood-Brain-Barrier-Crossing Lipid Nanoparticles for mRNA Delivery to the Central Nervous System,” Nature Materials (2025).

[197]

R. Rampado, G. S. Naidu, O. Karpov, et al., “Lipid Nanoparticles With Fine-Tuned Composition Show Enhanced Colon Targeting as a Platform for mRNA Therapeutics,” Advanced Science (Weinh) 12, no. 3 (2025): e2408744.

[198]

J. Nitika and A. M. Hui, “The Delivery of mRNA Vaccines for Therapeutics,” Life (Basel) 12, no. 8 (2022): 1254.

[199]

M. Yuan, Z. Han, Y. Liang, et al., “mRNA Nanodelivery Systems: Targeting Strategies and Administration Routes,” Biomaterials Research 27, no. 1 (2023): 90.

[200]

B. N. Aldosari, I. M. Alfagih, A. S. Almurshedi, et al., “Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines,” Pharmaceutics 13, no. 2 (2021): 206.

[201]

M. Hajiaghapour, F. Dayani, F. Segherloo, et al., “Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections,” Pharmaceutics 15, no. 4 (2023): 1127.

[202]

G. Zhang, T. Tang, Y. Chen, et al., “mRNA Vaccines in Disease Prevention and Treatment,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 365.

[203]

M. L. M. Prins, G. V. T. Roozen, C. R. Pothast, et al., “Immunogenicity and Reactogenicity of Intradermal mRNA-1273 SARS-CoV-2 Vaccination: A Non-Inferiority, Randomized-Controlled Trial,” NPJ Vaccines 9, no. 1 (2024): 1.

[204]

Y. Lee, M. Jeong, J. Park, H. Jung, and H. Lee, “Immunogenicity of Lipid Nanoparticles and Its Impact on the Efficacy of mRNA Vaccines and Therapeutics,” Experimental & Molecular Medicine 55, no. 10 (2023): 2085-2096.

[205]

Y. Xiao, Z. Tang, X. Huang, et al., “Emerging mRNA Technologies: Delivery Strategies and Biomedical Applications,” Chemical Society Reviews 51, no. 10 (2022): 3828-3845.

[206]

C. Zeng, C. Zhang, P. G. Walker, et al., “Formulation and Delivery Technologies for mRNA Vaccines,” Current Topics in Microbiology and Immunology 440 (2022): 71-110.

[207]

T. Morisaki, T. Morisaki, M. Kubo, et al., “Lymph Nodes as Anti-Tumor Immunotherapeutic Tools: Intranodal-Tumor-Specific Antigen-Pulsed Dendritic Cell Vaccine Immunotherapy,” Cancers (Basel) 14, no. 10 (2022): 2438.

[208]

S. Bevers, S. A. A. Kooijmans, E. Van de Velde, et al., “mRNA-LNP Vaccines Tuned for Systemic Immunization Induce Strong Antitumor Immunity by Engaging Splenic Immune Cells,” Molecular Therapy 30, no. 9 (2022): 3078-3094.

[209]

X. Xu and T. Xia, “Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery,” ACS Nanoscience Au 3, no. 3 (2023): 192-203.

[210]

Z. Bai, D. Wan, T. Lan, et al., “Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges,” ACS Nano 18, no. 36 (2024): 24650-24681.

[211]

A. Li, X. Cai, D. Li, et al., “Nasal mRNA Nanovaccine With Key Activators of Dendritic and MAIT Cells for Effective Against Lung Tumor Metastasis in Mice Model,” International Journal of Nanomedicine 19 (2024): 11479-11497.

[212]

K. E. Lindsay, D. Vanover, M. Thoresen, et al., “Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies Against HIV,” Molecular Therapy 28, no. 3 (2020): 805-819.

[213]

C. D. Sago, M. P. Lokugamage, D. Loughrey, et al., “Augmented Lipid-Nanoparticle-Mediated in Vivo Genome Editing in the Lungs and Spleen by Disrupting Cas9 Activity in the Liver,” Nature Biomedical Engineering 6, no. 2 (2022): 157-167.

[214]

L. J. Kubiatowicz, A. Mohapatra, N. Krishnan, et al., “mRNA Nanomedicine: Design and Recent Applications,” Exploration (Beijing) 2, no. 6 (2022): 20210217.

[215]

Z. Teng, L. Y. Meng, J. K. Yang, et al., “Bridging Nanoplatform and Vaccine Delivery, a Landscape of Strategy to Enhance Nasal Immunity,” Journal of Controlled Release 351 (2022): 456-475.

[216]

Z. Fehervari, “Intranasal Vaccination,” Nature Immunology 22, no. 9 (2021): 1071.

[217]

H. R. Zhang, J. Leal, M. R. Soto, et al., “Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA Through Design of Experiments,” Pharmaceutics 12 (2020): 1042.

[218]

G. Griffiths, J. Gruenberg, M. Marsh, et al., “Nanoparticle Entry Into Cells; the Cell Biology Weak Link,” Advanced Drug Delivery Reviews 188 (2022): 114403.

[219]

P. G. Woodman and C. E. Futter, “Multivesicular Bodies: Co-Ordinated Progression to Maturity,” Current Opinion in Cell Biology 20, no. 4 (2008): 408-414.

[220]

A. Wittrup, A. Ai, X. Liu, et al., “Visualizing Lipid-Formulated siRNA Release From Endosomes and Target Gene Knockdown,” Nature Biotechnology 33, no. 8 (2015): 870-876.

[221]

J. Gilleron, W. Querbes, A. Zeigerer, et al., “Image-Based Analysis of Lipid Nanoparticle-Mediated siRNA Delivery, Intracellular Trafficking and Endosomal Escape,” Nature Biotechnology 31, no. 7 (2013): 638-646.

[222]

A. Spadea, M. Jackman, L. Cui, et al., “Nucleic Acid-Loaded Lipid Nanoparticle Interactions With Model Endosomal Membranes,” ACS Applied Materials & Interfaces 14, no. 26 (2022): 30371-30384.

[223]

I. M. S. Degors, C. Wang, and Z. U. Rehman, “Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors,” Accounts of Chemical Research 52, no. 7 (2019): 1750-1760.

[224]

J.-P. Behr, “The Proton Sponge: A Trick to Enter Cells the Viruses Did Not Exploit,” Chimia 51, no. 1-2 (1997): 34-36.

[225]

H. A. Mohamad, L. Melissa, and F. Charle, “Investigating the Stability of Electrically Conductive Membranes,” Journal of Membrane Science 627 (2021): 119181.

[226]

T. Nakamura, T. Nakade, K. Yamada, et al., “The Hydrophobic Tail of a pH-Sensitive Cationic Lipid Influences siRNA Transfection Activity and Toxicity in Human NK Cell Lines,” International Journal of Pharmaceutics 609 (2021): 121140.

[227]

H. Tanaka, T. Takahashi, M. Konishi, et al., “Self-Degradable Lipid-Like Materials Based on ″Hydrolysis Accelerated by the Intra-Particle Enrichment of Reactant (HyPER) for Messenger RNA Delivery,” Advanced Functional Materials 30 (2020): 1910575.

[228]

X. Cheng, S. Liu, J. Sun, et al., “A Synergistic Lipid Nanoparticle Encapsulating mRNA Shingles Vaccine Induces Potent Immune Responses and Protects Guinea Pigs From Viral Challenges,” Advanced Materials 36, no. 13 (2024): e2310886.

[229]

M. S. Padilla, K. Mrksich, Y. Wang, et al., “Branched Endosomal Disruptor (BEND) Lipids Mediate Delivery of mRNA and CRISPR-Cas9 Ribonucleoprotein Complex for Hepatic Gene Editing and T Cell Engineering,” Nature Communications 16, no. 1 (2025): 996.

[230]

D. Kirpotin, K. Hong, N. Mullah, D. Papahadjopoulos, and S. Zalipsky, “Liposomes With Detachable Polymer Coating: Destabilization and Fusion of Dioleoylphosphatidylethanolamine Vesicles Triggered by Cleavage of Surface-Grafted Poly(Ethylene Glycol),” FEBS Letters 388, no. 2-3 (1996): 115-118.

[231]

R. Kuai, W. Yuan, Y. Qin, et al., “Efficient Delivery of Payload Into Tumor Cells in a Controlled Manner by TAT and Thiolytic Cleavable PEG Co-Modified Liposomes,” Molecular Pharmaceutics 7, no. 5 (2010): 1816-1826.

[232]

L. I. Selby, C. M. Cortez-Jugo, G. K. Such, et al., “Nanoescapology: Progress Toward Understanding the Endosomal Escape of Polymeric Nanoparticles,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9, no. 5 (2017).

[233]

O. Meyer, D. Kirpotin, K. Hong, et al., “Cationic Liposomes Coated With Polyethylene Glycol as Carriers for Oligonucleotides,” Journal of Biological Chemistry 273, no. 25 (1998): 15621-15627.

[234]

M. Zheng, Z. Zhong, L. Zhou, et al., “Poly(Ethylene Oxide) Grafted With Short Polyethylenimine Gives DNA Polyplexes With Superior Colloidal Stability, Low Cytotoxicity, and Potent in Vitro Gene Transfection Under Serum Conditions,” Biomacromolecules 23, no. 3 (2012): 881-888.

[235]

S. Patel, N. Ashwanikumar, E. Robinson, et al., “Naturally-Occurring Cholesterol Analogues in Lipid Nanoparticles Induce Polymorphic Shape and Enhance Intracellular Delivery of mRNA,” Nature Communications 11, no. 1 (2020): 983.

[236]

M. K. Lo, J. R. Spengler, S. R. Welch, et al., “Evaluation of a Single-Dose Nucleoside-Modified Messenger RNA Vaccine Encoding Hendra Virus-Soluble Glycoprotein Against Lethal Nipah Virus Challenge in Syrian Hamsters,” Journal of Infectious Diseases 221, no. Suppl 4 (2020): S493-S498.

[237]

S. John, O. Yuzhakov, A. Woods, et al., “Multiantigenic Human Cytomegalovirus mRNA Vaccines That Elicit Potent Humoral and Cell-Mediated Immunity,” Vaccine 36, no. 12 (2018): 1689-1699.

[238]

J. Shin, C. J. Douglas, S. Zhang, et al., “Targeting Recycling Endosomes to Potentiate mRNA Lipid Nanoparticles,” Nano Letters 24, no. 17 (2024): 5104-5109.

[239]

G. Sahay, W. Querbes, C. Alabi, et al., “Efficiency of siRNA Delivery by Lipid Nanoparticles Is Limited by Endocytic Recycling,” Nature Biotechnology 13, no. 7 (2013): 653-658.

[240]

S. R. Pfeffer, “NPC Intracellular Cholesterol Transporter 1 (NPC1)-Mediated Cholesterol Export From Lysosomes,” Journal of Biological Chemistry 294, no. 5 (2019): 1706-1709.

[241]

A. E. Zelkoski, Z. Lu, G. Sukumar, et al., “Ionizable Lipid Nanoparticles of mRNA Vaccines Elicit NF-κB and IRF Responses Through Toll-Like Receptor 4,” NPJ Vaccines 10, no. 1 (2025): 73.

[242]

N. Barda, N. Dagan, Y. Ben-Shlomo, et al., “Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting,” New England Journal of Medicine 385, no. 12 (2021): 1078-1090.

[243]

E. Albert, G. Aurigemma, J. Saucedo, et al., “Myocarditis Following COVID-19 Vaccination,” Radiology Case Reports 16, no. 8 (2021): 2142-2145.

[244]

A. M. Hause, J. Gee, J. Baggs, et al., “COVID-19 Vaccine Safety in Adolescents Aged 12-17 Years—United States, December 14, 2020-July 16, 2021,” Mmwr Morbidity and Mortality Weekly Report 70, no. 31 (2021): 1053-1058.

[245]

CDC COVID-19 Response Team, Food and Drug Administration, “Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine—United States, December 14-23, 2020,” Mmwr Morbidity and Mortality Weekly Report 70, no. 2 (2021): 46-51.

[246]

CDC COVID-19 Response Team, Food and Drug Administration, “Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine—United States, December 21, 2020-January 10, 2021,” Mmwr Morbidity and Mortality Weekly Report 70, no. 4 (2021): 125-129.

[247]

S. Ndeupen, Z. Qin, S. Jacobsen, et al., “The mRNA-LNP Platform's Lipid Nanoparticle Component Used in Preclinical Vaccine Studies Is Highly Inflammatory,” iScience 24, no. 12 (2021): 103479.

[248]

A. W. Richter and E. Akerblom, “Antibodies Against Polyethylene Glycol Produced in Animals by Immunization With Monomethoxy Polyethylene Glycol Modified Proteins,” International Archives of Allergy and Applied Immunology 70, no. 2 (1983): 124-131.

[249]

Y. Hashimoto, A. S. Abu Lila, and T. Shimizu, “B Cell-Intrinsic Toll-Like Receptor 7 Is Responsible for the Enhanced Anti-PEG IgM Production Following Injection of siRNA-Containing PEGylated Lipoplex in Mice,” Journal of Controlled Release 184 (2014): 1-8.

[250]

C. Stavnsbjerg, E. Christensen, and R. Münter, “Accelerated Blood Clearance and Hypersensitivity by PEGylated Liposomes Containing TLR Agonists,” Journal of Controlled Release 342 (2022): 337-344.

[251]

G. T. Kozma, T. Shimizu, T. Ishida, and J. Szebeni, “Anti-PEG Antibodies: Properties, Formation, Testing and Role in Adverse Immune Reactions to PEGylated Nano- Biopharmaceuticals,” Advanced Drug Delivery Reviews 154, no. 155 (2020): 163-175.

[252]

D. Shi, D. Beasock, A. Fessler, et al., “To PEGylate or Not to PEGylate: Immunological Properties of Nanomedicine's Most Popular Component, Polyethylene Glycol and Its Alternatives,” Advanced Drug Delivery Reviews 180 (2022): 114079.

[253]

W. A. Chen, D. Y. Chang, B. M. Chen, et al., “Antibodies Against Poly (Ethylene Glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines,” ACS Nano 17 (2023): 5757-5772.

[254]

R. Tenchov, J. M. Sasso, and Q. A. Zhou, “PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective,” Bioconjugate Chemistry 34, no. 6 (2023): 941-960.

[255]

M. A. Bruusgaard-Mouritsen, B. M. Jensen, and L. K. Poulsen, “Optimizing Investigation of Suspected Allergy to Polyethylene Glycols,” Journal of Allergy and Clinical Immunology 149 (2022): 168-175.

[256]

D. D. Kang, X. Hou, and L. Wang, “Engineering LNPs With Polysarcosine Lipids for mRNA Delivery,” Bioactive Materials 37 (2024): 86-93.

[257]

M. Berger, F. Toussaint, S. B. Djemaa, et al., “Poly(N-Methyl-N-Vinylacetamide): A Strong Alternative to PEG for Lipid-Based Nanocarriers Delivering siRNA,” Advanced Healthcare Materials 13, no. 8 (2024): e2302712.

[258]

M. Liu, D. Zhao, N. Yan, et al., “Evasion of the Accelerated Blood Clearance Phenomenon by Branched PEG Lipid Derivative Coating of Nanoemulsions,” International Journal of Pharmaceutics 612 (2022): 121365.

[259]

K. Son, M. Ueda, K. Taguchi, et al., “Evasion of the Accelerated Blood Clearance Phenomenon by Polysarcosine Coating of Liposomes,” Journal of Controlled Release 322 (2020): 209-216.

[260]

S. Luozhong, P. Liu, R. Li, et al., “Poly(Carboxybetaine) Lipids Enhance mRNA Therapeutics Efficacy and Reduce Their Immunogenicity,” Nature Materials (2025).

[261]

Y. Feng, W. Tai, P. Huang, et al., “Albumin-Recruiting Lipid Nanoparticle Potentiates the Safety and Efficacy of mRNA Vaccines by Avoiding Liver Accumulation,” Nature Materials (2025).

[262]

T. Ding, J. Fu, M. Yang, et al., “Hydroxy Polyethylene Glycol: A Solution to Evade Human Pre-Existing Anti-PEG Antibodies for Efficient Delivery,” BioRxiv (2024).

[263]

A. Kolate, D. Baradia, S. Patil, et al., “PEG—a Versatile Conjugating Ligand for Drugs and Drug Delivery Systems,” Journal of Controlled Release 192 (2014): 67-81.

[264]

M. Liu, J. Li, D. Zhao, et al., “Branched PEG-Modification: A New Strategy for Nanocarriers to Evade of the Accelerated Blood Clearance Phenomenon and Enhance Anti-Tumor Efficacy,” Biomaterials 283 (2022): 121415.

[265]

B. Sun, C. Luo, H. Yu, et al., “Disulfide Bond-Driven Oxidation- and Reduction-Responsive Prodrug Nanoassemblies for Cancer Therapy,” Nano Letters 18, no. 6 (2018): 3643-3650.

[266]

J. Bruun, T. B. Larsen, R. I. Jølck, et al., “Investigation of Enzyme-Sensitive Lipid Nanoparticles for Delivery of siRNA to Blood-Brain Barrier and Glioma Cells,” International Journal of Nanomedicine 10 (2015): 5995-6008.

[267]

M. R. Qelliny, T. Shimizu, N. E. Elsadek, et al., “Incorporating Gangliosides Into PEGylated Cationic Liposomes That Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice,” Molecular Pharmaceutics 18 (2021): 2406-2415.

[268]

D. Bitounis, E. Jacquinet, M. A. Rogers, et al., “Strategies to Reduce the Risks of mRNA Drug and Vaccine Toxicity,” Nature Reviews Drug Discovery 23, no. 4 (2024): 281-300.

[269]

D. An, A. Frassetto, E. Jacquinet, et al., “Long-Term Efficacy and Safety of mRNA Therapy in Two Murine Models of Methylmalonic Acidemia,” EBioMedicine 45 (2019): 519-528.

[270]

K. Broudic, A. Amberg, M. Schaefer, et al., “Nonclinical Safety Evaluation of a Novel Ionizable Lipid for mRNA Delivery,” Toxicology and Applied Pharmacology 451 (2022): 116143.

[271]

K. Lv, Z. Yu, J. Wang, et al., “Discovery of Ketal-Ester Ionizable Lipid Nanoparticle With Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery,” Advanced Science (Weinh) 11, no. 45 (2024): e2404684.

[272]

A. M. Jörgensen, R. Wibel, and A. Bernkop-Schnürch, “Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients,” Small 19, no. 17 (2023): e2206968.

[273]

S. A. Dilliard, Q. Cheng, and D. J. Siegwart, “On the Mechanism of Tissue-Specific mRNA Delivery by Selective Organ Targeting Nanoparticles,” PNAS 118, no. 52 (2021): e2109256118.

[274]

P. Sharma, D. Hoorn, and A. Aitha, “The Immunostimulatory Nature of mRNA Lipid Nanoparticles,” Advanced Drug Delivery Reviews 205 (2024): 115175.

[275]

S. Omo-Lamai, Y. Wang, M. N. Patel, et al., “Limiting Endosomal Damage Sensing Reduces Inflammation Triggered by Lipid Nanoparticle Endosomal Escape,” Nature Nanotechnology (2025).

[276]

M. N. Patel, S. Tiwari, Y. Wang, et al., “Safer Non-Viral DNA Delivery Using Lipid Nanoparticles Loaded With Endogenous Anti-Inflammatory Lipids,” Nature Biotechnology (2025).

[277]

L. Mortimer, F. Moreau, J. A. MacDonald, et al., “NLRP3 Inflammasome Inhibition Is Disrupted in a Group of Auto-Inflammatory Disease CAPS Mutations,” Nature Immunology 17, no. 10 (2016): 1176-1186.

[278]

J. R. Melamed, S. S. Yerneni, M. L. Arral, et al., “Ionizable Lipid Nanoparticles Deliver mRNA to Pancreatic β Cells via Macrophage-Mediated Gene Transfer,” Science Advances 9, no. 4 (2023): eade1444.

[279]

C. Lo, S. Nguyen, C. Yang, et al., “Pharmacogenomics in Asian Subpopulations and Impacts on Commonly Prescribed Medications,” Clinical and Translational Science 13, no. 5 (2020): 861-870.

[280]

C. Liu, J. Wang, Y. Zhang, et al., “Efficient Delivery of PKN3 shRNA for the Treatment of Breast Cancer via Lipid Nanoparticles,” Bioorganic & Medicinal Chemistry 69 (2022): 116884.

[281]

T. Unruh, K. Götz, C. Vogel, et al., “Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions,” ACS Nano 18, no. 13 (2024): 9746-9764.

[282]

M. Berger, M. Degey, J. Leblond Chain, et al., “Effect of PEG Anchor and Serum on Lipid Nanoparticles: Development of a Nanoparticles Tracking Method,” Pharmaceutics 15, no. 2 (2023): 597.

[283]

J. Szebeni, B. Kiss, T. Bozó, et al., “Insights Into the Structure of Comirnaty Covid-19 Vaccine: A Theory on Soft, Partially Bilayer-Covered Nanoparticles With Hydrogen Bond-Stabilized mRNA-Lipid Complexes,” ACS Nano 17, no. 14 (2023): 13147-13157.

[284]

W. Zha, J. Wang, Z. Guo, et al., “Efficient Delivery of VEGF-A mRNA for Promoting Diabetic Wound Healing via Ionizable Lipid Nanoparticles,” International Journal of Pharmaceutics 632 (2023): 122565.

[285]

M. Tsakiri, A. Peraki, M. Chountoulesi, et al., “Chimeric Liposomes Decorated With P407: An Alternative Biomaterial for Producing Stealth Nano-Therapeutics,” Journal of Liposome Research 32, no. 1 (2022): 83-91.

[286]

D. Schultz, R. D. Münter, A. M. Cantín, et al., “Enhancing RNA Encapsulation Quantification in Lipid Nanoparticles: Sustainable Alternatives to Triton X-100 in the RiboGreen Assay,” European Journal of Pharmaceutics and Biopharmaceutics 205 (2024): 114571.

[287]

C. D. Cheyne, Y. Chen, J. D. Craene, et al., “De Spiegelaere W. Development of a 3':5' Digital PCR Assay to Determine Horse mRNA Integrity,” Analytical Biochemistry 626 (2021): 114217.

[288]

M. H. Cleveland, H. J. He, M. Milavec, et al., “Huggett JF. Digital PCR for the Characterization of Reference Materials,” Molecular Aspects of Medicine 96 (2024): 101256.

[289]

S. Li, Y. Hu, A. Li, et al., “Payload Distribution and Capacity of mRNA Lipid Nanoparticles,” Nature Communications 13, no. 1 (2022): 5561.

[290]

Evaluation of the Quality, Safety and Efficacy of Messenger RNA Vaccines for the Prevention of Infectious Diseases: Regulatory Considerations/WHO Expert Committee on Biological Standardization: Seventy-fourth Report[R]. Geneva: World Health Organization, 2021. Annex 3.

[291]

M. H. Y. Cheng, J. Leung, Y. Zhang, et al., “Induction of Bleb Structures in Lipid Nanoparticle Formulations of mRNA Leads to Improved Transfection Potency,” Advanced Materials 35, no. 31 (2023): e2303370.

[292]

M. I. Henderson, Y. Eygeris, A. Jozic, et al., “Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles,” Molecular Pharmaceutics 19, no. 11 (2022): 4275-4285.

[293]

M. G. Alameh, I. Tombácz, E. Bettini, et al., “Lipid Nanoparticles Enhance the Efficacy of mRNA and Protein Subunit Vaccines by Inducing Robust T Follicular Helper Cell and Humoral Responses,” Immunity 54, no. 12 (2021): 2877-2892.e7.

[294]

G. Swaminathan, E. A. Thoryk, K. S. Cox, et al., “A Novel Lipid Nanoparticle Adjuvant Significantly Enhances B Cell and T Cell Responses to Sub-Unit Vaccine Antigens,” Vaccine 34, no. 1 (2016): 110-119.

[295]

Y. Bai, D. Liu, Q. He, et al., “Research Progress on Circular RNA Vaccines,” Frontiers in Immunology 12, no. 13 (2023): 1091797.

[296]

Z. Igyártó and Z. Qin, “The mRNA-LNP Vaccines—the Good, the Bad and the Ugly?,” Frontiers in Immunology 15 (2024): 1336906.

[297]

N. Kasiewicz, S. Biswas, A. Beach, et al., “GalNAc-Lipid Nanoparticles Enable Non-LDLR Dependent Hepatic Delivery of a CRISPR Base Editing Therapy,” Nature Communications 14, no. 1 (2023): 2776.

[298]

K. Su, L. Shi, T. Sheng, et al., “Reformulating Lipid Nanoparticles for Organ-Targeted mRNA Accumulation and Translation,” Nature Communications 15, no. 1 (2024): 5659.

[299]

Y. Ju, M. Carreño, V. Simon, et al., “Impact of Anti-PEG Antibodies Induced by SARS-CoV-2 mRNA Vaccines,” Nature Reviews Immunology 23, no. 3 (2023): 135-136.

[300]

J. Wang, Y. Ding, K. Chong, et al., “Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery,” Vaccines 12, no. 10 (2024): 1148.

[301]

C. Bellitto, N. Luxi, F. Ciccimarra, et al., “What Is the Safety of COVID-19 Vaccines in Immunocompromised Patients? Results From the European “Covid Vaccine Monitor” Active Surveillance Study,” Drug Safety 47, no. 10 (2024): 1011-1023.

[302]

Y. Ma, S. Li, X. Lin, et al., “A Perspective of Lipid Nanoparticles for RNA Delivery,” Exploration (Beijing, China) 4, no. 6 (2024): 20230147.

[303]

J. Shepherd, X. Han, J. Mukalel, et al., “Throughput-Scalable Manufacturing of SARS-CoV-2 mRNA Lipid Nanoparticle Vaccines,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 33 (2023): e2303567120.

[304]

Y. Zhang, X. Zhang, Y. Gao, et al., “Principles of Lipid Nanoparticle Design for mRNA Delivery,” BMEMat 3, no. 1 (2025): e12116.

[305]

K. Hashiba, M. Taguchi, S. Sakamoto, et al., “Overcoming Thermostability Challenges in mRNA-Lipid Nanoparticle Systems With Piperidine-Based Ionizable Lipids,” Communications Biology 7, no. 1 (2024): 556.

[306]

D. Rodríguez-Gómez, D. Monferrer, O. Penon, et al., “Regulatory Pathways and Guidelines for Nanotechnology-Enabled Health Products: A Comparative Review of EU and US Frameworks,” Frontiers in Medicine 12 (2025): 1544393.

[307]

E. Kon, U. Elia, and D. Peer, “Principles for Designing an Optimal mRNA Lipid Nanoparticle Vaccine,” Current Opinion in Biotechnology 73 (2022): 329-336.

[308]

W. Wang, K. Chen, T. Jiang, et al., “Artificial Intelligence-Driven Rational Design of Ionizable Lipids for mRNA Delivery,” Nature Communications 15, no. 1 (2024): 10804.

[309]

K. Wu, X. Yang, Z. Wang, et al., “Data-Balanced Transformer for Accelerated Ionizable Lipid Nanoparticles Screening in mRNA Delivery,” Briefings in Bioinformatics 25, no. 3 (2024): bbae186.

[310]

X. Cai and Q. Shubhra, “AI-Designed Lipid Nanoparticles Forge a Path for Pulmonary Gene Therapy,” The Innovation Materials 3 (2025): 100123.

[311]

Genesis Authors, Genesis: A Universal and Generative Physics Engine for Robotics and Beyond, https://github.com/Genesis-Embodied-AI/Genesis, 2024.

[312]

B. N. Dang, R. Duwa, S. Lee, et al., “Targeting Tumor-Associated Macrophages With Mannosylated Nanotherapeutics Delivering TLR7/8 Agonist Enhances Cancer Immunotherapy,” Journal of Controlled Release 372 (2024): 587-608.

[313]

L. Huang, Z. Huang, Y. Zhang, et al., “Advances in Targeted Delivery of mRNA Into Immune Cells for Enhanced Cancer Therapy,” Theranostics 14 (2024): 5528-5550.

[314]

P. Sharma and M. Otto, “Multifunctional Nanocomposites Modulating the Tumor Microenvironment for Enhanced Cancer Immunotherapy,” Bioactive Materials 31 (2023): 440-462.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/