Different Contribution of Missense and Loss-of-Function Variants to the Genetic Structure of Familial and Sporadic Meniere Disease

Alberto M. Parra-Perez , Alvaro Gallego-Martinez , Alba Escalera-Balsera , Paula Robles-Bolivar , Patricia Perez-Carpena , Jose A. Lopez-Escamez

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70394

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70394 DOI: 10.1002/mco2.70394
ORIGINAL ARTICLE

Different Contribution of Missense and Loss-of-Function Variants to the Genetic Structure of Familial and Sporadic Meniere Disease

Author information +
History +
PDF

Abstract

Meniere disease (MD) is a chronic inner ear disorder with significant heritability. This study compares the burden of rare high- and moderate-impact coding variants in an MD cohort to determine whether genetic burden in sporadic MD (SMD) overlaps familial MD (FMD), potentially revealing hidden inheritance in SMD. Exome sequencing identified rare variants in unrelated FMD (N = 93) and SMD (N = 287) patients. Gene Burden Analysis (GBA) was performed, and candidate genes were prioritized using the number of variant carriers, inner-ear expression, and hearing/balance-related phenotypic annotations. FMD patients showed higher accumulation of missense and loss-of-function variants than SMD, especially in genes linked to auditory and vestibular function. GBA identified 269 enriched genes in SMD, with 31 annotated for inner ear phenotypes, while FMD had 432 with 51 pinpointed. Sporadic and FMD overlapped in 28.1% of enriched genes, with ADGRV1, MEGF8, and MYO7A most commonly shared. Auditory brainstem responses from knockout mouse models supported hearing loss of three novel MD candidate genes (NIN, CCDC88C, and ANKRD24), consistent with patient hearing profiles. In conclusion, SMD and FMD have a divergent genetic architecture. The enrichment of missense variants in stria vascularis and hair cell stereocilia genes supports distinct pathogenic mechanisms and a multiallelic-recessive inheritance pattern in MD.

Keywords

exome sequencing / genetic diagnosis / genomics / Meniere disease / rare variant analysis

Cite this article

Download citation ▾
Alberto M. Parra-Perez, Alvaro Gallego-Martinez, Alba Escalera-Balsera, Paula Robles-Bolivar, Patricia Perez-Carpena, Jose A. Lopez-Escamez. Different Contribution of Missense and Loss-of-Function Variants to the Genetic Structure of Familial and Sporadic Meniere Disease. MedComm, 2025, 6(10): e70394 DOI:10.1002/mco2.70394

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. A. Lopez-Escamez, J. Carey, W. H. Chung, et al., “Diagnostic Criteria for Ménière's Disease,” Journal of Vestibular Research 25, no. 1 (2015): 1-7.

[2]

J. D. Ohmen, C. H. White, X. Li, et al., “Genetic Evidence for an Ethnic Diversity in the Susceptibility to Ménière's Disease,” Otology & Neurotology 34, no. 7 (2013): 1336.

[3]

L. Frejo, A. Soto-Varela, and S. Santos-Perez, “Clinical Subgroups in Bilateral Meniere Disease,” Frontiers in Neurology 7 (2016): 182.

[4]

M. Flook, E. Rojano, A. Gallego-Martinez, et al., “Cytokine Profiling and Transcriptomics in Mononuclear Cells Define Immune Variants in Meniere Disease,” Genes and Immunity 25, no. 2 (2024): 124-131.

[5]

T. Requena, J. M. Espinosa-Sanchez, S. Cabrera, et al., “Familial Clustering and Genetic Heterogeneity in Meniere's Disease,” Clinical Genetics 85, no. 3 (2014): 245-252.

[6]

A. W. Morrison, “Anticipation in Menière's Disease,” Journal of Laryngology and Otology 109, no. 6 (1995): 499-502.

[7]

P. Roman-Naranjo, A. Gallego-Martinez, A. Soto-Varela, et al., “Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease,” Ear and Hearing 41, no. 6 (2020): 1598-1605.

[8]

P. Roman-Naranjo, M. D. C. Moleon, I. Aran, et al., “Rare Coding Variants Involving MYO7A and Other Genes Encoding Stereocilia Link Proteins in Familial Meniere Disease,” Hearing Research 409 (2021): 108329.

[9]

A. M. Parra-Perez and J. A. Lopez-Escamez, “Types of Inheritance and Genes Associated With Familial Meniere Disease,” JARO 24, no. 3 (2023): 269-279.

[10]

P. Roman-Naranjo, A. M. Parra-Perez, A. Escalera-Balsera, et al., “Defective α-Tectorin May Involve Tectorial Membrane in Familial Meniere Disease,” Clinical and translational medicine 12, no. 6 (2022): e829.

[11]

A. Gallego-Martinez, T. Requena, P. Roman-Naranjo, and J. A. Lopez-Escamez, “Excess of Rare Missense Variants in Hearing Loss Genes in Sporadic Meniere Disease,” Frontiers in Genetics 10 (2019): 76.

[12]

A. Gallego-Martinez, T. Requena, P. Roman-Naranjo, P. May, and J. A. Lopez-Escamez, “Enrichment of Damaging Missense Variants in Genes Related With Axonal Guidance Signalling in Sporadic Meniere's Disease,” Journal of Medical Genetics 57, no. 2 (2020): 82-88.

[13]

N. Senofsky, J. Faber, and D. Bozovic, “Vestibular Drop Attacks and Meniere's Disease as Results of Otolithic Membrane Damage—A Numerical Model,” Journal of the Association for Research in Otolaryngology 24, no. 1 (2023): 107-115.

[14]

A. Trouillet, K. K. Miller, S. S. George, et al., “Loxhd1 Mutations Cause Mechanotransduction Defects in Cochlear Hair Cells,” Journal of Neuroscience 41, no. 15 (2021): 3331-3343.

[15]

A. B. Elgoyhen, E. Katz, and P. A. Fuchs, “The Nicotinic Receptor of Cochlear Hair Cells: A Possible Pharmacotherapeutic Target?,” Biochemical Pharmacology 78, no. 7 (2009): 712-719.

[16]

M. A. Lewis, B. A. Schulte, J. R. Dubno, and K. P. Steel, “Investigating the Characteristics of Genes and Variants Associated With Self-Reported Hearing Difficulty in Older Adults in the UK Biobank,” BMC Biology 20 (2022): 150.

[17]

I. Chakchouk, M. Grati, G. Bademci, et al., “Novel Mutations Confirm That COL11A2 Is Responsible for Autosomal Recessive Non-Syndromic Hearing Loss DFNB53,” Molecular Genetics and Genomics 290, no. 4 (2015): 1327-1334.

[18]

M. van der Lubbe, A. Vaidyanathan, V. Van Rompaey, et al., “The “Hype” of Hydrops in Classifying Vestibular Disorders: A Narrative Review,” Journal of Neurology 267, no. 1 (2020): 197-211.

[19]

K. M. Fisch, S. B. Rosenthal, A. Mark, et al., “The Genomic Landscape of Ménière's Disease: A Path to Endolymphatic Hydrops,” BMC Genomics [Electronic Resource] 25, no. 1 (2024): 646.

[20]

D. K. Moss, G. Bellett, J. M. Carter, et al., “Ninein Is Released From the Centrosome and Moves Bi-Directionally Along Microtubules,” Journal of Cell Science 120, no. 17 (2007): 3064-3074.

[21]

N. Aznar, K. K. Midde, Y. Dunkel, et al., “Daple Is a Novel Non-Receptor GEF Required for Trimeric G Protein Activation in Wnt Signaling,” eLife 4 (2015): e07091.

[22]

Y. Ozono, A. Tamura, S. Nakayama, et al., “Daple Deficiency Causes Hearing Loss in Adult Mice by Inducing Defects in Cochlear Stereocilia and Apical Microtubules,” Scientific Reports 11, no. 1 (2021): 20224.

[23]

K. Siletti, B. Tarchini, and A. J. Hudspeth, “Daple Coordinates Organ-Wide and Cell-Intrinsic Polarity to Pattern Inner-Ear Hair Bundles,” PNAS 114, no. 52 (2017): E11170-E11179.

[24]

J. F. Krey, C. Liu, I. A. Belyantseva, et al., “ANKRD24 Organizes TRIOBP to Reinforce Stereocilia Insertion Points,” Journal of Cell Biology 221, no. 4 (2022): e202109134.

[25]

N. Kazemi, R. Rezvani Rezvandeh, F. Zare Ashrafi, et al., “A Frameshift Variant in ANKRD24 Implicates Its Role in Human Non-Syndromic Hearing Loss,” Clinical Genetics 107, no. 2 (2025): 214-218.

[26]

C. Shyr, M. Tarailo-Graovac, M. Gottlieb, J. J. Y. Lee, C. van Karnebeek, and W. W. Wasserman, “FLAGS, Frequently Mutated Genes in Public Exomes,” BMC Medical Genomics 7 (2014): 64.

[27]

A. U. Rehman, J. E. Bird, R. Faridi, et al., “Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness,” Human Mutation 37, no. 10 (2016): 991-1003.

[28]

N. Michalski, V. Michel, A. Bahloul, et al., “Molecular Characterization of the Ankle-Link Complex in Cochlear Hair Cells and Its Role in the Hair Bundle Functioning,” Journal of Neuroscience 27, no. 24 (2007): 6478-6488.

[29]

M. Garcia, S. Juhos, M. Larsson, et al., “Sarek: A Portable Workflow for Whole-Genome Sequencing Analysis of Germline and Somatic Variants,” F1000Res 9 (2020): 63.

[30]

B. D. O'Connor and G. van der Auwera, Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (O'Reilly Media, Incorporated, 2020).

[31]

S. Chen, L. C. Francioli, J. K. Goodrich, et al., “A Genome-Wide Mutational Constraint Map Quantified From Variation in 76,156 Human Genomes,” preprint, bioRxiv, October 10, 2022, https://doi.org/10.1101/2022.03.20.485034.

[32]

W. McLaren, L. Gil, S. E. Hunt, et al., “The Ensembl Variant Effect Predictor,” Genome Biology 17 (2016): 122.

[33]

M. Peña-Chilet, G. Roldán, J. Perez-Florido, et al., “CSVS, a Crowdsourcing Database of the Spanish Population Genetic Variability,” Nucleic Acids Research 49, no. D1 (2021): D1130-D1137.

[34]

R. Walsh, F. Mazzarotto, N. Whiffin, et al., “Quantitative Approaches to Variant Classification Increase the Yield and Precision of Genetic Testing in Mendelian Diseases: The Case of Hypertrophic Cardiomyopathy,” Genome Medicine 11, no. 1 (2019): 5.

[35]

R. Elkon, B. Milon, L. Morrison, et al., “RFX Transcription Factors Are Essential for Hearing in Mice,” Nature Communications 6, no. 1 (2015): 8549.

[36]

Y. Li, H. Liu, K. P. Giffen, L. Chen, K. W. Beisel, and D. Z. Z. He, “Transcriptomes of Cochlear Inner and Outer Hair Cells From Adult Mice,” Scientific Data 5, no. 1 (2018): 180199.

[37]

H. Liu, L. Chen, K. P. Giffen, et al., “Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells,” Frontiers in Molecular Neuroscience 11 (2018): 356.

[38]

H. Liu, K. P. Giffen, L. Chen, et al., “Molecular and Cytological Profiling of Biological Aging of Mouse Cochlear Inner and Outer Hair Cells,” Cell Reports 39, no. 2 (2022): 110665.

[39]

J. Shen, D. I. Scheffer, K. Y. Kwan, and D. P. Corey, “SHIELD: An Integrative Gene Expression Database for Inner Ear Research,” Database 2015 (2015): bav071.

[40]

I. Schrauwen, Y. Hasin-Brumshtein, J. J. Corneveaux, et al., “A Comprehensive Catalogue of the Coding and Non-Coding Transcripts of the Human Inner Ear,” Hearing Research 333 (2016): 266-274.

[41]

J. Lonsdale, J. Thomas, M. Salvatore, et al., “The Genotype-Tissue Expression (GTEx) Project,” Nature Genetics 45, no. 6 (2013): 580-585.

[42]

J. F. Krey, N. E. Sherman, E. D. Jeffery, D. Choi, and P. G. Barr-Gillespie, “The Proteome of Mouse Vestibular Hair Bundles Over Development,” Scientific Data 2 (2015): 150047.

[43]

M. A. Gargano, N. Matentzoglu, B. Coleman, et al., “The Human Phenotype Ontology in 2024: Phenotypes Around the World,” Nucleic Acids Research 52, no. D1 (2024): D1333-D1346.

[44]

R. M. Baldarelli, C. L. Smith, M. Ringwald, J. E. Richardson, C. J. Bult, and Mouse Genome Informatics Group, “Mouse Genome Informatics: An Integrated Knowledgebase System for the Laboratory Mouse,” Genetics 227, no. 1 (2024): iyae031.

[45]

W. H. van der Valk, E. S. A. van Beelen, M. R. Steinhart, et al., “A Single-Cell Level Comparison of human Inner Ear Organoids With the Human Cochlea and Vestibular Organs,” Cell reports 42, no. 6 (2023): 112623.

[46]

A. Garcia-Moreno, R. López-Domínguez, J. A. Villatoro-García, et al., “Functional Enrichment Analysis of Regulatory Elements,” Biomedicines 10, no. 3 (2022): 590.

[47]

The Gene Ontology Consortium, S. A. Aleksander, J. Balhoff, et al., “The Gene Ontology Knowledgebase in 2023,” Genetics 224, no. 1 (2023): iyad031.

[48]

S. D. M. Brown and M. W. Moore, “The International Mouse Phenotyping Consortium: Past and Future Perspectives on Mouse Phenotyping,” Mammalian Genome 23, no. 9-10 (2012): 632-640.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/