Proteolysis-Targeting Chimera (PROTAC): Current Applications and Future Directions

Gang Fan , Shilin Chen , Qingping Zhang , Na Yu , Ziyang Shen , Zhaoji Liu , Weiming Guo , Zhihan Tang , Jing Yang , Miao Liu

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70401

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70401 DOI: 10.1002/mco2.70401
REVIEW

Proteolysis-Targeting Chimera (PROTAC): Current Applications and Future Directions

Author information +
History +
PDF

Abstract

Targeted protein degradation (TPD) represents a paradigm shift in drug discovery, moving beyond traditional binding-based inhibition toward active removal of disease-driving proteins. This approach has unlocked therapeutic possibilities for previously “undruggable” targets, including transcription factors like MYC and STAT3, mutant oncoproteins such as KRAS G12C, and scaffolding molecules lacking conventional binding pockets. Among TPD strategies, proteolysis-targeting chimeras (PROTACs) have emerged as the leading clinical platform, with the first molecule entering trials in 2019 and progression to Phase III completion by 2024. This comprehensive review examines PROTAC development across diverse therapeutic areas, analyzing key targets including kinases, hormone receptors, antiapoptotic proteins, and epigenetic modulators. We evaluate clinical progression of breakthrough candidates such as ARV-110 for prostate cancer, ARV-471 for breast cancer, and BTK degraders, while discussing critical challenges including the “hook effect” and oral bioavailability limitations. The review explores future directions encompassing innovative delivery strategies, tissue-specific degrader design, and approaches for expanding E3 ligase repertoires and overcoming resistance. This review provides essential foundations for rational target selection, molecular optimization, and clinical translation strategies. By integrating mechanistic insights with clinical realities, this analysis offers perspectives on PROTAC technology advancement and identifies opportunities for transforming treatment of complex diseases resistant to conventional therapies.

Keywords

clinical translation / drug discovery / PROTAC / target protein degradation / ubiquitin–proteasome system

Cite this article

Download citation ▾
Gang Fan, Shilin Chen, Qingping Zhang, Na Yu, Ziyang Shen, Zhaoji Liu, Weiming Guo, Zhihan Tang, Jing Yang, Miao Liu. Proteolysis-Targeting Chimera (PROTAC): Current Applications and Future Directions. MedComm, 2025, 6(10): e70401 DOI:10.1002/mco2.70401

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Jin, Y. Wu, Z. Zhao, et al., “Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer,” JCI Insight 7, no. 22 (2022): e160606.

[2]

A. A. Azad, H. Gurney, C. Underhill, et al., “Phase 1 study of HP518, a PROTAC AR degrader in patients With mCRPC: Results on safety, pharmacokinetics, and anti-tumor activity,” Investigational New Drugs 43, no. 2 (2025): 435-445.

[3]

M. A. Maneiro, N. Forte, M. M. Shchepinova, et al., “Antibody-PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4,” ACS Chemical Biology 15, no. 6 (2020): 1306-1312.

[4]

S. J. Heidorn, C. Milagre, S. Whittaker, et al., “Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression Through CRAF,” Cell 140, no. 2 (2010): 209-221.

[5]

J. H. Bushweller, “Targeting transcription factors in cancer—From undruggable to reality,” Nature Reviews Cancer 19, no. 11 (2019): 611-624.

[6]

M. J. Henley and A. N. Koehler, “Advances in targeting ‘undruggable’transcription factors With small molecules,” Nature Reviews Drug Discovery 20, no. 9 (2021): 669-688.

[7]

L. Shu, A. Chen, L. Li, et al., “NRG1 regulates Fra-1 transcription and metastasis of triple-negative breast cancer cells via the c-Myc ubiquitination as manipulated by ERK1/2-mediated Fbxw7 phosphorylation,” Oncogene 41, no. 6 (2022): 907-919.

[8]

A. L. Hopkins and C. R. Groom, “The druggable genome,” Nature Reviews Drug Discovery 1, no. 9 (2002): 727-730.

[9]

A. D. Buhimschi, H. A. Armstrong, M. Toure, et al., “Targeting the C481S ibrutinib-resistance mutation in Bruton's tyrosine kinase using PROTAC-mediated degradation,” Biochemistry 57, no. 26 (2018): 3564-3575.

[10]

Y. Sun, N. Ding, Y. Song, et al., “Degradation of Bruton's tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas,” Leukemia 33, no. 8 (2019): 2105-2110.

[11]

Y. S. Arbel, B.-Z. Katz, R. Gabizon, et al., “Proteolysis targeting chimeras for BTK efficiently inhibit B-cell receptor signaling and can overcome ibrutinib resistance in CLL cells,” Frontiers in Oncology 11 (2021): 646971.

[12]

S. Cao, L. Ma, Y. Liu, et al., “Proteolysis-targeting chimera (PROTAC) modification of dovitinib enhances the antiproliferative effect Against FLT3-ITD-positive acute myeloid leukemia cells,” Journal of Medicinal Chemistry 64, no. 22 (2021): 16497-16511.

[13]

K. M. Sakamoto, K. B. Kim, A. Kumagai, et al., “Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation,” Proceedings of the National Academy of Sciences of the United States of America 98, no. 15 (2001): 8554-8559.

[14]

D. P. Petrylak, X. Gao, N. J. Vogelzang, et al., “First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) With metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI)[Z],” American Society of Clinical Oncology 157 (2020): 259-267.

[15]

C. Arnold, “PROTAC protein degraders to drug the undruggable enter phase 3 trials,” Nature Medicine 30, no. 11 (2024): 3030-3031.

[16]

S. Ha, G. Luo, and H. Xiang, “A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives,” Journal of Medicinal Chemistry 65, no. 24 (2022): 16128-16154.

[17]

C. Wang, Y. Zhang, J. Wang, and D. Xing, “VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives,” European Journal of Medicinal Chemistry 227 (2022): 113906.

[18]

M. Hay, D. W. Thomas, J. L. Craighead, C. Economides, and J. Rosenthal, “Clinical development success rates for investigational drugs,” Nature Biotechnology 32, no. 1 (2014): 40-51.

[19]

Y.-L. Tseng, P.-C. Lu, C.-C. Lee, et al., “Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera,” Journal of Biomedical Science 30, no. 1 (2023): 27.

[20]

X. Jiang, J. Zhou, Y. Wang, et al., “PROTACs suppression of GSK-3β, a crucial kinase in neurodegenerative diseases,” European Journal of Medicinal Chemistry 210 (2021): 112949.

[21]

M. Peyman, Study of new strategies for steatotic liver disease: SIRT1-mediated modulation of VLDLR levels and evaluation of a soluble epoxyde hydrolase-targeted PROTAC. (2024).

[22]

J. Huang, Z. Ma, Z. Yang, et al., “Discovery of Ibrutinib-based BTK PROTACs With in vivo anti-inflammatory efficacy by inhibiting NF-κB activation,” European Journal of Medicinal Chemistry 259 (2023): 115664.

[23]

H. Wang, S. Yuan, Q. Zheng, et al., “Dual inhibition of CDK4/6 and XPO1 induces senescence With acquired vulnerability to CRBN-based PROTAC drugs,” Gastroenterology 166, no. 6 (2024): 1130-1144. e1138.

[24]

Y. Yang, N. Jn-Simon, Y. He, et al., “A BCL-xL/BCL-2 PROTAC effectively clears senescent cells in the liver and reduces MASH-driven hepatocellular carcinoma in mice,” Nature Aging 5, no. 3 (2025): 386-400.

[25]

V. Reen, M. D'Ambrosio, and P. P. Søgaard, “SMARCA4 regulates the NK-mediated killing of senescent cells,” Science Advances 11, no. 3 (2025): eadn2811.

[26]

M. Chang, F. Gao, G. Gnawali, et al., “Selective elimination of senescent cancer cells by galacto-modified PROTACs,” Journal of Medicinal Chemistry 67, no. 9 (2024): 7301-7311.

[27]

N. Y. Zhang, D. Y. Hou, X. J. Hu, et al., “Nano proteolysis targeting chimeras (PROTACs) With anti-hook effect for tumor therapy,” Angewandte Chemie International Edition 62, no. 37 (2023): e202308049.

[28]

K. Moreau, M. Coen, A. X. Zhang, et al., “Proteolysis-targeting chimeras in drug development: A safety perspective,” British Journal of Pharmacology 177, no. 8 (2020): 1709-1718.

[29]

K. Li and C. M. Crews, “PROTACs: Past, present and future,” Chemical Society Reviews 51, no. 12 (2022): 5214-5236.

[30]

L. M. Simpson, L. Glennie, A. Brewer, et al., “Target protein localization and its impact on PROTAC-mediated degradation,” Cell Chemical Biology 29, no. 10 (2022): 1482-1504. e1487.

[31]

D. C. Scott, S. Dharuman, E. Griffith, et al., “Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2,” Nature Communications 15, no. 1 (2024): 8829.

[32]

R. Beveridge, D. Kessler, K. Rumpel, et al., “Native Mass Spectrometry Can Effectively Predict PROTAC Efficacy,” ACS Central Science 6, no. 7 (2020): 1223-1230.

[33]

M. S. Gadd, A. Testa, X. Lucas, et al., “Structural basis of PROTAC cooperative recognition for selective protein degradation,” Nature Chemical Biology 13, no. 5 (2017): 514-521.

[34]

V. Haridas, S. Dutta, A. Munjal, and S. Singh, “Inhibitors to degraders: Changing paradigm in drug discovery,” Iscience 27, no. 5 (2024): 109574.

[35]

X. Teng, X. Zhao, Y. Dai, et al., “ClickRNA-PROTAC for Tumor-Selective Protein Degradation and Targeted Cancer Therapy,” Journal of the American Chemical Society 146, no. 40 (2024): 27382-27391.

[36]

Y. Y. Shi, G. Fan, R. Tan, et al., “Treating ICB-resistant cancer by inhibiting PD-L1 via DHHC3 degradation induced by cell penetrating peptide-induced chimera conjugates,” Cell Death and Disease 15, no. 9 (2024): 701.

[37]

Y. Chen, Z. Xia, U. Suwal, et al., “Dual-ligand PROTACS mediate superior target protein degradation in vitro and therapeutic efficacy in vivo,” Chemical Science 15, no. 42 (2024): 17691-17701.

[38]

D. Park, J. Izaguirre, R. Coffey, and H. Xu, “Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders,” ACS Bio Med Chem Au 3, no. 1 (2023): 74-86.

[39]

S. Shi, Y. Du, Y. Zou, et al., “Rational Design for Nitroreductase (NTR)-Responsive Proteolysis Targeting Chimeras (PROTACs) Selectively Targeting Tumor Tissues,” Journal of Medicinal Chemistry 65, no. 6 (2022): 5057-5071.

[40]

D. P. Bondeson, B. E. Smith, G. M. Burslem, et al., “Lessons in PROTAC Design From Selective Degradation With a Promiscuous Warhead,” Cell Chemical Biology 25, no. 1 (2018): 78-87. e75.

[41]

M. Ignatov, A. Jindal, S. Kotelnikov, et al., “High Accuracy Prediction of PROTAC Complex Structures,” Journal of the American Chemical Society 145, no. 13 (2023): 7123-7135.

[42]

H. Nassar, A. C. Sarnow, I. Celik, et al., “Ternary Complex Modeling, Induced Fit Docking and Molecular Dynamics Simulations as a Successful Approach for the Design of VHL-Mediated PROTACs Targeting the Kinase FLT3,” Archiv der Pharmazie - Chemistry in Life Sciences 358, no. 4 (2025): e3126.

[43]

D. Weerakoon, R. J. Carbajo, L. De Maria, C. Tyrchan, and H. Zhao, “Impact of PROTAC Linker Plasticity on the Solution Conformations and Dissociation of the Ternary Complex,” Journal of Chemical Information and Modeling 62, no. 2 (2022): 340-349.

[44]

J. S. Schneekloth, F. N. Fonseca, M. Koldobskiy, et al., “Chemical genetic control of protein levels: Selective in vivo targeted degradation,” Journal of the American Chemical Society 126, no. 12 (2004): 3748-3754.

[45]

G. E. Winter, D. L. Buckley, J. Paulk, et al., “Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation,” Science 348, no. 6241 (2015): 1376-1381.

[46]

K. Raina, J. Lu, Y. Qian, et al., “PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 26 (2016): 7124-7129.

[47]

X. Han, C. Wang, C. Qin, et al., “Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer,” Journal of Medicinal Chemistry 62, no. 2 (2019): 941-964.

[48]

R. G. Guenette, S. W. Yang, J. Min, B. Pei, and P. R. Potts, “Target and tissue selectivity of PROTAC degraders,” Chemical Society Reviews 51, no. 14 (2022): 5740-5756.

[49]

S. Park, D. Kim, W. Lee, et al., “Discovery of pan-IAP degraders via a CRBN recruiting mechanism,” European Journal of Medicinal Chemistry 245, no. Pt 2 (2023): 114910.

[50]

J. Hines, S. Lartigue, H. Dong, Y. Qian, and C. M. Crews, “MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53,” Cancer Research 79, no. 1 (2019): 251-262.

[51]

X. Zhang, V. M. Crowley, T. G. Wucherpfennig, M. M. Dix, and B. F. Cravatt, “Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16,” Nature Chemical Biology 15, no. 7 (2019): 737-746.

[52]

S. He, J. Ma, Y. Fang, et al., “Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer,” Acta Pharmaceutica Sinica B 11, no. 6 (2021): 1617-1628.

[53]

G. M. Burslem, B. E. Smith, A. C. Lai, et al., “The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study,” Cell Chemical Biology 25, no. 1 (2018): 67-77. e63.

[54]

M. Békés, D. R. Langley, and C. M. Crews, “PROTAC targeted protein degraders: The Past is prologue,” Nature Reviews Drug Discovery 21, no. 3 (2022): 181-200.

[55]

D. Antermite, S. D. Friis, J. R. Johansson, et al., “Late-stage synthesis of heterobifunctional molecules for PROTAC applications via ruthenium-catalysed C‒H amidation,” Nature Communications 14, no. 1 (2023): 8222.

[56]

M. Surowka and C. Klein, “A pivotal decade for bispecific antibodies?,” Mabs 16, no. 1 (2024): 2321635.

[57]

Z. Liu, M. Hu, Y. Yang, et al., “An overview of PROTACs: A promising drug discovery paradigm,” Molecular Biomedicine 3, no. 1 (2022): 46.

[58]

W. Wang, Q. Zhou, T. Jiang, et al., “A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-Like models,” Theranostics 11, no. 11 (2021): 5279-5295.

[59]

P. Pfaff, K. T. G. Samarasinghe, C. M. Crews, and E. M. Carreira, “Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs,” ACS Central Science 5, no. 10 (2019): 1682-1690.

[60]

X. Sun, H. Gao, Y. Yang, et al., “PROTACs: Great opportunities for academia and industry,” Signal Transduction and Targeted Therapy 4 (2019): 64.

[61]

H. Zhou, T. Zhou, W. Yu, et al., “Targeted Protein Degradation by KLHDC2 Ligands Identified by High Throughput Screening,” BioRxiv (2025).

[62]

J. Gao, L. Yang, S. Lei, et al., “Stimuli-activatable PROTACs for precise protein degradation and cancer therapy,” Science Bulletin (Beijing) 68, no. 10 (2023): 1069-1085.

[63]

T. A. Lee, E. Y. Tsai, S. H. Liu, et al., “Post-translational Modification of PD-1: Potential Targets for Cancer Immunotherapy,” Cancer Research 84, no. 6 (2024): 800-807.

[64]

L. Mittal, R. K. Tonk, A. Awasthi, and S. Asthana, “Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach,” Archives of Biochemistry and Biophysics 713 (2021): 109059.

[65]

R. V. Mancuso, K. Welzenbach, P. Steinberger, S. Krähenbühl, and G. Weitz-Schmidt, “Downstream effect profiles discern different mechanisms of integrin αLβ2 inhibition,” Biochemical Pharmacology 119 (2016): 42-55.

[66]

P. S. Dragovich, T. H. Pillow, R. A. Blake, et al., “Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy,” Journal of Medicinal Chemistry 64, no. 5 (2021): 2576-2607.

[67]

A. Ikeuchi, H. Nakano, T. Kamiya, T. Yamane, and Y. Kawarasaki, “A method for reverse interactome analysis: High-resolution mapping of interdomain interaction network in Dam1 complex and its specific disorganization based on the interaction domain expression,” Biotechnology Progress 26, no. 4 (2010): 945-953.

[68]

H. Oh, S. Lee, Y. Oh, et al., “Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice,” Nature Communications 14, no. 1 (2023): 3547.

[69]

N. H. Murray, C. R. M. Asquith, Z. Fang, et al., “Small-molecule inhibition of the archetypal UbiB protein COQ8,” Nature Chemical Biology 19, no. 2 (2023): 230-238.

[70]

S. Zeng, Y. Jin, H. Xia, et al., “Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling,” Bioorganic Chemistry 143 (2024): 107016.

[71]

M. Gazorpak, K. M. Hugentobler, D. Paul, et al., “Harnessing PROTAC technology to combat stress hormone receptor activation,” Nature Communications 14, no. 1 (2023): 8177.

[72]

C. P. Tinworth, H. Lithgow, L. Dittus, et al., “PROTAC-Mediated Degradation of Bruton's Tyrosine Kinase Is Inhibited by Covalent Binding,” ACS Chemical Biology 14, no. 3 (2019): 342-347.

[73]

L. M. Gockel, V. Pfeifer, F. Baltes, et al., “Design, synthesis, and characterization of PROTACs targeting the androgen receptor in prostate and lung cancer models,” Archiv Der Pharmazie 355, no. 5 (2022): e2100467.

[74]

Y. Xiong, Y. Zhong, H. Yim, et al., “Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets,” Journal of the American Chemical Society 144, no. 49 (2022): 22622-22632.

[75]

A. Chan, R. M. Haley, M. A. Najar, et al., “Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins,” Nature Communications 15, no. 1 (2024): 5808.

[76]

S. F. Bakhoum, “Targeting the undruggable,” Science 380, no. 6640 (2023): 47.

[77]

S. Imaide, K. M. Riching, N. Makukhin, et al., “Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity,” Nature Chemical Biology 17, no. 11 (2021): 1157-1167.

[78]

Y. Wang, G. Yang, X. Zhang, et al., “Antitumor Effect of Anti-c-Myc Aptamer-Based PROTAC for Degradation of the c-Myc Protein,” Advanced science (Weinheim) 11, no. 26 (2024): e2309639.

[79]

Y. Jiang, Q. Deng, H. Zhao, et al., “Development of Stabilized Peptide-Based PROTACs Against Estrogen Receptor α,” ACS Chemical Biology 13, no. 3 (2018): 628-635.

[80]

I. Cardoso, J. Stamnaes, J. T. Andersen, et al., “Transglutaminase 2 interactions With extracellular matrix proteins as probed With celiac disease autoantibodies,” FEBS Journal 282, no. 11 (2015): 2063-2075.

[81]

N. Roehlen, M. Muller, Z. Nehme, et al., “Treatment of HCC With claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment,” Journal of Hepatology 78, no. 2 (2023): 343-355.

[82]

T. Xu, F. Zhang, D. Chen, et al., “Interrogating heterogeneity of cysteine-engineered antibody-drug conjugates and antibody-oligonucleotide conjugates by capillary zone electrophoresis-mass spectrometry,” Mabs 15, no. 1 (2023): 2229102.

[83]

K. O. Nagornov, N. Gasilova, A. N. Kozhinov, et al., “Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody-Oligonucleotide Conjugates With Orbitrap Fourier Transform Mass Spectrometry,” Analytical Chemistry 93, no. 38 (2021): 12930-12937.

[84]

L. Wang, Y. Ke, Q. He, et al., “A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment,” Theranostics 15, no. 4 (2025): 1238-1254.

[85]

K. Chan, P. S. Sathyamurthi, M. A. Queisser, et al., “Antibody-Proteolysis Targeting Chimera Conjugate Enables Selective Degradation of Receptor-Interacting Serine/Threonine-Protein Kinase 2 in HER2+ Cell Lines,” Bioconjugate Chemistry 34, no. 11 (2023): 2049-2054.

[86]

L. Yang, Y. Yang, J. Zhang, et al., “Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 275.

[87]

Y. Liu, H. Wang, M. Ding, et al., “Ultrasound-Activated PROTAC Prodrugs Overcome Immunosuppression to Actuate Efficient Deep-Tissue Sono-Immunotherapy in Orthotopic Pancreatic Tumor Mouse Models,” Nano Letters 24, no. 28 (2024): 8741-8751.

[88]

Q. Xu, X. Hu, I. Ullah, et al., “Biomimetic Hybrid PROTAC Nanovesicles Block Multiple DNA Repair Pathways to Overcome Temozolomide Resistance Against Orthotopic Glioblastoma,” Advanced Materials 37, no. 29 (2025): e2504253.

[89]

V. Subbotin and G. Fiksel, “Modeling multi-needle injection Into solid tumor,” American Journal of Cancer Research 9, no. 10 (2019): 2209-2215.

[90]

H. M. Eltaher, L. A. Blokpoel Ferreras, A. R. Jalal, and J. E. Dixon, “Direct contact-mediated non-viral gene therapy using thermo-sensitive hydrogel-coated dressings,” Biomaterials Advances 143 (2022): 213177.

[91]

N. W. Keiser, E. Cant, S. Sitaraman, A. Shoemark, and M. P. Limberis, “Restoring Ciliary Function: Gene Therapeutics for Primary Ciliary Dyskinesia,” Human Gene Therapy 34, no. 17-18 (2023): 821-835.

[92]

M. M. Chang, L. Gaidukov, G. Jung, et al., “Small-molecule control of antibody N-glycosylation in engineered mammalian cells,” Nature Chemical Biology 15, no. 7 (2019): 730-736.

[93]

A. Greer-Short, A. Greenwood, E. C. Leon, et al., “AAV9-mediated MYBPC3 gene therapy With optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models,” Nature Communications 16, no. 1 (2025): 2196.

[94]

R. D. Koilkonda, H. Yu, T. H. Chou, et al., “Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial,” JAMA ophthalmology 132, no. 4 (2014): 409-420.

[95]

M. Kostic and L. H. Jones, “Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological Modality,” Trends in Pharmacological Sciences 41, no. 5 (2020): 305-317.

[96]

W. He, S. Zeng, and C. Xu, “Streamlined collaboration can boost CRISPR gene therapies for rare diseases,” Nature 631, no. 8019 (2024): 28.

[97]

F. A. Voza, B. J. Byrne, Y. Y. Ortiz, et al., “Codon-Optimized and de novo-Synthesized E-Selectin/AAV2 Dose-Response Study for Vascular Regeneration Gene Therapy,” Annals of Surgery 280, no. 4 (2024): 570-583.

[98]

G. Li, S. S. Lin, Z. L. Yu, et al., “A PARP1 PROTAC as a novel strategy Against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer,” Biochemical Pharmacology 206 (2022): 115329.

[99]

K. Salokas, X. Liu, T. Öhman, et al., “Physical and functional interactome atlas of human receptor tyrosine kinases,” EMBO Reports 23, no. 6 (2022): e54041.

[100]

S. Solouki, A. August, and W. Huang, “Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications,” Pharmacology & Therapeutics 201 (2019): 39-50.

[101]

A. Odelgard, E. Hägglund, L. Guy, and S. G. E. Andersson, “Phylogeny and Expansion of Serine/Threonine Kinases in Phagocytotic Bacteria in the Phylum Planctomycetota,” Genome Biology and Evolution 16, no. 4 (2024): evae068.

[102]

Z. Du and C. M. Lovly, “Mechanisms of receptor tyrosine kinase activation in cancer,” Molecular Cancer 17, no. 1 (2018): 58.

[103]

X. Wang, Z. Qin, W. Qiu, et al., “Novel EGFR inhibitors Against resistant L858R/T790M/C797S mutant for intervention of non-small cell lung cancer,” European Journal of Medicinal Chemistry 277 (2024): 116711.

[104]

R. B. Kargbo, “Potent PROTACs Targeting EGFR Mutants in Drug Discovery,” Acs Medicinal Chemistry Letters 13, no. 12 (2022): 1835-1836.

[105]

H. Y. Zhao, X. Y. Yang, H. Lei, et al., “Discovery of potent small molecule PROTACs targeting mutant EGFR,” European Journal of Medicinal Chemistry 208 (2020): 112781.

[106]

Y. Wang, L. Han, F. Liu, et al., “Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras,” Colloids and Surfaces B, Biointerfaces 188 (2020): 110795.

[107]

C. Ren, N. Sun, Y. Kong, et al., “Structure-based discovery of SIAIS001 as an oral bioavailability ALK degrader constructed From Alectinib,” European Journal of Medicinal Chemistry 217 (2021): 113335.

[108]

N. Sun, C. Ren, Y. Kong, et al., “Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance,” European Journal of Medicinal Chemistry 193 (2020): 112190.

[109]

C. Ren, N. Sun, H. Liu, et al., “Discovery of a Brigatinib Degrader SIAIS164018 With Destroying Metastasis-Related Oncoproteins and a Reshuffling Kinome Profile,” Journal of Medicinal Chemistry 64, no. 13 (2021): 9152-9165.

[110]

G. Du, J. Jiang, Q. Wu, et al., “Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2,” Angewandte Chemie International Edition in English 60, no. 29 (2021): 15905-15911.

[111]

Y. Uemoto, C. A. Lin, B. Wang, et al., “Selective degradation of FGFR1/2 overcomes antiestrogen resistance in ER+ breast cancer With FGFR1/2 alterations,” Cancer Letters 619 (2025): 217668.

[112]

M. Javle, S. Roychowdhury, R. K. Kelley, et al., “Infigratinib (BGJ398) in previously treated patients With advanced or metastatic cholangiocarcinoma With FGFR2 fusions or rearrangements: Mature results From a multicentre, open-label, single-arm, phase 2 study,” Lancet Gastroenterol Hepatol 6, no. 10 (2021): 803-815.

[113]

M. M. Hurley, J. D. Coffin, T. Doetschman, et al., “FGF receptor inhibitor BGJ398 partially rescues osteoarthritis-Like phenotype in older high molecular weight FGF2 transgenic mice via multiple mechanisms,” Scientific Reports 12, no. 1 (2022): 15968.

[114]

G. Botrus, P. Raman, T. Oliver, and T. Bekaii-Saab, “Infigratinib (BGJ398): An investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma,” Expert Opinion on Investigational Drugs 30, no. 4 (2021): 309-316.

[115]

Y. Shan, R. Si, J. Wang, et al., “Discovery of novel anti-angiogenesis agents. Part 11: Development of PROTACs based on active molecules With potency of promoting vascular normalization,” European Journal of Medicinal Chemistry 205 (2020): 112654.

[116]

F. H. Shah, Y. S. Nam, J. Y. Bang, et al., “Targeting vascular endothelial growth receptor-2 (VEGFR-2): Structural biology, functional insights, and therapeutic resistance,” Archives of Pharmacal Research 48, no. 5 (2025): 404-425.

[117]

Z. Zhang, M. Xu, R. Shi, et al., “Natural Compound-Rhein and PROTACs Unleash Potent VEGFR-2 Degraders,” Chemistry and Biodiversity 21, no. 8 (2024): e202400753.

[118]

R. Yerushalmi, K. A. Gelmon, S. Leung, et al., “Insulin-Like growth factor receptor (IGF-1R) in breast cancer subtypes,” Breast Cancer Research and Treatment 132, no. 1 (2012): 131-142.

[119]

Y. Chen, X. Yuan, M. Tang, et al., “Degrading FLT3-ITD protein by proteolysis targeting chimera (PROTAC),” Bioorganic Chemistry 119 (2022): 105508.

[120]

W. Ye, X. Wu, X. Wang, et al., “The proteolysis targeting chimera GMB-475 combined With dasatinib for the treatment of chronic myeloid leukemia With BCR::ABL1 mutants,” Frontiers in pharmacology 13 (2022): 931772.

[121]

X. Yu, W. H. Guo, H. Lin, et al., “Discovery of a potent BTK and IKZF1/3 triple degrader Through reversible covalent BTK PROTAC development,” Current Research in Chemical Biology 2 (2022): 100029.

[122]

R. Gabizon, A. Shraga, P. Gehrtz, et al., “Efficient Targeted Degradation via Reversible and Irreversible Covalent PROTACs,” Journal of the American Chemical Society 142, no. 27 (2020): 11734-11742.

[123]

G. M. Burslem, D. P. Bondeson, and C. M. Crews, “Scaffold hopping enables direct access to more potent PROTACs With in vivo activity,” Chemical Communications 56, no. 50 (2020): 6890-6892.

[124]

Y. Yang, H. Gao, X. Sun, et al., “Global PROTAC Toolbox for Degrading BCR-ABL Overcomes Drug-Resistant Mutants and Adverse Effects,” Journal of Medicinal Chemistry 63, no. 15 (2020): 8567-8583.

[125]

T. S. Yu, S. Q. Han, L. J. Wang, et al., “Effects of orelabrutinib, a BTK inhibitor, on antibody-mediated platelet destruction in primary immune thrombocytopenia,” British Journal of Haematology 206, no. 4 (2025): 1186-1199.

[126]

L. E. Nyhoff, A. S. Griffith, E. S. Clark, et al., “Btk Supports Autoreactive B Cell Development and Protects Against Apoptosis but Is Expendable for Antigen Presentation,” Journal of Immunology 207, no. 12 (2021): 2922-2932.

[127]

A. C. Lai, M. Toure, D. Hellerschmied, et al., “Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL,” Angewandte Chemie International Edition in English 55, no. 2 (2016): 807-810.

[128]

Q. Zhao, C. Ren, L. Liu, et al., “Discovery of SIAIS178 as an Effective BCR-ABL Degrader by Recruiting Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase,” Journal of Medicinal Chemistry 62, no. 20 (2019): 9281-9298.

[129]

B. Tong, J. N. Spradlin, L. F. T. Novaes, et al., “A Nimbolide-Based Kinase Degrader Preferentially Degrades Oncogenic BCR-ABL,” ACS Chemical Biology 15, no. 7 (2020): 1788-1794.

[130]

Y. H. Jin, M. C. Lu, Y. Wang, et al., “Azo-PROTAC: Novel Light-Controlled Small-Molecule Tool for Protein Knockdown,” Journal of Medicinal Chemistry 63, no. 9 (2020): 4644-4654.

[131]

H. Liu, X. Ding, L. Liu, et al., “Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation,” European Journal of Medicinal Chemistry 223 (2021): 113645.

[132]

H. Liu, R. Sun, C. Ren, et al., “Construction of an IMiD-based azide library as a kit for PROTAC research,” Organic & Biomolecular Chemistry 19, no. 1 (2021): 166-170.

[133]

M. He, C. Cao, Z. Ni, et al., “PROTACs: Great opportunities for academia and industry (an update From 2020 to 2021),” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 181.

[134]

J. J. Lee, R. A. H. van de Ven, E. Zaganjor, et al., “Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3,” Proceedings of the National Academy of Sciences of the United States of America 115, no. 27 (2018): 7057-7062.

[135]

C. P. El Haibi, P. K. Sharma, R. Singh, et al., “PI3Kp110-, Src-, FAK-dependent and DOCK2-independent migration and invasion of CXCL13-stimulated prostate cancer cells,” Molecular Cancer 9 (2010): 85.

[136]

R. P. Law, J. Nunes, C. W. Chung, et al., “Discovery and Characterisation of Highly Cooperative FAK-Degrading PROTACs,” Angewandte Chemie International Edition in English 60, no. 43 (2021): 23327-23334.

[137]

I. Menzl, T. Zhang, A. Berger-Becvar, et al., “A kinase-independent role for CDK8 in BCR-ABL1(+) leukemia,” Nature Communications 10, no. 1 (2019): 4741.

[138]

B. Jiang, Y. Gao, J. Che, et al., “Discovery and resistance mechanism of a selective CDK12 degrader,” Nature Chemical Biology 17, no. 6 (2021): 675-683.

[139]

W. Chen, Y. Wu, C. Yang, et al., “CDK9 targeting PROTAC L055 inhibits ERα-positive breast cancer,” Biomedicine & Pharmacotherapy 177 (2024): 116972.

[140]

C. Yang, C. A. Boyson, M. Di Liberto, et al., “CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Mediated Cytotoxicity,” Cancer Research 75, no. 9 (2015): 1838-1845.

[141]

S. Hati, M. Zallocchi, R. Hazlitt, et al., “AZD5438-PROTAC: A selective CDK2 degrader that protects Against cisplatin- and noise-induced hearing loss,” European Journal of Medicinal Chemistry 226 (2021): 113849.

[142]

M. Teng, J. Jiang, Z. He, et al., “Development of CDK2 and CDK5 Dual Degrader TMX-2172,” Angewandte Chemie International Edition in English 59, no. 33 (2020): 13865-13870.

[143]

M. De Dominici, P. Porazzi, Y. Xiao, et al., “Selective inhibition of Ph-positive ALL cell growth Through kinase-dependent and -independent effects by CDK6-specific PROTACs,” Blood 135, no. 18 (2020): 1560-1573.

[144]

J. Hu, J. Wei, H. Yim, et al., “Potent and Selective Mitogen-Activated Protein Kinase Kinase 1/2 (MEK1/2) Heterobifunctional Small-molecule Degraders,” Journal of Medicinal Chemistry 63, no. 24 (2020): 15883-15905.

[145]

A. Prahallad, C. Sun, S. Huang, et al., “Unresponsiveness of colon cancer to BRAF(V600E) inhibition Through feedback activation of EGFR,” Nature 483, no. 7387 (2012): 100-103.

[146]

I. You, E. C. Erickson, K. A. Donovan, et al., “Discovery of an AKT Degrader With Prolonged Inhibition of Downstream Signaling,” Cell Chemical Biology 27, no. 1 (2020): 66-73. e67.

[147]

E. C. Erickson, I. You, G. Perry, et al., “Multiomic profiling of breast cancer cells uncovers stress MAPK-associated sensitivity to AKT degradation,” Science Signaling 17, no. 825 (2024): eadf2670.

[148]

X. Yu, J. Xu, L. Xie, et al., “Design, Synthesis, and Evaluation of Potent, Selective, and Bioavailable AKT Kinase Degraders,” Journal of Medicinal Chemistry 64, no. 24 (2021): 18054-18081.

[149]

X. Mu, L. Bai, Y. Xu, J. Wang, and H. Lu, “Protein targeting chimeric molecules specific for dual bromodomain 4 (BRD4) and Polo-Like kinase 1 (PLK1) proteins in acute myeloid leukemia cells,” Biochemical and Biophysical Research Communications 521, no. 4 (2020): 833-839.

[150]

T. Niu, K. Li, L. Jiang, et al., “Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality With PARP inhibitor,” European Journal of Medicinal Chemistry 228 (2022): 114012.

[151]

Z. Li, B. J. Pinch, C. M. Olson, et al., “Development and Characterization of a Wee1 Kinase Degrader,” Cell Chemical Biology 27, no. 1 (2020): 57-65. e59.

[152]

B. Adhikari, J. Bozilovic, M. Diebold, et al., “PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase,” Nature Chemical Biology 16, no. 11 (2020): 1179-1188.

[153]

X. Liu, Y. Zhang, S. Wu, et al., “Palmatine induces G2/M phase arrest and mitochondrial-associated pathway apoptosis in colon cancer cells by targeting AURKA,” Biochemical Pharmacology 175 (2020): 113933.

[154]

W. Yue, H. Y. Zhang, H. Schatten, T. G. Meng, and Q. Y. Sun, “CtIP regulates G2/M transition and bipolar spindle assembly During mouse oocyte meiosis,” Journal of Genetics and Genomics 51, no. 12 (2024): 1435-1446.

[155]

C. Donoghue, M. Cubillos-Rojas, N. Gutierrez-Prat, et al., “Optimal linker length for small molecule PROTACs that selectively target p38α and p38β for degradation,” European Journal of Medicinal Chemistry 201 (2020): 112451.

[156]

D. R. McDonald, D. Brown, F. A. Bonilla, and R. S. Geha, “Interleukin receptor-associated kinase-4 deficiency impairs Toll-Like receptor-dependent innate antiviral immune responses,” Journal of Allergy and Clinical Immunology 118, no. 6 (2006): 1357-1362.

[157]

L. Fu, J. Zhang, B. Shen, et al., “Discovery of Highly Potent and Selective IRAK1 Degraders to Probe Scaffolding Functions of IRAK1 in ABC DLBCL,” Journal of Medicinal Chemistry 64, no. 15 (2021): 10878-10889.

[158]

Z. Tao and X. Wu, “Targeting Transcription Factors in Cancer: From ”Undruggable“ to “Druggable”,” Methods in Molecular Biology 2594 (2023): 107-131.

[159]

M. Dai, S. Radhakrishnan, R. Li, et al., “Targeted Protein Degradation: An Important Tool for Drug Discovery for ”Undruggable“ Tumor Transcription Factors,” Technology in Cancer Research and Treatment 21 (2022): 15330338221095950.

[160]

F. Sias, S. Zoroddu, R. Migheli, and L. Bagella, “Untangling the Role of MYC in Sarcomas and Its Potential as a Promising Therapeutic Target,” International Journal of Molecular Sciences 26, no. 5 (2025).

[161]

S. Lier, A. Sellmer, F. Orben, et al., “A novel Cereblon E3 ligase modulator With antitumor activity in gastrointestinal cancer,” Bioorganic Chemistry 119 (2022): 105505.

[162]

Y. Li, C. Liu, X. Zhang, et al., “CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway,” British Journal of Cancer 126, no. 12 (2022): 1684-1694.

[163]

Q. Liu, J. Wang, Z. Guo, et al., “CMTM6 promotes hepatocellular carcinoma progression Through stabilizing β-catenin,” Cancer Letters 583 (2024): 216585.

[164]

H. Liao, X. Li, L. Zhao, et al., “A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer,” Cell Discovery 6 (2020): 35.

[165]

E. P. Booy, R. Howard, O. Marushchak, et al., “The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1,” Nucleic Acids Research 42, no. 5 (2014): 3346-3361.

[166]

M. Hluchý, P. Gajdušková, I. Ruiz de Los Mozos, et al., “CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1,” Nature 609, no. 7928 (2022): 829-834.

[167]

R. A. Gama-Brambila, J. Chen, J. Zhou, et al., “A PROTAC targets splicing factor 3B1,” Cell Chemical Biology 28, no. 11 (2021): 1616-1627. e1618.

[168]

J. Zhou, K. Tison, H. Zhou, et al., “STAT5 and STAT3 balance shapes dendritic cell function and tumour immunity,” Nature 643, no. 8071 (2025): 519-528.

[169]

X. Xie, T. Yu, X. Li, et al., “Recent advances in targeting the ”undruggable“ proteins: From drug discovery to clinical trials,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 335.

[170]

D. P. Petrylak, X. Gao, N. J. Vogelzang, et al., “First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) With metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI),” Journal of Clinical Oncology 38, no. 15 suppl (2020): 3500-3500.

[171]

L. Zhao, X. Han, J. Lu, D. McEachern, and S. Wang, “A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo,” Neoplasia 22, no. 10 (2020): 522-532.

[172]

X. Han, L. Zhao, W. Xiang, et al., “Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands,” Journal of Medicinal Chemistry 62, no. 24 (2019): 11218-11231.

[173]

X. Han, L. Zhao, W. Xiang, et al., “Strategies Toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer,” Journal of Medicinal Chemistry 64, no. 17 (2021): 12831-12854.

[174]

W. Xiang, L. Zhao, X. Han, et al., “Discovery of ARD-2585 as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer,” Journal of Medicinal Chemistry 64, no. 18 (2021): 13487-13509.

[175]

A. D. Takwale, S. H. Jo, Y. U. Jeon, et al., “Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras,” European Journal of Medicinal Chemistry 208 (2020): 112769.

[176]

K. Dalal, M. Roshan-Moniri, A. Sharma, et al., “Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer,” Journal of Biological Chemistry 289, no. 38 (2014): 26417-26429.

[177]

K. Sienkiewicz, C. Yang, B. M. Paschal, and A. Ratan, “Genomic analyses of the metastasis-derived prostate cancer cell lines LNCaP, VCaP, and PC3-AR,” Prostate 82, no. 4 (2022): 442-451.

[178]

G. T. Lee, N. Nagaya, J. Desantis, et al., “Effects of MTX-23, a Novel PROTAC of Androgen Receptor Splice Variant-7 and Androgen Receptor, on CRPC Resistant to Second-Line Antiandrogen Therapy,” Molecular Cancer Therapeutics 20, no. 3 (2021): 490-499.

[179]

E. S. Antonarakis, C. Lu, H. Wang, et al., “AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer,” New England Journal of Medicine 371, no. 11 (2014): 1028-1038.

[180]

M. M. Regan, G. Viale, M. G. Mastropasqua, et al., “Re-evaluating adjuvant breast cancer trials: Assessing hormone receptor status by immunohistochemical versus extraction assays,” Journal of the National Cancer Institute 98, no. 21 (2006): 1571-1581.

[181]

E. P. Hamilton, C. Ma, M. De Laurentiis, et al., “VERITAC-2: A Phase III study of vepdegestrant, a PROTAC ER degrader, versus fulvestrant in ER+/HER2- advanced breast cancer,” Future Oncology 20, no. 32 (2024): 2447-2455.

[182]

A. S. Lu, M. Rouhimoghadam, C. K. Arnatt, E. J. Filardo, and A. K. Salem, “Proteolytic Targeting Chimeras With Specificity for Plasma Membrane and Intracellular Estrogen Receptors,” Molecular Pharmaceutics 18, no. 3 (2021): 1455-1469.

[183]

B. L. Roberts, Z. X. Ma, A. Gao, et al., “Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders,” ACS Chemical Biology 15, no. 6 (2020): 1487-1496.

[184]

B. Hu and J. Hu, “Complete elimination of estrogen receptor α by PROTAC estrogen receptor α degrader ERD-148 in breast cancer cells,” Breast Cancer Research and Treatment 203, no. 2 (2024): 383-396.

[185]

Y. Dai, N. Yue, J. Gong, et al., “Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α,” European Journal of Medicinal Chemistry 187 (2020): 111967.

[186]

T. L. Gonzalez, M. Hancock, S. Sun, et al., “Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer,” Breast Cancer Research and Treatment 180, no. 3 (2020): 611-622.

[187]

D. R. Cochrane, S. Bernales, B. M. Jacobsen, et al., “Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide,” Breast Cancer Research 16, no. 1 (2014): R7.

[188]

R. R. Shah, E. De Vita, and P. S. Sathyamurthi, “Structure-Guided Design and Optimization of Covalent VHL-Targeted Sulfonyl Fluoride PROTACs,” Journal of Medicinal Chemistry 67, no. 6 (2024): 4641-4654.

[189]

V. Ritter, F. Krautter, D. Klein, V. Jendrossek, and J. Rudner, “Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy,” Cell Death and Disease 12, no. 7 (2021): 694.

[190]

E. González-Gualda, M. Pàez-Ribes, B. Lozano-Torres, et al., “Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity,” Aging Cell 19, no. 4 (2020): e13142.

[191]

Y. Jia, L. Han, C. L. Ramage, et al., “Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells,” Haematologica 108, no. 10 (2023): 2626.

[192]

Y. Jia, Q. Zhang, W. Zhang, et al., “Abstract CC09-01: Targeting BCL-XL/BCL-2 by PROTAC 753b effectively eliminates AML cells and enhances efficacy of chemotherapy by targeting senescent cells,” Molecular Cancer Therapeutics 20, no. 12 Supplement (2021): CC09-01-CC09-01.

[193]

X. Zhang, D. Thummuri, Y. He, et al., “Utilizing PROTAC technology to address the on-target platelet toxicity associated With inhibition of BCL-X L,” Chemical Communications 55, no. 98 (2019): 14765-14768.

[194]

Y. Xu, Z. Lei, J. Zhu, and L. Wan, “Mivebresib synergized With PZ703b, a novel Bcl-xl PROTAC degrader, induces apoptosis in bladder cancer cells via the mitochondrial pathway,” Biochemical and Biophysical Research Communications 623 (2022): 120-126.

[195]

D. Lv, P. Pal, X. Liu, et al., “Development of a BCL-xL and BCL-2 dual degrader With improved anti-leukemic activity,” Nature Communications 12, no. 1 (2021): 6896.

[196]

S. Khan, J. Wiegand, P. Zhang, et al., “BCL-X(L) PROTAC degrader DT2216 synergizes With sotorasib in preclinical models of KRAS(G12C)-mutated cancers,” Journal of Hematology & Oncology 15, no. 1 (2022): 23.

[197]

S. Khan, X. Zhang, D. Lv, et al., “A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity,” Nature Medicine 25, no. 12 (2019): 1938-1947.

[198]

C. Xu, H. Liu, C. J. Pirozzi, et al., “TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist,” Acta Neuropathol Commun 9, no. 1 (2021): 178.

[199]

J. Yang, Y. Li, A. Aguilar, et al., “Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader Into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders,” Journal of Medicinal Chemistry 62, no. 21 (2019): 9471-9487.

[200]

B. Wang, J. Liu, I. Tandon, et al., “Development of MDM2 degraders based on ligands derived From Ugi reactions: Lessons and discoveries,” European Journal of Medicinal Chemistry 219 (2021): 113425.

[201]

A. Goerg, G. Piendl, V. Albert, et al., “Mdm2 targeting via PROteolysis TArgeting Chimeras (PROTAC) is efficient in p53 wildtype, p53-mutated, and abemaciclib-resistant estrogen receptor-positive cell lines and superior to mdm2 inhibition,” BMC cancer 25, no. 1 (2025): 978.

[202]

J. Martínez-Quintanilla, D. Cabot, D. Sabia, et al., “Precision Oncology and Systemic Targeted Therapy in Pseudomyxoma Peritonei,” Clinical Cancer Research 30, no. 18 (2024): 4082-4099.

[203]

A. G. Chapdelaine, G. C. Ku, G. Sun, and M. K. Ayrapetov, “The Targeted Degradation of BRAF V600E Reveals the Mechanisms of Resistance to BRAF-Targeted Treatments in Colorectal Cancer Cells,” Cancers (Basel) 15, no. 24 (2023): 5805.

[204]

G. Posternak, X. Tang, P. Maisonneuve, et al., “Functional characterization of a PROTAC directed Against BRAF mutant V600E,” Nature Chemical Biology 16, no. 11 (2020): 1170-1178.

[205]

R. Gutzmer, D. Stroyakovskiy, H. Gogas, et al., “Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): Primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial,” Lancet 395, no. 10240 (2020): 1835-1844.

[206]

D. S. Hong, M. G. Fakih, J. H. Strickler, et al., “KRAS(G12C) Inhibition With Sotorasib in Advanced Solid Tumors,” New England Journal of Medicine 383, no. 13 (2020): 1207-1217.

[207]

S. I. Ou, P. A. Jänne, T. A. Leal, et al., “First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients With Advanced KRAS(G12C) Solid Tumors (KRYSTAL-1),” Journal of Clinical Oncology 40, no. 23 (2022): 2530-2538.

[208]

M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, and C. M. Crews, “Targeted Degradation of Oncogenic KRAS(G12C) by VHL-Recruiting PROTACs,” ACS Central Science 6, no. 8 (2020): 1367-1375.

[209]

L. Li, Y. Wu, Z. Yang, et al., “Discovery of KRas G12C-IN-3 and Pomalidomide-based PROTACs as degraders of endogenous KRAS G12C With potent anticancer activity,” Bioorganic Chemistry 117 (2021): 105447.

[210]

F. Yang, Y. Wen, C. Wang, et al., “Efficient targeted oncogenic KRAS(G12C) degradation via first reversible-covalent PROTAC,” European Journal of Medicinal Chemistry 230 (2022): 114088.

[211]

M. Yang, K. Liu, P. Chen, et al., “Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis,” Cell Death and Disease 13, no. 10 (2022): 912.

[212]

L. Liu, C. Yang, B. P. Lavayen, et al., “Targeted BRD4 protein degradation by dBET1 ameliorates acute ischemic brain injury and improves functional outcomes associated With reduced neuroinflammation and oxidative stress and preservation of blood-brain barrier integrity,” Journal of Neuroinflammation 19, no. 1 (2022): 168.

[213]

G. Li, L. Ma, C. Feng, et al., “MZ1, a BRD4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma,” BMC cancer 24, no. 1 (2024): 220.

[214]

L. He, C. Chen, G. Gao, K. Xu, and Z. Ma, “ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma,” Aging 12, no. 5 (2020): 4547-4557.

[215]

X. Liao, X. Qian, Z. Zhang, et al., “ARV-825 Demonstrates Antitumor Activity in Gastric Cancer via MYC-Targets and G2M-Checkpoint Signaling Pathways,” Frontiers in oncology 11 (2021): 753119.

[216]

C. Qin, Y. Hu, B. Zhou, et al., “Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression,” Journal of Medicinal Chemistry 61, no. 15 (2018): 6685-6704.

[217]

M. Actis, J. Cresser-Brown, E. A. Caine, et al., “Evaluation of Cereblon-Directing Warheads for the Development of Orally Bioavailable PROTACs,” Journal of Medicinal Chemistry 68, no. 3 (2025): 3591-3611.

[218]

R. P. Nowak, Y. Xiong, N. Kirmani, et al., “Structure-Guided Design of a ”Bump-and-Hole“ Bromodomain-Based Degradation Tag,” Journal of Medicinal Chemistry 64, no. 15 (2021): 11637-11650.

[219]

K. Xu, Z. J. Wu, A. C. Groner, et al., “EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent,” Science 338, no. 6113 (2012): 1465-1469.

[220]

D. Du, D. Xu, L. Zhu, et al., “Structure-Guided Development of Small-Molecule PRC2 Inhibitors Targeting EZH2-EED Interaction,” Journal of Medicinal Chemistry 64, no. 12 (2021): 8194-8207.

[221]

A. Testa, S. J. Hughes, X. Lucas, J. E. Wright, and A. Ciulli, “Structure-Based Design of a Macrocyclic PROTAC,” Angewandte Chemie International Edition in English 59, no. 4 (2020): 1727-1734.

[222]

G. Xue, K. Wang, D. Zhou, H. Zhong, and Z. Pan, “Light-Induced Protein Degradation With Photocaged PROTACs,” Journal of the American Chemical Society 141, no. 46 (2019): 18370-18374.

[223]

F. Potjewyd, A. W. Turner, J. Beri, et al., “Degradation of Polycomb Repressive Complex 2 With an EED-Targeted Bivalent Chemical Degrader,” Cell Chemical Biology 27, no. 1 (2020): 47-56. e15.

[224]

A. Ma, E. Stratikopoulos, K. S. Park, et al., “Discovery of a first-in-class EZH2 selective degrader,” Nature Chemical Biology 16, no. 2 (2020): 214-222.

[225]

Z. Liu, X. Hu, Q. Wang, et al., “Design and Synthesis of EZH2-Based PROTACs to Degrade the PRC2 Complex for Targeting the Noncatalytic Activity of EZH2,” Journal of Medicinal Chemistry 64, no. 5 (2021): 2829-2848.

[226]

Y. Tu, Y. Sun, S. Qiao, et al., “Design, Synthesis, and Evaluation of VHL-Based EZH2 Degraders to Enhance Therapeutic Activity Against Lymphoma,” Journal of Medicinal Chemistry 64, no. 14 (2021): 10167-10184.

[227]

J. E. Thomas, M. Wang, W. Jiang, et al., “Discovery of Exceptionally Potent, Selective, and Efficacious PROTAC Degraders of CBP and p300 Proteins,” Journal of Medicinal Chemistry 66, no. 12 (2023): 8178-8199.

[228]

R. Vannam, J. Sayilgan, S. Ojeda, et al., “Targeted degradation of the enhancer lysine acetyltransferases CBP and p300,” Cell Chemical Biology 28, no. 4 (2021): 503-514. e512.

[229]

V. Tejwani, T. Carroll, T. Macartney, et al., “PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells With microsatellite instability,” Scientific Reports 14, no. 1 (2024): 20824.

[230]

X. Li, Y. Yao, F. Wu, and Y. Song, “A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth,” Journal of Hematology & Oncology 15, no. 1 (2022): 41.

[231]

M. F. Mabanglo, B. Wilson, M. Noureldin, et al., “Crystal structures of DCAF1-PROTAC-WDR5 ternary complexes provide insight Into DCAF1 substrate specificity,” Nature Communications 15, no. 1 (2024): 10165.

[232]

J. Cantley, X. Ye, E. Rousseau, et al., “Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers,” Nature Communications 13, no. 1 (2022): 6814.

[233]

X. Liu, A. Wang, Y. Shi, et al., “PROTACs in Epigenetic Cancer Therapy: Current Status and Future Opportunities,” Molecules (Basel, Switzerland) 28, no. 3 (2023): 1217.

[234]

L. Garnar-Wortzel, T. R. Bishop, S. Kitamura, et al., “Chemical Inhibition of ENL/AF9 YEATS Domains in Acute Leukemia,” ACS Central Science 7, no. 5 (2021): 815-830.

[235]

X. Yu, D. Li, J. Kottur, et al., “A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models,” Science Translational Medicine 13, no. 613 (2021): eabj1578.

[236]

M. Mota, S. R. Sweha, M. Pun, et al., “Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 18 (2023): e2221175120.

[237]

W. Farnaby, M. Koegl, M. J. Roy, et al., “BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design,” Nature Chemical Biology 15, no. 7 (2019): 672-680.

[238]

P. D. Fischer, E. Papadopoulos, J. M. Dempersmier, et al., “A biphenyl inhibitor of eIF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders,” European Journal of Medicinal Chemistry 219 (2021): 113435.

[239]

Y. Sun, Y. Zhang, X. Chen, et al., “Discovery of a potent and selective proteolysis targeting chimera (PROTAC) degrader of NSD3 histone methyltransferase,” European Journal of Medicinal Chemistry 239 (2022): 114528.

[240]

X. Jiang, J. Wang, X. Deng, et al., “Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape,” Molecular Cancer 18, no. 1 (2019): 10.

[241]

M. He, C. Cao, Z. Ni, et al., “PROTACs: Great opportunities for academia and industry (an update From 2020 to 2021),” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 181.

[242]

Q. Wang, J. Wang, D. Yu, et al., “Benzosceptrin C induces lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting DHHC3,” Cell Reports Medicine 5, no. 2 (2024): 101357.

[243]

Y. Y. Shi, D. R. Dong, G. Fan, M. Y. Dai, and M. Liu, “A cyclic peptide-based PROTAC induces intracellular degradation of palmitoyltransferase and potently decreases PD-L1 expression in human cervical cancer cells,” Frontiers in immunology 14 (2023): 1237964.

[244]

M. Y. Dai, Y. Y. Shi, A. J. Wang, et al., “High-potency PD-1/PD-L1 degradation induced by Peptide-PROTAC in human cancer cells,” Cell Death and Disease 13, no. 11 (2022): 924.

[245]

R. Xu, H. Zhou, L. Bai, et al., “Discovery of SD-436: A Potent, Highly Selective and Efficacious STAT3 PROTAC Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression,” Journal of Medicinal Chemistry 67, no. 22 (2024): 20495-20513.

[246]

L. Schindler, L. C. D. Smyth, J. Bernhagen, M. B. Hampton, and N. Dickerhof, “Macrophage migration inhibitory factor (MIF) enhances hypochlorous acid production in phagocytic neutrophils,” Redox Biology 41 (2021): 101946.

[247]

A. Majumdar, A. D. Petrescu, Y. Xiong, and N. Noy, “Nuclear translocation of cellular retinoic acid-binding protein II is regulated by retinoic acid-controlled SUMOylation,” Journal of Biological Chemistry 286, no. 49 (2011): 42749-42757.

[248]

N. Ohoka, G. Tsuji, T. Shoda, et al., “Development of Small Molecule Chimeras That Recruit AhR E3 Ligase to Target Proteins,” ACS Chemical Biology 14, no. 12 (2019): 2822-2832.

[249]

Y. Wu, C. Pu, Y. Fu, et al., “NAMPT-targeting PROTAC promotes antitumor immunity via suppressing myeloid-derived suppressor cell expansion,” Acta Pharmaceutica Sinica B 12, no. 6 (2022): 2859-2868.

[250]

J. Cheng, J. Zhang, S. He, et al., “Photoswitchable PROTACs for Reversible and Spatiotemporal Regulation of NAMPT and NAD(),” Angewandte Chemie International Edition in English 63, no. 12 (2024): e202315997.

[251]

K. Bi, J. Cheng, S. He, et al., “Discovery of Highly Potent Nicotinamide Phosphoribosyltransferase Degraders for Efficient Treatment of Ovarian Cancer,” Journal of Medicinal Chemistry 66, no. 1 (2023): 1048-1062.

[252]

H. Osawa, T. Kurohara, T. Ito, N. Shibata, and Y. Demizu, “CRBN ligand expansion for hematopoietic prostaglandin D(2) synthase (H-PGDS) targeting PROTAC design and their in vitro ADME profiles,” Bioorganic & Medicinal Chemistry 84 (2023): 117259.

[253]

Y. Murakami, H. Osawa, T. Kurohara, et al., “Structure-activity relationship study of PROTACs Against hematopoietic prostaglandin D(2) synthase,” RSC Medicinal Chemistry 13, no. 12 (2022): 1495-1503.

[254]

X. Wang and D. T. Weaver, “The ups and downs of DNA repair biomarkers for PARP inhibitor therapies,” American Journal of Cancer Research 1, no. 3 (2011): 301-327.

[255]

D. Fu, Y. Yuan, F. Qin, et al., “Design, synthesis and biological evaluation of tyrosinase-targeting PROTACs,” European Journal of Medicinal Chemistry 226 (2021): 113850.

[256]

L. C. Czuba, K. M. Hillgren, and P. W. Swaan, “Post-translational modifications of transporters,” Pharmacology & Therapeutics 192 (2018): 88-99.

[257]

A. Bensimon, M. D. Pizzagalli, F. Kartnig, et al., “Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis,” Cell Chemical Biology 27, no. 6 (2020): 728-739. e729.

[258]

N. Park, J. Marquez, T. K. Pham, et al., “Cereblon contributes to cardiac dysfunction by degrading Cav1.2α,” European Heart Journal 43, no. 20 (2022): 1973-1989.

[259]

C. E. Powell, G. Du, J. W. Bushman, et al., “Selective degradation-inducing probes for studying cereblon (CRBN) biology,” RSC Medicinal Chemistry 12, no. 8 (2021): 1381-1390.

[260]

C. Maniaci, S. J. Hughes, A. Testa, et al., “Homo-PROTACs: Bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation,” Nature Communications 8, no. 1 (2017): 830.

[261]

M. Hanafi, X. Chen, and N. Neamati, “Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91,” Journal of Medicinal Chemistry 64, no. 3 (2021): 1626-1648.

[262]

W. Bi, L. Zhu, Z. Zeng, et al., “Investigations Into the role of 26S proteasome non-ATPase regulatory subunit 13 in neuroinflammation,” Neuroimmunomodulation 21, no. 6 (2014): 331-337.

[263]

J. J. Chi, H. Li, Z. Zhou, et al., “A novel strategy to block mitotic progression for targeted therapy,” EBioMedicine 49 (2019): 40-54.

[264]

B. K. Neilsen, B. Chakraborty, J. L. McCall, et al., “WDR5 supports colon cancer cells by promoting methylation of H3K4 and suppressing DNA damage,” BMC cancer 18, no. 1 (2018): 673.

[265]

C. Rébé, R. Filomenko, M. Raveneau, et al., “Identification of biological markers of liver X receptor (LXR) activation at the cell surface of human monocytes,” PLoS ONE 7, no. 11 (2012): e48738.

[266]

H. Xu, N. Ohoka, H. Yokoo, et al., “Development of Agonist-Based PROTACs Targeting Liver X Receptor,” Frontiers in Chemistry 9 (2021): 674967.

[267]

J. Li, X. Chen, A. Lu, and C. Liang, “Targeted protein degradation in cancers: Orthodox PROTACs and Beyond,” Innovation (Camb) 4, no. 3 (2023): 100413.

[268]

J. A. Marteijn, L. T. van der Meer, J. J. Smit, et al., “The ubiquitin ligase Triad1 inhibits myelopoiesis Through UbcH7 and Ubc13 interacting domains,” Leukemia 23, no. 8 (2009): 1480-1489.

[269]

V. M. Vergara, A. R. Mayer, E. Damaraju, K. Hutchison, and V. D. Calhoun, “The effect of preprocessing pipelines in subject classification and detection of abnormal resting state functional network connectivity using group ICA,” Neuroimage 145 (2017): 365-376.

[270]

R. B. Kargbo, PROTAC Degradation of IRAK4 for the Treatment of Neurodegenerative and Cardiovascular Diseases[Z] (ACS Publications, 2019): 1251-1252.

[271]

X. Yang, Z. Wang, Y. Pei, et al., “Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders,” European Journal of Medicinal Chemistry 218 (2021): 113341.

[272]

X. Gao, H. A. Burris, and J. Vuky, “Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC)[Z],” American Society of Clinical Oncology 40, no. 6 suppl (2022): 17-17.

[273]

S. M. Gough, J. J. Flanagan, J. Teh, et al., “Oral estrogen receptor PROTAC vepdegestrant (ARV-471) is highly efficacious as monotherapy and in combination With CDK4/6 or PI3K/mTOR pathway inhibitors in preclinical ER+ breast cancer models,” Clinical Cancer Research 30, no. 16 (2024): 3549-3563.

[274]

S. Jaime-Figueroa, A. D. Buhimschi, M. Toure, J. Hines, and C. M. Crews, “Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders With improved pharmacokinetic properties,” Bioorganic & Medicinal Chemistry Letters 30, no. 3 (2020): 126877.

[275]

J. F. Seymour, C. Y. Cheah, R. Parrondo, et al., “First results From a phase 1, first-in-human study of the Bruton's tyrosine kinase (BTK) degrader Bgb-16673 in patients (Pts) With relapsed or refractory (R/R) B-cell malignancies (BGB-16673-101),” Blood 142 (2023): 4401.

[276]

L. Zheng, J. Cao, L. Ma, et al., “LC-MF-4, a Novel FGFR3 Degrader for Therapeutic Intervention in FGFR3-Altered Cancers,” Journal of Medicinal Chemistry 68, no. 13 (2025): 13858-13871.

[277]

H. Zhang, H.-Y. Zhao, X.-X. Xi, et al., “Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC),” European Journal of Medicinal Chemistry 189 (2020): 112061.

[278]

D. E. Rathkopf, M. R. Patel, A. D. Choudhury, et al., First-in-human phase 1 study of CC-94676, a first-in-class androgen receptor (AR) ligand-directed degrader (LDD), in patients (pts) With metastatic castration-resistant prostate cancer (mCRPC)[Z] (American Society of Clinical Oncology, 2024).

[279]

E. P. Hamilton, A. F. Schott, R. Nanda, et al., “ARV-471, an estrogen receptor (ER) PROTAC degrader, combined With palbociclib in advanced ER+/human epidermal growth factor receptor 2-negative (HER2-) breast cancer: Phase 1b cohort (part C) of a phase 1/2 study[Z],” American Society of Clinical Oncology 40, no. 16 suppl (2022): TPS1120-TPS1120.

[280]

T. H. Bae, K. W. Sung, T. M. Pham, et al., “An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer,” Cancer Research 85, no. 2 (2025): 342-359.

[281]

X. Han and Y. Sun, “Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy,” Cell Reports Physical Science 3, no. 10 (2022): 101062.

[282]

S. R. Boyd, S. Chamakuri, A. J. Trostle, et al., “MYC-targeting PROTACs lead to bimodal degradation and N-terminal truncation,” ACS Chemical Biology 20, no. 4 (2025): 896-906.

[283]

S. U. Zaman, P. P. Pagare, H. Ma, et al., “Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells Through inhibition of Wnt/β-catenin signaling,” RSC Medicinal Chemistry 15, no. 11 (2024): 3746-3758.

[284]

H. Zhou, L. Bai, R. Xu, et al., “Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein,” Journal of Medicinal Chemistry 62, no. 24 (2019): 11280-11300.

[285]

P. Zhang, X. Zhang, X. Liu, et al., “PROTACs are effective in addressing the platelet toxicity associated With BCL-XL inhibitors,” Exploration of Targeted anti-tumor Therapy 1, no. 4 (2020): 259.

[286]

M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, and C. M. Crews, “Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs,” ACS Central Science 6, no. 8 (2020): 1367-1375.

[287]

E. Jeon, C. Kim, M. Ko, et al., “KRASG12D selective VHL-PROTAC With sparing KRASWT and other KRAS mutants,” European Journal of Medicinal Chemistry 297 (2025): 117928.

[288]

C. Zhou, Z. Fan, Y. Gu, et al., “Design, Synthesis, and Biological Evaluation of Potent and Selective PROTAC Degraders of Oncogenic KRASG12D,” Journal of Medicinal Chemistry 67, no. 2 (2024): 1147-1167.

[289]

M. Gonzales-Cope, S. Sidoli, N. V. Bhanu, K.-J. Won, and B. A. Garcia, “Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells,” BMC Genomics [Electronic Resource] 17, no. 1 (2016): 95.

[290]

R. A. Rao, N. Dhele, S. Cheemadan, et al., “Ezh2 mediated H3K27me3 activity facilitates somatic transition During human pluripotent reprogramming,” Scientific Reports 5, no. 1 (2015): 8229.

[291]

Q. Chen, B. Yang, X. Liu, et al., “Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents,” Theranostics 12, no. 11 (2022): 4935.

[292]

J. Guo, F. Yu, K. Zhang, et al., “Beyond inhibition Against the PD-1/PD-L1 pathway: Development of PD-L1 inhibitors targeting internalization and degradation of PD-L1,” RSC Medicinal Chemistry 15, no. 4 (2024): 1096-1108.

[293]

G. Zhong, X. Chang, W. Xie, and X. Zhou, “Targeted protein degradation: Advances in drug discovery and clinical practice,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 308.

[294]

L. Tran, J. A. Winton, K. T. Matschke, et al., “The Effect of Itraconazole on the Pharmacokinetics of Vepdegestrant, a PROteolysis TArgeting Chimera (PROTAC) Estrogen Receptor Degrader in Healthy Adult Participants,” (2024).

[295]

S. Hurvitz, A. Schott, C. Ma, et al., “205P VERITAC update: Phase II study of ARV-471, a PROteolysis TArgeting Chimera (PROTAC) estrogen receptor (ER) degrader in ER+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer,” ESMO Open 8, no. 1 (2023): 101394.

[296]

A. Philipovskiy, A. Schott, J. Cortés, et al., “256TiP TACTIVE-E: Phase Ib study of ARV-471, a PROteolysis TArgeting Chimera (PROTAC) estrogen receptor (ER) degrader, in combination With everolimus in ER+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer,” ESMO Open 8, no. 1 (2023).

[297]

H. Iwata, E. Hamilton, C. Ma, et al., “73TiP Global phase III studies evaluating vepdegestrant in estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer: VERITAC-2 and VERITAC-3,” Annals of Oncology 34 (2023): S1493.

[298]

P. Fasching, K. Clifton, Z. Katashvili, et al., “154TiP TACTIVE-N: Open-label, randomized, noncomparative neoadjuvant phase 2 study of ARV-471, a PROteolysis TArgeting Chimera (PROTAC) estrogen receptor (ER) degrader, or anastrozole in postmenopausal women With ER+/human epidermal growth factor receptor 2 (HER2)-localized breast cancer,” ESMO Open 8, no. 1 (2023).

[299]

J. Hilton, K. J. Jerzak, A. J. Chien, et al., “Abstract P4-12-03: Vepdegestrant, a PROteolysis TArgeting Chimera (PROTAC) Estrogen Receptor (ER) Degrader, Plus Abemaciclib in ER-Pos/Human Epidermal Growth Factor Receptor 2 (HER2)-Negative Advanced or Metastatic Breast Cancer: TACTIVE-U Prelim Phase 1b Results,” Clinical Cancer Research 31, no. 12 Supplement (2025): P4-12-03-P14-12-03.

[300]

D. Z. Yang, L. Zhou, J. A. Winton, et al., “Effect of vepdegestrant, a PROTAC oestrogen receptor degrader, on dabigatran and rosuvastatin pharmacokinetics in healthy participants,” British Journal of Clinical Pharmacology (2025).

[301]

H. Iwata, Y. Naito, M. Hattori, et al., “58P Safety and pharmacokinetics (PK) of vepdegestrant in Japanese patients With estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer: Results From a Japanese phase I study,” Annals of Oncology 34 (2023): S1488-S1489.

[302]

M. Campone, C. X. Ma, M. De Laurentiis, et al., “VERITAC-2: A global, randomized phase 3 study of ARV-471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, vs fulvestrant in ER+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer,” Journal of Clinical Oncology 41, no. 16 Suppl (2023).

[303]

S. Drescher, W. Tan, Y. Zhang, and J. P. Smith, “Abstract P4-08-13: Evaluating CYP3A4-Mediated Drug Interaction Risks for Vepdegestrant, a PROteolysis TArgeting Chimera (PROTAC) Estrogen Receptor (ER) Degrader, in Combination With Cyclin-Dependent Kinase (CDK) 4/6 Inhibitors and Everolimus,” Clinical Cancer Research 31, no. 12 Supplement (2025): P4-08-13-P04-08-13.

[304]

M. Telli, C. Gawryletz, M. Wei, et al., “264TiP TACTIVE-K: Phase Ib/II study of vepdegestrant, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, in combination With PF-07220060, a cyclin-dependent kinase (CDK) 4 inhibitor, in ER+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer,” ESMO Open 9 (2024): 103285.

[305]

H. Yokoo, M. Naito, and Y. Demizu, “Investigating the cell permeability of proteolysis-targeting chimeras (PROTACs),” Expert Opinion on Drug Discovery 18, no. 4 (2023): 357-361.

[306]

W. Zhao, Y. Jiang, X. Li, and H. Wang, “Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 16, no. 6 (2024): e2020.

[307]

D. P. Petrylak, M. McKean, J. M. Lang, et al., “ARV-766, a PROteolysis TArgeting Chimera (PROTAC) Androgen Receptor Degrader, in Metastatic Castration-Resistant Prostate Cancer: Initial Results of a Phase 1/2 Study,” Journal of Clinical Oncology 42, no. 16 (2024).

[308]

K. N. Chi, R. R. McKay, S. Sandhu, et al., A phase 3 trial of the androgen receptor ligand-directed degrader, BMS-986365, versus investigator's choice in patients With metastatic castration-resistant prostate cancer (CA071-1000-rechARge)[Z] (American Society of Clinical Oncology, 2025).

[309]

D. Rathkopf, M. Patel, A. Choudhury, et al., “1597MO Clinical activity of BMS-986365 (CC-94676), a dual androgen receptor (AR) ligand-directed degrader and antagonist, in heavily pretreated patients (pts) With metastatic castration-resistant prostate cancer (mCRPC),” Annals of Oncology 35 (2024): S962-S963.

[310]

M. M. Koralewicz and O. A. Szatkowska, “Topical solutions for androgenetic alopecia: Evaluating efficacy and safety,” Forum Dermatologicum 10, no. 3 (2024): 71-78.

[311]

H. A. Patel, L. Guo, and S. R. Feldman, “The impact of current investigational drugs for acne on future treatment strategies,” Expert Opinion on Investigational Drugs 33, no. 2 (2024): 127-132.

[312]

A. Philippidis, “Up-to-$2 B Sanofi Collaboration Pays Off for Kymera: Targeted protein degradation therapy developer generates $55 M in milestone payments From partnership to develop lead candidate in atopic dermatitis, hidradenitis suppurativa,” GEN Edge 5, no. 1 (2023): 898-903.

[313]

S. Agarwal, A. A. McDonald, V. Campbell, et al., “Pharmacokinetics and Pharmacodynamics of KT-474, a Novel Selective Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) Degrader, in Healthy Adults,” Clinical and Translational Science 18, no. 3 (2025): e70181.

[314]

L. Chen, R. Luo, L. Ma, et al., “Discovery of LC-MI-3: A Potent and Orally Bioavailable Degrader of Interleukin-1 Receptor-Associated Kinase 4 for the Treatment of Inflammatory Diseases,” Journal of Medicinal Chemistry 67, no. 10 (2024): 8060-8076.

[315]

J. K. Lue, D. A. Stevens, M. E. Williams, et al., Phase 1 study of KT-413, a targeted protein degrader of IRAK4 and IMiD substrates, in adult patients With relapsed or refractory B-cell non-Hodgkin lymphoma[Z] (Washington, DC: American Society of Hematology, 2022).

[316]

S. Chakraborty, C. Morganti, J. Dey, et al., “A STAT3 degrader demonstrates pre-clinical efficacy in Venetoclax resistant Acute Myeloid Leukemia,” Blood 142 (2023): 2787.

[317]

G. Nitulescu, O. T. Olaru, C. Andrei, G. M. Nitulescu, and A. Zanfirescu, “Targeting Intracellular Pathways in Atopic Dermatitis With Small Molecule Therapeutics,” Current Issues in Molecular Biology 47, no. 8 (2025): 659.

[318]

A. M. Shahid, W. Vainchenker, and S. N. Constantinescu, “JCMM Annual Review on Advances in Biotechnology for the Treatment of Haematological Malignancies: A Review of the Latest In-Patient Developments 2024-2025,” Journal of Cellular and Molecular Medicine 29, no. 13 (2025): e70700.

[319]

R. Lokaj, “FDA Places Partial Hold on NX-2127 Phase 1 Trial in B-Cell Malignancies,” Cancer Network (2023). NA-NA.

[320]

K. Linton, F. Forconi, D. Lewis, et al., “PB2296: ROBUST BRUTON'S TYROSINE KINASE (BTK) DEGRADATION WITH NX-5948, AN ORAL BTK DEGRADER, IN A FIRST-IN-HUMAN PHASE 1A TRIAL IN PATIENTS (PTS) WITH RELAPSED/REFRACTORY B CELL MALIGNANCIES,” HemaSphere 7, no. S3 (2023): e593178d.

[321]

J. Li, W. Xu, P. Yan, et al., “Abstract CT128: Phase 1 study of HSK29116, a Bruton tyrosine kinase (BTK) proteolysis-targeting chimera (PROTAC) agent, in patients With relapsed or refractory B-cell malignancies,” Cancer Research 83, no. 8 Supplement (2023): CT128-CT128.

[322]

R. T. Salvaris, J. Brennan, and K. L. Lewis, “BTK is the target that keeps on giving: A review of BTK-degrader drug development, clinical data, and future directions in CLL,” Cancers 17, no. 3 (2025): 557.

[323]

M. C. Thompson, R. D. Parrondo, A. M. Frustaci, et al., “Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients With relapsed or refractory chronic lymphocytic Leukemia/Small lymphocytic lymphoma: Results From the phase 1 CaDAnCe-101 study,” Blood 144 (2024): 885.

[324]

X. Feng, Y. Wang, T. Long, et al., “P1239: Bruton Tyrosine Kinase (Btk) Protein Degrader Bgb-16673 Is less apt to cause, and able to overcome variable BTK resistance mutations compared to other BTK inhibitors (BTKi),” HemaSphere 7, no. S3 (2023): e368855c.

[325]

D. Mahadevan, M. Barve, D. Mahalingam, et al., “Abstract CT063: First in human phase 1 study of DT2216, a selective BCL-xL degrader, in patients With relapsed/refractory solid malignancies (NCT04886622),” Cancer Research 85, no. 8 Supplement_2 (2025): CT063-CT063.

[326]

X. Qin, A. Presser, L. Johnson, et al., “Paclitaxel-induced mitotic arrest results in a convergence of apoptotic dependencies that can be safely exploited by BCL-XL degradation to overcome cancer chemoresistance,” BioRxiv (2025). 2025.2006. 2024.661170.

[327]

L. L. Poling, D. Cocozziello, M. He, et al., “CFT8634, a Clinical Stage BRD9 Bi DAC™ Degrader, Is Active in a Subset of Multiple Myeloma Cell Line Models and Synergistic When Combined With Pomalidomide,” Blood 142 (2023): 6594.

[328]

J. A. Livingston, J.-Y. Blay, J. Trent, et al., “A phase I study of FHD-609, a heterobifunctional degrader of bromodomain-containing protein 9, in patients With advanced synovial sarcoma or SMARCB1-deficient tumors,” Clinical Cancer Research 31, no. 4 (2025): 628-638.

[329]

M. McKean, A. I. Spira, E. Rosen, et al., A phase 1/2 study of CFT1946, a novel, bifunctional degradation activating compound (BIDAC) degrader, of mutant BRAF V600 as monotherapy and in combination With trametinib, in mutant BRAF V600 solid tumors[Z] (American Society of Clinical Oncology, 2023).

[330]

T. A. Yap, M. Gutierrez, W. T. Iams, et al., A phase 2 safety and efficacy study of PRT3789 in combination With pembrolizumab in patients With advanced or metastatic solid tumors and a SMARCA4 mutation[Z] (American Society of Clinical Oncology, 2025).

[331]

M. Wang, A. Moore, A. Grego, et al., “Abstract C013: Clinical biomarkers based on PK/PD modeling to guide the development for a first-in-class, highly selective SMARCA2 (BRM) degrader, PRT3789,” Molecular Cancer Therapeutics 22, no. 12 Supplement (2023): C013-C013.

[332]

T. S. Wilson and P. Scaffidi, “Compromised epigenetic robustness in cancer: Fueling evolution, exposing weakness,” Trends in Cancer 11, no. 6 (2025): 575-590.

[333]

J. Ren, J. Wang, S. Xu, et al., “Preclinical development of TQB3019: A potent and selective oral BTK degrader leveraging the OAPD® platform to overcome acquired resistance mutations,” Cancer Research 85, no. 8 Supplement_1 (2025): 400-400.

[334]

N. C. Rallabandi, D. Panpatil, D. Gahtory, U. Navik, and R. Kumar, EGFR molecular degraders: Preclinical successes and the road ahead[Z] (Taylor & Francis, 2025): 633-636.

[335]

A. Van Acker, L. DeCarr, S. Eaton, et al., “ARV-393, a PROTAC B-cell lymphoma 6 (BCL6) degrader, combined With biologics or small molecule inhibitors (SMIs) induces tumor regressions in diffuse large B-cell lymphoma (DLBCL) models,” Cancer Research 85, no. 8 Supplement_1 (2025): 1655-1655.

[336]

S. Sen, A. F. Hezel, A. Kasi, et al., Trial in progress: Phase 1 study of the selective protein degrader ASP4396 in patients With locally advanced or metastatic solid tumors With KRAS G12D mutations[Z] (American Society of Clinical Oncology, 2025).

[337]

T. Nagashima, T. Yoshinari, Y. Nishizono, et al., “Novel KRAS G12D degrader ASP3082 demonstrates in vivo, dose-dependent KRAS degradation, KRAS pathway inhibition, and antitumor efficacy in multiple KRAS G12D-mutated cancer models,” Cancer Research 83, no. 7 Supplement (2023): 5735-5735.

[338]

L. Groocock, G. Deb, J. Zhu, et al., “BMS-986458 a potential first-in-class, highly selective, potent and well tolerated BCL6 ligand directed degrader (LDD) demonstrates multi-modal anti-tumor efficacy for the treatment of B-cell non-Hodgkin's lymphoma,” Blood 144 (2024): 957.

[339]

Y. Guo, R. Cheng, Y. Wang, et al., “Regulation of EZH2 protein stability: New mechanisms, roles in tumorigenesis, and roads to the clinic,” EBioMedicine 100 (2024): 104972.

[340]

D. Romaniello, A. Morselli, and I. Marrocco, “Strategies to Overcome Resistance to Osimertinib in EGFR-Mutated Lung Cancer,” International Journal of Molecular Sciences 26, no. 7 (2025): 2957.

[341]

M. R. Patel, M. Tees, F. T. Awan, et al., “Abstract PO-009: AC676 a BTK chimeric degrader: Phase 1 study in patients With b-cell malignancies,” Blood Cancer Discovery 5, no. 3 Supplement (2024): PO-009-PO-009.

[342]

J. Min, X. Liu, R. Peng, et al., “New generation estrogen receptor-targeted agents in breast cancer: Present situation and future prospectives,” Acta Materia Medica 3, no. 1 (2024): 57.

[343]

Y. Wang, X. Jiang, F. Feng, W. Liu, and H. Sun, “Degradation of proteins by PROTACs and other strategies,” Acta Pharmaceutica Sinica B 10, no. 2 (2020): 207-238.

[344]

X. Gao, H. A. Burris, J. Vuky, et al., “Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC),” Journal of Clinical Oncology 40, no. 6 suppl (2022): 17-17.

[345]

K. N. Chi, R. R. McKay, S. Sandhu, et al., “rechARge: A randomized phase III trial of the androgen receptor ligand-directed degrader, BMS-986365, vs investigator's choice in patients With mCRPC,” Future oncology 21, no. 14 (2025): 1-7.

[346]

M. Campone, M. De Laurentiis, K. Jhaveri, et al., “Vepdegestrant, a PROTAC estrogen receptor degrader, in advanced breast cancer,” New England Journal of Medicine 393, no. 6 (2025): 556-568.

[347]

R. L. Siegel, A. N. Giaquinto, and A. Jemal, “Cancer statistics, 2024,” CA: A Cancer Journal for Clinicians 74, no. 1 (2024): 12-49.

[348]

S. K. Bagal, P. C. Astles, C. Diène, et al., “Discovery of a Series of Orally Bioavailable Androgen Receptor Degraders for the Treatment of Prostate Cancer,” Journal of Medicinal Chemistry 67, no. 14 (2024): 11732-11750.

[349]

X. Gao, H. Iii, J. Vuky, et al., “Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC),” Journal of Clinical Oncology 40 (2022): 17-17.

[350]

L. Ma and X. Han, “Bavdegalutamide (ARV-110): A potent PROTAC androgen receptor degrader for the treatment of metastatic-castration resistant prostate cancer,” Drug Discovery Stories (2025): 357-378.

[351]

K. N. Chi, R. R. McKay, S. Sandhu, et al., “rechARge: A randomized phase III trial of the androgen receptor ligand-directed degrader, BMS-986365, vs investigator's choice in patients With mCRPC,” Future Oncology 21, no. 14 (2025): 1771-1777.

[352]

P. A. Watson, V. K. Arora, and C. L. Sawyers, “Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer,” Nature Reviews Cancer 15, no. 12 (2015): 701-711.

[353]

D. P. Petrylak, M. McKean, J. M. Lang, et al., “ARV-766, a proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC): Initial results of a phase 1/2 study,” Journal of Clinical Oncology 42, no. 16 suppl (2024): 5011-5011.

[354]

Q. H. Chen, E. Munoz, and D. Ashong, “Insight Into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer,” Cancers (Basel) 16, no. 3 (2024): 663.

[355]

D. Saceda-Corralo, M. Domínguez-Santas, S. Vañó-Galván, and R. Grimalt, “What's new in therapy for male androgenetic alopecia?,” American Journal of Clinical Dermatology 24, no. 1 (2023): 15-24.

[356]

C.-C. Chou, P.-C. Cheng, H.-C. Chen, et al., “52243 AH-001: An Emerging Androgen Receptor Degrader Showing Therapeutic Potential in Addressing Androgenetic Alopecia (AGA),” Journal of the American Academy of Dermatology 91, no. 3 (2024): AB119.

[357]

A. Grinshpun, “Clinician's guide to targeted estrogen receptor degradation using PROTAC in patients With estrogen receptor-positive metastatic breast cancer,” Current Opinion in Oncology 35, no. 6 (2023): 472-478.

[358]

M. Campone, M. D. Laurentiis, K. Jhaveri, et al., “Vepdegestrant, a PROTAC Estrogen Receptor Degrader, in Advanced Breast Cancer,” New England Journal of Medicine 393, no. 6 (2025): 556-568.

[359]

H. Iwata, Y. Naito, M. Hattori, et al., “Safety and pharmacokinetics of vepdegestrant in Japanese patients With ER+ advanced breast cancer: A phase 1 study,” International Journal of Clinical Oncology 30, no. 1 (2025): 72-82.

[360]

J. Li, X. Chen, A. Lu, and C. Liang, “Targeted protein degradation in cancers: Orthodox PROTACs and Beyond,” The Innovation 4, no. 3 (2023): 100413.

[361]

S. Montoya, J. Bourcier, M. Noviski, et al., “Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127,” Science 383, no. 6682 (2024): eadi5798.

[362]

D. W. Robbins, M. Noviski, R. Rountree, et al., “Nx-5948, a Selective Degrader of BTK With Activity in Preclinical Models of Hematologic and Brain Malignancies,” Blood 138 (2021): 2251.

[363]

M. Patel, M. Tees, N. Khan, et al., “IBCL-147 AC676, an Orally Bioavailable BTK Chimeric Degrader in Patients With B-cell Malignancies,” Clinical Lymphoma Myeloma and Leukemia 24 (2024): S494.

[364]

M. T. Tees, D. A. Bond, N. Khan, et al., “A Phase 1 Study of AC676, a Novel BTK Chimeric Degrader, in Patients With B-Cell Malignancies,” Blood 144, no. Supplement 1 (2024): 4422.4421-4422.4421.

[365]

J. K. Lue, D. A. Stevens, M. E. Williams, et al., “Phase 1 Study of KT-413, a Targeted Protein Degrader of IRAK4 and IMiD Substrates, in Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma,” Blood 140, no. Supplement 1 (2022): 12143-12144.

[366]

M. M. Weiss, X. Zheng, N. Ji, et al., “Discovery of KT-413, a Targeted Protein Degrader of IRAK4 and IMiD Substrates Targeting MYD88 Mutant Diffuse Large B-Cell Lymphoma,” Journal of Medicinal Chemistry 67, no. 13 (2024): 10548-10566.

[367]

S. D. Edmondson, “Discovery of the First Clinical Protein Degrader for the Treatment of Autoimmune Indications: Orally Bioavailable and Selective IRAK4 Degrader KT-474,” Journal of Medicinal Chemistry 67, no. 20 (2024): 18017-18021.

[368]

J. J. Harvey, “An unidentified virus which causes the rapid production of tumours in mice,” Nature 204 (1964): 1104-1105.

[369]

W. H. Kirsten and L. A. Mayer, “Morphologic responses to a murine erythroblastosis virus,” Journal of the National Cancer Institute 39, no. 2 (1967): 311-335.

[370]

M. Malumbres and M. Barbacid, “RAS oncogenes: The first 30 years,” Nature Reviews Cancer 3, no. 6 (2003): 459-465.

[371]

J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, and K. M. Shokat, “K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions,” Nature 503, no. 7477 (2013): 548-551.

[372]

E. C. Nakajima, N. Drezner, X. Li, et al., “FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC,” Clinical Cancer Research 28, no. 8 (2022): 1482-1486.

[373]

S. S. Zhang, A. Lee, and M. Nagasaka, “CodeBreak 200: Sotorasib Has Not Broken the KRAS(G12C) Enigma Code,” Lung Cancer (Auckl) 14 (2023): 27-30.

[374]

H. Shen, J. Lundy, A. H. Strickland, et al., “KRAS G12D Mutation Subtype in Pancreatic Ductal Adenocarcinoma: Does It Influence Prognosis or Stage of Disease at Presentation?,” Cells 11, no. 19 (2022): 3175.

[375]

S. Ramalingam, F. Skoulidis, R. Govindan, et al., “P52.03 Efficacy of Sotorasib in <em>KRAS</em>p.G12C-Mutated NSCLC With Stable Brain Metastases: A Post-Hoc Analysis of CodeBreaK 100,” Journal of Thoracic Oncology 16, no. 10 (2021): S1123.

[376]

A. W. Tolcher, W. Park, J. S. Wang, et al., “Trial in progress: A phase 1, first-in-human, open-label, multicenter, dose-escalation and dose-expansion study of ASP3082 in patients With previously treated advanced solid tumors and KRAS G12D mutations,” Journal of Clinical Oncology 41, no. 4 suppl (2023): TPS764-TPS764.

[377]

M. Li, H. Wang, F. Wang, et al., “Recent Advance of KRAS-G12C Inhibitors for Cancer Therapy,” European Journal of Medicinal Chemistry (2025): 117878.

[378]

D. Rangachari, C. To, J. E. Shpilsky, et al., “EGFR-Mutated Lung Cancers Resistant to Osimertinib Through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples,” Journal of Thoracic Oncology 14, no. 11 (2019): 1995-2002.

[379]

J. W. Li, G. Zheng, F. J. Kaye, and L. Wu, “PROTAC therapy as a new targeted therapy for lung cancer,” Molecular Therapy 31, no. 3 (2023): 647-656.

[380]

N. C. Rallabandi, D. Panpatil, D. Gahtory, U. Navik, and R. J. F. M. C. Kumar, EGFR molecular degraders: Preclinical successes and the road ahead[Z] (Taylor & Francis, 2025): 1-4.

[381]

X. Zhou, L. Zeng, Z. Huang, et al., “Strategies Beyond 3rd EGFR-TKI Acquired Resistance: Opportunities and Challenges,” Cancer medicine 14, no. 9 (2025): e70921.

[382]

L. Groocock, G. Deb, J. Zhu, et al., “BMS-986458 a Potential First-in-Class, Highly Selective, Potent and Well Tolerated BCL6 Ligand Directed Degrader (LDD) Demonstrates Multi-Modal Anti-Tumor Efficacy for the Treatment of B-Cell Non-Hodgkin's Lymphoma,” Blood 144, no. Supplement 1 (2024): 957-957.

[383]

P. F. Caimi, S. F. Huntington, S. Landrette, et al., “Phase 1 Study of ARV-393, a PROTAC BCL6 Degrader, in Advanced Non-Hodgkin Lymphoma,” Blood 144 (2024): 6505.

[384]

G. L. Brien, D. Remillard, J. Shi, et al., “Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma,” Elife 7 (2018): e41305.

[385]

V. Vetma, S. O'Connor, and A. Ciulli, “Development of PROTAC degrader drugs for cancer,” Annual Review of Cancer Biology 9 (2024): 119-140.

[386]

R. Guo, A. Dowlati, I. Dagogo-Jack, et al., “603O First clinical results From a phase I trial of PRT3789: A first-in-class intravenous SMARCA2 degrader, in patients With advanced solid tumors With a SMARCA4 mutation,” Annals of Oncology 35 (2024): S483-S484.

[387]

J. H. Kim, J. H. Woo, C. Y. Lim, et al., “SMARCA4-deficient non-small cell lung carcinoma: Clinicodemographic, computed tomography, and positron emission tomography-computed tomography features,” Journal of thoracic disease 16, no. 3 (2024): 1753-1764.

[388]

X. Liang, X. Gao, F. Wang, et al., “Clinical characteristics and prognostic analysis of SMARCA4-deficient non-small cell lung cancer,” Cancer medicine 12, no. 13 (2023): 14171-14182.

[389]

T. Füreder, “Best of ESMO: Pan-tumor highlights,” Memo—Magazine of European Medical Oncology 18, no. 2 (2025): 1-4.

[390]

N. Li, J. Sheng, and H.-H. Zhu, “Breakthroughs in treatment for hematological malignancies: Latest updates on molecular glue, PROTACs and RNA degraders From ASH 2024,” Journal of Hematology & Oncology 18, no. 1 (2025): 26.

[391]

A. Wang, B. Yang, A. Hossain, et al., “Potent and Selective Oral Stat6 Degrader KT-621 Inhibits IL-4/IL-13 in Mouse Models of Asthma,” Annals of Allergy, Asthma & Immunology 133, no. 6 (2024): S57.

[392]

Y. He, R. Koch, V. Budamagunta, et al., “DT2216—a Bcl-xL-specific degrader is highly active Against Bcl-xL-dependent T cell lymphomas,” Journal of Hematology & Oncology 13, no. 1 (2020): 95.

[393]

W. Dai, X. Qiao, Y. Fang, et al., “Epigenetics-targeted drugs: Current paradigms and future challenges,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 332.

[394]

H. Duparc, J. Neef, J. Kandiah, et al., “AUTX703, a Novel and Potent KAT2A and KAT2B Protein Degrader, Induces Differentiation and Offers Survival Advantage in a Primary Human AML Xenograft Model,” Blood 144 (2024): 3585.

[395]

Y. K. Chutake, M. F. Mayo, N. Dumont, et al., “KT-253, a Novel MDM2 Degrader and p53 Stabilizer, Has Superior Potency and Efficacy Than MDM2 Small-Molecule Inhibitors,” Molecular Cancer Therapeutics 24, no. 4 (2025): 497-510.

[396]

M. McKean, A. I. Spira, E. Rosen, et al., “A phase 1/2 study of CFT1946, a novel, bifunctional degradation activating compound (BIDAC) degrader, of mutant BRAF V600 as monotherapy and in combination With trametinib, in mutant BRAF V600 solid tumors,” Journal of Clinical Oncology 41, no. 16 suppl (2023): TPS3163-TPS3163.

[397]

H. Majeski, K. Chahal, A. Pasis, et al., “Characterization of BTX-9341, a bifunctional degrader of CDK4 and CDK6 for HR+/HER2- breast cancer and glioblastoma multiforme,” Journal of Clinical Oncology 42, no. 16 suppl (2024): 3111-3111.

[398]

Y. He, Y. Zheng, C. Zhu, et al., “Radioactive ADME Demonstrates ARV-110's High Druggability Despite Low Oral Bioavailability,” Journal of Medicinal Chemistry 67, no. 16 (2024): 14277-14291.

[399]

T. Ishida and A. Ciulli, “E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones,” SLAS Discovery 26, no. 4 (2021): 484-502.

[400]

T. Sobierajski, J. Małolepsza, M. Pichlak, E. Gendaszewska-Darmach, and K. M. Błażewska, “The impact of E3 ligase choice on PROTAC effectiveness in protein kinase degradation,” Drug Discovery Today 29, no. 7 (2024): 104032.

[401]

J. Liu, Y. Liu, J. Tang, et al., “Recent advances in dual PROTACs degrader strategies for disease treatment,” European Journal of Medicinal Chemistry 279 (2024): 116901.

[402]

Z. Wang, B. S. Pan, R. K. Manne, et al., “CD36-mediated endocytosis of proteolysis-targeting chimeras,” Cell 188, no. 12 (2025): 3219-3237.

[403]

L. Wang, Y. Ke, Q. He, et al., “A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment,” Theranostics 15, no. 4 (2025): 1238.

[404]

Y. Chen, I. Tandon, W. Heelan, et al., “Proteolysis-targeting chimera (PROTAC) delivery system: Advancing protein degraders towards clinical translation,” Chemical Society Reviews 51, no. 13 (2022): 5330-5350.

[405]

L. Zhang, L. Li, X. Wang, et al., “Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin,” Molecular Therapy Nucleic Acids 30 (2022): 66-79.

[406]

Y. Sun, L. Jiang, Z. Zhang, et al., “Conjugated Polyelectrolyte/Single Strand DNA Hybrid Polyplexes for Efficient Nucleic Acid Delivery and Targeted Protein Degradation,” ACS Appl Mater Interfaces 16, no. 16 (2023): 19987-19994.

[407]

P. Kou, E. S. Levy, A. D. Nguyen, et al., “Development of liposome systems for enhancing the PK properties of bivalent PROTACs,” Pharmaceutics 15, no. 8 (2023): 2098.

[408]

X. Chen, F. Li, B. Cui, et al., “Liposomes-mediated enhanced antitumor effect of docetaxel With BRD4-PROTAC as synergist for breast cancer chemotherapy/immunotherapy,” International Journal of Pharmaceutics 668 (2025): 124973.

[409]

Y. Fu, D. Rathod, and K. Patel, “Protein kinase C inhibitor anchored BRD4 PROTAC PEGylated nanoliposomes for the treatment of vemurafenib-resistant melanoma,” Experimental Cell Research 396, no. 1 (2020): 112275.

[410]

K. Scheuer, D. Bandelli, C. Helbing, et al., “Self-assembly of copolyesters Into stereocomplex crystallites tunes the properties of polyester nanoparticles,” Macromolecules 53, no. 19 (2020): 8340-8351.

[411]

F. J. Cimas, E. Niza, A. Juan, et al., “Controlled Delivery of BET-PROTACs: In vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer,” Pharmaceutics 12, no. 10 (2020): 986.

[412]

N. Mukerjee, S. Maitra, A. Ghosh, V. Subramaniyan, and R. Sharma, “Exosome-mediated PROTACs delivery to target viral infections,” Drug Development Research 84, no. 6 (2023): 1031-1036.

[413]

N. Mukerjee, S. Maitra, A. Ghosh, et al., “Synergizing proteolysis-targeting chimeras and nanoscale exosome-based delivery mechanisms for HIV and antiviral therapeutics,” ACS Applied Nano Materials 7, no. 4 (2024): 3499-3514.

[414]

R. Kojima, D. Bojar, G. Rizzi, et al., “Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment,” Nature Communications 9, no. 1 (2018): 1305.

[415]

Q. He, L. Zhou, D. Yu, et al., "Near-Infrared-Activatable PROTAC Nanocages for Controllable Target Protein Degradation and On-Demand Antitumor Therapy," Journal of Medicinal Chemistry 66, no. 15 (2023): 10458-10472.

[416]

Y. Wu, X. Chang, G. Yang, et al., "A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis-Targeting Chimeras Enhanced Immunotherapy," Advanced Materials 35, no. 12 (2023): e2210787.

[417]

G. Fan, J. Lu, R. Tan, et al., “Potent Efficacy of Computer-Aided Designed Peptide Degrader Drug on PCSK9-Mediated Hypercholesterolemia,” BioRxiv (2025). 2025.2006. 2025.661251.

[418]

J. Chang, X. Chen, Z. Glass, et al., “Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing,” Accounts of Chemical Research 52, no. 3 (2018): 665-675.

[419]

J. Huang, Z. Yao, B. Li, and Y. Ping, “Targeted delivery of PROTAC-based prodrug activated by bond-cleavage bioorthogonal chemistry for microneedle-assisted cancer therapy,” Journal of Controlled Release 361 (2023): 270-279.

[420]

R. Bargakshatriya and S. K. Pramanik, “Leading prodrug strategies for targeted and specific release,” Future Medicinal Chemistry 17, no. 8 (2025): 865-868.

[421]

X. Zhang, Z. Song, X. Zhang, et al., “Unconventional PROTACs for Targeted Protein Degradation in Cancer Therapy,” Angewandte Chemie (International ed in English) 64, no. 31 (2025): e202507702.

[422]

R. K. Rej, S. R. Allu, J. Roy, et al., “Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs,” Pharmaceuticals (Basel) 17, no. 4 (2024).

[423]

J. Tate and G. Ward, “Interferences in immunoassay,” Clinical Biochemist Reviews 25, no. 2 (2004): 105-120.

[424]

M. Schröder, M. Renatus, X. Liang, et al., “DCAF1-based PROTACs With activity Against clinically validated targets overcoming intrinsic-and acquired-degrader resistance,” Nature Communications 15, no. 1 (2024): 275.

[425]

I. Sosič, A. Bricelj, and C. Steinebach, “E3 ligase ligand chemistries: From building blocks to protein degraders,” Chemical Society Reviews 51, no. 9 (2022): 3487-3534.

[426]

L. Lescouzères and P. Bomont, “E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy,” Front in Physiology 11 (2020): 1022.

[427]

P. Lu, Y. Cheng, L. Xue, et al., “Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders,” Cell 187, no. 25 (2024): 7126-7142. e7120.

[428]

Y. Sun, “E3 ubiquitin ligases as cancer targets and biomarkers,” Neoplasia 8, no. 8 (2006): 645-654.

[429]

S. Datta, P. Verma, B. Dhara, et al., “Interplay of precision therapeutics and MD study: Calocybe indica's potentials Against cervical cancer and its interaction With VEGF via octadecanoic acid,” Journal of Cellular and Molecular Medicine 28, no. 8 (2024): e18302.

[430]

O. Koshkina, T. Rheinberger, V. Flocke, et al., “Biodegradable polyphosphoester micelles act as both background-free (31)P magnetic resonance imaging agents and drug nanocarriers,” Nature Communications 14, no. 1 (2023): 4351.

[431]

J. Dugal-Tessier, S. Thirumalairajan, and N. Jain, “Antibody-oligonucleotide conjugates: A twist to antibody-drug conjugates,” Journal of Clinical Medicine 10, no. 4 (2021): 838.

[432]

C. Wang, Y. Zhang, W. Chen, Y. Wu, and D. Xing, “New-generation advanced PROTACs as potential therapeutic agents in cancer therapy,” Molecular Cancer 23, no. 1 (2024): 110.

[433]

K. Farrell and T. J. Jarome, “Is PROTAC technology really a game changer for central nervous system drug discovery?,” Expert Opinion on Drug Discovery 16, no. 8 (2021): 833-840.

[434]

K. R. Mittal, N. Pharasi, B. Sarna, et al., “Nanotechnology-based drug delivery for the treatment of CNS disorders,” Translational Neuroscience 13, no. 1 (2022): 527-546.

[435]

A. Suzuki, R. Henao, M. C. Reed, et al., “Lower hepatic CBS and PEMT expression in advanced NAFLD: Inferencing strategies to lower homocysteine With a mathematical model,” Metabolism and Target Organ Damage 4, no. 3 (2024). N/A-N/A.

[436]

A. Mantovani and G. Targher, “PNPLA3 rs738409 polymorphism and kidney dysfunction: An association Beyond nonalcoholic fatty liver disease?,” Metabolism and Target Organ Damage 3, no. 4 (2023). N/A-N/A.

[437]

B. Wang, L. Wang, Q. Yang, et al., “Pulmonary inhalation for disease treatment: Basic research and clinical translations,” Materials Today Bio 25 (2024): 100966.

[438]

S.-M. Qi, J. Dong, Z.-Y. Xu, et al., “PROTAC: An effective targeted protein degradation strategy for cancer therapy,” Frontiers in pharmacology 12 (2021): 692574.

[439]

S. Zeng, W. Huang, X. Zheng, et al., “Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges,” European Journal of Medicinal Chemistry 210 (2021): 112981.

[440]

R. G. Guenette, S. W. Yang, J. Min, B. Pei, and P. R. Potts, “Target and tissue selectivity of PROTAC degraders,” Chemical Society Reviews 51, no. 14 (2022): 5740-5756.

[441]

C. Shi, H. Zhang, P. Wang, et al., “PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis,” Cell Death & Disease 10, no. 11 (2019): 815.

[442]

R. Kamaraj, S. Ghosh, S. Das, et al., “Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions,” Bioconjugate Chemistry 35, no. 8 (2024): 1089-1115.

[443]

Y. Xiang, M. Zhang, D. Jiang, Q. Su, and J. Shi, “The role of inflammation in autoimmune disease: A therapeutic target,” Frontiers in immunology 14 (2023): 1267091.

[444]

Y. He, X. Zhang, J. Chang, et al., “Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity,” Nature Communications 11, no. 1 (2020): 1996.

[445]

A. Di Vincenzo, M. Crescenzi, M. Granzotto, R. Vettor, and M. Rossato, “Relationship Between sex hormones, markers of adiposity and inflammation in male patients With severe obesity undergoing bariatric surgery,” Metabolism and Target Organ Damage 3, no. 3 (2023): N/A-N/A.

[446]

D. Ricciardi, R. Galiero, V. Todisco, et al., “Neurophysiological assessment of peripheral neuropathy Through whole plantar nerve conduction in type 2 diabetes mellitus and healthy control subjects,” Metabolism and Target Organ Damage 4, no. 3 (2024): N/A-N/A.

[447]

G. Luo, Z. Li, X. Lin, et al., “Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo,” Acta Pharmaceutica Sinica B 11, no. 5 (2021): 1300-1314.

[448]

M.-X. Li, Y. Yang, Q. Zhao, et al., “Degradation versus inhibition: Development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase,” Journal of Medicinal Chemistry 63, no. 9 (2020): 4908-4928.

[449]

S. Li, X. Wang, J. Huang, et al., “Decoy-PROTAC for specific degradation of “Undruggable” STAT3 transcription factor,” Cell death & disease 16, no. 1 (2025): 197.

[450]

X. Wu, D. Pan, S. Tang, and Y. J. B. Shen, “Targeting the” undruggable“ cancer driver genes: Ras, myc, and tp53,” International Journal of Cancer 47, no. 7 (2023).

[451]

N. Cruz-Rodriguez, H. Tang, B. Bateman, W. Tang, and M. J. L. Deininger, “BCR: ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph+ leukemias?,” Leukemia 38, no. 9 (2024): 1885-1893.

[452]

H. Yadav and R. K. Shirumalla, “Emerging trends in IRAK-4 kinase research,” Molecular Biology Reports 50, no. 9 (2023): 7825-7837.

[453]

S. Banerjee, A. Biehl, M. Gadina, S. Hasni, and D. M. Schwartz, “JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects,” Drugs 77 (2017): 521-546.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/