Natural Killer Cell-Mediated Antitumor Immunity: Molecular Mechanisms and Clinical Applications

Nanzhi Luo , Cong Chen , Wenjing Zhou , Jianqi Hao , Song He , Yu Liu , Yin Ku , Linhua Huang , Chuanfen Zhang , Yueli Shu , Xiaoqing Wu , Yaojia Zhou , Jian Zhang

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70387

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70387 DOI: 10.1002/mco2.70387
REVIEW

Natural Killer Cell-Mediated Antitumor Immunity: Molecular Mechanisms and Clinical Applications

Author information +
History +
PDF

Abstract

Natural killer (NK) cells are pivotal effectors in innate antitumor immunity by mediating cytotoxicity, secreting cytokines, or expressing cell membrane receptors, which facilitate interactions with other immune cells. The cytotoxic activity and immune function of NK cells are governed by dynamic receptor–ligand interactions, cytokine networks, and metabolic–epigenetic crosstalk within the tumor microenvironment (TME). Recent years, NK cell-based therapies are emerging as a promising clinical approach for antitumor treatment, owing to their rapid response, unique recognition mechanisms, potent cytotoxic capabilities, and memory-like characteristics, along with their low risk of posttreatment adverse effects and cost effectiveness. However, immunosuppression and metabolic reprogramming driven by TME subvert NK cell surveillance, impairing its antitumor function. This review comprehensively details molecular mechanisms underpinning NK cell dysfunction, including dysregulated activating/inhibitory receptor signaling, metabolic reprogramming, and epigenetic silencing of effector genes. We further synthesize advances in clinical strategies to restore NK cytotoxicity including ex vivo expansion for adoptive transfer, chimeric antigen receptor-NK engineering, TME-remodeling agents, immune checkpoint blockade, cytokine-based therapies, and NK cell engagers targeting tumor antigens. By bridging mechanistic insights with translational applications, this work provides a framework for rationally designed NK cell-based immunotherapies to overcome resistance across solid and hematologic malignancies.

Keywords

clinical strategies / metabolic reprogramming / molecular crosstalk / NK cells / TME

Cite this article

Download citation ▾
Nanzhi Luo, Cong Chen, Wenjing Zhou, Jianqi Hao, Song He, Yu Liu, Yin Ku, Linhua Huang, Chuanfen Zhang, Yueli Shu, Xiaoqing Wu, Yaojia Zhou, Jian Zhang. Natural Killer Cell-Mediated Antitumor Immunity: Molecular Mechanisms and Clinical Applications. MedComm, 2025, 6(9): e70387 DOI:10.1002/mco2.70387

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Crinier, E. Narni-Mancinelli, S. Ugolini, and E. Vivier, “Snapshot: Natural Killer Cells, ” Cell 180, no. 6 (2020): 1280-1280. e1.

[2]

S. Santourlidis, N. Graffmann, J. Christ, and M. Uhrberg, “Lineage-specific Transition of Histone Signatures in the Killer Cell Ig-Like Receptor Locus From Hematopoietic Progenitor to NK Cells, ” J. Immunol. 180, no. 1 (2008): 418-425.

[3]

S. L. Rogers, A. Rouhi, F. Takei, and D. L. Mager, “A Role for DNA Hypomethylation and Histone Acetylation in Maintaining Allele-specific Expression of Mouse NKG2A in Developing and Mature NK Cells, ” J. Immunol. 177, no. 1 (2006): 414-421.

[4]

M. Luetke-Eversloh, B. B. Cicek, F. Siracusa, et al., “NK Cells Gain Higher IFN-γ Competence During Terminal Differentiation, ” Eur. J. Immunol. 44, no. 7 (2014): 2074-2084.

[5]

A. Schenk, W. Bloch, and P. Zimmer, “Natural Killer Cells-An Epigenetic Perspective of Development and Regulation, ” Int. J. Mol. Sci. 17, no. 3 (2016): 326.

[6]

Z. Wang, D. Guan, S. Wang, L. Y. A. Chai, S. Xu, and K.-P. Lam, “Glycolysis and Oxidative Phosphorylation Play Critical Roles in Natural Killer Cell Receptor-Mediated Natural Killer Cell Functions, ” Frontiers in Immunology 11 (2020): 202.

[7]

J. A. Myers and J. S. Miller, “Exploring the NK Cell Platform for Cancer Immunotherapy, ” Nat. Rev. Clin. Oncol. 18, no. 2 (2021): 85-100.

[8]

J. He, Y. Yan, J. Zhang, Z. Wei, H. Li, and L. Xing, “Synergistic Treatment Strategy: Combining CAR-NK Cell Therapy and Radiotherapy to Combat Solid Tumors, ” Frontiers in Immunology 14 (2023): 1298683.

[9]

J. Wang, X. Liu, T. Jin, Y. Cao, Y. Tian, and F. Xu, “NK Cell Immunometabolism as Target for Liver Cancer Therapy, ” Int. Immunopharmacol. 112 (2022): 109193.

[10]

A. Merino, J. Maakaron, and V. Bachanova, “Advances in NK Cell Therapy for Hematologic Malignancies: NK Source, Persistence and Tumor Targeting, ” Blood Reviews 60 (2023): 101073.

[11]

E. Vivier, L. Rebuffet, E. Narni-Mancinelli, S. Cornen, R. Y. Igarashi, and V. R. Fantin, “Natural Killer Cell Therapies, ” Nature 626, no. 8000 (2024): 727-736.

[12]

C. Sordo-Bahamonde, S. Lorenzo-Herrero, Á. R. Payer, S. Gonzalez, and A. López-Soto, “Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer, ” Int. J. Mol. Sci. 21, no. 10 (2020): 3726.

[13]

S. E. Keating, V. Zaiatz-Bittencourt, R. M. Loftus, et al., “Metabolic Reprogramming Supports IFN-γ Production by CD56bright NK Cells, ” J. Immunol. 196, no. 6 (2016): 2552-2560.

[14]

K. L. O'Brien and D. K. Finlay, “Immunometabolism and Natural Killer Cell Responses, ” Nat. Rev. Immunol. 19, no. 5 (2019): 282-290.

[15]

C. Sun, H. Sun, C. Zhang, and Z. Tian, “NK Cell Receptor Imbalance and NK Cell Dysfunction in HBV Infection and Hepatocellular Carcinoma, ” Cellular & Molecular Immunology 12, no. 3 (2015): 292-302.

[16]

J. R. Schafer, T. C. Salzillo, N. Chakravarti, et al., “Education-dependent Activation of Glycolysis Promotes the Cytolytic Potency of Licensed human Natural Killer Cells, ” Journal of Allergy and Clinical Immunology 143, no. 1 (2019): 346-358. e6.

[17]

M. B. Fuertes, C. I. Domaica, and N. W. Zwirner, “Leveraging NKG2D Ligands in Immuno-Oncology, ” Frontiers in Immunology 12 (2021): 713158.

[18]

R. Paolini and R. Molfetta, “Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment, ” Cancers (Basel) 15, no. 18 (2023): 4616.

[19]

N. F. S. Watson, I. Spendlove, Z. Madjd, et al., “Expression of the Stress-related MHC Class I Chain-related Protein MICA Is an Indicator of Good Prognosis in Colorectal Cancer Patients, ” Int. J. Cancer 118, no. 6 (2006): 1445-1452.

[20]

N. Le Bert and S. Gasser, “Advances in NKG2D Ligand Recognition and Responses by NK Cells, ” Immunology and Cell Biology 92, no. 3 (2014): 230-236.

[21]

O. Ashiru, P. Boutet, L. Fernández-Messina, et al., “Natural Killer Cell Cytotoxicity Is Suppressed by Exposure to the human NKG2D Ligand MICA*008 That Is Shed by Tumor Cells in Exosomes, ” Cancer Res. 70, no. 2 (2010): 481-489.

[22]

T. W. Thompson, A. B. Kim, P. J. Li, et al., “Endothelial Cells Express NKG2D Ligands and Desensitize Antitumor NK Responses, ” Elife 6 (2017): e30881.

[23]

K. Li, M. Mandai, J. Hamanishi, et al., “Clinical Significance of the NKG2D Ligands, MICA/B and ULBP2 in Ovarian Cancer: High Expression of ULBP2 Is an Indicator of Poor Prognosis, ” Cancer Immunology, Immunotherapy 58, no. 5 (2009): 641-652.

[24]

S. Jost, O. Lucar, E. Lee, et al., “Antigen-specific Memory NK Cell Responses Against HIV and Influenza Use the NKG2/HLA-E Axis, ” Science Immunology 8, no. 90 (2023): eadi3974.

[25]

M. López-Botet, A. Muntasell, and C. Vilches, “The CD94/NKG2C+ NK-cell Subset on the Edge of Innate and Adaptive Immunity to human cytomegalovirus Infection, ” Seminars in Immunology 26, no. 2 (2014): 145-151.

[26]

L. Cifaldi, M. Doria, N. Cotugno, et al., “DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance During the Various Phases of Infection?, ” Int. J. Mol. Sci. 20, no. 15 (2019): 3715.

[27]

H. S. Kim and E. O. Long, “Complementary Phosphorylation Sites in the Adaptor Protein SLP-76 Promote Synergistic Activation of Natural Killer Cells, ” Sci. Signaling 5, no. 232 (2012): ra49.

[28]

S. Gilfillan, C. J. Chan, M. Cella, et al., “DNAM-1 Promotes Activation of Cytotoxic Lymphocytes by Nonprofessional Antigen-presenting Cells and Tumors, ” J. Exp. Med. 205, no. 13 (2008): 2965-2973.

[29]

N. D. Milito, A. Zingoni, H. Stabile, et al., “NKG2D engagement on human NK Cells Leads to DNAM-1 Hypo-responsiveness Through Different Converging Mechanisms, ” Eur. J. Immunol. 53, no. 2 (2022): e2250198.

[30]

L. Sun, X. Gang, Z. Li, et al., “Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases, ” Frontiers in Immunology 12 (2021): 648182.

[31]

K.-M. Lee, J. P. Forman, M. E. McNerney, et al., “Requirement of Homotypic NK-cell Interactions Through 2B4(CD244)/CD48 in the Generation of NK Effector Functions, ” Blood 107, no. 8 (2006): 3181-3188.

[32]

Y. Wu, D.-M. Kuang, W.-D. Pan, et al., “Monocyte/Macrophage-elicited Natural Killer Cell Dysfunction in Hepatocellular Carcinoma Is Mediated by CD48/2B4 Interactions, ” Hepatology 57, no. 3 (2013): 1107-1116.

[33]

M. M. Sandusky, B. Messmer, and C. Watzl, “Regulation of 2B4 (CD244)-mediated NK Cell Activation by Ligand-induced Receptor Modulation, ” Eur. J. Immunol. 36, no. 12 (2006): 3268-3276.

[34]

I. Saborit-Villarroya, J. M. Del Valle, X. Romero, et al., “The Adaptor Protein 3BP2 Binds human CD244 and Links this Receptor to Vav Signaling, ERK Activation, and NK Cell Killing, ” J. Immunol. 175, no. 7 (2005): 4226-4235.

[35]

D. Corvino, D. Rommel, F. Schneppenheim, and T. Bald, “Stressed out: NKp46 Binds Ecto-calreticulin, ” Immunology and Cell Biology 101, no. 8 (2023): 684-686.

[36]

S. Sivori, S. Carlomagno, S. Pesce, A. Moretta, M. Vitale, and E. Marcenaro, “TLR/NCR/KIR: Which One to Use and When?, ” Frontiers in Immunology 5 (2014): 105.

[37]

A. Moretta, C. Bottino, M. Vitale, et al., “Activating Receptors and Coreceptors Involved in human Natural Killer Cell-mediated Cytolysis, ” Annu. Rev. Immunol. 19 (2001): 197-223.

[38]

K. Hashimoto, “CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development, ” Cancers (Basel) 13, no. 10 (2021): 2288.

[39]

A. W. Matson, R. Hullsiek, K. J. Dixon, et al., “Enhanced IL-15-mediated NK Cell Activation and Proliferation by an ADAM17 Function-blocking Antibody Involves CD16A, CD137, and Accessory Cells, ” Journal for ImmunoTherapy of Cancer 12, no. 7 (2024): e008959.

[40]

Y. He, H. Peng, R. Sun, et al., “Contribution of Inhibitory Receptor TIGIT to NK Cell Education, ” Journal of Autoimmunity 81 (2017): 1-12.

[41]

P. M. Saunders, J. P. Vivian, G. M. O'Connor, L. C. Sullivan, P. Pymm, and J. Rossjohn, “A Bird's Eye View of NK Cell Receptor Interactions With Their MHC Class I Ligands, ” Immunological Reviews 267, no. 1 (2015): 148-166.

[42]

D. R. Makanga, M. Jullien, G. David, et al., “Low Number of KIR Ligands in Lymphoma Patients Favors a Good Rituximab-dependent NK Cell Response, ” Oncoimmunology 10, no. 1 (2021): 1936392.

[43]

Y. He, P. A. Bunn, C. Zhou, and D. Chan, “KIR 2D (L1, L3, L4, S4) and KIR 3DL1 Protein Expression in Non-small Cell Lung Cancer, ” Oncotarget 7, no. 50 (2016): 82104-82111.

[44]

M. J. W. Sim and E. O. Long, “The Peptide Selectivity Model: Interpreting NK Cell KIR-HLA-I Binding Interactions and Their Associations to human Diseases, ” Trends Immunol. 45, no. 12 (2024): 959-970.

[45]

P. Parham, “MHC Class I Molecules and KIRs in human History, Health and Survival, ” Nat. Rev. Immunol. 5, no. 3 (2005): 201-214.

[46]

V. M. Braud, D. S. Allan, C. A. O'Callaghan, K. Söderström, A. D'Andrea, and G. S. Ogg, “HLA-E Binds to Natural Killer Cell Receptors CD94/NKG2A, B and C, ” Nature 391, no. 6669 (1998): 795-799.

[47]

J. Dębska-Zielkowska, G. Moszkowska, M. Zieliński, et al., “KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease, ” Cells 10, no. 7 (2021): 1777.

[48]

J. Eugène, N. Jouand, K. Ducoin, et al., “The Inhibitory Receptor CD94/NKG2A on CD8+ Tumor-infiltrating Lymphocytes in Colorectal Cancer: A Promising New Druggable Immune Checkpoint in the Context of HLAE/β2M Overexpression, ” Modern Pathology 33, no. 3 (2020): 468-482.

[49]

M. Kaulfuss, J. Mietz, A. Fabri, J. Vom Berg, C. Münz, and O. Chijioke, “The NK Cell Checkpoint NKG2A Maintains Expansion Capacity of human NK Cells, ” Sci Rep 13, no. 1 (2023): 10555.

[50]

D. Gotthardt, J. Trifinopoulos, V. Sexl, and E. M. Putz, “JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation, ” Frontiers in Immunology 10 (2019): 2590.

[51]

A. Witalisz-Siepracka, K. Klein, D. Prinz, et al., “Loss of JAK1 Drives Innate Immune Deficiency, ” Frontiers in Immunology 9 (2018): 3108.

[52]

J. L. Roberts, A. Lengi, S. M. Brown, M. Chen, Y.-J. Zhou, and J. J. O'Shea, “Janus Kinase 3 (JAK3) Deficiency: Clinical, Immunologic, and Molecular Analyses of 10 Patients and Outcomes of Stem Cell Transplantation, ” Blood 103, no. 6 (2004): 2009-2018.

[53]

S. Zhu, P. V. Phatarpekar, C. J. Denman, et al., “Transcription of the Activating Receptor NKG2D in Natural Killer Cells Is Regulated by STAT3 Tyrosine Phosphorylation, ” Blood 124, no. 3 (2014): 403-411.

[54]

D. Gotthardt, E. M. Putz, E. Straka, et al., “Loss of STAT3 in Murine NK Cells Enhances NK Cell-dependent Tumor Surveillance, ” Blood 124, no. 15 (2014): 2370-2379.

[55]

R. H. Rouce, H. Shaim, T. Sekine, et al., “The TGF-β/SMAD Pathway Is an Important Mechanism for NK Cell Immune Evasion in Childhood B-acute Lymphoblastic Leukemia, ” Leukemia 30, no. 4 (2016): 800-811.

[56]

B. Kumar, A. Singh, R. Basar, et al., “BATF Is a Major Driver of NK Cell Epigenetic Reprogramming and Dysfunction in AML, ” Sci. Transl. Med. 16, no. 764 (2024): eadp0004.

[57]

M. J. Loza and B. Perussia, “Differential Regulation of NK Cell Proliferation by Type I and Type II IFN, ” Int. Immunol. 16, no. 1 (2004): 23-32.

[58]

J. B. Swann, Y. Hayakawa, N. Zerafa, et al., “Type I IFN Contributes to NK Cell Homeostasis, Activation, and Antitumor Function, ” J. Immunol. 178, no. 12 (2007): 7540-7549.

[59]

M. P. Keppel, N. Saucier, A. Y. Mah, T. P. Vogel, and M. A. Cooper, “Activation-specific Metabolic Requirements for NK Cell IFN-γ Production, ” J. Immunol. 194, no. 4 (2015): 1954-1962.

[60]

S. M. Poznanski, K. Singh, T. M. Ritchie, et al., “Metabolic Flexibility Determines human NK Cell Functional Fate in the Tumor Microenvironment, ” Cell Metab. 33, no. 6 (2021): 1205-1220. e5.

[61]

J. Cong, X. Wang, X. Zheng, et al., “Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis During Lung Cancer Progression, ” Cell Metab. 28, no. 2 (2018): 243-255. e5.

[62]

K. Slattery, E. Woods, V. Zaiatz-Bittencourt, et al., “TGFβ Drives NK Cell Metabolic Dysfunction in human Metastatic Breast Cancer, ” Journal for ImmunoTherapy of Cancer 9, no. 2 (2021): e002044.

[63]

S. Viel, A. Marçais, F. S.-F. Guimaraes, et al., “TGF-β Inhibits the Activation and Functions of NK Cells by Repressing the mTOR Pathway, ” Sci. Signaling 9, no. 415 (2016): ra19.

[64]

C. He, D. Wang, S. K. Shukla, et al., “Vitamin B6 Competition in the Tumor Microenvironment Hampers Antitumor Functions of NK Cells, ” Cancer Discovery 14, no. 1 (2024): 176-193.

[65]

P. Haberzettl and B. G. Hill, “Oxidized Lipids Activate Autophagy in a JNK-dependent Manner by Stimulating the Endoplasmic Reticulum Stress Response, ” Redox Biol. 1 (2013): 56-64.

[66]

V. Zaiatz-Bittencourt, D. K. Finlay, and C. M. Gardiner, “Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism, ” J. Immunol. 200, no. 12 (2018): 3934-3941.

[67]

T.-D. Chang, Y.-J. Chen, J.-L. Luo, et al., “Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes, ” ImmunoTargets and Therapy 14 (2025): 99-121.

[68]

P. R. Kennedy, U. S. Arvindam, S. K. Phung, et al., “Metabolic Programs Drive Function of Therapeutic NK Cells in Hypoxic Tumor Environments, ” Sci. Adv. 10, no. 44 (2024): eadn1849.

[69]

L. K. Picard, E. Littwitz-Salomon, H. Waldmann, and C. Watzl, “Inhibition of Glucose Uptake Blocks Proliferation but Not Cytotoxic Activity of NK Cells, ” Cells 11, no. 21 (2022): 3489.

[70]

Tabula Muris Consortium, Overall Coordination, Logistical Coordination, Organ Collection and Processing, Library Preparation and Sequencing, Computational Data Analysis, Et al. Single-cell Transcriptomics of 20 Mouse Organs Creates a TabulaMuris. Nature 2018; 562(7727): 367-372.

[71]

D. Shao, T. Bai, B. Zhu, et al., “Construction and Mechanism of IL-15-based Co-Activated Polymeric Micelles for NK Cell Immunotherapy, ” Adv Healthc Mater (2023): e2302589.

[72]

J. H. Li, A. Zhou, C. D. Lee, et al., “MEF2C regulates NK Cell Effector Functions Through Control of Lipid Metabolism, ” Nat. Immunol. 25, no. 5 (2024): 778-789.

[73]

X. Michelet, L. Dyck, A. Hogan, et al., “Metabolic Reprogramming of Natural Killer Cells in Obesity Limits Antitumor Responses, ” Nat. Immunol. 19, no. 12 (2018): 1330-1340.

[74]

K. Taguchi, H. Motohashi, and M. Yamamoto, “Molecular Mechanisms of the Keap1-Nrf2 Pathway in Stress Response and Cancer Evolution, ” Genes Cells 16, no. 2 (2011): 123-140.

[75]

M. Furukawa and Y. Xiong, “BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase, ” Mol. Cell. Biol. 25, no. 1 (2005): 162-171.

[76]

M. McMahon, K. Itoh, M. Yamamoto, and J. D. Hayes, “Keap1-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression, ” J. Biol. Chem. 278, no. 24 (2003): 21592-21600.

[77]

N. Koundouros and G. Poulogiannis, “Reprogramming of Fatty Acid Metabolism in Cancer, ” British journal of cancer 122, no. 1 (2020): 4-22.

[78]

H.-R. Jin, J. Wang, Z.-J. Wang, et al., “Lipid Metabolic Reprogramming in Tumor Microenvironment: From Mechanisms to Therapeutics, ” J. Hematol. Oncol. 16, no. 1 (2023): 103.

[79]

M. T. Snaebjornsson, S. Janaki-Raman, and A. Schulze, “Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer, ” Cell Metab. 31, no. 1 (2020): 62-76.

[80]

M. Klopotowska, M. Bajor, A. Graczyk-Jarzynka, et al., “PRDX-1 Supports the Survival and Antitumor Activity of Primary and CAR-Modified NK Cells Under Oxidative Stress, ” Cancer Immunology Research 10, no. 2 (2022): 228-244.

[81]

E. Aydin, J. Johansson, F. H. Nazir, K. Hellstrand, and A. Martner, “Role of NOX2-Derived Reactive Oxygen Species in NK Cell-Mediated Control of Murine Melanoma Metastasis, ” Cancer Immunology Research 5, no. 9 (2017): 804-811.

[82]

A. Stiff, P. Trikha, B. Mundy-Bosse, et al., “Nitric Oxide Production by Myeloid-Derived Suppressor Cells Plays a Role in Impairing Fc Receptor-Mediated Natural Killer Cell Function, ” Clinical Cancer Research 24, no. 8 (2018): 1891-1904.

[83]

T. Kobayashi, P. Y. Lam, H. Jiang, et al., “Increased Lipid Metabolism Impairs NK Cell Function and Mediates Adaptation to the Lymphoma Environment, ” Blood 136, no. 26 (2020): 3004-3017.

[84]

S.-Y. Wu, T. Fu, Y.-Z. Jiang, and Z.-M. Shao, “Natural Killer Cells in Cancer Biology and Therapy, ” Molecular Cancer 19, no. 1 (2020): 120.

[85]

D. Jiao, R. Sun, X. Ren, et al., “Lipid Accumulation-mediated Histone Hypoacetylation Drives Persistent NK Cell Dysfunction in Anti-tumor Immunity, ” Cell Rep. 42, no. 10 (2023): 113211.

[86]

S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, et al., “Ferroptosis: An Iron-dependent Form of Nonapoptotic Cell Death, ” Cell 149, no. 5 (2012): 1060-1072.

[87]

L. Yao, J. Hou, X. Wu, Y. Lu, Z. Jin, and Z. Yu, “Cancer-associated Fibroblasts Impair the Cytotoxic Function of NK Cells in Gastric Cancer by Inducing Ferroptosis via Iron Regulation, ” Redox Biol. 67 (2023): 102923.

[88]

H. Jensen, M. Potempa, D. Gotthardt, and L. L. Lanier, “Cutting Edge: IL-2-Induced Expression of the Amino Acid Transporters SLC1A5 and CD98 Is a Prerequisite for NKG2D-Mediated Activation of Human NK Cells, ” J. Immunol. 199, no. 6 (2017): 1967-1972.

[89]

Y. Yu and J. Zhang, “Metabolism and Function of NK Cells, ” Chinese Journal of Immunology 40, no. 1 (2024): 21-30.

[90]

R. M. Loftus, N. Assmann, N. Kedia-Mehta, K. L. O'Brien, A. Garcia, and C. Gillespie, “Amino Acid-dependent cMyc Expression Is Essential for NK Cell Metabolic and Functional Responses in Mice, ” Nat. Commun. 9, no. 1 (2018): 2341.

[91]

K. Renner, K. Singer, G. E. Koehl, et al., “Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment, ” Frontiers in Immunology 8 (2017): 248.

[92]

C. M. Gardiner and D. K. Finlay, “What Fuels Natural Killers? Metabolism and NK Cell Responses, ” Frontiers in Immunology 8 (2017): 367.

[93]

M. D. Buck, R. T. Sowell, S. M. Kaech, and E. L. Pearce, “Metabolic Instruction of Immunity, ” Cell 169, no. 4 (2017): 570-586.

[94]

L. Angka, C. Tanese de Souza, K. E. Baxter, S. T. Khan, M. Market, and A. B. Martel, “Perioperative Arginine Prevents Metastases by Accelerating Natural Killer Cell Recovery After Surgery, ” Mol. Ther. 30, no. 10 (2022): 3270-3283.

[95]

S. M. Steggerda, M. K. Bennett, J. Chen, et al., “Inhibition of Arginase by CB-1158 Blocks Myeloid Cell-Mediated Immune Suppression in the Tumor Microenvironment,” J Immunother Cancer 5, no. 1 (2017): 101.

[96]

B. Lamas, J. Vergnaud-Gauduchon, N. Goncalves-Mendes, et al., “Altered Functions of Natural Killer Cells in Response to L-Arginine Availability, ” Cell. Immunol. 280, no. 2 (2012): 182-190.

[97]

L. P. Westhaver, S. Nersesian, A. Nelson, et al., “Mitochondrial Damage-associated Molecular Patterns Trigger Arginase-dependent Lymphocyte Immunoregulation, ” Cell Rep. 39, no. 8 (2022): 110847.

[98]

R. A. Saxton, L. Chantranupong, K. E. Knockenhauer, T. U. Schwartz, and D. M. Sabatini, “Mechanism of Arginine Sensing by CASTOR1 Upstream of mTORC1, ” Nature 536, no. 7615 (2016): 229-233.

[99]

X. Wang, T. Qiu, Y. Wu, et al., “Arginine Methyltransferase PRMT5 Methylates and Stabilizes KLF5 via Decreasing Its Phosphorylation and Ubiquitination to Promote Basal-Like Breast Cancer, ” Cell Death & Differentiation 28, no. 10 (2021): 2931-2945.

[100]

S. Yin, L. Liu, C. Brobbey, et al., “PRMT5-mediated Arginine Methylation Activates AKT Kinase to Govern Tumorigenesis, ” Nat. Commun. 12, no. 1 (2021): 3444.

[101]

M. Nachef, A. K. Ali, S. M. Almutairi, and S.-H. Lee, “Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment, ” Frontiers in Immunology 12 (2021): 624324.

[102]

A. Pelletier, E. Nelius, Z. Fan, et al., “Resting Natural Killer Cell Homeostasis Relies on Tryptophan/NAD+ Metabolism and HIF-1α, ” EMBO Rep. 24, no. 6 (2023): e56156.

[103]

X. Xiang and H. Liu, “IDPM: An Online Database for Ion Distribution in Protein Molecules, ” BMC Bioinformatics [Electronic Resource] 19, no. 1 (2018): 102.

[104]

A. Pataskar, J. Champagne, R. Nagel, et al., “Tryptophan Depletion Results in Tryptophan-to-phenylalanine Substitutants, ” Nature 603, no. 7902 (2022): 721-727.

[105]

C. Ling, C. J. Versloot, M. E. Arvidsson Kvissberg, G. Hu, N. Swain, and J. M. Horcas-Nieto, “Rebalancing of Mitochondrial Homeostasis Through an NAD+-SIRT1 Pathway Preserves Intestinal Barrier Function in Severe Malnutrition, ” EBioMedicine 96 (2023): 104809.

[106]

M. Kim and P. Tomek, “Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO, ” Frontiers in Immunology 12 (2021): 636081.

[107]

A. A.-B. Badawy, “The Kynurenine Pathway of Tryptophan Metabolism: A Neglected Therapeutic Target of COVID-19 Pathophysiology and Immunotherapy, ” Biosci. Rep. 43, no. 8 (2023): BSR20230595.

[108]

G. Ma, Z. Zhang, P. Li, et al., “Reprogramming of Glutamine Metabolism and Its Impact on Immune Response in the Tumor Microenvironment, ” Cell Communication and Signaling 20, no. 1 (2022): 114.

[109]

B. I. Reinfeld, M. Z. Madden, M. M. Wolf, et al., “Cell-programmed Nutrient Partitioning in the Tumour Microenvironment, ” Nature 593, no. 7858 (2021): 282-288.

[110]

Z. Jing, Q. Liu, X. He, et al., “NCAPD3 enhances Warburg Effect Through c-myc and E2F1 and Promotes the Occurrence and Progression of Colorectal Cancer, ” Journal of Experimental & Clinical Cancer Research 41, no. 1 (2022): 198.

[111]

X. Zheng, Z. Hou, Y. Qian, et al., “Tumors Evade Immune Cytotoxicity by Altering the Surface Topology of NK Cells, ” Nat. Immunol. 24, no. 5 (2023): 802-813.

[112]

S. Sheppard, K. Srpan, W. Lin, M. Lee, R. B. Delconte, and M. Owyong, “Fatty Acid Oxidation Fuels Natural Killer Cell Responses Against Infection and Cancer, ” P. Natl. Acad. Sci. USA 121, no. 11 (2024): e2319254121.

[113]

C. M. Tato, G. A. Martins, F. A. High, C. B. DiCioccio, S. L. Reiner, and C. A. Hunter, “Cutting Edge: Innate Production of IFN-gamma by NK Cells Is Independent of Epigenetic Modification of the IFN-gamma Promoter, ” J. Immunol. 173, no. 3 (2004): 1514-1517.

[114]

A. Y. Mah and M. A. Cooper, “Metabolic Regulation of Natural Killer Cell IFN-γ Production, ” Critical Reviews in Immunology 36, no. 2 (2016): 131-147.

[115]

J. A. Gomez, O. L. Wapinski, Y. W. Yang, et al., “The NeST Long ncRNA Controls Microbial Susceptibility and Epigenetic Activation of the Interferon-γ Locus, ” Cell 152, no. 4 (2013): 743-754.

[116]

S. Chang and T. M. Aune, “Histone Hyperacetylated Domains Across the Ifng Gene Region in Natural Killer Cells and T Cells, ” P. Natl. Acad. Sci. USA 102, no. 47 (2005): 17095-17100.

[117]

D. B. Stetson, M. Mohrs, R. L. Reinhardt, et al., “Constitutive Cytokine mRNAs Mark Natural Killer (NK) and NK T Cells Poised for Rapid Effector Function, ” J. Exp. Med. 198, no. 7 (2003): 1069-1076.

[118]

H.-W. Chan, Z. B. Kurago, C. A. Stewart, et al., “DNA Methylation Maintains Allele-specific KIR Gene Expression in human Natural Killer Cells, ” J. Exp. Med. 197, no. 2 (2003): 245-255.

[119]

A. Chávez-Blanco, E. De la Cruz-Hernández, G. I. Domínguez, et al., “Upregulation of NKG2D Ligands and Enhanced Natural Killer Cell Cytotoxicity by Hydralazine and Valproate, ” International Journal of Oncology 39, no. 6 (2011): 1491-1499.

[120]

N.-H. Zhao, Y. Qian, C.-S. Wu, et al., “Diagnostic Value of NKG2D Promoter Methylation in hepatitis B Virus-associated Hepatocellular Carcinoma, ” Biomarkers in Medicine 13, no. 13 (2019): 1093-1105.

[121]

A. Baragaño Raneros, V. Martín-Palanco, A. F. Fernandez, et al., “Methylation of NKG2D Ligands Contributes to Immune System Evasion in Acute Myeloid Leukemia, ” Genes and Immunity 16, no. 1 (2015): 71-82.

[122]

C. L. Zawislak, A. M. Beaulieu, G. B. Loeb, et al., “Stage-specific Regulation of Natural Killer Cell Homeostasis and Response Against Viral Infection by microRNA-155, ” P. Natl. Acad. Sci. USA 110, no. 17 (2013): 6967-6972.

[123]

R. Trotta, L. Chen, D. Ciarlariello, et al., “miR-155 Regulates IFN-γ Production in Natural Killer Cells, ” Blood 119, no. 15 (2012): 3478-3485.

[124]

T. A. Fehniger, T. Wylie, E. Germino, et al., “Next-generation Sequencing Identifies the Natural Killer Cell microRNA Transcriptome, ” Genome Res. 20, no. 11 (2010): 1590-1604.

[125]

F. Ma, S. Xu, X. Liu, et al., “The microRNA miR-29 Controls Innate and Adaptive Immune Responses to Intracellular Bacterial Infection by Targeting Interferon-γ, ” Nat. Immunol. 12, no. 9 (2011): 861-869.

[126]

N. A. Bezman, T. Chakraborty, T. Bender, and L. L. Lanier, “miR-150 Regulates the Development of NK and iNKT Cells, ” J. Exp. Med. 208, no. 13 (2011): 2717-2731.

[127]

F. Cichocki, M. Felices, V. McCullar, et al., “Cutting Edge: MicroRNA-181 Promotes human NK Cell Development by Regulating Notch Signaling, ” J. Immunol. 187, no. 12 (2011): 6171-6175.

[128]

A. S. Dias, C. R. Almeida, L. A. Helguero, and I. F. Duarte, “Metabolic Crosstalk in the Breast Cancer Microenvironment, ” European Journal of Cancer 121 (2019): 154-171.

[129]

M. Davoodzadeh Gholami, G. A. Kardar, Y. Saeedi, S. Heydari, J. Garssen, and R. Falak, “Exhaustion of T Lymphocytes in the Tumor Microenvironment: Significance and Effective Mechanisms, ” Cell. Immunol. 322 (2017): 1-14.

[130]

S. Terry, S. Buart, and S. Chouaib, “Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity, ” Frontiers in Immunology 8 (2017): 1625.

[131]

M. A. Giese, L. E. Hind, and A. Huttenlocher, “Neutrophil Plasticity in the Tumor Microenvironment, ” Blood 133, no. 20 (2019): 2159-2167.

[132]

V. Petrova, M. Annicchiarico-Petruzzelli, G. Melino, and I. Amelio, “The Hypoxic Tumour Microenvironment, ” Oncogenesis 7, no. 1 (2018): 10.

[133]

S. Chabi, B. Uzan, I. Naguibneva, et al., “Hypoxia Regulates Lymphoid Development of human Hematopoietic Progenitors, ” Cell Rep. 29, no. 8 (2019): 2307-2320.

[134]

J. Ni, X. Wang, A. Stojanovic, et al., “Single-Cell RNA Sequencing of Tumor-Infiltrating NK Cells Reveals That Inhibition of Transcription Factor HIF-1α Unleashes NK Cell Activity, ” Immunity 52, no. 6 (2020): 1075-1087. e8.

[135]

M. Balsamo, C. Manzini, G. Pietra, et al., “Hypoxia Downregulates the Expression of Activating Receptors Involved in NK-cell-mediated Target Cell Killing Without Affecting ADCC, ” Eur. J. Immunol. 43, no. 10 (2013): 2756-2764.

[136]

C. Engel, G. Brügmann, S. Lambing, et al., “RIG-I Resists Hypoxia-Induced Immunosuppression and Dedifferentiation, ” Cancer Immunology Research 5, no. 6 (2017): 455-467.

[137]

E. Krzywinska, C. Kantari-Mimoun, Y. Kerdiles, et al., “Loss of HIF-1α in Natural Killer Cells Inhibits Tumour Growth by Stimulating Non-productive Angiogenesis, ” Nat. Commun. 8, no. 1 (2017): 1597.

[138]

E. Cluff, C. C. Magdaleno, E. Fernandez, et al., “Hypoxia-inducible Factor-1 Alpha Expression Is Induced by IL-2 via the PI3K/mTOR Pathway in Hypoxic NK Cells and Supports Effector Functions in NKL Cells and Ex Vivo Expanded NK Cells, ” Cancer Immunology, Immunotherapy 71, no. 8 (2022): 1989-2005.

[139]

T. Hagen, C. T. Taylor, F. Lam, and S. Moncada, “Redistribution of Intracellular Oxygen in Hypoxia by Nitric Oxide: Effect on HIF1alpha, ” Science 302, no. 5652 (2003): 1975-1978.

[140]

F. Luo, F.-T. Lu, J.-X. Cao, et al., “HIF-1α Inhibition Promotes the Efficacy of Immune Checkpoint Blockade in the Treatment of Non-small Cell Lung Cancer, ” Cancer Letters 531 (2022): 39-56.

[141]

J. Chen, M. Zhang, Y. Liu, et al., “Histone Lactylation Driven by mROS-mediated Glycolytic Shift Promotes Hypoxic Pulmonary Hypertension, ” Journal of Molecular Cell Biology 14, no. 12 (2023): mjac073.

[142]

P. Vaupel, H. Schmidberger, and A. Mayer, “The Warburg Effect: Essential Part of Metabolic Reprogramming and central Contributor to Cancer Progression, ” Int. J. Radiat. Biol. 95, no. 7 (2019): 912-919.

[143]

J. X. Wang, S. Y. C. Choi, X. Niu, et al., “Lactic Acid and an Acidic Tumor Microenvironment Suppress Anticancer Immunity, ” Int. J. Mol. Sci. 21, no. 21 (2020): 8363.

[144]

I. Terrén, A. Orrantia, J. Vitallé, O. Zenarruzabeitia, and F. Borrego, “NK Cell Metabolism and Tumor Microenvironment, ” Frontiers in Immunology 10 (2019): 2278.

[145]

Z. Husain, P. Seth, and V. P. Sukhatme, “Tumor-derived Lactate and Myeloid-derived Suppressor Cells: Linking Metabolism to Cancer Immunology, ” Oncoimmunology 2, no. 11 (2013): e26383.

[146]

M. Jedlička, T. Feglarová, L. Janstová, M. Hortová-Kohoutková, and J. Frič, “Lactate From the Tumor Microenvironment—A Key Obstacle in NK Cell-based Immunotherapies, ” Frontiers in Immunology 13 (2022): 932055.

[147]

Y. Zhang, Q. Peng, J. Zheng, et al., “The Function and Mechanism of Lactate and Lactylation in Tumor Metabolism and Microenvironment, ” Genes & Diseases 10, no. 5 (2023): 2029-2037.

[148]

A. Llibre, S. Kucuk, A. Gope, M. Certo, and C. Mauro, “Lactate: A Key Regulator of the Immune Response, ” Immunity 58, no. 3 (2025): 535-554.

[149]

C. Harmon, M. W. Robinson, F. Hand, et al., “Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis, ” Cancer Immunology Research 7, no. 2 (2019): 335-346.

[150]

G. Hu, P. Wu, P. Cheng, et al., “Tumor-infiltrating CD39+γδTregs Are Novel Immunosuppressive T Cells in human Colorectal Cancer, ” Oncoimmunology 6, no. 2 (2017): e1277305.

[151]

J. Wang and S. Matosevic, “Adenosinergic Signaling as a Target for Natural Killer Cell Immunotherapy, ” Journal of Molecular Medicine 96, no. 9 (2018): 903-913.

[152]

J. M. Steingold and S. M. Hatfield, “Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells during Cancer Immunotherapy, ” Frontiers in Immunology 11 (2020): 570041.

[153]

L. Antonioli, C. Blandizzi, F. Malavasi, D. Ferrari, and G. Haskó, “Anti-CD73 Immunotherapy: A Viable Way to Reprogram the Tumor Microenvironment, ” Oncoimmunology 5, no. 9 (2016): e1216292.

[154]

A. Young, S. F. Ngiow, Y. Gao, et al., “A2AR adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment, ” Cancer Res. 78, no. 4 (2018): 1003-1016.

[155]

T. Raskovalova, A. Lokshin, X. Huang, E. K. Jackson, and E. Gorelik, “Adenosine-mediated Inhibition of Cytotoxic Activity and Cytokine Production by IL-2/NKp46-activated NK Cells: Involvement of Protein Kinase A Isozyme I (PKA I), ” Immunologic Research 36, no. 1-3 (2006): 91-99.

[156]

J. Li, L. Wang, X. Chen, et al., “CD39/CD73 upregulation on Myeloid-derived Suppressor Cells via TGF-β-mTOR-HIF-1 Signaling in Patients With Non-small Cell Lung Cancer, ” Oncoimmunology 6, no. 6 (2017): e1320011.

[157]

A. M. Chambers, J. Wang, K. B. Lupo, H. Yu, N. M. Atallah Lanman, and S. Matosevic, “Adenosinergic Signaling Alters Natural Killer Cell Functional Responses, ” Frontiers in Immunology 9 (2018): 2533.

[158]

L. V. Sinclair, D. Neyens, G. Ramsay, P. M. Taylor, and D. A. Cantrell, “Single Cell Analysis of Kynurenine and System L Amino Acid Transport in T Cells, ” Nat. Commun. 9, no. 1 (2018): 1981.

[159]

G. Frumento, R. Rotondo, M. Tonetti, G. Damonte, U. Benatti, and G. B. Ferrara, “Tryptophan-derived Catabolites Are Responsible for Inhibition of T and Natural Killer Cell Proliferation Induced by Indoleamine 2, 3-dioxygenase, ” J. Exp. Med. 196, no. 4 (2002): 459-468.

[160]

M. Della Chiesa, S. Carlomagno, G. Frumento, M. Balsamo, C. Cantoni, and R. Conte, “The Tryptophan Catabolite L-kynurenine Inhibits the Surface Expression of NKp46- and NKG2D-activating Receptors and Regulates NK-cell Function, ” Blood 108, no. 13 (2006): 4118-4125.

[161]

H. Song, H. Park, Y.-S. Kim, et al., “L-kynurenine-induced Apoptosis in human NK Cells Is Mediated by Reactive Oxygen Species, ” Int. Immunopharmacol. 11, no. 8 (2011): 932-938.

[162]

Z. Gong, Q. Li, J. Shi, E. T. Liu, L. D. Shultz, and G. Ren, “Lipid-laden Lung Mesenchymal Cells Foster Breast Cancer Metastasis via Metabolic Reprogramming of Tumor Cells and Natural Killer Cells, ” Cell Metab. 34, no. 12 (2022): 1960-1976. e9.

[163]

T. Krneta, A. Gillgrass, S. Poznanski, et al., “M2-polarized and Tumor-associated Macrophages Alter NK Cell Phenotype and Function in a Contact-dependent Manner, ” J. Leukocyte Biol. 101, no. 1 (2017): 285-295.

[164]

A. López-Soto, S. Gonzalez, M. J. Smyth, and L. Galluzzi, “Control of Metastasis by NK Cells, ” Cancer Cell 32, no. 2 (2017): 135-154.

[165]

J. P. Böttcher, E. Bonavita, P. Chakravarty, et al., “NK Cells Stimulate Recruitment of cDC1 Into the Tumor Microenvironment Promoting Cancer Immune Control, ” Cell 172, no. 5 (2018): 1022-1037. e14.

[166]

J. S. Miller, Y. Soignier, A. Panoskaltsis-Mortari, et al., “Successful Adoptive Transfer and in Vivo Expansion of human Haploidentical NK Cells in Patients With Cancer, ” Blood 105, no. 8 (2005): 3051-3057.

[167]

G. Xie, H. Dong, Y. Liang, J. D. Ham, R. Rizwan, and J. Chen, “CAR-NK Cells: A Promising Cellular Immunotherapy for Cancer, ” EBioMedicine 59 (2020): 102975.

[168]

R. Parihar, C. Rivas, M. Huynh, et al., “NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity Against Solid Tumors, ” Cancer Immunology Research 7, no. 3 (2019): 363-375.

[169]

G. Pawelec, C. P. Verschoor, and S. Ostrand-Rosenberg, “Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity, ” Frontiers in Immunology 10 (2019): 1099.

[170]

M. Gang, N. D. Marin, P. Wong, et al., “CAR-modified Memory-Like NK Cells Exhibit Potent Responses to NK-resistant Lymphomas, ” Blood 136, no. 20 (2020): 2308-2318.

[171]

M. R. Parkhurst, J. P. Riley, M. E. Dudley, and S. A. Rosenberg, “Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression, ” Clinical Cancer Research 17, no. 19 (2011): 6287-6297.

[172]

M. Luevano, M. Daryouzeh, R. Alnabhan, et al., “The Unique Profile of Cord Blood Natural Killer Cells Balances Incomplete Maturation and Effective Killing Function Upon Activation, ” Human Immunology 73, no. 3 (2012): 248-257.

[173]

J. Spanholtz, F. Preijers, M. Tordoir, et al., “Clinical-grade Generation of Active NK Cells From Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-system Culture Process, ” PLoS One 6, no. 6 (2011): e20740.

[174]

C. Jochems, J. W. Hodge, M. Fantini, et al., “An NK Cell Line (haNK) Expressing High Levels of Granzyme and Engineered to Express the High Affinity CD16 Allele, ” Oncotarget 7, no. 52 (2016): 86359-86373.

[175]

D. L. Hermanson, L. Bendzick, L. Pribyl, et al., “Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer, ” Stem Cells 34, no. 1 (2016): 93-101.

[176]

O. K. Dagher and A. D. Posey, “Forks in the Road for CAR T and CAR NK Cell Cancer Therapies, ” Nat. Immunol. 24, no. 12 (2023): 1994-2007.

[177]

E. Voynova, N. Hawk, F. A. Flomerfelt, et al., “Increased Activity of a NK-Specific CAR-NK Framework Targeting CD3 and CD5 for T-Cell Leukemias, ” Cancers (Basel) 14, no. 3 (2022): 524.

[178]

R. B. Delconte, G. Guittard, W. Goh, et al., “NK Cell Priming From Endogenous Homeostatic Signals Is Modulated by CIS, ” Frontiers in Immunology 11 (2020): 75.

[179]

E. Liu, D. Marin, P. Banerjee, et al., “Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors, ” N. Engl. J. Med. 382, no. 6 (2020): 545-553.

[180]

D. Marin, Y. Li, R. Basar, et al., “Safety, Efficacy and Determinants of Response of Allogeneic CD19-specific CAR-NK Cells in CD19+ B Cell Tumors: A Phase 1/2 Trial, ” Nat. Med. 30, no. 3 (2024): 772-784.

[181]

T. J. Laskowski, A. Biederstädt, and K. Rezvani, “Natural Killer Cells in Antitumour Adoptive Cell Immunotherapy, ” Nat. Rev. Cancer 22, no. 10 (2022): 557-575.

[182]

K. A. Khan and R. S. Kerbel, “Improving Immunotherapy Outcomes With Anti-angiogenic Treatments and Vice Versa, ” Nat. Rev. Clin. Oncol. 15, no. 5 (2018): 310-324.

[183]

A. M. Isidori, M. A. Venneri, and D. Fiore, “Angiopoietin-1 and Angiopoietin-2 in Metabolic Disorders: Therapeutic Strategies to Restore the Highs and Lows of Angiogenesis in Diabetes, ” Journal of Endocrinological Investigation 39, no. 11 (2016): 1235-1246.

[184]

J. Medamana, R. A. Clark, and J. Butler, “Platelet-Derived Growth Factor in Heart Failure, ” Handbook of Experimental Pharmacology 243 (2017): 355-369.

[185]

R. J. Henning, “Therapeutic Angiogenesis: Angiogenic Growth Factors for Ischemic Heart Disease, ” Future Cardiol. 12, no. 5 (2016): 585-599.

[186]

C. Inampudi, E. Akintoye, T. Ando, and A. Briasoulis, “Angiogenesis in Peripheral Arterial Disease, ” Curr. Opin. Pharmacol. 39 (2018): 60-67.

[187]

R. M. Manzat Saplacan, L. Balacescu, C. Gherman, R. I. Chira, A. Craiu, and P. A. Mircea, “The Role of Pdgfs and Pdgfrs in Colorectal Cancer, ” Mediators of Inflammation 2017 (2017): 4708076.

[188]

R. I. Teleanu, C. Chircov, A. M. Grumezescu, and D. M. Teleanu, “Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment, ” Journal of Clinical Medicine 9, no. 1 (2019): 84.

[189]

L. Gnudi, “Angiopoietins and Diabetic Nephropathy, ” Diabetologia 59, no. 8 (2016): 1616-1620.

[190]

H. L. Goel and A. M. Mercurio, “VEGF Targets the Tumour Cell, ” Nat. Rev. Cancer 13, no. 12 (2013): 871-882.

[191]

A. Vienot, M. Jacquin, M. Rebucci-Peixoto, et al., “Evaluation of the Interest to Combine a CD4 Th1-inducer Cancer Vaccine Derived From Telomerase and Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma: A Randomized Non-comparative Phase II Study (TERTIO—PRODIGE 82), ” BMC Cancer 23, no. 1 (2023): 710.

[192]

T. Seto, K. Nosaki, M. Shimokawa, et al., “Phase II Study of atezolizumab With Bevacizumab for Non-squamous Non-small Cell Lung Cancer With High PD-L1 Expression (@Be Study), ” Journal for ImmunoTherapy of Cancer 10, no. 2 (2022): e004025.

[193]

D. F. McDermott, M. A. Huseni, M. B. Atkins, et al., “Clinical Activity and Molecular Correlates of Response to atezolizumab Alone or in Combination With bevacizumab versus sunitinib in Renal Cell Carcinoma, ” Nat. Med. 24, no. 6 (2018): 749-757.

[194]

O. Bylicki, P. Tomasini, G. Radj, et al., “Atezolizumab With or Without Bevacizumab and Platinum-pemetrexed in Patients With Stage IIIB/IV Non-squamous Non-small Cell Lung Cancer With EGFR Mutation, ALK Rearrangement or ROS1 Fusion Progressing After Targeted Therapies: A Multicentre Phase II Open-label Non-randomised Study GFPC 06-2018, ” European Journal of Cancer 183 (2023): 38-48.

[195]

J. J. Wallin, J. C. Bendell, R. Funke, et al., “Atezolizumab in Combination With Bevacizumab Enhances Antigen-specific T-cell Migration in Metastatic Renal Cell Carcinoma, ” Nat. Commun. 7 (2016): 12624.

[196]

J. Tu, H. Liang, C. Li, et al., “The Application and Research Progress of Anti-angiogenesis Therapy in Tumor Immunotherapy, ” Frontiers in Immunology 14 (2023): 1198972.

[197]

R. Kato, K. Haratani, H. Hayashi, et al., “Nintedanib Promotes Antitumour Immunity and Shows Antitumour Activity in Combination With PD-1 Blockade in Mice: Potential Role of Cancer-associated Fibroblasts, ” British journal of cancer 124, no. 5 (2021): 914-924.

[198]

C. Baldini, F.-X. Danlos, A. Varga, et al., “Safety, Recommended Dose, Efficacy and Immune Correlates for nintedanib in Combination With pembrolizumab in Patients With Advanced Cancers, ” Journal of Experimental & Clinical Cancer Research 41, no. 1 (2022): 217.

[199]

M. Kudo, R. S. Finn, S. Qin, et al., “Overall Survival and Objective Response in Advanced Unresectable Hepatocellular Carcinoma: A Subanalysis of the REFLECT Study, ” Journal of Hepatology 78, no. 1 (2023): 133-141.

[200]

R. Motzer, B. Alekseev, S.-Y. Rha, et al., “Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma, ” N. Engl. J. Med. 384, no. 14 (2021): 1289-1300.

[201]

V. Makker, M. H. Taylor, C. Aghajanian, et al., “Lenvatinib plus Pembrolizumab in Patients With Advanced Endometrial Cancer, ” Journal of Clinical Oncology 38, no. 26 (2020): 2981-2992.

[202]

R. S. Finn, M. Ikeda, A. X. Zhu, et al., “Phase Ib Study of Lenvatinib plus Pembrolizumab in Patients With Unresectable Hepatocellular Carcinoma, ” Journal of Clinical Oncology 38, no. 26 (2020): 2960-2970.

[203]

J. Martin-Broto, N. Hindi, G. Grignani, et al., “Nivolumab and sunitinib Combination in Advanced Soft Tissue Sarcomas: A Multicenter, Single-arm, Phase Ib/II Trial, ” Journal for ImmunoTherapy of Cancer 8, no. 2 (2020): e001561.

[204]

M. Espinoza, M. Muquith, M. Lim, H. Zhu, A. G. Singal, and D. Hsiehchen, “Disease Etiology and Outcomes after Atezolizumab plus Bevacizumab in Hepatocellular Carcinoma: Post-Hoc Analysis of IMbrave150, ” Gastroenterology 165, no. 1 (2023): 286-288. e4.

[205]

J. Wang, H. Yu, W. Dong, et al., “N6-Methyladenosine-Mediated up-Regulation of FZD10 Regulates Liver Cancer Stem Cells″ Properties and Lenvatinib Resistance through WNT/β-Catenin and Hippo Signaling Pathways, ” Gastroenterology 164, no. 6 (2023): 990-1005.

[206]

E. Baudin, B. Goichot, A. Berruti, et al., “Sunitinib for Metastatic Progressive Phaeochromocytomas and Paragangliomas: Results From FIRSTMAPPP, an Academic, Multicentre, International, Randomised, Placebo-controlled, Double-blind, Phase 2 Trial, ” Lancet 403, no. 10431 (2024): 1061-1070.

[207]

A. U. Wells, K. R. Flaherty, K. K. Brown, et al., “Nintedanib in Patients With Progressive Fibrosing Interstitial Lung Diseases-subgroup Analyses by Interstitial Lung Disease Diagnosis in the INBUILD Trial: A Randomised, Double-blind, Placebo-controlled, Parallel-group Trial, ” The Lancet Respiratory Medicine 8, no. 5 (2020): 453-460.

[208]

H. Cai, S. Guo, Y. Xu, et al., “Cryo-EM Structures of Adenosine Receptor A3AR Bound to Selective Agonists, ” Nat. Commun. 15, no. 1 (2024): 3252.

[209]

J. Bendell, P. LoRusso, M. Overman, et al., “First-in-human Study of oleclumab, a Potent, Selective Anti-CD73 Monoclonal Antibody, Alone or in Combination With durvalumab in Patients With Advanced Solid Tumors, ” Cancer Immunology, Immunotherapy 72, no. 7 (2023): 2443-2458.

[210]

L. L. Siu, H. Burris, D. T. Le, et al., “Abstract CT180: Preliminary Phase 1 Profile of BMS-986179, an Anti-CD73 Antibody, in Combination With nivolumab in Patients With Advanced Solid tumors, ” Clinical Trials (American Association for Cancer Research, 2018): CT180-CT180.

[211]

J. J. Luke, J. D. Powderly, J. R. Merchan, et al., “Immunobiology, Preliminary Safety, and Efficacy of CPI-006, an Anti-CD73 Antibody With Immune Modulating Activity, in a Phase 1 Trial in Advanced Cancers, ” Journal of Clinical Oncology 37, no. 15_suppl (2019): 2505-2505.

[212]

S. Fu, U. Banerji, P. L. Bedard, et al., “Abstract CT503: A Phase I/Ib Study of the Safety and Preliminary Efficacy of NZV930 Alone and in Combination With Spartalizumab and/or Taminadenant in Patients (pts) With Advanced Malignancies, ” Cancer Res. 82, no. 12_Supplement (2022): CT503-CT503.

[213]

Q. Chen, H. Yin, J. He, et al., “Tumor Microenvironment Responsive CD8+ T Cells and Myeloid-Derived Suppressor Cells to Trigger CD73 Inhibitor AB680-Based Synergistic Therapy for Pancreatic Cancer, ” Advanced Science (Weinh) 10, no. 33 (2023): e2302498.

[214]

R. Iacovelli, C. Ciccarese, G. Procopio, et al., “Current Evidence for Second-line Treatment in Metastatic Renal Cell Carcinoma After Progression to Immune-based Combinations, ” Cancer Treatment Reviews 105 (2022): 102379.

[215]

Y. Weng, X. Yang, Q. Zhang, et al., “Structural Insight Into the Dual-antagonistic Mechanism of AB928 on Adenosine A2 Receptors, ” Sci China Life Sci 67, no. 5 (2024): 986-995.

[216]

I. Perrot, H.-A. Michaud, M. Giraudon-Paoli, et al., “Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies, ” Cell Rep. 27, no. 8 (2019): 2411-2425. e9.

[217]

B. N. Spatola, A. G. Lerner, C. Wong, et al., “Fully human Anti-CD39 Antibody Potently Inhibits ATPase Activity in Cancer Cells via Uncompetitive Allosteric Mechanism, ” Mabs 12, no. 1 (2020): 1838036.

[218]

L. Miao, C. Lu, B. Zhang, et al., “Advances in Metabolic Reprogramming of NK Cells in the Tumor Microenvironment on the Impact of NK Therapy, ” Journal of Translational Medicine 22, no. 1 (2024): 229.

[219]

Z. Zhao, F. Han, S. Yang, J. Wu, and W. Zhan, “Oxamate-mediated Inhibition of Lactate Dehydrogenase Induces Protective Autophagy in Gastric Cancer Cells: Involvement of the Akt-mTOR Signaling Pathway, ” Cancer Letters 358, no. 1 (2015): 17-26.

[220]

J. Billiard, J. B. Dennison, J. Briand, et al., “Quinoline 3-sulfonamides Inhibit Lactate Dehydrogenase A and Reverse Aerobic Glycolysis in Cancer Cells, ” Cancer & Metabolism 1, no. 1 (2013): 19.

[221]

G. S. Gupta, S. Kapur, and R. G. Kinsky, “Inhibition Kinetics of Lactate Dehydrogenase Isoenzymes by Gossypol Acetic Acid, ” Biochemistry International 17, no. 1 (1988): 25-34.

[222]

Y. Yu, J. A. Deck, L. A. Hunsaker, et al., “Selective Active Site Inhibitors of human Lactate Dehydrogenases A4, B4, and C4, ” Biochem. Pharmacol. 62, no. 1 (2001): 81-89.

[223]

C. Granchi, E. C. Calvaresi, T. Tuccinardi, et al., “Assessing the Differential Action on Cancer Cells of LDH-A Inhibitors Based on the N-hydroxyindole-2-carboxylate (NHI) and Malonic (Mal) Scaffolds, ” Org. Biomol. Chem. 11, no. 38 (2013): 6588-6596.

[224]

M. Beloueche-Babari, T. Casals Galobart, T. Delgado-Goni, S. Wantuch, H. G. Parkes, and D. Tandy, “Monocarboxylate Transporter 1 Blockade With AZD3965 Inhibits Lipid Biosynthesis and Increases Tumour Immune Cell Infiltration, ” British journal of cancer 122, no. 6 (2020): 895-903.

[225]

S. Halford, G. J. Veal, S. R. Wedge, et al., “A Phase I Dose-escalation Study of AZD3965, an Oral Monocarboxylate Transporter 1 Inhibitor, in Patients With Advanced Cancer, ” Clinical Cancer Research 29, no. 8 (2023): 1429-1439.

[226]

E. A. Thompson and J. D. Powell, “Inhibition of the Adenosine Pathway to Potentiate Cancer Immunotherapy: Potential for Combinatorial Approaches, ” Annu. Rev. Med. 72 (2021): 331-348.

[227]

E. M. Ploeg, D. F. Samplonius, X. Xiong, et al., “Bispecific Antibody CD73xEGFR More Selectively Inhibits the CD73/Adenosine Immune Checkpoint on Cancer Cells and Concurrently Counteracts Pro-oncogenic Activities of CD73 and EGFR, ” Journal for ImmunoTherapy of Cancer 11, no. 9 (2023): e006837.

[228]

T. Cascone, G. Kar, J. D. Spicer, et al., “Neoadjuvant Durvalumab Alone or Combined With Novel Immuno-Oncology Agents in Resectable Lung Cancer: The Phase II NeoCOAST Platform Trial, ” Cancer Discovery 13, no. 11 (2023): 2394-2411.

[229]

B. Besse, E. Pons-Tostivint, K. Park, et al., “Biomarker-directed Targeted Therapy plus durvalumab in Advanced Non-small-cell Lung Cancer: A Phase 2 Umbrella Trial, ” Nat. Med. 30, no. 3 (2024): 716-729.

[230]

P. A. Beavis, U. Divisekera, C. Paget, et al., “Blockade of A2A Receptors Potently Suppresses the Metastasis of CD73+ Tumors, ” P. Natl. Acad. Sci. USA 110, no. 36 (2013): 14711-14716.

[231]

A. T. Waickman, A. Alme, L. Senaldi, P. E. Zarek, M. Horton, and J. D. Powell, “Enhancement of Tumor Immunotherapy by Deletion of the A2A Adenosine Receptor, ” Cancer Immunology, Immunotherapy 61, no. 6 (2012): 917-926.

[232]

D. Mittal, A. Young, K. Stannard, et al., “Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor, ” Cancer Res. 74, no. 14 (2014): 3652-3658.

[233]

L. Fong, A. Hotson, J. D. Powderly, et al., “Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer, ” Cancer Discovery 10, no. 1 (2020): 40-53.

[234]

S. Pilon-Thomas, K. N. Kodumudi, A. E. El-Kenawi, et al., “Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy, ” Cancer Res. 76, no. 6 (2016): 1381-1390.

[235]

R. J. Gillies, A. Ibrahim-Hashim, B. Ordway, and R. A. Gatenby, “Back to Basic: Trials and Tribulations of Alkalizing Agents in Cancer, ” Frontiers in Oncology 12 (2022): 981718.

[236]

A. Kumar, M. Singh, D. Sharma, V. Kumar, and R. Rani, “Tumor Metabolism: Focused on Tumor Glycolysis, Progress, and Prospects in Cancer therapy, ” Burger's Medicinal Chemistry and Drug Discovery (Wiley, 2003): 1-33.

[237]

T. Qiao, Y. Xiong, Y. Feng, et al., “Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model, ” Frontiers in Oncology 11 (2021): 632364.

[238]

A. E. El-Sisi, S. S. Sokar, S. E. Abu-Risha, and S. R. El-Mahrouk, “Oxamate Potentiates Taxol Chemotherapeutic Efficacy in Experimentally-induced Solid Ehrlich Carcinoma (SEC) in Mice, ” Biomed. Pharmacother. 95 (2017): 1565-1573.

[239]

E.-Y. Kim, T.-W. Chung, C. W. Han, et al., “A Novel Lactate Dehydrogenase Inhibitor, 1-(Phenylseleno)-4-(Trifluoromethyl) Benzene, Suppresses Tumor Growth Through Apoptotic Cell Death, ” Sci Rep 9, no. 1 (2019): 3969.

[240]

A. Le, C. R. Cooper, A. M. Gouw, et al., “Inhibition of Lactate Dehydrogenase A Induces Oxidative Stress and Inhibits Tumor Progression, ” P. Natl. Acad. Sci. USA 107, no. 5 (2010): 2037-2042.

[241]

R. A. Ward, C. Brassington, A. L. Breeze, et al., “Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-based Lead Generation, ” J. Med. Chem. 55, no. 7 (2012): 3285-3306.

[242]

I. Dell'Anno, E. Barone, L. Mutti, et al., “Tissue Expression of Lactate Transporters (MCT1 and MCT4) and Prognosis of Malignant Pleural Mesothelioma (brief report), ” Journal of Translational Medicine 18, no. 1 (2020): 341.

[243]

C. Petersen, M. D. Nielsen, E. S. Andersen, et al., “MCT1 and MCT4 Expression and Lactate Flux Activity Increase During White and Brown Adipogenesis and Impact Adipocyte Metabolism, ” Sci Rep 7, no. 1 (2017): 13101.

[244]

V. L. Payen, E. Mina, V. F. Van Hée, P. E. Porporato, and P. Sonveaux, “Monocarboxylate Transporters in Cancer, ” Mol. Metab. 33 (2020): 48-66.

[245]

C. M. Murray, R. Hutchinson, J. R. Bantick, et al., “Monocarboxylate Transporter MCT1 Is a Target for Immunosuppression, ” Nat. Chem. Biol. 1, no. 7 (2005): 371-376.

[246]

N. J. Curtis, L. Mooney, L. Hopcroft, et al., “Pre-clinical Pharmacology of AZD3965, a Selective Inhibitor of MCT1: DLBCL, NHL and Burkitt's Lymphoma Anti-tumor Activity, ” Oncotarget 8, no. 41 (2017): 69219-69236.

[247]

D.-H. Wu, H. Liang, S.-N. Lu, et al., “miR-124 Suppresses Pancreatic Ductal Adenocarcinoma Growth by Regulating Monocarboxylate Transporter 1-Mediated Cancer Lactate Metabolism, ” Cell. Physiol. Biochem. 50, no. 3 (2018): 924-935.

[248]

A. Khammanivong, J. Saha, A. K. Spartz, et al., “A Novel MCT1 and MCT4 Dual Inhibitor Reduces Mitochondrial Metabolism and Inhibits Tumour Growth of Feline Oral Squamous Cell Carcinoma, ” Veterinary and Comparative Oncology 18, no. 3 (2020): 324-341.

[249]

T. Takada, K. Takata, and E. Ashihara, “Inhibition of Monocarboxylate Transporter 1 Suppresses the Proliferation of Glioblastoma Stem Cells, ” J. Physiol. Sci. 66, no. 5 (2016): 387-396.

[250]

E. J. Brown, M. W. Albers, T. B. Shin, et al., “A Mammalian Protein Targeted by G1-arresting Rapamycin-receptor Complex, ” Nature 369, no. 6483 (1994): 756-758.

[251]

Q. Jiang, J. M. Weiss, T. Back, et al., “mTOR Kinase Inhibitor AZD8055 Enhances the Immunotherapeutic Activity of an Agonist CD40 Antibody in Cancer Treatment, ” Cancer Res. 71, no. 12 (2011): 4074-4084.

[252]

J. C. Yao, N. Fazio, S. Singh, et al., “Everolimus for the Treatment of Advanced, Non-functional Neuroendocrine Tumours of the Lung or Gastrointestinal Tract (RADIANT-4): A Randomised, Placebo-controlled, Phase 3 Study, ” Lancet 387, no. 10022 (2016): 968-977.

[253]

L. He, J. Zhao, H. Li, et al., “Metabolic Reprogramming of NK Cells by Black Phosphorus Quantum Dots Potentiates Cancer Immunotherapy, ” Advanced Science (Weinh) 10, no. 8 (2023): e2202519.

[254]

K. Slattery and C. M. Gardiner, “NK Cell Metabolism and TGFβ—Implications for Immunotherapy, ” Frontiers in Immunology 10 (2019): 2915.

[255]

E. Nadal, M. Saleh, S. P. Aix, et al., “A Phase Ib/II Study of galunisertib in Combination With nivolumab in Solid Tumors and Non-small Cell Lung Cancer, ” BMC Cancer 23, no. 1 (2023): 708.

[256]

T. Yamazaki, A. J. Gunderson, M. Gilchrist, et al., “Galunisertib plus Neoadjuvant Chemoradiotherapy in Patients With Locally Advanced Rectal Cancer: A Single-arm, Phase 2 Trial, ” Lancet Oncol. 23, no. 9 (2022): 1189-1200.

[257]

N. P. Tschernia and J. L. Gulley, “Tumor in the Crossfire: Inhibiting TGF-β to Enhance Cancer Immunotherapy, ” BioDrugs 36, no. 2 (2022): 153-180.

[258]

J.-H. Ahn, J. Lee, C. Park, et al., “Clinical Activity of TGF-β Inhibitor Vactosertib in Combination With Imatinib in Desmoid Tumors: A Multicenter Phase Ib/II Study, ” Clinical Cancer Research 30, no. 8 (2024): 1457-1465.

[259]

S. Y. Jung, S. Hwang, J. M. Clarke, et al., “Pharmacokinetic Characteristics of vactosertib, a New Activin Receptor-Like Kinase 5 Inhibitor, in Patients With Advanced Solid Tumors in a First-in-human Phase 1 Study, ” Investigational New Drugs 38, no. 3 (2020): 812-820.

[260]

Y. Hasegawa, D. Hashimoto, Z. Zhang, et al., “GVHD Targets Organoid-forming Bile Duct Stem Cells in a TGF-β-dependent Manner, ” Blood 144, no. 8 (2024): 904-913.

[261]

T. M. Bauer, A. Santoro, C.-C. Lin, et al., “Phase I/Ib, Open-label, Multicenter, Dose-escalation Study of the Anti-TGF-β Monoclonal Antibody, NIS793, in Combination With spartalizumab in Adult Patients With Advanced Tumors, ” Journal for ImmunoTherapy of Cancer 11, no. 11 (2023): e007353.

[262]

C. J. Martin, A. Datta, C. Littlefield, et al., “Selective Inhibition of TGFβ1 Activation Overcomes Primary Resistance to Checkpoint Blockade Therapy by Altering Tumor Immune Landscape, ” Sci. Transl. Med. 12, no. 536 (2020): eaay8456.

[263]

S. C. Formenti, R. E. Hawtin, N. Dixit, et al., “Baseline T Cell Dysfunction by Single Cell Network Profiling in Metastatic Breast Cancer Patients, ” Journal for ImmunoTherapy of Cancer 7, no. 1 (2019): 177.

[264]

Y. Lan, D. Zhang, C. Xu, et al., “Enhanced Preclinical Antitumor Activity of M7824, a Bifunctional Fusion Protein Simultaneously Targeting PD-L1 and TGF-β, ” Sci. Transl. Med. 10, no. 424 (2018): eaan5488.

[265]

J. Zhang, J. Yi, and P. Zhou, “Development of Bispecific Antibodies in China: Overview and Prospects, ” Antibody Therapeutics 3, no. 2 (2020): 126-145.

[266]

E. E. Vokes, F. Mornex, A. Sezer, et al., “Bintrafusp Alfa With CCRT Followed by bintrafusp Alfa versus Placebo With CCRT Followed by durvalumab in Patients With Unresectable Stage III NSCLC: A Phase 2 Randomized Study, ” Journal of Thoracic Oncology 19, no. 2 (2024): 285-296.

[267]

C. Yoo, D.-Y. Oh, H. J. Choi, et al., “Phase I Study of Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Patients With Pretreated Biliary Tract Cancer, ” Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000564.

[268]

B. C. Cho, J. S. Lee, Y.-L. Wu, et al., “Bintrafusp Alfa versus Pembrolizumab in Patients with Treatment-Naive, Programmed Death-Ligand 1-High Advanced NSCLC: A Randomized, Open-Label, Phase 3 Trial, ” Journal of Thoracic Oncology 18, no. 12 (2023): 1731-1742.

[269]

C. Yoo, M. M. Javle, H. Verdaguer Mata, F. de Braud, J. Trojan, and J.-L. Raoul, “Phase 2 Trial of bintrafusp alfa as Second-line Therapy for Patients With Locally Advanced/Metastatic Biliary Tract Cancers, ” Hepatology 78, no. 3 (2023): 758-770.

[270]

B. Cheng, K. Ding, P. Chen, et al., “Anti-PD-L1/TGF-βR Fusion Protein (SHR-1701) Overcomes Disrupted Lymphocyte Recovery-induced Resistance to PD-1/PD-L1 Inhibitors in Lung Cancer, ” Cancer Communications (London) 42, no. 1 (2022): 17-36.

[271]

J. M. Redman, J. Friedman, Y. Robbins, et al., “Enhanced Neoepitope-specific Immunity Following Neoadjuvant PD-L1 and TGF-β Blockade in HPV-unrelated Head and Neck Cancer, ” J Clin Invest 132, no. 18 (2022): e161400.

[272]

L. Paz-Ares, T. M. Kim, D. Vicente, et al., “Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Second-Line Treatment of Patients with NSCLC: Results from an Expansion Cohort of a Phase 1 Trial, ” Journal of Thoracic Oncology 15, no. 7 (2020): 1210-1222.

[273]

J. Feng, D. Tang, J. Wang, et al., “SHR-1701, a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, for Recurrent or Metastatic Cervical Cancer: A Clinical Expansion Cohort of a Phase I Study, ” Clinical Cancer Research 28, no. 24 (2022): 5297-5305.

[274]

D. Liu, J. Zhou, Y. Wang, et al., “Bifunctional Anti-PD-L1/TGF-βRII Agent SHR-1701 in Advanced Solid Tumors: A Dose-escalation, Dose-expansion, and Clinical-expansion Phase 1 Trial, ” BMC Medicine [Electronic Resource] 20, no. 1 (2022): 408.

[275]

Q. Zhou, Y. Pan, X. Yang, et al., “Neoadjuvant SHR-1701 With or Without Chemotherapy in Unresectable Stage III Non-small-cell Lung Cancer: A Proof-of-concept, Phase 2 Trial, ” Cancer Cell 42, no. 7 (2024): 1258-1267. e2.

[276]

J. Bhin, J. Yemelyanenko, X. Chao, et al., “MYC Is a Clinically Significant Driver of mTOR Inhibitor Resistance in Breast Cancer, ” J. Exp. Med. 220, no. 11 (2023): e20211743.

[277]

D. S. Mortensen, S. M. Perrin-Ninkovic, G. Shevlin, et al., “Discovery of Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor CC-223, ” J. Med. Chem. 58, no. 13 (2015): 5323-5333.

[278]

J. A. French, J. A. Lawson, Z. Yapici, et al., “Adjunctive Everolimus Therapy for Treatment-resistant Focal-onset Seizures Associated With Tuberous Sclerosis (EXIST-3): A Phase 3, Randomised, Double-blind, Placebo-controlled Study, ” Lancet 388, no. 10056 (2016): 2153-2163.

[279]

I.-W. Song, S. C. Nagamani, D. Nguyen, et al., “Targeting TGF-β for Treatment of Osteogenesis Imperfecta, ” J Clin Invest 132, no. 7 (2022): e152571.

[280]

L. Qiang, M. T. Hoffman, L. R. Ali, et al., “Transforming Growth Factor-β Blockade in Pancreatic Cancer Enhances Sensitivity to Combination Chemotherapy, ” Gastroenterology 165, no. 4 (2023): 874-890. e10.

[281]

H. Peng, J. Shen, X. Long, et al., “Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy, ” Advanced Science (Weinh) 9, no. 10 (2022): e2105240.

[282]

N. C. Robson, H. Wei, T. McAlpine, N. Kirkpatrick, J. Cebon, and E. Maraskovsky, “Activin-A Attenuates Several human Natural Killer Cell Functions, ” Blood 113, no. 14 (2009): 3218-3225.

[283]

C. M. Adams, J. Reitz, J. K. De Brabander, et al., “Cholesterol and 25-hydroxycholesterol Inhibit Activation of SREBPs by Different Mechanisms, Both Involving SCAP and Insigs, ” J. Biol. Chem. 279, no. 50 (2004): 52772-52780.

[284]

D. Li, W. Long, R. Huang, Y. Chen, and M. Xia, “27-Hydroxycholesterol Inhibits Sterol Regulatory Element-Binding Protein 1 Activation and Hepatic Lipid Accumulation in Mice, ” Obesity (Silver Spring) 26, no. 4 (2018): 713-722.

[285]

N. Assmann, K. L. O'Brien, R. P. Donnelly, et al., “Srebp-controlled Glucose Metabolism Is Essential for NK Cell Functional Responses, ” Nat. Immunol. 18, no. 11 (2017): 1197-1206.

[286]

S. K. Król, M. Kiełbus, A. Rivero-Müller, and A. Stepulak, “Comprehensive Review on betulin as a Potent Anticancer Agent, ” BioMed Research International 2015 (2015): 584189.

[287]

X. Li, Y.-T. Chen, P. Hu, and W.-C. Huang, “Fatostatin Displays High Antitumor Activity in Prostate Cancer by Blocking SREBP-regulated Metabolic Pathways and Androgen Receptor Signaling, ” Mol. Cancer Ther. 13, no. 4 (2014): 855-866.

[288]

N. Mudgapalli, P. Nallasamy, H. Chava, et al., “The Role of Exosomes and MYC in Therapy Resistance of Acute Myeloid Leukemia: Challenges and Opportunities, ” Molecular Aspects of Medicine 70 (2019): 21-32.

[289]

A. Hsu, K. E. Huntington, A. De Souza, et al., “Clinical Activity of 9-ING-41, a Small Molecule Selective Glycogen Synthase Kinase-3 Beta (GSK-3β) Inhibitor, in Refractory Adult T-Cell Leukemia/Lymphoma, ” Cancer Biol. Therapy 23, no. 1 (2022): 417-423.

[290]

J. Liang, M. Yu, Y. Li, L. Zhao, and Q. Wei, “Glycogen Synthase Kinase-3: A Potential Immunotherapeutic Target in Tumor Microenvironment, ” Biomed. Pharmacother. 173 (2024): 116377.

[291]

D. A. Rizzieri, S. Cooley, O. Odenike, et al., “An Open-label Phase 2 Study of Glycogen Synthase Kinase-3 Inhibitor LY2090314 in Patients With Acute Leukemia, ” Leukemia & Lymphoma 57, no. 8 (2016): 1800-1806.

[292]

H. Dong, N. M. Adams, Y. Xu, et al., “The IRE1 Endoplasmic Reticulum Stress Sensor Activates Natural Killer Cell Immunity in Part by Regulating c-Myc, ” Nat. Immunol. 20, no. 7 (2019): 865-878.

[293]

A. U. H. Khan, A. K. Ali, B. Marr, et al., “The TNFα/TNFR2 Axis Mediates Natural Killer Cell Proliferation by Promoting Aerobic Glycolysis, ” Cellular & Molecular Immunology 20, no. 10 (2023): 1140-1155.

[294]

K. M. Heinhuis, M. Carlino, M. Joerger, et al., “Safety, Tolerability, and Potential Clinical Activity of a Glucocorticoid-Induced TNF Receptor-Related Protein Agonist Alone or in Combination with Nivolumab for Patients with Advanced Solid Tumors: A Phase 1/2a Dose-Escalation and Cohort-Expansion Clinical Trial, ” JAMA Oncology 6, no. 1 (2020): 100-107.

[295]

S. Renken, T. Nakajima, I. Magalhaes, et al., “Targeting of Nrf2 Improves Antitumoral Responses by human NK Cells, TIL and CAR T Cells During Oxidative Stress, ” Journal for ImmunoTherapy of Cancer 10, no. 6 (2022): e004458.

[296]

B. L. Probst, I. Trevino, L. McCauley, et al., “RTA 408, a Novel Synthetic Triterpenoid With Broad Anticancer and Anti-Inflammatory Activity, ” PLoS One 10, no. 4 (2015): e0122942.

[297]

A. J. Cohen-Nowak, A. J. Cohen, E. D. Correia, C. P. Portocarrero, A. P. South, and N. Nikbakht, “Omaveloxolone Attenuates Squamous Cell Carcinoma Growth and Disease Severity in an Epidermolysis Bullosa Mouse Model, ” Experimental Dermatology 31, no. 7 (2022): 1083-1088.

[298]

A. A. Saei, H. Gullberg, P. Sabatier, et al., “Comprehensive Chemical Proteomics for Target Deconvolution of the Redox Active Drug Auranofin, ” Redox Biol. 32 (2020): 101491.

[299]

P. V. Raninga, A. C. Lee, D. Sinha, et al., “Therapeutic Cooperation Between auranofin, a Thioredoxin Reductase Inhibitor and Anti-PD-L1 Antibody for Treatment of Triple-negative Breast Cancer, ” Int. J. Cancer 146, no. 1 (2020): 123-136.

[300]

D. S. W. Tan, E. Felip, G. de Castro, et al., “Canakinumab versus Placebo in Combination with First-Line Pembrolizumab Plus Chemotherapy for Advanced Non-Small-Cell Lung Cancer: Results from the CANOPY-1 Trial, ” Journal of Clinical Oncology 42, no. 2 (2024): 192-204.

[301]

L. Paz-Ares, Y. Goto, D. Wan-Teck Lim, et al., “Canakinumab in Combination With docetaxel Compared With docetaxel Alone for the Treatment of Advanced Non-small Cell Lung Cancer Following Platinum-based Doublet Chemotherapy and Immunotherapy (CANOPY-2): A Multicenter, Randomized, Double-blind, Phase 3 Trial, ” Lung Cancer 189 (2024): 107451.

[302]

E. B. Garon, S. Lu, Y. Goto, et al., “Canakinumab as Adjuvant Therapy in Patients with Completely Resected Non-Small-Cell Lung Cancer: Results from the CANOPY-A Double-Blind, Randomized Clinical Trial, ” Journal of Clinical Oncology 42, no. 2 (2024): 180-191.

[303]

G. Eibinger, G. Fauler, E. Bernhart, et al., “On the Role of 25-hydroxycholesterol Synthesis by Glioblastoma Cell Lines. Implications for Chemotactic Monocyte Recruitment, ” Exp. Cell Res. 319, no. 12 (2013): 1828-1838.

[304]

A. G. York and S. J. Bensinger, “Subverting Sterols: Rerouting an Oxysterol-signaling Pathway to Promote Tumor Growth, ” J. Exp. Med. 210, no. 9 (2013): 1653-1656.

[305]

E. S. Gold, A. H. Diercks, I. Podolsky, et al., “25-Hydroxycholesterol Acts as an Amplifier of Inflammatory Signaling, ” P. Natl. Acad. Sci. USA 111, no. 29 (2014): 10666-10671.

[306]

B. Tao, R. Du, X. Zhang, et al., “Engineering CAR-NK Cell Derived Exosome Disguised Nano-bombs for Enhanced HER2 Positive Breast Cancer Brain Metastasis Therapy, ” J. Control. Release 363 (2023): 692-706.

[307]

C. De Barra, M. Khalil, A. Mat, C. O'Donnell, F. Shaamile, and K. Brennan, “Glucagon-Like Peptide-1 Therapy in People With Obesity Restores Natural Killer Cell Metabolism and Effector Function, ” Obesity (Silver Spring) 31, no. 7 (2023): 1787-1797.

[308]

M. Praharaj, F. Shen, A. J. Lee, et al., “Metabolic Reprogramming of Tumor-Associated Macrophages Using Glutamine Antagonist JHU083 Drives Tumor Immunity in Myeloid-Rich Prostate and Bladder Cancers, ” Cancer Immunology Research 12, no. 7 (2024): 854-875.

[309]

S. Wu, T. Fukumoto, J. Lin, et al., “Targeting Glutamine Dependence Through GLS1 Inhibition Suppresses ARID1A-inactivated Clear Cell Ovarian Carcinoma, ” Nature Cancer 2, no. 2 (2021): 189-200.

[310]

M. Huang, D. Xiong, J. Pan, et al., “Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer, ” Advanced Science (Weinheim) 9, no. 26 (2022): e2105885.

[311]

S. A. Best, P. M. Gubser, S. Sethumadhavan, et al., “Glutaminase Inhibition Impairs CD8 T Cell Activation in STK11-/Lkb1-deficient Lung Cancer, ” Cell Metab. 34, no. 6 (2022): 874-887. e6.

[312]

Y. Grobben, J. C. M. Uitdehaag, N. Willemsen-Seegers, et al., “Structural Insights Into human Arginase-1 pH Dependence and Its Inhibition by the Small Molecule Inhibitor CB-1158, ” Journal of Structural Biology: X 4 (2020): 100014.

[313]

R. E. Menjivar, Z. C. Nwosu, W. Du, et al., “Arginase 1 Is a Key Driver of Immune Suppression in Pancreatic Cancer, ” Elife 12 (2023): e80721.

[314]

S. M. Steggerda, M. K. Bennett, J. Chen, et al., “Inhibition of Arginase by CB-1158 Blocks Myeloid Cell-mediated Immune Suppression in the Tumor Microenvironment, ” Journal for ImmunoTherapy of Cancer 5, no. 1 (2017): 101.

[315]

J. J. Luke, M. Fakih, C. Schneider, et al., “Phase I/II Sequencing Study of Azacitidine, Epacadostat, and Pembrolizumab in Advanced Solid Tumors, ” British journal of cancer 128, no. 12 (2023): 2227-2235.

[316]

K. H. Jung, P. LoRusso, H. Burris, et al., “Phase I Study of the Indoleamine 2, 3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered With PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors, ” Clinical Cancer Research 25, no. 11 (2019): 3220-3228.

[317]

C. M. Kelly, L.-X. Qin, K. A. Whiting, et al., “A Phase II Study of Epacadostat and Pembrolizumab in Patients With Advanced Sarcoma, ” Clinical Cancer Research 29, no. 11 (2023): 2043-2051.

[318]

Z. Wang, W. Li, Y. Jiang, et al., “Sphingomyelin-derived Nanovesicles for the Delivery of the IDO1 Inhibitor Epacadostat Enhance Metastatic and Post-surgical Melanoma Immunotherapy, ” Nat. Commun. 14, no. 1 (2023): 7235.

[319]

G. V. Long, R. Dummer, O. Hamid, et al., “Epacadostat plus Pembrolizumab versus Placebo plus Pembrolizumab in Patients With Unresectable or Metastatic Melanoma (ECHO-301/KEYNOTE-252): A Phase 3, Randomised, Double-blind Study, ” Lancet Oncol. 20, no. 8 (2019): 1083-1097.

[320]

Y. Fujiwara, S. Kato, M. K. Nesline, et al., “Indoleamine 2, 3-dioxygenase (IDO) Inhibitors and Cancer Immunotherapy, ” Cancer Treatment Reviews 110 (2022): 102461.

[321]

R. Huang, H. Wang, J. Hong, et al., “Targeting Glutamine Metabolic Reprogramming of SLC7A5 Enhances the Efficacy of Anti-PD-1 in Triple-negative Breast Cancer, ” Frontiers in Immunology 14 (2023): 1251643.

[322]

G. M. Hayes, L. Chinn, J. M. Cantor, et al., “Antitumor Activity of an Anti-CD98 Antibody, ” Int. J. Cancer 137, no. 3 (2015): 710-720.

[323]

L. Chen, W. Zhang, D. Chen, et al., “RBM4 dictates ESCC Cell Fate Switch From Cellular Senescence to Glutamine-addiction Survival Through Inhibiting LKB1-AMPK-axis, ” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 159.

[324]

S. Parveen, J. Shen, S. Lun, et al., “Glutamine Metabolism Inhibition Has Dual Immunomodulatory and Antibacterial Activities Against Mycobacterium Tuberculosis, ” Nat. Commun. 14, no. 1 (2023): 7427.

[325]

D. Bixby, M. J. Wieduwilt, L. P. Akard, et al., “A Phase I Study of IGN523, a Novel Anti-CD98 Monoclonal Antibody in Patients With Relapsed or Refractory Acute Myeloid Leukemia (AML), ” Blood 126, no. 23 (2015): 3809-3809.

[326]

L. Kou, X. Jiang, Y. Tang, et al., “Resetting Amino Acid Metabolism of Cancer Cells by ATB0, +-targeted Nanoparticles for Enhanced Anticancer Therapy, ” Bioact Mater 9 (2022): 15-28.

[327]

I. Nafia, M. Toulmonde, D. Bortolotto, et al., “IDO Targeting in Sarcoma: Biological and Clinical Implications, ” Frontiers in Immunology 11 (2020): 274.

[328]

Indoximod Combo Triggers Responses in Melanoma. Cancer Discovery 2017; 7(6): 542-543.

[329]

A. Balog, T.-A. Lin, D. Maley, et al., “Preclinical Characterization of Linrodostat Mesylate, a Novel, Potent, and Selective Oral Indoleamine 2, 3-Dioxygenase 1 Inhibitor, ” Mol. Cancer Ther. 20, no. 3 (2021): 467-476.

[330]

B. Gomes, G. Driessens, D. Bartlett, et al., “Characterization of the Selective Indoleamine 2, 3-Dioxygenase-1 (IDO1) Catalytic Inhibitor EOS200271/PF-06840003 Supports IDO1 as a Critical Resistance Mechanism to PD-(L)1 Blockade Therapy, ” Mol. Cancer Ther. 17, no. 12 (2018): 2530-2542.

[331]

J. E. Cheong, A. Ekkati, and L. Sun, “A Patent Review of IDO1 Inhibitors for Cancer, ” Expert Opin. Ther. Pat. 28, no. 4 (2018): 317-330.

[332]

M. Xiao, K. Zhong, L. Guo, et al., “Preclinical PK Investigation of a Novel IDO1/TDO Dual Inhibitor-SHR9146 in Mouse Plasma and Tissues by LC-MS/MS, ” Frontiers in Oncology 13 (2023): 1191778.

[333]

N. Kotecki, P. Vuagnat, B. H. O'Neil, S. Jalal, S. Rottey, and H. Prenen, “A Phase I Study of an IDO-1 Inhibitor (LY3381916) as Monotherapy and in Combination with an Anti-PD-L1 Antibody (LY3300054) in Patients with Advanced Cancer, ” Journal of Immunotherapy 44, no. 7 (2021): 264-275.

[334]

D. M. Benson, C. C. Hofmeister, S. Padmanabhan, et al., “A Phase 1 Trial of the Anti-KIR Antibody IPH2101 in Patients With Relapsed/Refractory Multiple Myeloma, ” Blood 120, no. 22 (2012): 4324-4333.

[335]

G. J. Hanna, A. O'Neill, K.-Y. Shin, K. Wong, V. Y. Jo, and C. T. Quinn, “Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients With Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck, ” Clinical Cancer Research 28, no. 3 (2022): 468-478.

[336]

P. Grivas, V. S. Koshkin, X. Chu, et al., “PrECOG PrE0807: A Phase 1b Feasibility Trial of Neoadjuvant Nivolumab without and With Lirilumab in Patients With Muscle-invasive Bladder Cancer Ineligible for or Refusing Cisplatin-based Neoadjuvant Chemotherapy, ” European Urology Oncology 7, no. 4 (2024): 914-922.

[337]

H. E. Kohrt, A. Thielens, A. Marabelle, et al., “Anti-KIR Antibody Enhancement of Anti-lymphoma Activity of Natural Killer Cells as Monotherapy and in Combination With Anti-CD20 Antibodies, ” Blood 123, no. 5 (2014): 678-686.

[338]

R. S. Herbst, M. Majem, F. Barlesi, et al., “COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination with Oleclumab or Monalizumab in Patients with Unresectable, Stage III Non-Small-Cell Lung Cancer, ” Journal of Clinical Oncology 40, no. 29 (2022): 3383-3393.

[339]

P. Břehová, E. Chaloupecká, M. Česnek, et al., “Acyclic Nucleoside Phosphonates With 2-aminothiazole Base as Inhibitors of Bacterial and Mammalian Adenylate Cyclases, ” Eur. J. Med. Chem. 222 (2021): 113581.

[340]

C.-H. Chang, J. Qiu, D. O'Sullivan, M. D. Buck, T. Noguchi, and J. D. Curtis, “Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression, ” Cell 162, no. 6 (2015): 1229-1241.

[341]

H. T. Kang and E. S. Hwang, “2-Deoxyglucose: An Anticancer and Antiviral Therapeutic, but Not Any More a Low Glucose Mimetic, ” Life Sci. 78, no. 12 (2006): 1392-1399.

[342]

N. Vey, J.-H. Bourhis, N. Boissel, et al., “A Phase 1 Trial of the Anti-inhibitory KIR mAb IPH2101 for AML in Complete Remission, ” Blood 120, no. 22 (2012): 4317-4323.

[343]

C. Brignone, C. Grygar, M. Marcu, K. Schäkel, and F. Triebel, “A Soluble Form of Lymphocyte Activation Gene-3 (IMP321) Induces Activation of a Large Range of human Effector Cytotoxic Cells, ” J. Immunol. 179, no. 6 (2007): 4202-4211.

[344]

C. Sordo-Bahamonde, S. Lorenzo-Herrero, A. P. González-Rodríguez, P. ÁR, E. González-García, and A. López-Soto, “LAG-3 Blockade With Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia, ” Cancers (Basel) 13, no. 9 (2021): 2112.

[345]

A. López-Albaitero, S. C. Lee, S. Morgan, et al., “Role of Polymorphic Fc Gamma Receptor IIIa and EGFR Expression Level in Cetuximab Mediated, NK Cell Dependent in Vitro Cytotoxicity of Head and Neck Squamous Cell Carcinoma Cells, ” Cancer Immunology, Immunotherapy 58, no. 11 (2009): 1853-1864.

[346]

S. Laurent, P. Queirolo, S. Boero, et al., “The Engagement of CTLA-4 on Primary Melanoma Cell Lines Induces Antibody-dependent Cellular Cytotoxicity and TNF-α Production, ” Journal of Translational Medicine 11 (2013): 108.

[347]

R. Tallerico, C. M. Cristiani, E. Staaf, et al., “IL-15, TIM-3 and NK Cells Subsets Predict Responsiveness to Anti-CTLA-4 Treatment in Melanoma Patients, ” Oncoimmunology 6, no. 2 (2017): e1261242.

[348]

R. M. Shapiro, M. Sheffer, M. A. Booker, M. Y. Tolstorukov, G. C. Birch, and M. Sade-Feldman, “First-in-human Evaluation of Memory-Like NK Cells With an IL-15 Super-agonist and CTLA-4 Blockade in Advanced Head and Neck Cancer, ” J. Hematol. Oncol. 18, no. 1 (2025): 17.

[349]

L. Rethacker, M. Roelens, C. Bejar, E. Maubec, H. Moins-Teisserenc, and A. Caignard, “Specific Patterns of Blood Ilcs in Metastatic Melanoma Patients and Their Modulations in Response to Immunotherapy, ” Cancers (Basel) 13, no. 6 (2021): 1446.

[350]

R. Sottile, M. Tannazi, M. H. Johansson, et al., “NK and T Cell Subsets in Malignant Mesothelioma Patients: Baseline Pattern and Changes in the Context of Anti-CTLA-4 Therapy, ” Int. J. Cancer 145, no. 8 (2019): 2238-2248.

[351]

E. P. Juliá, A. Amante, M. B. Pampena, J. Mordoh, and E. M. Levy, “Avelumab, an IgG1 Anti-PD-L1 Immune Checkpoint Inhibitor, Triggers NK Cell-Mediated Cytotoxicity and Cytokine Production against Triple Negative Breast Cancer Cells, ” Frontiers in Immunology 9 (2018): 2140.

[352]

K. C. Hicks, M. Fantini, R. N. Donahue, et al., “Epigenetic Priming of both Tumor and NK Cells Augments Antibody-dependent Cellular Cytotoxicity Elicited by the Anti-PD-L1 Antibody Avelumab Against Multiple Carcinoma Cell Types, ” Oncoimmunology 7, no. 11 (2018): e1466018.

[353]

M. Lin, H. Luo, S. Liang, et al., “Pembrolizumab plus Allogeneic NK Cells in Advanced Non-small Cell Lung Cancer Patients, ” J Clin Invest 130, no. 5 (2020): 2560-2569.

[354]

M. Khan, S. Arooj, and H. Wang, “NK Cell-Based Immune Checkpoint Inhibition, ” Frontiers in Immunology 11 (2020): 167.

[355]

H. Seo, B.-S. Kim, E.-A. Bae, et al., “IL-21 Therapy Combined With PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity Against MHC Class I-deficient Tumors, ” Cancer Immunology Research 6, no. 6 (2018): 685-695.

[356]

D. Han, Y. Xu, X. Zhao, Y. Mao, Q. Kang, and W. Wen, “A Novel human Anti-TIGIT Monoclonal Antibody With Excellent Function in Eliciting NK Cell-mediated Antitumor Immunity, ” Biochem. Biophys. Res. Commun. 534 (2020): 134-140.

[357]

S. Richard, A. M. Lesokhin, B. Paul, et al., “Clinical Response and Pathway-specific Correlates Following TIGIT-LAG3 Blockade in Myeloma: The MyCheckpoint Randomized Clinical Trial, ” Nature Cancer 5, no. 10 (2024): 1459-1464.

[358]

X. Chen, L. Xue, X. Ding, et al., “An Fc-Competent Anti-Human TIGIT Blocking Antibody Ociperlimab (BGB-A1217) Elicits Strong Immune Responses and Potent Anti-Tumor Efficacy in Pre-Clinical Models, ” Frontiers in Immunology 13 (2022): 828319.

[359]

A. Takeuchi, M. Eto, K. Tatsugami, et al., “Antitumor Activity of Recombinant Bacille Calmette-Guérin Secreting Interleukin-15-Ag85B Fusion Protein Against Bladder Cancer, ” Int. Immunopharmacol. 35 (2016): 327-331.

[360]

N. Lobo, A. Martini, and A. M. Kamat, “Evolution of Immunotherapy in the Treatment of Non-muscle-invasive Bladder Cancer, ” Expert Rev. Anticancer Ther. 22, no. 4 (2022): 361-370.

[361]

T. A. Waldmann, “Cytokines in Cancer Immunotherapy, ” Cold Spring Harbor Perspectives in Biology 10, no. 12 (2018): a028472.

[362]

E. Quoix, H. Lena, G. Losonczy, et al., “TG4010 immunotherapy and First-line Chemotherapy for Advanced Non-small-cell Lung Cancer (TIME): Results From the Phase 2b Part of a Randomised, Double-blind, Placebo-controlled, Phase 2b/3 Trial, ” Lancet Oncol. 17, no. 2 (2016): 212-223.

[363]

M. E. Raeber, D. Sahin, U. Karakus, and O. Boyman, “A Systematic Review of Interleukin-2-based Immunotherapies in Clinical Trials for Cancer and Autoimmune Diseases, ” EBioMedicine 90 (2023): 104539.

[364]

E. Quoix, R. Ramlau, V. Westeel, et al., “Therapeutic Vaccination With TG4010 and First-line Chemotherapy in Advanced Non-small-cell Lung Cancer: A Controlled Phase 2B Trial, ” Lancet Oncol. 12, no. 12 (2011): 1125-1133.

[365]

C. J. Rosser, S. Tikhonenkov, J. W. Nix, et al., “Safety, Tolerability, and Long-Term Clinical Outcomes of an IL-15 Analogue (N-803) Admixed With Bacillus Calmette-Guérin (BCG) for the Treatment of Bladder Cancer, ” Oncoimmunology 10, no. 1 (2021): 1912885.

[366]

C. J. Rosser, J. Nix, L. Ferguson, and H. C. Wong, “Mp15-12 phase Ib Trial of alt-803, an Il-15 Superagonist, plus bacillus Calmette Guerin (bcg) for the Treatment of Bcg-naïve Patients With Non-muscle-invasive Bladder Cancer (nmibc), ” Journal of Urology 197, no. 4S (2017).

[367]

K. Fousek, L. A. Horn, H. Qin, et al., “An Interleukin-15 Superagonist Enables Antitumor Efficacy of Natural Killer Cells against all Molecular Variants of SCLC, ” Journal of Thoracic Oncology 18, no. 3 (2023): 350-368.

[368]

J. M. Wrangle, V. Velcheti, M. R. Patel, et al., “ALT-803, an IL-15 Superagonist, in Combination With nivolumab in Patients With Metastatic Non-small Cell Lung Cancer: A Non-randomised, Open-label, Phase 1b Trial, ” Lancet Oncol. 19, no. 5 (2018): 694-704.

[369]

K. Margolin, C. Morishima, V. Velcheti, et al., “Phase I Trial of ALT-803, a Novel Recombinant IL15 Complex, in Patients With Advanced Solid Tumors, ” Clinical Cancer Research 24, no. 22 (2018): 5552-5561.

[370]

T. Miyazaki, M. Maiti, M. Hennessy, et al., “NKTR-255, a Novel Polymer-conjugated rhIL-15 With Potent Antitumor Efficacy, ” Journal for ImmunoTherapy of Cancer 9, no. 5 (2021): e002024.

[371]

T. O. Robinson, S. M. Hegde, A. Chang, et al., “NKTR-255 Is a Polymer-conjugated IL-15 With Unique Mechanisms of Action on T and Natural Killer Cells, ” J Clin Invest 131, no. 19 (2021): e144365.

[372]

A. A. Tarhini, M. Millward, P. Mainwaring, et al., “A Phase 2, Randomized Study of SB-485232, rhIL-18, in Patients With Previously Untreated Metastatic Melanoma, ” Cancer 115, no. 4 (2009): 859-868.

[373]

T. Zhou, W. Damsky, O.-E. Weizman, et al., “IL-18BP Is a Secreted Immune Checkpoint and Barrier to IL-18 Immunotherapy, ” Nature 583, no. 7817 (2020): 609-614.

[374]

E. Kurz, C. A. Hirsch, T. Dalton, et al., “Exercise-induced Engagement of the IL-15/IL-15Rα Axis Promotes Anti-tumor Immunity in Pancreatic Cancer, ” Cancer Cell 40, no. 7 (2022): 720-737. e5.

[375]

M. H. Shin, E. Oh, and D. Minn, “Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and nkp46, ” Immune Network 24, no. 5 (2024): e34.

[376]

M. Felices, T. R. Lenvik, B. Kodal, et al., “Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager, ” Cancer Immunology Research 8, no. 9 (2020): 1139-1149.

[377]

J. S. Miller, N. Zorko, A. Merino, et al., “755P B7H3-targeted Tri-specific Killer Engagers Deliver IL-15 to NK Cells but Not T-cells, and Specifically Target Solid Tumors as a Pan-tumor Antigen Strategy Mediated Through NK Cells, ” Annals of Oncology 33 (2022): S889.

[378]

F. Portale and D. Di Mitri, “NK Cells in Cancer: Mechanisms of Dysfunction and Therapeutic Potential, ” Int. J. Mol. Sci. 24, no. 11 (2023): 9521.

[379]

L. Gauthier, A. Morel, N. Anceriz, et al., “Multifunctional Natural Killer Cell Engagers Targeting nkp46 Trigger Protective Tumor Immunity, ” Cell 177, no. 7 (2019): 1701-1713. e16.

[380]

S. K. Nikkhoi, G. Li, and A. Hatefi, “Natural Killer Cell Engagers for Cancer Immunotherapy, ” Frontiers in Oncology 14 (2024): 1483884.

[381]

O. Demaria, L. Gauthier, M. Vetizou, et al., “Antitumor Immunity Induced by Antibody-based Natural Killer Cell Engager Therapeutics Armed With Not-alpha IL-2 Variant, ” Cell Reports Medicine 3, no. 10 (2022): 100783.

[382]

N. Colomar-Carando, L. Gauthier, P. Merli, et al., “Exploiting Natural Killer Cell Engagers to Control Pediatric B-cell Precursor Acute Lymphoblastic Leukemia, ” Cancer Immunology Research 10, no. 3 (2022): 291-302.

[383]

Q. Zhang, H. Zhang, J. Ding, et al., “Combination Therapy With EpCAM-CAR-NK-92 Cells and Regorafenib Against Human Colorectal Cancer Models, ” Journal of Immunology Research 2018 (2018): 4263520.

[384]

L. Zhang, Y. Meng, X. Feng, and Z. Han, “CAR-NK Cells for Cancer Immunotherapy: From Bench to Bedside, ” Biomarker Research 10, no. 1 (2022): 12.

[385]

R. Klapdor, S. Wang, M. A. Morgan, et al., “NK Cell-Mediated Eradication of Ovarian Cancer Cells With a Novel Chimeric Antigen Receptor Directed Against CD44, ” Biomedicines 9, no. 10 (2021): 1339.

[386]

R. Klapdor, S. Wang, U. Hacker, et al., “Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy, ” Hum. Gene Ther. 28, no. 10 (2017): 886-896.

[387]

N. Siriwon, Y. J. Kim, E. Siegler, et al., “CAR-T Cells Surface-Engineered With Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction, ” Cancer Immunology Research 6, no. 7 (2018): 812-824.

[388]

X. Chen, J. Han, J. Chu, et al., “A Combinational Therapy of EGFR-CAR NK Cells and Oncolytic herpes Simplex Virus 1 for Breast Cancer Brain Metastases, ” Oncotarget 7, no. 19 (2016): 27764-27777.

[389]

R. Ma, T. Lu, Z. Li, et al., “An Oncolytic Virus Expressing IL15/IL15Rα Combined With off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma, ” Cancer Res. 81, no. 13 (2021): 3635-3648.

[390]

F. Wang, L. Wu, L. Yin, H. Shi, Y. Gu, and N. Xing, “Combined Treatment With Anti-PSMA CAR NK-92 Cell and Anti-PD-L1 Monoclonal Antibody Enhances the Antitumour Efficacy Against Castration-resistant Prostate Cancer, ” Clinical and Translational Medicine 12, no. 6 (2022): e901.

[391]

X. Wu, H. Luo, B. Shi, et al., “Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma, ” Mol. Ther. 27, no. 8 (2019): 1483-1494.

[392]

Q. Zhang, J. Xu, J. Ding, et al., “Bortezomib Improves Adoptive Carbonic Anhydrase IX‑Specific Chimeric Antigen Receptor‑Modified NK92 Cell Therapy in Mouse Models of human Renal Cell Carcinoma, ” Oncology Reports 40, no. 6 (2018): 3714-3724.

[393]

Y. Da, Y. Liu, Y. Hu, et al., “STING Agonist cGAMP Enhances Anti-tumor Activity of CAR-NK Cells Against Pancreatic Cancer, ” Oncoimmunology 11, no. 1 (2022): 2054105.

[394]

K. Tao, M. He, F. Tao, et al., “Development of NKG2D-based Chimeric Antigen Receptor-T Cells for Gastric Cancer Treatment, ” Cancer Chemotheraphy and Pharmacology 82, no. 5 (2018): 815-827.

[395]

K. M. Maalej, M. Merhi, V. P. Inchakalody, et al., “CAR-cell Therapy in the Era of Solid Tumor Treatment: Current Challenges and Emerging Therapeutic Advances, ” Molecular Cancer 22, no. 1 (2023): 20.

[396]

N. Xia, P. Haopeng, J. U. Gong, et al., “Robo1-specific CAR-NK Immunotherapy Enhances Efficacy of 125I Seed Brachytherapy in an Orthotopic Mouse Model of Human Pancreatic Carcinoma, ” Anticancer Research 39, no. 11 (2019): 5919-5925.

[397]

S. Karmakar, P. Pal, and G. Lal, “Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies, ” ImmunoTargets and Therapy 10 (2021): 387-407.

[398]

S. Rafiq, O. O. Yeku, H. J. Jackson, et al., “Targeted Delivery of a PD-1-blocking scFv by CAR-T Cells Enhances Anti-tumor Efficacy in Vivo, ” Nat. Biotechnol. 36, no. 9 (2018): 847-856.

[399]

D. H. Yoon, M. J. Osborn, J. Tolar, and C. J. Kim, “Incorporation of Immune Checkpoint Blockade Into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T, ” Int. J. Mol. Sci. 19, no. 2 (2018): 340.

[400]

L. Cherkassky, A. Morello, J. Villena-Vargas, et al., “Human CAR T Cells With Cell-intrinsic PD-1 Checkpoint Blockade Resist Tumor-mediated Inhibition, ” J Clin Invest 126, no. 8 (2016): 3130-3144.

[401]

L. J. Rupp, K. Schumann, K. T. Roybal, et al., “CRISPR/Cas9-mediated PD-1 Disruption Enhances Anti-tumor Efficacy of human Chimeric Antigen Receptor T Cells, ” Sci Rep 7, no. 1 (2017): 737.

[402]

J.-T. Zhou, J.-H. Liu, T.-T. Song, B. Ma, N. Amidula, and C. Bai, “EGLIF-CAR-T Cells Secreting PD-1 Blocking Antibodies Significantly Mediate the Elimination of Gastric Cancer, ” Cancer Management and Research 12 (2020): 8893-8902.

[403]

J. Wang, Q. Deng, Y.-Y. Jiang, et al., “CAR-T 19 Combined With Reduced-dose PD-1 Blockade Therapy for Treatment of Refractory Follicular Lymphoma: A Case Report, ” Oncology Letters 18, no. 5 (2019): 4415-4420.

[404]

F. Strassheimer, M. I. Strecker, T. Alekseeva, et al., “P06.12 Combination Therapy of CAR-NK-cells and Anti-PD-1 Antibody Results in High Efficacy Against Advanced-stage Glioblastoma in a Syngeneic Mouse Model and Induces Protective Anti-tumor Immunity in vivo, ” E-Poster Presentations (BMJ Publishing Group Ltd, 2020): A46.2-A47.

[405]

I. Xagoraris, P. Farrajota Neves da Silva, G. Kokaraki, et al., “Sting Is Commonly and Differentially Expressed in T- and Nk-Cell but Not B-Cell Non-Hodgkin Lymphomas, ” Cancers (Basel) 14, no. 5 (2022): 1186.

[406]

X. Yan, C. Yao, C. Fang, et al., “Rocaglamide Promotes the Infiltration and Antitumor Immunity of NK Cells by Activating cGAS-STING Signaling in Non-small Cell Lung Cancer, ” International Journal of Biological Sciences 18, no. 2 (2022): 585-598.

[407]

Q. Chen, Q. Hu, E. Dukhovlinova, et al., “Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells, ” Advanced Materials Weinheim 31, no. 23 (2019): e1900192.

[408]

X. Huang, Y. Lu, M. Guo, S. Du, and N. Han, “Recent Strategies for Nano-based PTT Combined With Immunotherapy: From a Biomaterial Point of View, ” Theranostics 11, no. 15 (2021): 7546-7569.

[409]

M. Xu, B. Xue, Y. Wang, et al., “Temperature-Feedback Nanoplatform for NIR-II Penta-Modal Imaging-Guided Synergistic Photothermal Therapy and CAR-NK Immunotherapy of Lung Cancer, ” Small 17, no. 43 (2021): e2101397.

[410]

R. A. Qannita, A. I. Alalami, A. A. Harb, et al., “Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation, ” Pharmaceuticals (Basel) 17, no. 2 (2024): 195.

[411]

C.-C. Yao, R.-M. Sun, Y. Yang, H.-Y. Zhou, Z.-W. Meng, and R. Chi, “Accumulation of Branched-chain Amino Acids Reprograms Glucose Metabolism in CD8+ T Cells With Enhanced Effector Function and Anti-tumor Response, ” Cell Rep. 42, no. 3 (2023): 112186.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/