Gene and RNA Editing: Revolutionary Approaches to Treating Diseases

Jia-Mei Li , Jie Huang , Yan Liao , Ting Hu , Chang-Li Wang , Wang-Zheqi Zhang , Chen-Wei Huang

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70389

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70389 DOI: 10.1002/mco2.70389
REVIEW

Gene and RNA Editing: Revolutionary Approaches to Treating Diseases

Author information +
History +
PDF

Abstract

Gene editing and RNA editing technologies are advancing modern medicine by enabling precise manipulation of genetic information at the DNA and RNA levels, respectively. The third-generation gene editing tools, particularly Clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) system, have transformed genetic disease treatment with high efficiency, precision, and cost effectiveness, while RNA editing, via adenosine deaminase acting on RNA (ADAR) enzymes and CRISPR–Cas13, offers reversible regulation to avoid genomic integration risks. Despite advancements, challenges persist in delivery efficiency, tissue specificity, and long-term safety, limiting their clinical translation. This review systematically discusses the molecular mechanisms and technological evolution of these tools, focusing on their promising applications in treating nervous system disorders (e.g., Alzheimer's, Parkinson's), immune diseases (e.g., severe combined immunodeficiency, lupus), and cancers. It compares their technical attributes, analyzes ethical and regulatory issues, and highlights synergies between the two technologies. By bridging basic research and clinical translation, this review provides critical insights for advancing precision medicine, reshaping disease diagnosis, prevention, and treatment paradigms.

Keywords

CRISPR–Cas / gene editing / precision medicine / RNA editing

Cite this article

Download citation ▾
Jia-Mei Li, Jie Huang, Yan Liao, Ting Hu, Chang-Li Wang, Wang-Zheqi Zhang, Chen-Wei Huang. Gene and RNA Editing: Revolutionary Approaches to Treating Diseases. MedComm, 2025, 6(10): e70389 DOI:10.1002/mco2.70389

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Yin, K. Kauffman, and D. Anderson, “Delivery Technologies for Genome Editing,” Nat Rev Drug Discovery 16, no. 6 (2017): 387-399.

[2]

Z. WareJoncas, J. M. Campbell, G. Martínez-Gálvez, et al., “Precision Gene Editing Technology And聽Applications in Nephrology,” Nature Reviews Nephrology 14, no. 11 (2018): 663-677.

[3]

P. Hsu, E. Lander, and F. Zhang, “Development and Applications of CRISPR-Cas9 for Genome Engineering,” Cell 157, no. 6 (2014): 1262-1278.

[4]

B. Wulff, M. Sakurai, and K. Nishikura, “Elucidating the Inosinome: Global Approaches to Adenosine-to-inosine RNA Editing,” Nature Reviews Genetics 12, no. 2 (2011): 81-85.

[5]

K. Nishikura, “Functions and Regulation of RNA Editing by ADAR Deaminases,” Annual Review of Biochemistry 79 (2010): 321-349.

[6]

T. Hosaka, H. Tsuji, and S. Kwak, “RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases,” International Journal of Molecular Sciences no. 20 (2021): 22.

[7]

S. Pu, T. Cheng, and H. Cheng, “Advances in RNA Editing in Hematopoiesis and Associated Malignancies,” Blood (2025).

[8]

J. Yan, Q. Zhang, and P. Yin, “RNA Editing Machinery in Plant Organelles,” Sci China Life Sci 61, no. 2 (2018): 162-169.

[9]

A. Gold, E. Levanon, and E. Eisenberg, “The New RNA-Editing Era—Ethical Considerations,” Trends in Genetics 37, no. 8 (2021): 685-687.

[10]

J. R. Sinnamon, S. Y. Kim, J. R. Fisk, et al., “In聽Vivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing,” Cell reports 32, no. 2 (2020): 107878.

[11]

S. Khan, “Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application,” Mol Ther Nucleic Acids 16 (2019): 326-334.

[12]

N. Tran and R. Han, “Rapidly Evolving Genome and Epigenome Editing Technologies,” Molecular Therapy 32, no. 9 (2024): 2803-2806.

[13]

K. Tamizkar and M. Jantsch, “RNA Editing in Disease: Mechanisms and Therapeutic Potential,” Rna 31, no. 3 (2025): 359-368.

[14]

D. B. T. Cox, J. S. Gootenberg, O. O. Abudayyeh, et al., “RNA Editing With CRISPR-Cas13,” Science 358, no. 6366 (2017): 1019-1027.

[15]

X. Ai, S. Ding, S. Zhou, et al., “Enhancing RNA Editing Efficiency and Specificity With Engineered ADAR2 Guide RNAs,” Mol Ther Nucleic Acids 36, no. 1 (2025): 102447.

[16]

H. Rees and D. Liu, “Base Editing: Precision Chemistry on the Genome and Transcriptome of Living Cells,” Nature Reviews Genetics 19, no. 12 (2018): 770-788.

[17]

F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74, no. 3 (2024): 229-263.

[18]

T. Cornu, C. Mussolino, and T. Cathomen, “Refining Strategies to Translate Genome Editing to the Clinic,” Nature Medicine 23, no. 4 (2017): 415-423.

[19]

T. Huang, G. Newby, and D. Liu, “Precision Genome Editing Using Cytosine and Adenine Base Editors in Mammalian Cells,” Nature Protocols 16, no. 2 (2021): 1089-1128.

[20]

S. Pandey, X. D. Gao, N. A. Krasnow, et al., “Efficient Site-specific Integration of Large Genes in Mammalian Cells via Continuously Evolved Recombinases and Prime Editing,” Nat Biomed Eng (2024).

[21]

B. Becher, A. Waisman, and L. Lu, “Cre-lox: Target Sensitivity Matters,” Immunity 51, no. 4 (2019): 595.

[22]

S. Hans, D. Zöller, J. Hammer, et al., “Cre-Controlled CRISPR Mutagenesis Provides Fast and Easy Conditional Gene Inactivation in Zebrafish,” Nature Communications 12, no. 1 (2021): 1125.

[23]

E. M. Porto, A. C. Komor, I. M. Slaymaker, and G. W. Yeo, “Base Editing: Advances and Therapeutic Opportunities,” Nat Rev Drug Discovery 19, no. 12 (2020): 839-859.

[24]

R. D. Chow, J. S. Chen, J. Shen, and S. Chen, “A Web Tool for the Design of Prime-editing Guide RNAs,” Nat Biomed Eng 5, no. 2 (2021): 190-194.

[25]

K. S. Allemailem, M. A Alsahli, A. Almatroudi, et al., “Current Updates of CRISPR/Cas9-mediated Genome Editing and Targeting Within Tumor Cells: An Innovative Strategy of Cancer Management,” Cancer Commun (Lond) 42, no. 12 (2022): 1257-1287.

[26]

K. Okada, K. Aoki, T. Tabei, et al., “Key Sequence Features of CRISPR RNA for Dual-guide CRISPR-Cas9 ribonucleoprotein Complexes Assembled With Wild-type or HiFi Cas9,” Nucleic Acids Res. 50, no. 5 (2022): 2854-2871.

[27]

J. C. Miller, D. P. Patil, D. F. Xia, et al., “Enhancing Gene Editing Specificity by Attenuating DNA Cleavage Kinetics,” Nature Biotechnology 37, no. 8 (2019): 945-952.

[28]

M. Saifaldeen, D. E. Al-Ansari, D. Ramotar, and M. Aouida, “CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering,” Cells 9, no. 11 (2020).

[29]

K. Meador, C. L Wysoczynski, A. J Norris, J. Aoto, M. R Bruchas, and C. L Tucker, “Achieving Tight Control of a Photoactivatable Cre Recombinase Gene Switch: New Design Strategies and Functional Characterization in Mammalian Cells and Rodent,” Nucleic Acids Res. 47, no. 17 (2019): e97.

[30]

Y. Ma, L. Yu, S. Pan, et al., “CRISPR/Cas9-mediated Targeting of the Rosa26 Locus Produces Cre Reporter Rat Strains for Monitoring Cre-loxP-mediated Lineage Tracing,” Febs Journal 284, no. 19 (2017): 3262-3277.

[31]

J. Hoersten, G. Ruiz-Gómez, M. Paszkowski-Rogacz, et al., “Engineering Spacer Specificity of the Cre/loxP System,” Nucleic Acids Res. 52, no. 13 (2024): 8017-8031.

[32]

A. Anand, E. Wu, Z. Li, et al., “High Efficiency Agrobacterium-mediated Site-specific Gene Integration in Maize Utilizing the FLP-FRT Recombination System,” Plant Biotechnology Journal 17, no. 8 (2019): 1636-1645.

[33]

Y. K. Jeong, S. Lee, G. Hwang, et al., “Adenine Base Editor Engineering Reduces Editing of Bystander Cytosines,” Nature Biotechnology 39, no. 11 (2021): 1426-1433.

[34]

M. Song, H. K. Kim, S. Lee, et al., “Sequence-specific Prediction of the Efficiencies of Adenine and Cytosine Base Editors,” Nature Biotechnology 38, no. 9 (2020): 1037-1043.

[35]

J. Kim, “Precision Genome Engineering Through Adenine and Cytosine Base Editing,” Nature Plants 4, no. 3 (2018): 148-151.

[36]

Y. Yu, T. C. Leete, D. A. Born, et al., “Cytosine Base Editors With Minimized Unguided DNA and RNA off-target Events and High on-target Activity,” Nature Communications 11, no. 1 (2020): 2052.

[37]

A. V. Anzalone, P. B. Randolph, J. R. Davis, et al., “Search-and-replace Genome Editing Without Double-strand Breaks or Donor DNA,” Nature 576, no. 7785 (2019): 149-157.

[38]

X. Li, L. Zhou, B. Gao, et al., “Highly Efficient Prime Editing by Introducing Same-sense Mutations in pegRNA or Stabilizing Its Structure,” Nature Communications 13, no. 1 (2022): 1669.

[39]

K. Nishikura, “A-to-I Editing of Coding and Non-coding RNAs by ADARs,” Nature Reviews Molecular Cell Biology 17, no. 2 (2016): 83-96.

[40]

P. Reautschnig, N. Wahn, J. Wettengel, et al., “CLUSTER Guide RNAs Enable Precise and Efficient RNA Editing With Endogenous ADAR Enzymes in Vivo,” Nature Biotechnology 40, no. 5 (2022): 759-768.

[41]

Y. Zhang, L. Li, J. J. Mendoza, et al., “Advances in A-to-I RNA Editing in Cancer,” Molecular cancer 23, no. 1 (2024): 280.

[42]

A. S Stroppel, N. Latifi, A. Hanswillemenke, R. Tasakis, F. Papavasiliou, and T. Stafforst, “Harnessing Self-labeling Enzymes for Selective and Concurrent A-to-I and C-to-U RNA Base Editing,” Nucleic Acids Res. 49, no. 16 (2021): e95.

[43]

L. Pfeiffer and T. Stafforst, “Precision RNA Base Editing With Engineered and Endogenous Effectors,” Nature Biotechnology 41, no. 11 (2023): 1526-1542.

[44]

T. Merkle, S. Merz, P. Reautschnig, et al., “Precise RNA Editing by Recruiting Endogenous ADARs With Antisense Oligonucleotides,” Nature Biotechnology 37, no. 2 (2019): 133-138.

[45]

W. Slotkin and K. Nishikura, “Adenosine-to-inosine RNA Editing and human Disease,” Genome Med 5, no. 11 (2013): 105.

[46]

C. Wang, J. Zou, X. Ma, E. Wang, and G. Peng, “Mechanisms and Implications of ADAR-mediated RNA Editing in Cancer,” Cancer Letters 411 (2017): 27-34.

[47]

S. Roth, E. Levanon, and E. Eisenberg, “Genome-wide Quantification of ADAR Adenosine-to-inosine RNA Editing Activity,” Nature Methods 16, no. 11 (2019): 1131-1138.

[48]

P. Vogel, M. Moschref, Q. Li, et al., “Efficient and Precise Editing of Endogenous Transcripts With SNAP-tagged ADARs,” Nature Methods 15, no. 7 (2018): 535-538.

[49]

K. D. Kiran Kumar, S. Singh, S. M. Schmelzle, et al., “An Improved SNAP-ADAR Tool Enables Efficient RNA Base Editing to Interfere With Post-translational Protein Modification,” Nature Communications 15, no. 1 (2024): 6615.

[50]

G. Aquino-Jarquin, “Novel Engineered Programmable Systems for ADAR-Mediated RNA Editing,” Mol Ther Nucleic Acids 19 (2020): 1065-1072.

[51]

N. W. Hubbard, J. M. Ames, M. Maurano, et al., “ADAR1 mutation Causes ZBP1-dependent Immunopathology,” Nature 607, no. 7920 (2022): 769-775.

[52]

B. J. Liddicoat, R. Piskol, A. M. Chalk, et al., “RNA Editing by ADAR1 Prevents MDA5 Sensing of Endogenous dsRNA as Nonself,” Science 349, no. 6252 (2015): 1115-1120.

[53]

T. Ramasamy, H. B. Ruttala, S. Munusamy, N. Chakraborty, and J. O. Kim, “Nano Drug Delivery Systems for Antisense Oligonucleotides (ASO) Therapeutics,” J Control Release 352 (2022): 861-878.

[54]

R. A. Wesselhoeft, P. S. Kowalski, F. C. Parker-Hale, Y. Huang, N. Bisaria, and D. G. Anderson, “RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration in Vivo,” Molecular Cell 74, no. 3 (2019): 508-520.e4.

[55]

D. Katrekar, J. Yen, Y. Xiang, et al., “Efficient in Vitro and in Vivo RNA Editing via Recruitment of Endogenous ADARs Using Circular Guide RNAs,” Nature Biotechnology 40, no. 6 (2022): 938-945.

[56]

F. Perrone, R. Cacace, J. van der Zee, and C. Van Broeckhoven, “Emerging Genetic Complexity and Rare Genetic Variants in Neurodegenerative Brain Diseases,” Genome Med 13, no. 1 (2021): 59.

[57]

B. J. Booth, S. Nourreddine, D. Katrekar, et al., “RNA Editing: Expanding the Potential of RNA Therapeutics,” Molecular Therapy 31, no. 6 (2023): 1533-1549.

[58]

U. Sengupta and R Kayed, “Amyloid β, Tau, and α-Synuclein Aggregates in the Pathogenesis, Prognosis, and Therapeutics for Neurodegenerative Diseases,” Progress in Neurobiology 214 (2022): 102270.

[59]

S. Weninger, B. Sperling, R. Alexander, et al., “Active Immunotherapy and Alternative Therapeutic Modalities for Alzheimer's Disease,” Alzheimers Dement (N Y) 6, no. 1 (2020): e12090.

[60]

L. Guan, Y. Han, C. Yang, et al., “CRISPR-Cas9-Mediated Gene Therapy in Neurological Disorders,” Molecular Neurobiology 59, no. 2 (2022): 968-982.

[61]

V. L Feigin, T. Vos, E. Nichols, et al., “The Global Burden of Neurological Disorders: Translating Evidence Into Policy,” Lancet Neurology 19, no. 3 (2020): 255-265.

[62]

S. A. Pena, R. Iyengar, R. S. Eshraghi, et al., “Gene Therapy for Neurological Disorders: Challenges and Recent Advancements,” J Drug Target 28, no. 2 (2020): 111-128.

[63]

M. McMahon and D Cleveland, “Gene Therapy: Gene-editing Therapy for Neurological Disease,” Nature reviews Neurology 13, no. 1 (2017): 7-9.

[64]

S. Zhang, L. Chen, Y. Zhang, and D. Fang, “Alleviation of Neurological Disease by RNA Editing,” Methods (San Diego, Calif.) 194 (2021): 94-99.

[65]

D. Carroll, “Genome Engineering With Targetable Nucleases,” Annual Review of Biochemistry 83 (2014): 409-439.

[66]

K. S. Chen, E. J. Koubek, S. A. Sakowski, and E. L. Feldman, “Stem Cell Therapeutics and Gene Therapy for Neurologic Disorders,” Neurotherapeutics 21, no. 4 (2024): e00427.

[67]

C. Guo, X. Ma, F. Gao, and Y. Guo, “Off-target Effects in CRISPR/Cas9 Gene Editing,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1143157.

[68]

C. Jinka, C. Sainath, S. Babu, et al., “CRISPR-Cas9 Gene Editing and human Diseases,” Bioinformation 18, no. 11 (2022): 1081-1086.

[69]

W. Ruan, M. Jiao, S. Xu, et al., “Brain-targeted CRISPR/Cas9 Nanomedicine for Effective Glioblastoma Therapy,” J Control Release 351 (2022): 739-751.

[70]

W. Yang, J. Yan, P. Zhuang, et al., “Progress of Delivery Methods for CRISPR-Cas9,” Expert Opin Drug Deliv 19, no. 8 (2022): 913-926.

[71]

K. Lanctôt, J. Amatniek, S. Ancoli-Israel, et al., “Neuropsychiatric Signs and Symptoms of Alzheimer's Disease: New Treatment Paradigms,” Alzheimers Dement (N Y) 3, no. 3 (2017): 440-449.

[72]

P. Kumar, N. K. Jha, S. K. Jha, K. Ramani, and R. K. Ambasta, “Tau Phosphorylation, Molecular Chaperones, and Ubiquitin E3 Ligase: Clinical Relevance in Alzheimer's Disease,” Journal of Alzheimer's Disease 43, no. 2 (2015): 341-361.

[73]

J. Dorszewska, M. Prendecki, A. Oczkowska, M. Dezor, and W. Kozubski, “Molecular Basis of Familial and Sporadic Alzheimer's Disease,” Curr Alzheimer Res 13, no. 9 (2016): 952-963.

[74]

A. M. Saunders, W. J. Strittmatter, D. Schmechel, et al., “Association of Apolipoprotein E Allele Epsilon 4 With Late-onset Familial and Sporadic Alzheimer's Disease,” Neurology 43, no. 8 (1993): 1467-1472.

[75]

J. Weller and A Budson, “Current Understanding of Alzheimer's Disease Diagnosis and Treatment,” F1000Res 7 (2018).

[76]

C. Lane, J. Hardy, and J. Schott, “Alzheimer's Disease,” European Journal of Neurology 25, no. 1 (2018): 59-70.

[77]

M. Ortiz-Virumbrales, C. L. Moreno, I. Kruglikov, et al., “CRISPR/Cas9-Correctable Mutation-related Molecular and Physiological Phenotypes in iPSC-derived Alzheimer's PSEN2 (N141I) Neurons,” Acta Neuropathol Commun 5, no. 1 (2017): 77.

[78]

B. György, et al., “CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease,” Mol Ther Nucleic Acids 11 (2018): 429-440.

[79]

C. Wang, R. Najm, Q. Xu, et al., “Gain of Toxic Apolipoprotein E4 Effects in human iPSC-derived Neurons Is Ameliorated by a Small-molecule Structure Corrector,” Nature Medicine 24, no. 5 (2018): 647-657.

[80]

D. C. Tan, S. Yao, A. Ittner, et al., “Generation of a New Tau Knockout (tauΔex1) Line Using CRISPR/Cas9 Genome Editing in Mice,” Journal of Alzheimer's Disease 62, no. 2 (2018): 571-578.

[81]

T. Gaj, B. Epstein, and D. Schaffer, “Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications,” Molecular Therapy 24, no. 3 (2016): 458-464.

[82]

W. Sun, W. Ji, J. M. Hall, et al., “Self-assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing,” Angewandte Chemie (International ed in English) 54, no. 41 (2015): 12029-12033.

[83]

I. Raffaele, G. L. Cipriano, I. Anchesi, S. Oddo, and S. Silvestro, “CRISPR/Cas9 and iPSC-Based Therapeutic Approaches in Alzheimer's Disease,” Antioxidants (Basel) 14, no. 7 (2025): 781.

[84]

A. Wright Willis, B. A. Evanoff, M. Lian, S. R. Criswell, and B. A. Racette, “Geographic and Ethnic Variation in Parkinson Disease: A Population-based Study of US Medicare Beneficiaries,” Neuroepidemiology 34, no. 3 (2010): 143-151.

[85]

S. Mehra, S. Sahay, and S. Maji, “α-Synuclein Misfolding and Aggregation: Implications in Parkinson's Disease Pathogenesis,” Biochim Biophys Acta Proteins Proteom 1867, no. 10 (2019): 890-908.

[86]

B. Trist, D. Hare, and K. Double, “Oxidative Stress in the Aging Substantia nigra and the Etiology of Parkinson's Disease,” Aging Cell 18, no. 6 (2019): e13031.

[87]

B. Kantor, L. Tagliafierro, J. Gu, et al., “Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD,” Molecular Therapy 26, no. 11 (2018): 2638-2649.

[88]

J. Prasuhn and N Brüggemann, “Gene Therapeutic Approaches for the Treatment of Mitochondrial Dysfunction in Parkinson's Disease,” Genes (Basel) no. 11 (2021): 12.

[89]

Y. Liao, Y. Dong, and J. Cheng, “The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders,” International Journal of Molecular Sciences 18, no. 2 (2017).

[90]

S. Masaldan, S. Callegari, and G. Dewson, “Therapeutic Targeting of Mitophagy in Parkinson's Disease,” Biochemical Society Transactions 50, no. 2 (2022): 783-797.

[91]

A. Aguiar, et al., “Parkin-knockout Mice Did Not Display Increased Vulnerability to Intranasal Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),” Neurotoxicity Research 24, no. 2 (2013): 280-287.

[92]

T. Yasuda, H. Hayakawa, T. Nihira, et al., “Parkin-mediated Protection of Dopaminergic Neurons in a Chronic MPTP-minipump Mouse Model of Parkinson disease,” Journal of Neuropathology and Experimental Neurology 70, no. 8 (2011): 686-697.

[93]

T. Liufu and Z Wang, “Treatment for Mitochondrial Diseases,” Reviews in the Neurosciences (2020).

[94]

W. Yang, Z. Tu, Q. Sun, and X. Li, “CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases,” Front Mol Neurosci 9 (2016): 30.

[95]

N. Wulansari, W. H. W. Darsono, H. Woo, et al., “Neurodevelopmental Defects and Neurodegenerative Phenotypes in human Brain Organoids Carrying Parkinson's Disease-linked DNAJC6 Mutations,” Science Advances 7, no. 8 (2021).

[96]

S. Olgiati, M. Quadri, M. Fang, et al., “DNAJC6 Mutations Associated with Early-Onset Parkinson's Disease,” Annals of Neurology 79, no. 2 (2016): 244-256.

[97]

Y. Yim, T. Sun, L. Wu, et al., “Endocytosis and Clathrin-uncoating Defects at Synapses of Auxilin Knockout Mice,” PNAS 107, no. 9 (2010): 4412-4417.

[98]

J. Jankovic and E Tan, “Parkinson's Disease: Etiopathogenesis and Treatment,” Journal of Neurology, Neurosurgery, and Psychiatry 91, no. 8 (2020): 795-808.

[99]

T. B. Malankhanova, A. A. Malakhova, S. P. Medvedev, and S. M. Zakian, “Modern Genome Editing Technologies in Huntington's Disease Research,” J Huntingtons Dis 6, no. 1 (2017): 19-31.

[100]

J. K. Lee, A. Conrad, E. Epping, et al., “Effect of Trinucleotide Repeats in the Huntington's Gene on Intelligence,” EBioMedicine 31 (2018): 47-53.

[101]

B. Leavitt, H. Kordasiewicz, and S. Schobel, “Huntingtin-Lowering Therapies for Huntington Disease: A Review of the Evidence of Potential Benefits and Risks,” JAMA neurology 77, no. 6 (2020): 764-772.

[102]

S. J Tabrizi, C. Estevez-Fraga, W. M C van Roon-Mom, et al., “Potential Disease-modifying Therapies for Huntington's Disease: Lessons Learned and Future Opportunities,” Lancet Neurology 21, no. 7 (2022): 645-658.

[103]

P. McColgan and S Tabrizi, “Huntington's Disease: A Clinical Review,” European Journal of Neurology 25, no. 1 (2018): 24-34.

[104]

D. Mittelman, C. Moye, J. Morton, et al., “Zinc-finger Directed Double-strand Breaks Within CAG Repeat Tracts Promote Repeat Instability in human Cells,” PNAS 106, no. 24 (2009): 9607-9612.

[105]

M. Christian, T. Cermak, E. L Doyle, et al., “Targeting DNA Double-strand Breaks With TAL Effector Nucleases,” Genetics 186, no. 2 (2010): 757-761.

[106]

S. Tabrizi, R. Ghosh, and B. Leavitt, “Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease,” Neuron 101, no. 5 (2019): 801-819.

[107]

G. Vachey and N Déglon, “CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease,” Methods in Molecular Biology 1780 (2018): 463-481.

[108]

S. Yang, R. Chang, H. Yang, et al., “CRISPR/Cas9-mediated Gene Editing Ameliorates Neurotoxicity in Mouse Model of Huntington's Disease,” Journal of Clinical Investigation 127, no. 7 (2017): 2719-2724.

[109]

Y. Qin, S. Li, X. Li, and S. Yang, “CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy,” Neurosci Bull 38, no. 11 (2022): 1397-1408.

[110]

S. S. Alkanli, N. Alkanli, A. Ay, and I. Albeniz, “CRISPR/Cas9 Mediated Therapeutic Approach in Huntington's Disease,” Molecular Neurobiology 60, no. 3 (2023): 1486-1498.

[111]

K. Kingwell, “Double Setback for ASO Trials in Huntington Disease,” Nat Rev Drug Discovery 20, no. 6 (2021): 412-413.

[112]

R. Johnson, “Neurovirology: Evolution of a New Discipline,” Journal of Neurovirology 1, no. 1 (1995): 2-4.

[113]

M. Manglani and D McGavern, “New Advances in CNS Immunity Against Viral Infection,” Current opinion in virology 28 (2018): 116-126.

[114]

R. Ardakani, L Jia, E. Matthews, and K. T. Thakur, “Therapeutic Advances in Neuroinfectious Diseases,” Ther Adv Infect Dis 11 (2024): 20499361241274246.

[115]

C. Kunze, K. Börner, E. Kienle, et al., “Synthetic AAV/CRISPR Vectors for Blocking HIV-1 Expression in Persistently Infected Astrocytes,” Glia 66, no. 2 (2018): 413-427.

[116]

A. Fois and B Brew, “The Potential of the CNS as a Reservoir for HIV-1 Infection: Implications for HIV Eradication,” Curr HIV/AIDS Rep 12, no. 2 (2015): 299-303.

[117]

P. K. Dash, R. Kaminski, R. Bella, et al., “Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,” Nature Communications 10, no. 1 (2019): 2753.

[118]

M. K. White, R. Kaminski, H. Wollebo, W. Hu, T. Malcolm, and K. Khalili, “Gene Editing for Treatment of Neurological Infections,” Neurotherapeutics 13, no. 3 (2016): 547-554.

[119]

S. Ueda, H. Ebina, Y. Kanemura, N. Misawa, and Y. Koyanagi, “Anti-HIV-1 Potency of the CRISPR/Cas9 System Insufficient to Fully Inhibit Viral Replication,” Microbiology and Immunology 60, no. 7 (2016): 483-496.

[120]

A. Bellizzi, N. Ahye, G. Jalagadugula, and H. S. Wollebo, “A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System,” J Neuroimmune Pharmacol 14, no. 4 (2019): 578-594.

[121]

H. S. Wollebo, M. K. White, J. Gordon, J. R. Berger, and K. Khalili, “Persistence and Pathogenesis of the Neurotropic Polyomavirus JC,” Annals of Neurology 77, no. 4 (2015): 560-570.

[122]

H. S. Wollebo, A. Bellizzi, R. Kaminski, W. Hu, M. K. White, and K. Khalili, “CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection,” PLoS ONE 10, no. 9 (2015): e0136046.

[123]

M. Loignon and E Toma, “Treatment Options for Progressive Multifocal Leukoencephalopathy in HIV-infected Persons: Current Status and Future Directions,” Expert Review of Anti-Infective Therapy 14, no. 2 (2016): 177-191.

[124]

T. Christofi and A Zaravinos, “RNA Editing in the Forefront of Epitranscriptomics and human Health,” Journal of translational medicine 17, no. 1 (2019): 319.

[125]

A. Cayir, “RNA A-to-I Editing, Environmental Exposure, and human Diseases,” Critical Reviews in Toxicology 51, no. 5 (2021): 456-466.

[126]

C. Garcia-Doval and M Jinek, “Molecular Architectures and Mechanisms of Class 2 CRISPR-associated Nucleases,” Current Opinion in Structural Biology 47 (2017): 157-166.

[127]

K. Khermesh, A. M. D'Erchia, M. Barak, et al., “Reduced Levels of Protein Recoding by A-to-I RNA Editing in Alzheimer's Disease,” Rna 22, no. 2 (2016): 290-302.

[128]

V. Lee, M. Goedert, and J. Trojanowski, “Neurodegenerative Tauopathies,” Annual Review of Neuroscience 24 (2001): 1121-1159.

[129]

J. R. Welden, G. Margvelani, K. A. Arizaca Maquera, et al., “RNA Editing of Microtubule-associated Protein Tau Circular RNAs Promotes Their Translation and Tau Tangle Formation,” Nucleic Acids Res. 50, no. 22 (2022): 12979-12996.

[130]

I. Gaisler-Salomon, E. Kravitz, Y. Feiler, et al., “Hippocampus-specific Deficiency in RNA Editing of GluA2 in Alzheimer's Disease,” Neurobiology of Aging 35, no. 8 (2014): 1785-1791.

[131]

C. McEntee, A. Cavalier, and T. LaRocca, “ADAR1 suppression Causes Interferon Signaling and Transposable Element Transcript Accumulation in human Astrocytes,” Front Mol Neurosci 16 (2023): 1263369.

[132]

N. R. Belur, B. I. Bustos, S. J. Lubbe, and J. R. Mazzulli, “Nuclear Aggregates of NONO/SFPQ and A-to-I-edited RNA in Parkinson's Disease and Dementia With Lewy Bodies,” Neuron 112, no. 15 (2024): 2558-2580. e13.

[133]

S. Geisler, K. M. Holmström, D. Skujat, et al., “PINK1/Parkin-mediated Mitophagy Is Dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology 12, no. 2 (2010): 119-131.

[134]

J. Wettengel, P. Reautschnig, S. Geisler, P. J, Kahle, and T. Stafforst, “Harnessing human ADAR2 for RNA Repair—Recoding a PINK1 Mutation Rescues Mitophagy,” Nucleic Acids Res. 45, no. 5 (2017): 2797-2808.

[135]

L. Cheng, Z. Liu, C. Shen, et al., “A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases,” CNS neuroscience & therapeutics 31, no. 1 (2025): e70208.

[136]

L. Rowland and N Shneider, “Amyotrophic Lateral Sclerosis,” New England Journal of Medicine 344, no. 22 (2001): 1688-1700.

[137]

P. Van Damme, et al., “Excitotoxicity and Amyotrophic Lateral Sclerosis,” Neurodegener Dis 2, no. 3-4 (2005): 147-159.

[138]

R. Chia, A. Chiò, and B. Traynor, “Novel Genes Associated With Amyotrophic Lateral Sclerosis: Diagnostic and Clinical Implications,” Lancet Neurology 17, no. 1 (2018): 94-102.

[139]

R. E. Rizea, A. Corlatescu, H. P. Costin, A. Dumitru, and A. V. Ciurea, “Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances,” International Journal of Molecular Sciences 25, no. 18 (2024).

[140]

H. Ilieva, M. Vullaganti, and J. Kwan, “Advances in Molecular Pathology, Diagnosis, and Treatment of Amyotrophic Lateral Sclerosis,” Bmj 383 (2023): e075037.

[141]

T. Yamashita, T. Hideyama, K. Hachiga, et al., “A Role for Calpain-dependent Cleavage of TDP-43 in Amyotrophic Lateral Sclerosis Pathology,” Nature Communications 3 (2012): 1307.

[142]

H. Aizawa, J. Sawada, T. Hideyama, et al., “TDP-43 Pathology in Sporadic ALS Occurs in Motor Neurons Lacking the RNA Editing Enzyme ADAR2,” Acta Neuropathologica 120, no. 1 (2010): 75-84.

[143]

T. Yamashita, H. L. Chai, S. Teramoto, et al., “Rescue of Amyotrophic Lateral Sclerosis Phenotype in a Mouse Model by Intravenous AAV9-ADAR2 Delivery to Motor Neurons,” EMBO Molecular Medicine 5, no. 11 (2013): 1710-1719.

[144]

M. Akamatsu, T. Yamashita, N. Hirose, S. Teramoto, and S. Kwak, “The AMPA Receptor Antagonist perampanel Robustly Rescues Amyotrophic Lateral Sclerosis (ALS) Pathology in Sporadic ALS Model Mice,” Scientific Reports 6 (2016): 28649.

[145]

Q. T. Ostrom, H. Gittleman, P. M. de Blank, et al., “American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012,” Neuro-oncol 18, no. Suppl 1 (2016): i1-i50.

[146]

M. Suvà, E. Rheinbay, S. Gillespie, et al., “Reconstructing and Reprogramming the Tumor-propagating Potential of Glioblastoma Stem-Like Cells,” Cell 157, no. 3 (2014): 580-594.

[147]

A. Politis, L. Stavrinou, A. Kalyvas, E. Boviatsis, and C. Piperi, “Glioblastoma: Molecular Features, Emerging Molecular Targets and Novel Therapeutic Strategies,” Critical Reviews in Oncology/Hematology 212 (2025): 104764.

[148]

V. Chavda, V. Patel, D. Yadav, J. Shah, S. Patel, and J. Jin, “Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets,” Current Drug Metabolism 21, no. 3 (2020): 186-198.

[149]

S. G. M. Piccirillo, B. A. Reynolds, N. Zanetti, et al., “Bone Morphogenetic Proteins Inhibit the Tumorigenic Potential of human Brain Tumour-initiating Cells,” Nature 444, no. 7120 (2006): 761-765.

[150]

L. Jiang, Y. Hao, C. Shao, et al., “ADAR1-mediated RNA Editing Links Ganglioside Catabolism to Glioblastoma Stem Cell Maintenance,” Journal of Clinical Investigation 132, no. 6 (2022).

[151]

E. CONZELMANN, J. BURG, G. STEPHAN, and K. SANDHOFF, “Complexing of Glycolipids and Their Transfer Between Membranes by the Activator Protein for Degradation of Lysosomal Ganglioside GM2,” European Journal of Biochemistry 123, no. 2 (1982): 455-464.

[152]

N. Werth, C. G. Schuette, G. Wilkening, T. Lemm, and K. Sandhoff, “Degradation of Membrane-bound Ganglioside GM2 by Beta -hexosaminidase A. Stimulation by GM2 Activator Protein and Lysosomal Lipids,” Journal of Biological Chemistry 276, no. 16 (2001): 12685-12690.

[153]

F. Galeano, C. Rossetti, S. Tomaselli, et al., “ADAR2-editing Activity Inhibits Glioblastoma Growth Through the Modulation of the CDC14B/Skp2/p21/p27 Axis,” Oncogene 32, no. 8 (2013): 998-1009.

[154]

G. Rodier, P. Coulombe, P. Tanguay, C. Boutonnet, and S. Meloche, “Phosphorylation of Skp2 Regulated by CDK2 and Cdc14B Protects It From Degradation by APC(Cdh1) in G1 Phase,” Embo Journal 27, no. 4 (2008): 679-691.

[155]

J. Tao, D. Bauer, and R. Chiarle, “Assessing and Advancing the Safety of CRISPR-Cas Tools: From DNA to RNA Editing,” Nature Communications 14, no. 1 (2023): 212.

[156]

Y. Huang, B. Liu, S. C. Sinha, S. Amin, and L. Gan, “Mechanism and Therapeutic Potential of Targeting cGAS-STING Signaling in Neurological Disorders,” Mol Neurodegener 18, no. 1 (2023): 79.

[157]

Y. Zhang, B. Schmid, N. K. Nikolaisen, et al., “Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia With Mutation in CHMP2B,” Stem Cell Reports 8, no. 3 (2017): 648-658.

[158]

Y. Min, F. Chemello, H. Li, et al., “Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing,” Molecular Therapy 28, no. 9 (2020): 2044-2055.

[159]

G. Colasante, G. Lignani, S. Brusco, et al., “dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice,” Molecular Therapy 28, no. 1 (2020): 235-253.

[160]

G. Colasante, Y. Qiu, L. Massimino, et al., “In Vivo CRISPRa Decreases Seizures and Rescues Cognitive Deficits in a Rodent Model of Epilepsy,” Brain 143, no. 3 (2020): 891-905.

[161]

J. Lee, J. Y. Lee, D. W. Song, et al., “Targeted PMP22 TATA-box Editing by CRISPR/Cas9 Reduces Demyelinating Neuropathy of Charcot-Marie-Tooth Disease Type 1A in Mice,” Nucleic Acids Res. 48, no. 1 (2020): 130-140.

[162]

D. A. Abashkin, A. O. Kurishev, D. S. Karpov, and V. E. Golimbet, “Cellular Models in Schizophrenia Research,” International Journal of Molecular Sciences 22, no. 16 (2021).

[163]

L. Ou, M. J. Przybilla, A. Tăbăran, et al., “A Novel Gene Editing System to Treat both Tay-Sachs and Sandhoff Diseases,” Gene Therapy 27, no. 5 (2020): 226-236.

[164]

N. Xie, H. Gong, J. A. Suhl, P. Chopra, T. Wang, and S. T. Warren, “Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome,” PLoS ONE 11, no. 10 (2016): e0165499.

[165]

A. S. Ponomarev, D. S. Chulpanova, L. M. Yanygina, V. V. Solovyeva, and A. A. Rizvanov, “Emerging Gene Therapy Approaches in the Management of Spinal Muscular Atrophy (SMA): An Overview of Clinical Trials and Patent Landscape,” International Journal of Molecular Sciences 24, no. 18 (2023).

[166]

H. Cho, M. Yoo, T. Pongkulapa, et al., “Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome,” Adv Sci (Weinh) 11, no. 24 (2024): e2306432.

[167]

P. G. Mazzara, S. Muggeo, M. Luoni, et al., “Frataxin Gene Editing Rescues Friedreich's Ataxia Pathology in Dorsal Root Ganglia Organoid-derived Sensory Neurons,” Nature Communications 11, no. 1 (2020): 4178.

[168]

S. R. Wu, J. Sharpe, J. Tolliver, et al., “Combining the RCAS/Tv-a Retrovirus and CRISPR/Cas9 Gene Editing Systems to Generate Primary Mouse Models of Diffuse Midline Glioma,” Neoplasia 62 (2025): 101139.

[169]

M. Takadera, K. Satomi, F. Szulzewsky, et al., “Phenotypic Characterization With Somatic Genome Editing and Gene Transfer Reveals the Diverse Oncogenicity of Ependymoma Fusion Genes,” Acta Neuropathol Commun 8, no. 1 (2020): 203.

[170]

J. M. Wolter, H. Mao, G. Fragola, et al., “Cas9 gene Therapy for Angelman Syndrome Traps Ube3a-ATS Long Non-coding RNA,” Nature 587, no. 7833 (2020): 281-284.

[171]

J. R. Sinnamon, S. Y. Kim, G. M. Corson, et al., “Site-directed RNA Repair of Endogenous Mecp2 RNA in Neurons,” PNAS 114, no. 44 (2017): E9395-e9402.

[172]

G. Kortenbruck, E. Berger, E. Speckmann, and U. Musshoff, “RNA Editing at the Q/R Site for the Glutamate Receptor Subunits GLUR2, GLUR5, and GLUR6 in Hippocampus and Temporal Cortex From Epileptic Patients,” Neurobiology of Disease 8, no. 3 (2001): 459-468.

[173]

A. Barbon, F. Fumagalli, L. Caracciolo, et al., “Acute Spinal Cord Injury Persistently Reduces R/G RNA Editing of AMPA Receptors,” Journal of Neurochemistry 114, no. 2 (2010): 397-407.

[174]

D. Dafou, E. Kanata, S. Pettas, et al., “RNA Editing Alterations Define Disease Manifestations in the Progression of Experimental Autoimmune Encephalomyelitis (EAE),” Cells 11, no. 22 (2022).

[175]

G. Li, M. Jin, Z. Li, et al., “Mini-dCas13X-mediated RNA Editing Restores Dystrophin Expression in a Humanized Mouse Model of Duchenne Muscular Dystrophy,” Journal of Clinical Investigation 133, no. 3 (2023).

[176]

M. Choudhury, T. Fu, K. Amoah, et al., “Widespread RNA Hypoediting in Schizophrenia and Its Relevance to Mitochondrial Function,” Science Advances no. 14 (2023): eade9997.

[177]

G. Sogkas, F. Atschekzei, I. R. Adriawan, N. Dubrowinskaja, T. Witte, and R. E. Schmidt, “Cellular and Molecular Mechanisms Breaking Immune Tolerance in Inborn Errors of Immunity,” Cell Mol Immunol 18, no. 5 (2021): 1122-1140.

[178]

G. Frazzei, R. F. van Vollenhoven, B. A. de Jong, S. E. Siegelaar, and D. van Schaardenburg, “Preclinical Autoimmune Disease: A Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes,” Frontiers in immunology 13 (2022): 899372.

[179]

H. Wang, J. Zhou, X. Guo, et al., “Use of Glucocorticoids in the Management of Immunotherapy-related Adverse Effects,” Thorac Cancer 11, no. 10 (2020): 3047-3052.

[180]

S. Petrus-Reurer, M. Romano, S. Howlett, J. L. Jones, G. Lombardi, and K. Saeb-Parsy, “Immunological Considerations and Challenges for Regenerative Cellular Therapies,” Communications Biology 4, no. 1 (2021): 798.

[181]

Global, Regional, and National Incidence of Six Major Immune-mediated Inflammatory Diseases: Findings From the Global Burden of Disease Study 2019. EClinicalMedicine 2023. 64: p. 102193.

[182]

I. Odnoletkova, G. Kindle, I. Quinti, et al., “The Burden of Common Variable Immunodeficiency Disorders: A Retrospective Analysis of the European Society for Immunodeficiency (ESID) registry Data,” Orphanet journal of rare diseases 13, no. 1 (2018): 201.

[183]

E. Deneault, “Recent Therapeutic Gene Editing Applications to Genetic Disorders,” Current Issues in Molecular Biology 46, no. 5 (2024): 4147-4185.

[184]

S. Ravendran, S. S. Hernández, S. König, and R. O. Bak, “CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome,” Frontiers in Genome Editing 4 (2022): 793010.

[185]

D. Allen, N. Kalter, M. Rosenberg, and A. Hendel, “Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders,” Pharmaceutics 15, no. 5 (2023).

[186]

J. Geilenkeuser, N. Armbrust, E. Steinmaßl, et al., “Engineered Nucleocytosolic Vehicles for Loading of Programmable Editors,” Cell (2025).

[187]

B. C. Houghton, N. Panchal, S. A. Haas, et al., “Genome Editing with TALEN, CRISPR-Cas9 and CRISPR-Cas12a in Combination with AAV6 Homology Donor Restores T Cell Function for XLP,” Frontiers in Genome Editing 4 (2022): 828489.

[188]

Z. Zhang, A. Thrasher, and F. Zhang, “Gene Therapy and Genome Editing for Primary Immunodeficiency Diseases,” Genes Dis 7, no. 1 (2020): 38-51.

[189]

C. C. Dvorak, E. Haddad, J. Heimall, et al., “The Diagnosis of Severe Combined Immunodeficiency: Implementation of the PIDTC 2022 Definitions,” Journal of Allergy and Clinical Immunology 151, no. 2 (2023): 547-555. e5.

[190]

A. A. Justiz-Vaillant, D. Gopaul, P. E. Akpaka, S. Soodeen, and R. Arozarena Fundora, “Severe Combined Immunodeficiency-Classification, Microbiology Association and Treatment,” Microorganisms 11, no. 6 (2023).

[191]

M. van der Burg and A. Gennery, “Educational Paper. The Expanding Clinical and Immunological Spectrum of Severe Combined Immunodeficiency,” European Journal of Pediatrics 170, no. 5 (2011): 561-571.

[192]

R. Rai, Z. Steinberg, M. Romito, et al., “CRISPR/Cas9-Based Disease Modeling and Functional Correction of Interleukin 7 Receptor Alpha Severe Combined Immunodeficiency in T-Lymphocytes and Hematopoietic Stem Cells,” Human Gene Therapy 35, no. 7-8 (2024): 269-283.

[193]

O. Iancu, D. Allen, O. Knop, et al., “Multiplex HDR for Disease and Correction Modeling of SCID by CRISPR Genome Editing in human HSPCs,” Mol Ther Nucleic Acids 31 (2023): 105-121.

[194]

D. B. Kohn, C. Booth, K. L. Shaw, et al., “Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency,” New England Journal of Medicine 384, no. 21 (2021): 2002-2013.

[195]

L. Ott de Bruin, S. Volpi, and K. Musunuru, “Novel Genome-Editing Tools to Model and Correct Primary Immunodeficiencies,” Frontiers in immunology 6 (2015): 250.

[196]

E. Blanco, N. Izotova, C. Booth, and A. J. Thrasher, “Immune Reconstitution After Gene Therapy Approaches in Patients with X-Linked Severe Combined Immunodeficiency Disease,” Frontiers in immunology 11 (2020): 608653.

[197]

L. Garcia-Perez, A. Ordas, K. Canté-Barrett, et al., “Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey From Mouse Cage to Bed Side,” Pharmaceutics 12, no. 6 (2020).

[198]

H. Yu, Y. Yang, and B. Chiang, “Chronic Granulomatous Disease: A Comprehensive Review,” Clinical Reviews in Allergy & Immunology 61, no. 2 (2021): 101-113.

[199]

O. Staudacher and H. von Bernuth, “Clinical Presentation, Diagnosis, and Treatment of Chronic Granulomatous Disease,” Front Pediatr 12 (2024): 1384550.

[200]

S. O'Neill, J. Brault, M. Stasia, and U. G. Knaus, “Genetic Disorders Coupled to ROS Deficiency,” Redox Biology 6 (2015): 135-156.

[201]

S. F. Bode, J. Rohr, J. Müller Quernheim, M. Seidl, C. Speckmann, and A. Heinzmann, “Pulmonary Granulomatosis of Genetic Origin,” Eur Respir Rev 30, no. 160 (2021).

[202]

A. Jafarian, G. Shokri, M. Shokrollahi Barough, M. Moin, Z. Pourpak, and M. Soleimani, “Recent Advances in Gene Therapy and Modeling of Chronic Granulomatous Disease,” Iran J Allergy Asthma Immunol 18, no. 2 (2019): 131-142.

[203]

S. S. De Ravin, A. Reik, P. Liu, et al., “Targeted Gene Addition in human CD34(+) Hematopoietic Cells for Correction of X-linked Chronic Granulomatous Disease,” Nature Biotechnology 34, no. 4 (2016): 424-429.

[204]

A. Schejtman, W. Vetharoy, U. Choi, et al., “Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47(phox)-Deficient Chronic Granulomatous Disease,” Human Gene Therapy 32, no. 17-18 (2021): 949-958.

[205]

C. Kuo and D Kohn, “Gene Therapy for the Treatment of Primary Immune Deficiencies,” Current Allergy and Asthma Reports 16, no. 5 (2016): 39.

[206]

T. E. Whittaker, S. E. Moula, S. Bahal, et al., “Multidimensional Response Surface Methodology for the Development of a Gene Editing Protocol for p67(phox)-Deficient Chronic Granulomatous Disease,” Human Gene Therapy 35, no. 7-8 (2024): 298-312.

[207]

K. O'Leary, “Prime Time for Gene Editing,” Nature Medicine 30, no. 12 (2024): 3392-3393.

[208]

A. Fava and M Petri, “Systemic Lupus Erythematosus: Diagnosis and Clinical Management,” Journal of Autoimmunity 96 (2019): 1-13.

[209]

D. Adams and W Shao, “Epigenetic Alterations in Immune Cells of Systemic Lupus Erythematosus and Therapeutic Implications,” Cells 11, no. 3 (2022).

[210]

S. Fasano, A. Milone, G. F. Nicoletti, D. A. Isenberg, and F. Ciccia, “Precision Medicine in Systemic Lupus Erythematosus,” Nat Rev Rheumatol 19, no. 6 (2023): 331-342.

[211]

L. Bennett, A. K. Palucka, E. Arce, et al., “Interferon and Granulopoiesis Signatures in Systemic lupus Erythematosus Blood,” Journal of Experimental Medicine 197, no. 6 (2003): 711-723.

[212]

E. C. Baechler, F. M. Batliwalla, G. Karypis, et al., “Interferon-inducible Gene Expression Signature in Peripheral Blood Cells of Patients With Severe Lupus,” PNAS 100, no. 5 (2003): 2610-2615.

[213]

Y. Zhang, K. Day, and D. Absher, “STAT3-mediated Allelic Imbalance of Novel Genetic Variant Rs1047643 and B-cell-specific Super-enhancer in Association With Systemic Lupus Erythematosus,” Elife 11 (2022): e72837.

[214]

F. Rivellese, S. Manou-Stathopoulou, D. Mauro, et al., “Effects of Targeting the Transcription Factors Ikaros and Aiolos on B Cell Activation and Differentiation in Systemic Lupus Erythematosus,” Lupus Sci Med 8, no. 1 (2021).

[215]

T. Gan, S. Qu, H. Zhang, and X. Zhou, “Modulation of the Immunity and Inflammation by Autophagy,” MedComm 4, no. 4 (2023): e311.

[216]

H. Li, L. Zhou, W. Zhou, et al., “Decoding the Mitochondrial Connection: Development and Validation of Biomarkers for Classifying and Treating Systemic Lupus Erythematosus Through Bioinformatics and Machine Learning,” BMC Rheumatol 7, no. 1 (2023): 44.

[217]

R. S. de Molon, C. Rossa, R. M. Thurlings, J. A. Cirelli, and M. I. Koenders, “Linkage of Periodontitis and Rheumatoid Arthritis: Current Evidence and Potential Biological Interactions,” International Journal of Molecular Sciences 20, no. 18 (2019).

[218]

Y. Song, J. Li, and Y. Wu, “Evolving Understanding of Autoimmune Mechanisms and New Therapeutic Strategies of Autoimmune Disorders,” Signal Transduct Target Ther no. 1 (2024): 263.

[219]

F. A. Figus, M. Piga, I. Azzolin, R. McConnell, and A. Iagnocco, “Rheumatoid Arthritis: Extra-articular Manifestations and Comorbidities,” Autoimmunity Reviews 20, no. 4 (2021): 102776.

[220]

E. Ross, A. Devitt, and J. Johnson, “Macrophages: The Good, the Bad, and the Gluttony,” Frontiers in immunology 12 (2021): 708186.

[221]

A. Shaw and E Gravallese, “Mediators of Inflammation and Bone Remodeling in Rheumatic Disease,” Seminars in cell & developmental biology 49 (2016): 2-10.

[222]

Q. Ding, W. Hu, R. Wang, et al., “Signaling Pathways in Rheumatoid Arthritis: Implications for Targeted Therapy,” Signal Transduct Target Ther 8, no. 1 (2023): 68.

[223]

M. Zavvar, S. Assadiasl, N. Soleimanifar, et al., “Gene Therapy in Rheumatoid Arthritis: Strategies to Select Therapeutic Genes,” Journal of Cellular Physiology 234, no. 10 (2019): 16913-16924.

[224]

G. Rabinovich, “Apoptosis as a Target for Gene Therapy in Rheumatoid Arthritis,” Memorias Do Instituto Oswaldo Cruz 95, no. Suppl 1 (2000): 225-233.

[225]

V. Chasov, I. Ganeeva, E. Zmievskaya, et al., “Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis,” Cells 13, no. 15 (2024).

[226]

M. V. Nemtsova, D. V. Zaletaev, I. V. Bure, et al., “Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis,” Frontiers in Genetics 10 (2019): 570.

[227]

M. Zhu, Q. Ding, Z. Lin, et al., “New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect,” Biomolecules 13, no. 5 (2023).

[228]

M. Jahid, K. U. Khan, Rehan-Ul-Haq, and R. S. Ahmed, “Overview of Rheumatoid Arthritis and Scientific Understanding of the Disease,” Mediterr J Rheumatol 34, no. 3 (2023): 284-291.

[229]

D. S. Mikhaylenko, M. V. Nemtsova, I. V. Bure, et al., “Genetic Polymorphisms Associated With Rheumatoid Arthritis Development and Antirheumatic Therapy Response,” International Journal of Molecular Sciences 21, no. 14 (2020).

[230]

D. Zhang, L. Zhu, Y. Gao, Y. Wang, and P. Li, “RNA Editing Enzymes: Structure, Biological Functions and Applications,” Cell Biosci 14, no. 1 (2024): 34.

[231]

E. Alves, S. Taifour, R. Dolcetti, et al., “Reprogramming the Anti-tumor Immune Response via CRISPR Genetic and Epigenetic Editing,” Mol Ther Methods Clin Dev 21 (2021): 592-606.

[232]

B. Song, Y. Shiromoto, M. Minakuchi, and K. Nishikura, “The Role of RNA Editing Enzyme ADAR1 in human Disease,” Wiley Interdiscip Rev RNA 13, no. 1 (2022): e1665.

[233]

J. Yuan, L. Xu, H. Bao, J. Wang, Y. Zhao, and S. Chen, “Biological Roles of A-to-I Editing: Implications in Innate Immunity, Cell Death, and Cancer Immunotherapy,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 149.

[234]

S. Han, X. Chen, and L. Huang, “The Tumor Therapeutic Potential of Long Non-coding RNA Delivery and Targeting,” Acta Pharm Sin B 13, no. 4 (2023): 1371-1382.

[235]

M. Zhao, R. Wang, K. Yang, et al., “Nucleic Acid Nanoassembly-enhanced RNA Therapeutics and Diagnosis,” Acta Pharm Sin B 13, no. 3 (2023): 916-941.

[236]

H. Mukai, K. Ogawa, N. Kato, and S. Kawakami, “Recent Advances in Lipid Nanoparticles for Delivery of Nucleic Acid, mRNA, and Gene Editing-based Therapeutics,” Drug Metabolism and Pharmacokinetics 44 (2022): 100450.

[237]

Y. Hou, G. Ureña-Bailén, T. Mohammadian Gol, et al., “Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing,” Genes (Basel) 13, no. 12 (2022).

[238]

A. Doi, C. Delaney, D. Tanner, K. Burkhart, and R. D. Bell, “RNA Exon Editing: Splicing the Way to Treat human Diseases,” Mol Ther Nucleic Acids 35, no. 3 (2024): 102311.

[239]

S. S. De Ravin, L. Li, X. Wu, et al., “CRISPR-Cas9 Gene Repair of Hematopoietic Stem Cells From Patients With X-linked Chronic Granulomatous Disease,” Science Translational Medicine 9, no. 372 (2017).

[240]

A. A. Justiz-Vaillant, D. Gopaul, S. Soodeen, et al., “Neuropsychiatric Systemic Lupus Erythematosus: Molecules Involved in Its Imunopathogenesis, Clinical Features, and Treatment,” Molecules (Basel, Switzerland) 29, no. 4 (2024).

[241]

G. S. Garcia-Romo, S. Caielli, B. Vega, et al., “Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus,” Science Translational Medicine 3, no. 73 (2011): 73ra20.

[242]

M. Ramaswamy, R. Tummala, K. Streicher, A. Nogueira da Costa, and P. Z. Brohawn, “The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases,” International Journal of Molecular Sciences 22, no. 20 (2021).

[243]

E. Lichtman, S. Helfgott, and M. Kriegel, “Emerging Therapies for Systemic Lupus Erythematosus-focus on Targeting Interferon-alpha,” Clinical Immunology 143, no. 3 (2012): 210-221.

[244]

S. H. Roth, M. Danan-Gotthold, M. Ben-Izhak, et al., “Increased RNA Editing May Provide a Source for Autoantigens in Systemic Lupus Erythematosus,” Cell reports 23, no. 1 (2018): 50-57.

[245]

A. Alunno, I. Padjen, A. Fanouriakis, and D. T. Boumpas, “Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition With an Oral Agent,” Cells 8, no. 8 (2019).

[246]

J. Xu, M. Wang, Y. Mao, et al., “Inhibition of STAT3 Alleviates LPS-induced Apoptosis and Inflammation in Renal Tubular Epithelial Cells by Transcriptionally Down-regulating TASL,” European Journal of Medical Research 29, no. 1 (2024): 34.

[247]

F. Basta, F. Fasola, K. Triantafyllias, and A. Schwarting, “Systemic Lupus Erythematosus (SLE) Therapy: The Old and the New,” Rheumatol Ther 7, no. 3 (2020): 433-446.

[248]

M. Bruschi, A. Petretto, A. Vaglio, L. Santucci, G. Candiano, and G. Ghiggeri, “Annexin A1 and Autoimmunity: From Basic Science to Clinical Applications,” International Journal of Molecular Sciences 19, no. 5 (2018).

[249]

S. T. Crooke, J. L. Witztum, C. F. Bennett, and B. F. Baker, “RNA-Targeted Therapeutics,” Cell metabolism 27, no. 4 (2018): 714-739.

[250]

M. Frank-Bertoncelj and S Gay, “The Epigenome of Synovial Fibroblasts: An Underestimated Therapeutic Target in Rheumatoid Arthritis,” Arthritis Research & Therapy 16, no. 3 (2014): 117.

[251]

L. Wan, J. Liu, C. Huang, et al., “Comprehensive Analysis and Functional Characteristics of Differential Expression of N6-Methyladenosine Methylation Modification in the Whole Transcriptome of Rheumatoid Arthritis,” Mediators of Inflammation 2022 (2022): 4766992.

[252]

M. Wang, J. Wu, S. Lei, and X. Mo, “Genome-wide Identification of RNA Modification-related Single Nucleotide Polymorphisms Associated With Rheumatoid Arthritis,” BMC Genomics [Electronic Resource] 24, no. 1 (2023): 153.

[253]

M. Pavel-Dinu, V. Wiebking, B. T. Dejene, et al., “Gene Correction for SCID-X1 in Long-term Hematopoietic Stem Cells,” Nature Communications 10, no. 1 (2019): 1634.

[254]

A. Shaw, A. Qasem, and S. Naser, “Modulation of PTPN2/22 Function by Spermidine in CRISPR-Cas9-Edited T-Cells Associated With Crohn's Disease and Rheumatoid Arthritis,” International Journal of Molecular Sciences 22, no. 16 (2021).

[255]

W. Jing, X. Zhang, W. Sun, X. Hou, Z. Yao, and Y. Zhu, “CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells,” BioMed research international 2015 (2015): 326042.

[256]

X. Yan, Q. Pan, H. Xin, Y. Chen, and Y. Ping, “Genome-editing Prodrug: Targeted Delivery and Conditional Stabilization of CRISPR-Cas9 for Precision Therapy of Inflammatory Disease,” Science Advances 7, no. 50 (2021): eabj0624.

[257]

C. Zhang, S. Konermann, N. J. Brideau, et al., “Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d,” Cell 175, no. 1 (2018): 212-223.e17.

[258]

G. De Benedittis, C. Ciccacci, A. Latini, L. Novelli, G. Novelli, and P. Borgiani, “Emerging Role of microRNAs and Long Non-Coding RNAs in Sjögren's Syndrome,” Genes (Basel) 12, no. 6 (2021).

[259]

S. Kiri and T Ryba, “Cancer, Metastasis, and the Epigenome,” Molecular cancer 23, no. 1 (2024): 154.

[260]

Y. Liu, C. Zheng, Y. Huang, M. He, W. W. Xu, and B. Li, “Molecular Mechanisms of Chemo- and Radiotherapy Resistance and the Potential Implications for Cancer Treatment,” MedComm 2021, no. 3 (2020): 315-340.

[261]

D. T. Debela, S. G. Muzazu, K. D. Heraro, et al., “New Approaches and Procedures for Cancer Treatment: Current Perspectives,” SAGE Open Med 9 (2021): 20503121211034366.

[262]

C. Pucci, C. Martinelli, and G. Ciofani, “Innovative Approaches for Cancer Treatment: Current Perspectives and New Challenges,” Ecancermedicalscience 13 (2019): 961.

[263]

M. Ullah and A Akbar, “Clinical Relevance of RNA Editing to Early Detection of Cancer in Human,” Int J Stem Cell Res Ther 7, no. 1 (2020).

[264]

Y. Liu, X. Qi, Z. Zeng, et al., “CRISPR/Cas9-mediated p53 and Pten Dual Mutation Accelerates Hepatocarcinogenesis in Adult hepatitis B Virus Transgenic Mice,” Scientific Reports 7, no. 1 (2017): 2796.

[265]

W. Xue, S. Chen, H. Yin, et al., “CRISPR-mediated Direct Mutation of Cancer Genes in the Mouse Liver,” Nature 514, no. 7522 (2014): 380-384.

[266]

J. F Dekkers, J. R Whittle, F. Vaillant, et al., “Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids,” JNCI: Journal of the National Cancer Institute 112, no. 5 (2020): 540-544.

[267]

A. Takao, K. Yoshikawa, S. Karnan, et al., “Generation of PTEN‑Knockout (‑/‑) Murine Prostate Cancer Cells Using the CRISPR/Cas9 System and Comprehensive Gene Expression Profiling,” Oncology Reports 40, no. 5 (2018): 2455-2466.

[268]

M. Batır, E. Şahin, and F. Çam, “Evaluation of the CRISPR/Cas9 Directed Mutant TP53 Gene Repairing Effect in human Prostate Cancer Cell Line PC-3,” Molecular Biology Reports 46, no. 6 (2019): 6471-6484.

[269]

L. Villiger, J. Joung, L. Koblan, J. Weissman, O. O. Abudayyeh, and J. S. Gootenberg, “CRISPR Technologies for Genome, Epigenome and Transcriptome Editing,” Nature Reviews Molecular Cell Biology 25, no. 6 (2024): 464-487.

[270]

M. D. Muzumdar, P. Chen, K. J. Dorans, et al., “Survival of Pancreatic Cancer Cells Lacking KRAS Function,” Nature Communications 8, no. 1 (2017): 1090.

[271]

L. Chen, G. Alexe, N. V. Dharia, et al., “CRISPR-Cas9 Screen Reveals a MYCN-amplified Neuroblastoma Dependency on EZH2,” Journal of Clinical Investigation 128, no. 1 (2018): 446-462.

[272]

L. L. Pott, S. Hagemann, H. Reis, et al., “Eukaryotic Elongation Factor 2 Is a Prognostic Marker and Its Kinase a Potential Therapeutic Target in HCC,” Oncotarget 8, no. 7 (2017): 11950-11962.

[273]

H. Dai, Y. Wang, X. Lu, and W. Han, “Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy,” JNCI: Journal of the National Cancer Institute 108, no. 7 (2016).

[274]

J. Qu, Y. Wang, C. Xiong, et al., “In Vivo Gene Editing of T-cells in Lymph Nodes for Enhanced Cancer Immunotherapy,” Nature Communications 15, no. 1 (2024): 10218.

[275]

J. Ren, X. Liu, C. Fang, S. Jiang, C. H. June, and Y. Zhao, “Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition,” Clinical Cancer Research 23, no. 9 (2017): 2255-2266.

[276]

K. B. Kennel, M. Bozlar, A. F. De Valk, and F. R. Greten, “Cancer-Associated Fibroblasts in Inflammation and Antitumor Immunity,” Clinical Cancer Research 29, no. 6 (2023): 1009-1016.

[277]

S. Das, J. Valton, P. Duchateau, and L. Poirot, “Stromal Depletion by TALEN-edited Universal Hypoimmunogenic FAP-CAR T Cells Enables Infiltration and Anti-tumor Cytotoxicity of Tumor Antigen-targeted CAR-T Immunotherapy,” Frontiers in immunology 14 (2023): 1172681.

[278]

H. Ameri, C. Murat, A. Arbabi, et al., “Reduced Expression of VEGF-A in Human Retinal Pigment Epithelial Cells and Human Muller Cells Following CRISPR-Cas9 Ribonucleoprotein-Mediated Gene Disruption,” Transl Vis Sci Technol 9, no. 8 (2020): 23.

[279]

K. Hariprabu, M. Sathya, and S. Vimalraj, “CRISPR/Cas9 in Cancer Therapy: A Review With a Special Focus on Tumor Angiogenesis,” International Journal of Biological Macromolecules 192 (2021): 913-930.

[280]

J. J. F. Sleeboom, G. S. van Tienderen, K. Schenke-Layland, L. J. W. van der Laan, A. A. Khalil, and M. M. A. Verstegen, “The Extracellular Matrix as Hallmark of Cancer and Metastasis: From Biomechanics to Therapeutic Targets,” Science Translational Medicine 16, no. 728 (2024): eadg3840.

[281]

D. Zhang, G. Wang, X. Yu, et al., “Enhancing CRISPR/Cas Gene Editing Through Modulating Cellular Mechanical Properties for Cancer Therapy,” Nature Nanotechnology 17, no. 7 (2022): 777-787.

[282]

I. Vitale, G. Manic, L. M. Coussens, G. Kroemer, and L. Galluzzi, “Macrophages and Metabolism in the Tumor Microenvironment,” Cell metabolism 30, no. 1 (2019): 36-50.

[283]

H. Ju, D. Kim, and Y. Oh, “Lipid Nanoparticle-mediated CRISPR/Cas9 Gene Editing and Metabolic Engineering for Anticancer Immunotherapy,” Asian Journal of Pharmaceutical Sciences 17, no. 5 (2022): 641-652.

[284]

R. Platt, S. Chen, Y. Zhou, et al., “CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling,” Cell 159, no. 2 (2014): 440-455.

[285]

O. Shalem, N. E. Sanjana, E. Hartenian, et al., “Genome-scale CRISPR-Cas9 Knockout Screening in human Cells,” Science 343, no. 6166 (2014): 84-87.

[286]

M. Xu, Q. Weng, and J. Ji, “Applications and Advances of CRISPR/Cas9 in Animal Cancer Model,” Brief Funct Genomics 19, no. 3 (2020): 235-241.

[287]

E. Lentsch, L. Li, S. Pfeffer, et al., “CRISPR/Cas9-Mediated Knock-Out of Kras(G12D) Mutated Pancreatic Cancer Cell Lines,” International Journal of Molecular Sciences 20, no. 22 (2019).

[288]

M. A. Coelho, M. E. Strauss, A. Watterson, et al., “Base Editing Screens Define the Genetic Landscape of Cancer Drug Resistance Mechanisms,” Nature Genetics 56, no. 11 (2024): 2479-2492.

[289]

C. X. Sun, P. Daniel, G. Bradshaw, et al., “Generation and Multi-dimensional Profiling of a Childhood Cancer Cell Line Atlas Defines New Therapeutic Opportunities,” Cancer Cell 41, no. 4 (2023): 660-677. e7.

[290]

C. Pacini, E. Duncan, E. Gonçalves, et al., “A Comprehensive Clinically Informed Map of Dependencies in Cancer Cells and Framework for Target Prioritization,” Cancer Cell 42, no. 2 (2024): 301-316. e9.

[291]

B. E. Michels, M. H. Mosa, B. I. Streibl, et al., “Pooled in Vitro and in Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids,” Cell Stem Cell 26, no. 5 (2020): 782-792. e7.

[292]

M. Vaghari-Tabari, P. Hassanpour, F. Sadeghsoltani, et al., “CRISPR/Cas9 Gene Editing: A New Approach for Overcoming Drug Resistance in Cancer,” Cellular & Molecular Biology Letters 27, no. 1 (2022): 49.

[293]

T. Tsujino, T. Takai, K. Hinohara, et al., “CRISPR Screens Reveal Genetic Determinants of PARP Inhibitor Sensitivity and Resistance in Prostate Cancer,” Nature Communications 14, no. 1 (2023): 252.

[294]

J. Pan, M. Zhang, L. Dong, et al., “Genome-Scale CRISPR Screen Identifies LAPTM5 Driving Lenvatinib Resistance in Hepatocellular Carcinoma,” Autophagy 19, no. 4 (2023): 1184-1198.

[295]

W. L. Gan, L. Ng, B. Y. L. Ng, and L. Chen, “Recent Advances in Adenosine-to-Inosine RNA Editing in Cancer,” Cancer Treatment and Research 190 (2023): 143-179.

[296]

L. Chen, Y. Li, C. H. Lin, et al., “Recoding RNA Editing of AZIN1 Predisposes to Hepatocellular Carcinoma,” Nature Medicine 19, no. 2 (2013): 209-216.

[297]

X. Hu, J. Chen, X. Shi, et al., “RNA Editing of AZIN1 Induces the Malignant Progression of Non-small-cell Lung Cancers,” Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 39, no. 8 (2017): 1010428317700001.

[298]

K. Shigeyasu, Y. Okugawa, S. Toden, et al., “AZIN1 RNA Editing Confers Cancer Stemness and Enhances Oncogenic Potential in Colorectal Cancer,” JCI Insight 3, no. 12 (2018).

[299]

S. Takeda, K. Shigeyasu, Y. Okugawa, et al., “Activation of AZIN1 RNA Editing Is a Novel Mechanism That Promotes Invasive Potential of Cancer-associated Fibroblasts in Colorectal Cancer,” Cancer Letters 444 (2019): 127-135.

[300]

Y. Qin, J. Qiao, T. H. M. Chan, et al., “Adenosine-to-inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma,” Cancer Research 74, no. 3 (2014): 840-851.

[301]

K. Nakamura, K. Shigeyasu, K. Okamoto, H. Matsuoka, and H. Masuyama, “ADAR1 and AZIN1 RNA Editing Function as an Oncogene and Contributes to Immortalization in Endometrial Cancer,” Gynecologic Oncology 166, no. 2 (2022): 326-333.

[302]

J. Ramírez-Moya, C. Miliotis, A. R. Baker, R. I. Gregory, F. J. Slack, and P. Santisteban, “An ADAR1-dependent RNA Editing Event in the Cyclin-dependent Kinase CDK13 Promotes Thyroid Cancer Hallmarks,” Molecular cancer 20, no. 1 (2021): 115.

[303]

H. Hua, J. Zeng, H. Xing, et al., “The RNA Editing Enzyme ADAR Modulated by the rs1127317 Genetic Variant Diminishes EGFR-TKIs Efficiency in Advanced Lung Adenocarcinoma,” Life Sciences 296 (2022): 120408.

[304]

Y. Song, O. An, X. Ren, et al., “RNA Editing Mediates the Functional Switch of COPA in a Novel Mechanism of Hepatocarcinogenesis,” Journal of Hepatology 74, no. 1 (2021): 135-147.

[305]

H. Yan and P Bu, “Non-coding RNA in Cancer,” Essays in Biochemistry 65, no. 4 (2021): 625-639.

[306]

V. De Paolis, E. Lorefice, E. Orecchini, C. Carissimi, I. Laudadio, and V. Fulci, “Epitranscriptomics: A New Layer of microRNA Regulation in Cancer,” Cancers (Basel) 13, no. 13 (2021).

[307]

D. Pramanik, N. R. Campbell, C. Karikari, et al., “Restitution of Tumor Suppressor microRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice,” Molecular Cancer Therapeutics 10, no. 8 (2011): 1470-1480.

[308]

S. Gaur, Y. Wen, J. H. Song, et al., “Chitosan Nanoparticle-mediated Delivery of miRNA-34a Decreases Prostate Tumor Growth in the Bone and Its Expression Induces Non-canonical Autophagy,” Oncotarget 6, no. 30 (2015): 29161-29177.

[309]

T. Zhang, X. Xue, D. He, and J. Hsieh, “A Prostate Cancer-targeted Polyarginine-disulfide Linked PEI Nanocarrier for Delivery of microRNA,” Cancer Letters 365, no. 2 (2015): 156-165.

[310]

S. Toden, T. Zumwalt, and A. Goel, “Non-coding RNAs and Potential Therapeutic Targeting in Cancer,” Biochim Biophys Acta Rev Cancer 1875, no. 1 (2021): 188491.

[311]

H. Chen, J. Zong, and S. Wang, “LncRNA GAPLINC Promotes the Growth and Metastasis of Glioblastoma by Sponging miR-331-3p,” European Review for Medical and Pharmacological Sciences 23, no. 1 (2019): 262-270.

[312]

M. Buccarelli, V. Lulli, A. Giuliani, et al., “Deregulated Expression of the Imprinted DLK1-DIO3 Region in Glioblastoma Stemlike Cells: Tumor Suppressor Role of lncRNA MEG3,” Neuro-oncol 22, no. 12 (2020): 1771-1784.

[313]

C. Kung, L. Maggi, and J. Weber, “The Role of RNA Editing in Cancer Development and Metabolic Disorders,” Front Endocrinol (Lausanne) 9 (2018): 762.

[314]

K. Gumireddy, A. Li, A. V. Kossenkov, et al., “The mRNA-edited Form of GABRA3 Suppresses GABRA3-mediated Akt Activation and Breast Cancer Metastasis,” Nature Communications 7 (2016): 10715.

[315]

T. H. M. Chan, A. Qamra, K. T. Tan, et al., “ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer,” Gastroenterology 151, no. 4 (2016): 637-650. e10.

[316]

M. Tajaddod, M. Jantsch, and K. Licht, “The Dynamic Epitranscriptome: A to I Editing Modulates Genetic Information,” Chromosoma 125, no. 1 (2016): 51-63.

[317]

L. Fu, Y. Qin, X. Ming, et al., “RNA Editing of SLC22A3 Drives Early Tumor Invasion and Metastasis in Familial Esophageal Cancer,” PNAS 114, no. 23 (2017): E4631-E4640.

[318]

O. An, Y. Song, X. Ke, et al., ““3G” Trial: An RNA Editing Signature to Guide Gastric Cancer Chemotherapy,” Cancer Research 81, no. 10 (2021): 2788-2798.

[319]

V. Cesarini, D. A. Silvestris, F. Galeano, et al., “ADAR2 Protein Is Associated With Overall Survival in GBM Patients and Its Decrease Triggers the Anchorage-Independent Cell Growth Signature,” Biomolecules 12, no. 8 (2022).

[320]

A. Amweg, M. Tusup, P. Cheng, et al., “The A to I Editing Landscape in Melanoma and Its Relation to Clinical Outcome,” RNA Biol 19, no. 1 (2022): 996-1006.

[321]

T. H. M. Chan, C. H. Lin, L. Qi, et al., “A Disrupted RNA Editing Balance Mediated by ADARs (Adenosine DeAminases that act on RNA) in human Hepatocellular Carcinoma,” Gut 63, no. 5 (2014): 832-843.

[322]

M. Wu, M. Jin, X. Cao, K. Qian, and L. Zhao, “RNA Editing Enzyme Adenosine Deaminases Acting on RNA 1 Deficiency Increases the Sensitivity of Non-small Cell Lung Cancer Cells to Anlotinib by Regulating CX3CR1-fractalkine Expression,” Drug Development Research 83, no. 2 (2022): 328-338.

[323]

Z. Qian, S. Zhou, Z. Zhou, et al., “miR‑146b‑5p Suppresses Glioblastoma Cell Resistance to Temozolomide Through Targeting TRAF6,” Oncology Reports 38, no. 5 (2017): 2941-2950.

[324]

S. Shojaei Baghini, Z. R. Gardanova, S. A. H. Abadi, et al., “CRISPR/Cas9 Application in Cancer Therapy: A Pioneering Genome Editing Tool,” Cellular & Molecular Biology Letters 27, no. 1 (2022): 35.

[325]

X. Liu, A. Homma, J. Sayadi, S. Yang, J. Ohashi, and T. Takumi, “Sequence Features Associated With the Cleavage Efficiency of CRISPR/Cas9 System,” Scientific Reports 6 (2016): 19675.

[326]

A. Baker and F Slack, “ADAR1 and Its Implications in Cancer Development and Treatment,” Trends in Genetics 38, no. 8 (2022): 821-830.

[327]

E. Rykova, N. Ershov, I. Damarov, and T. Merkulova, “SNPs in 3'UTR miRNA Target Sequences Associated With Individual Drug Susceptibility,” International Journal of Molecular Sciences 23, no. 22 (2022).

[328]

Z. Eftekhari, H. Zohrabi, A. Oghalaie, et al., “Advancements and Challenges in mRNA and ribonucleoprotein-based Therapies: From Delivery Systems to Clinical Applications,” Mol Ther Nucleic Acids 35, no. 3 (2024): 102313.

[329]

M. Coan, S. Haefliger, S. Ounzain, and R. Johnson, “Targeting and Engineering Long Non-coding RNAs for Cancer Therapy,” Nature Reviews Genetics 25, no. 8 (2024): 578-595.

[330]

N. Slipek, J. Varshney, and D. Largaespada, “CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits,” Methods in Molecular Biology 1907 (2019): 137-144.

[331]

H. Zhang, Y. Zhang, and H. Yin, “Genome Editing With mRNA Encoding ZFN, TALEN, and Cas9,” Molecular Therapy 27, no. 4 (2019): 735-746.

[332]

H. Frangoul, D. Altshuler, M. D. Cappellini, et al., “CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia,” New England Journal of Medicine 384, no. 3 (2021): 252-260.

[333]

S. Wang, Y. Xiao, J. Tian, et al., “Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury,” Advanced Materials 36, no. 19 (2024): e2311964.

[334]

A. Aimo, V. Castiglione, C. Rapezzi, et al., “RNA-targeting and Gene Editing Therapies for Transthyretin Amyloidosis,” Nature Reviews Cardiology 19, no. 10 (2022): 655-667.

[335]

S. Moore, E. Alsop, I. Lorenzini, et al., “ADAR2 mislocalization and Widespread RNA Editing Aberrations in C9orf72-mediated ALS/FTD,” Acta Neuropathologica 138, no. 1 (2019): 49-65.

[336]

N. Abdallah, C. Prakash, and A. McHughen, “Genome Editing for Crop Improvement: Challenges and Opportunities,” GM crops & food 6, no. 4 (2015): 183-205.

[337]

J. P. Fernandez, C. E. Vejnar, A. J. Giraldez, R. Rouet, and M. A. Moreno-Mateos, “Optimized CRISPR-Cpf1 System for Genome Editing in Zebrafish,” Methods (San Diego, Calif.) 150 (2018): 11-18.

[338]

M. Kc and C Steer, “A New Era of Gene Editing for the Treatment of human Diseases,” Swiss Medical Weekly: Official Journal of the Swiss Society of Infectious Diseases, the Swiss Society of Internal Medicine, the Swiss Society of Pneumology 149 (2019): w20021.

[339]

J. Wei and Y Li, “CRISPR-based Gene Editing Technology and Its Application in Microbial Engineering,” Eng Microbiol 3, no. 4 (2023): 100101.

[340]

X. Zhang, L. Y Tee, X. Wang, Q. Huang, and S. Yang, “Off-target Effects in CRISPR/Cas9-mediated Genome Engineering,” Mol Ther Nucleic Acids 4, no. 11 (2015): e264.

[341]

N. González Castro, N. Castro, J. Bjelic, G. Malhotra, C. Huang, S. H. Alsaffar, et al., “Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies,” International Journal of Molecular Sciences 22, no. 19 (2021).

[342]

J. Cao, L Wu, SM Zhang, et al., “An Easy and Efficient Inducible CRISPR/Cas9 Platform With Improved Specificity for Multiple Gene Targeting,” Nucleic Acids Res. 44, no. 19 (2016): e149.

[343]

C. Schmitt-Ulms, A. Kayabolen, M. Manero-Carranza, et al., “Programmable RNA Writing With Trans-splicing,” BioRxiv (2024).

[344]

F. Nami, M. Basiri, L. Satarian, C. Curtiss, H. Baharvand, and C. Verfaillie, “Strategies for in Vivo Genome Editing in Nondividing Cells,” Trends in Biotechnology 36, no. 8 (2018): 770-786.

[345]

N. Saleh-Gohari, “Conservative Homologous Recombination Preferentially Repairs DNA Double-strand Breaks in the S Phase of the Cell Cycle in human Cells,” Nucleic Acids Res. 32, no. 12 (2004): 3683-3688.

[346]

K. E Ormond, Y. Bombard, V. L Bonham, et al., “The Clinical Application of Gene Editing: Ethical and Social Issues,” Per Med 16, no. 4 (2019): 337-350.

[347]

Y. Sun, Y. Wu, Z. He, et al., “Type III CRISPR-mediated Flexible RNA Excision With Engineered Guide RNAs,” Molecular Cell 85, no. 5 (2025): 989-998. e4.

[348]

Y. Ma, L. Zhang, and X. Huang, “Genome Modification by CRISPR/Cas9,” Febs Journal 281, no. 23 (2014): 5186-5193.

[349]

S. Deffit and H Hundley, “To Edit or Not to Edit: Regulation of ADAR Editing Specificity and Efficiency,” Wiley Interdiscip Rev RNA 7, no. 1 (2016): 113-127.

[350]

M. Piazzi, A. Bavelloni, S. Salucci, I. Faenza, and W. L. Blalock, “Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing,” Genes (Basel) 14, no. 7 (2023).

[351]

A. Kantor, M. McClements, and R. MacLaren, “CRISPR-Cas9 DNA Base-Editing and Prime-Editing,” International Journal of Molecular Sciences 21, no. 17 (2020).

[352]

S. Görücü Yilmaz, “Genome Editing Technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE,” EXCLI journal 20 (2021): 19-45.

[353]

A. Anzalone, L. Koblan, and D. Liu, “Genome Editing With CRISPR-Cas Nucleases, Base Editors, Transposases and Prime Editors,” Nature Biotechnology 38, no. 7 (2020): 824-844.

[354]

J. Doudna, “The Promise and Challenge of Therapeutic Genome Editing,” Nature 578, no. 7794 (2020): 229-236.

[355]

R. Meisel, “CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia,” New England Journal of Medicine 384, no. 23 (2021): e91.

[356]

J. Yan, P. Oyler-Castrillo, P. Ravisankar, et al., “Improving Prime Editing With an Endogenous Small RNA-binding Protein,” Nature 628, no. 8008 (2024): 639-647.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/