cZFP609 Tethering BiP Alleviates Cartilage Degradation in Osteoarthritis via Remedying Aberrant ER-Mitochondrial Contacts

Yu Song , Jun-Long Luo , Fan Zhang , Jie Shi , Shuai Du , Hai-Bin Jiang , Wen-Di Zhang , Si-Ying Chen , Dan-Dan Zhang , Peng Kong , Yuan Gao , Mei Han , Han Li

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70405

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70405 DOI: 10.1002/mco2.70405
ORIGINAL ARTICLE

cZFP609 Tethering BiP Alleviates Cartilage Degradation in Osteoarthritis via Remedying Aberrant ER-Mitochondrial Contacts

Author information +
History +
PDF

Abstract

Vascular dysfunction is implicated in the pathogenesis of osteoarthritis (OA). Herein, we utilized smooth muscle specific human Sirt1 transgenic (smSirt1-Tg) mice characterized by vascular homeostasis to prepare an OA model to validate vasculature-derived articular cartilage protective factors. The OA of smSirt1-Tg mice exhibited significantly reduced cartilage destruction and pain sensitivity, accompanied by increased proteoglycans content and collagen type II (Col2ɑ) expression and decreased matrix metallopeptidase 13 (MMP13) and p53 expression. Vascular smooth muscle cell-derived cZFP609 was highly enriched in the articular cartilage and plasma of smSirt1-Tg mice. Overexpression of cZFP609 abrogated TNFα-induced endoplasmic reticulum (ER) stress and fine-tuned the mitochondrial homeostasis in chondrocytes. Mechanistically, cZFP609, located in the cytoplasm, interacted with binding immunoglobulin protein (BiP) to stabilize the BiP oligomeric form. This interaction reduced the level of active BiP monomer that induced not only ER stress via activating IRE1α (inositol-requiring enzyme 1α) signaling but also mediated the formation of ER–mitochondria contacts (ERMCs). Increased oligomeric BiP by overexpression of cZFP609 suppressed ERMC-driven aberrant ER–mitochondria communication and diminished lipid peroxidation and ferroptosis, which contributed to maintaining mitochondrial homeostasis and alleviating cartilage degeneration in OA. Taken together, these results elucidate a beneficial cZFP609-driven feed-forward circuit that can be effectively targeted to stem the progression of OA.

Keywords

Osteoarthritis / cZFP609 / binding immunoglobulin protein / ferroptosis

Cite this article

Download citation ▾
Yu Song, Jun-Long Luo, Fan Zhang, Jie Shi, Shuai Du, Hai-Bin Jiang, Wen-Di Zhang, Si-Ying Chen, Dan-Dan Zhang, Peng Kong, Yuan Gao, Mei Han, Han Li. cZFP609 Tethering BiP Alleviates Cartilage Degradation in Osteoarthritis via Remedying Aberrant ER-Mitochondrial Contacts. MedComm, 2025, 6(10): e70405 DOI:10.1002/mco2.70405

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Tong, H. Yu, X. Huang, et al., “Current Understanding of Osteoarthritis Pathogenesis and Relevant New Approaches,” Bone Research 10, no. 1 (2022): 60.

[2]

K. Ching, X. Houard, F. Berenbaum, and C. Wen, “Hypertension Meets Osteoarthritis—Revisiting the Vascular Aetiology Hypothesis,” Nature Reviews Rheumatology 17, no. 9 (2021): 533-549.

[3]

G. S. Fernandes and A. M. Valdes, “Cardiovascular Disease and Osteoarthritis: Common Pathways and Patient Outcomes,” European Journal of Clinical Investigation 45, no. 4 (2015): 405-414.

[4]

L. Li, H. N. Zhang, H. Z. Chen, et al., “SIRT1 Acts as a Modulator of Neointima Formation Following Vascular Injury in Mice,” Circulation Research 108, no. 10 (2011): 1180-1189.

[5]

L. L. Cooper, T. Woodard, S. Sigurdsson, et al., “Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory,” Hypertension 67, no. 1 (2016): 176-182.

[6]

S. Stein, C. Lohmann, N. Schäfer, et al., “SIRT1 Decreases Lox-1-Mediated Foam Cell Formation in Atherogenesis,” European Heart Journal 31, no. 18 (2010): 2301-2309.

[7]

Y. Q. Dou, P. Kong, C. L. Li, et al., “Smooth Muscle SIRT1 Reprograms Endothelial Cells to Suppress Angiogenesis After Ischemia,” Theranostics 10, no. 3 (2020): 1197-1212.

[8]

S. Kamekura, K. Hoshi, T. Shimoaka, et al., “Osteoarthritis Development in Novel Experimental Mouse Models Induced by Knee Joint Instability,” Osteoarthritis and Cartilage 13, no. 7 (2005): 632-641.

[9]

R. F. Loeser, J. A. Collins, and B. O. Diekman, “Ageing and the Pathogenesis of Osteoarthritis,” Nature Reviews Rheumatology 12, no. 7 (2016): 412-420.

[10]

Y. Li, Q. Zheng, C. Bao, et al., “Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis,” Cell Research 25, no. 8 (2015): 981-984.

[11]

J. Wang, J. Lee, D. Liem, and P. Ping, “HSPA5 Gene Encoding Hsp70 Chaperone BiP in the Endoplasmic Reticulum,” Gene 618 (2017): 14-23.

[12]

W. E. Balch, R. I. Morimoto, A. Dillin, and J. W. Kelly, “Adapting Proteostasis for Disease Intervention,” Science 319, no. 5865 (2008): 916-919.

[13]

A. Korennykh and P. Walter, “Structural Basis of the Unfolded Protein Response,” Annual Review of Cell and Developmental Biology 28 (2012): 251-277.

[14]

J. Behnke, M. J. Feige, and L. M. Hendershot, “BiP and Its Nucleotide Exchange Factors Grp170 and Sil1: Mechanisms of Action and Biological Functions,” Journal of Molecular Biology 427, no. 7 (2015): 1589-1608.

[15]

S. Preissler, C. Rato, R. Chen, et al., “AMPylation Matches BiP Activity to Client Protein Load in the Endoplasmic Reticulum,” eLife 4 (2015): e12621.

[16]

S. Preissler, J. E. Chambers, A. Crespillo-Casado, et al., “Physiological Modulation of BiP Activity by Trans-Protomer Engagement of the Interdomain Linker,” eLife 4 (2015): e08961.

[17]

M. Gao, J. Yi, J. Zhu, et al., “Role of Mitochondria in Ferroptosis,” Molecular Cell 73, no. 2 (2019): 354-363.e3.

[18]

H. Wang, J. Zhao, and J. Wang, “Role of Circular RNAs in Osteoarthritis: Update on Pathogenesis and Therapeutics,” Molecular Genetics and Genomics 298, no. 4 (2023): 791-801.

[19]

N. Benaroudj, B. Fouchaq, and M. M. Ladjimi, “The COOH-Terminal Peptide Binding Domain Is Essential for Self-Association of the Molecular Chaperone HSC70,” Journal of Biological Chemistry 272, no. 13 (1997): 8744-8751.

[20]

P. J. Freiden, J. R. Gaut, and L. M. Hendershot, “Interconversion of Three Differentially Modified and Assembled Forms of BiP,” Embo Journal 11, no. 1 (1992): 63-70.

[21]

S. Preissler and D. Ron, “Early Events in the Endoplasmic Reticulum Unfolded Protein Response,” Cold Spring Harbor Perspectives in Biology 11, no. 4 (2019): a033894.

[22]

S. Dawes, N. Hurst, G. Grey, et al., “Chaperone BiP Controls ER Stress Sensor Ire1 Through Interactions With Its Oligomers,” Life Science Alliance 7, no. 10 (2024): e202402702.

[23]

M. Chevalier, L. King, C. Wang, M. J. Gething, E. Elguindi, and S. Y. Blond, “Substrate Binding Induces Depolymerization of the C-Terminal Peptide Binding Domain of Murine GRP78/BiP,” Journal of Biological Chemistry 273, no. 41 (1998): 26827-26835.

[24]

G. Csordás, C. Renken, P. Várnai, et al., “Structural and Functional Features and Significance of the Physical Linkage Between ER and Mitochondria,” Journal of Cell Biology 174, no. 7 (2006): 915-921.

[25]

T. Hayashi, R. Rizzuto, G. Hajnoczky, and T. P. Su, “MAM: More Than Just a Housekeeper,” Trends in Cell Biology 19, no. 2 (2009): 81-88.

[26]

L. Szabo, N. Cummins, P. Paganetti, et al., “ER-Mitochondria Contacts and Cholesterol Metabolism Are Disrupted by Disease-Associated Tau Protein,” Embo Reports 24, no. 8 (2023): e57499.

[27]

Z. Zhou, M. Torres, H. Sha, et al., “Endoplasmic Reticulum-Associated Degradation Regulates Mitochondrial Dynamics in Brown Adipocytes,” Science 368, no. 6486 (2020): 54-60.

[28]

R. Gozzelino and P. Arosio, “Iron Homeostasis in Health and Disease,” International Journal of Molecular Sciences 17, no. 1 (2016): 130.

[29]

A. V. Harrison, F. R. Lorenzo, and D. A. McClain, “Iron and the Pathophysiology of Diabetes,” Annual Review of Physiology 85 (2023): 339-362.

[30]

M. Gosset, F. Berenbaum, S. Thirion, and C. Jacques, “Primary Culture and Phenotyping of Murine Chondrocytes,” Nature Protocols 3, no. 8 (2008): 1253-1260.

[31]

L. He, T. He, J. Xing, et al., “Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Protect Cartilage Damage and Relieve Knee Osteoarthritis Pain in a Rat Model of Osteoarthritis,” Stem Cell Research & Therapy 11, no. 1 (2020): 276.

[32]

S. S. Glasson, M. G. Chambers, W. B. Van Den Berg, and C. B. Little, “The OARSI Histopathology Initiative—Recommendations for Histological Assessments of Osteoarthritis in the Mouse,” Osteoarthritis and Cartilage 18, no. S3 (2010): S17-S23.

[33]

Y. Tang, K. Garson, L. Li, and B. C. Vanderhyden, “Optimization of Lentiviral Vector Production Using Polyethylenimine-Mediated Transfection,” Oncology Letters 9, no. 1 (2015): 55-62.

[34]

C. B. Nava Lauson, S. Tiberti, P. A. Corsetto, et al., “Linoleic Acid Potentiates CD8(+) T Cell Metabolic Fitness and Antitumor Immunity,” Cell Metabolism 35, no. 4 (2023): 633-650.e9.

[35]

P. Kong, Y. Yu, L. Wang, et al., “Circ-Sirt1 Controls NF-κB Activation via Sequence-Specific Interaction and Enhancement of SIRT1 Expression by Binding to miR-132/212 in Vascular Smooth Muscle Cells,” Nucleic Acids Research 47, no. 7 (2019): 3580-3593.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/