Mitochondrial Diseases: Molecular Pathogenesis and Therapeutic Advances

Jialun Mei , Peng Ding , Chuan Gao , Jian Zhou , Zhiwei Li , Changqing Zhang , Junjie Gao

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70385

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70385 DOI: 10.1002/mco2.70385
REVIEW

Mitochondrial Diseases: Molecular Pathogenesis and Therapeutic Advances

Author information +
History +
PDF

Abstract

Mitochondrial diseases are a heterogeneous group of inherited disorders caused by pathogenic variants in mitochondrial DNA (mtDNA) or nuclear genes encoding mitochondrial proteins, culminating in defective oxidative phosphorylation and multisystem involvement. Key pathogenic mechanisms include heteroplasmy driven threshold effects, excess reactive oxygen species, disrupted mitochondrial dynamics and mitophagy, abnormal calcium signaling, and compromised mtDNA repair, which together cause tissue-specific energy failure in high demand organs. Recent advances have expanded the therapeutic landscape. Precision mitochondrial genome editing—using mitochondrial zinc finger nucleases, mitochondrial transcription activator-like effector nucleases, DddA-derived cytosine base editor, and other base editing tools—enables targeted correction or rebalancing of mutant genomes, while highlighting challenges of delivery and off-target effects. In parallel, metabolic modulators (e.g., coenzyme Q10, idebenone, EPI-743) aim to restore bioenergetics, and mitochondrial replacement technologies and transplantation are being explored. Despite these promising strategies, major challenges remain, including off-target effects, precise delivery, and ethical considerations. Addressing these issues through multidisciplinary research and clinical translation holds promise for transforming mitochondrial disease management and improving patient outcomes. By bridging the understanding of mitochondrial dysfunction with advanced therapeutic interventions, this review aims to shed light on effective solutions for managing these complex disorders.

Keywords

mitochondrial gene editing / mitochondrial DNA (mtDNA) / gene therapy / base editing / mitochondrial diseases / genetic medicine / therapeutic strategies

Cite this article

Download citation ▾
Jialun Mei, Peng Ding, Chuan Gao, Jian Zhou, Zhiwei Li, Changqing Zhang, Junjie Gao. Mitochondrial Diseases: Molecular Pathogenesis and Therapeutic Advances. MedComm, 2025, 6(9): e70385 DOI:10.1002/mco2.70385

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. A. Muñoz-Gómez, J. G. Wideman, A. J. Roger, and C. H. Slamovits, “The Origin of Mitochondrial Cristae From Alphaproteobacteria,” Molecular Biology and Evolution 34, no. 4 (2017): 943-956.

[2]

M. W. Gray, G. Burger, and B. F. Lang, “Mitochondrial Evolution,” Science (New York, NY) 283, no. 5407 (1999): 1476-1481.

[3]

M. W. Gray, “Mitochondrial Evolution,” Cold Spring Harbor Perspectives in Biology 4, no. 9 (2012): a011403.

[4]

H. Wu, W. Dongchen, Y. Li, et al., “Mitogenomes Comparison of 3 Species of Asparagus L Shedding Light on Their Functions due to Domestication and Adaptative Evolution,” BMC Genomics [Electronic Resource] 25, no. 1 (2024): 1-16.

[5]

M. Takusagawa, O. Misumi, H. Nozaki, et al., “Complete Mitochondrial and Chloroplast DNA Sequences of the Freshwater Green Microalga Medakamo hakoo,” Genes & Genetic Systems 98, no. 6 (2023): 353-360.

[6]

S. Anderson, A. T. Bankier, B. G. Barrell, et al., “Sequence and Organization of the human Mitochondrial Genome,” Nature 290, no. 5806 (1981): 457-465.

[7]

J. A. Smeitink, M. Zeviani, D. M. Turnbull, and H. T. Jacobs, “Mitochondrial Medicine: A Metabolic Perspective on the Pathology of Oxidative Phosphorylation Disorders,” Cell Metabolism 3, no. 1 (2006): 9-13.

[8]

M.-E. Parakatselaki and E. D. Ladoukakis, “mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences,” Life 11, no. 7 (2021): 633.

[9]

G. Hayashi and G. Cortopassi, “Oxidative Stress in Inherited Mitochondrial Diseases,” Free Radical Biology and Medicine 88 (2015): 10-17.

[10]

M. Redmann, M. Dodson, M. Boyer-Guittaut, V. Darley-Usmar, and J. Zhang, “Mitophagy Mechanisms and Role in human Diseases,” The International Journal of Biochemistry & Cell Biology 53 (2014): 127-133.

[11]

C. A. Mannella, “Structure and Dynamics of the Mitochondrial Inner Membrane Cristae,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1763, no. 5-6 (2006): 542-548.

[12]

A. S. Reichert and W. Neupert, “Contact Sites Between the Outer and Inner Membrane of Mitochondria—role in Protein Transport,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1592, no. 1 (2002): 41-49.

[13]

T. Klecker and B. Westermann, “Pathways Shaping the Mitochondrial Inner Membrane,” Open Biology 11, no. 12 (2021): 210238.

[14]

G. Csordás and G. Hajnóczky, “SR/ER-mitochondrial Local Communication: Calcium and ROS,” Biochimica Et Biophysica Acta (BBA)-Bioenergetics 1787, no. 11 (2009): 1352-1362.

[15]

S. Smaili, Y.-T. Hsu, A. Carvalho, T. Rosenstock, J. Sharpe, and R. Youle, “Mitochondria calcium and Pro-apoptotic Proteins as Mediators in Cell Death Signaling,” Brazilian Journal of Medical and Biological Research 36 (2003): 183-190.

[16]

S. Orrenius, V. Gogvadze, and B. Zhivotovsky, “Calcium and Mitochondria in the Regulation of Cell Death,” Biochemical and Biophysical Research Communications 460, no. 1 (2015): 72-81.

[17]

S. W. Tait and D. R. Green, “Mitochondria and Cell Death: Outer Membrane Permeabilization and Beyond,” Nature Reviews Molecular Cell Biology 11, no. 9 (2010): 621-632.

[18]

J. Nunnari and A. Suomalainen, “Mitochondria: In Sickness and in Health,” Cell 148, no. 6 (2012): 1145-1159.

[19]

J. A. Kraker, Z. Stander, D. Oglesbee, L. A. Schimmenti, and J. J. Chen, “Lost in the Sauce: An Atypical Cause of Optic Neuropathy,” Journal of Neuro-ophthalmology: the Official Journal of the North American Neuro-ophthalmology Society 45, no. 2 (2024): e147-e149.

[20]

J. Ruan and V. Patzel, “Abstract P23: Mitochondrial Delivery of Functional Nucleic Acids for Targeting of Mitochondrial Dysfunction,” Cancer Research 84, no. 8_Supplement (2024): P23-P23.

[21]

T. G. Frey and C. A. Mannella, “The Internal Structure of Mitochondria,” Trends in Biochemical Sciences 25, no. 7 (2000): 319-324.

[22]

P. Karakaidos and T. Rampias, “Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity,” Life 10, no. 9 (2020): 173.

[23]

P. Fernández-Silva, J. A. Enriquez, and J. Montoya, “Replication and Transcription of Mammalian Mitochondrial DNA,” Experimental Physiology 88, no. 1 (2003): 41-56.

[24]

C. M. Gustafsson, M. Falkenberg, and N.-G. Larsson, “Maintenance and Expression of Mammalian Mitochondrial DNA,” Annual Review of Biochemistry 85, no. 1 (2016): 133-160.

[25]

G. S. Gorman, P. F. Chinnery, S. DiMauro, et al., “Mitochondrial Diseases,” Nature Reviews Disease Primers 2, no. 1 (2016): 1-22.

[26]

R. H. Haas, S. Parikh, M. J. Falk, et al., “Mitochondrial Disease: A Practical Approach for Primary Care Physicians,” Pediatrics 120, no. 6 (2007): 1326-1333.

[27]

E. A. Schon, S. DiMauro, and M. Hirano, “Human Mitochondrial DNA: Roles of Inherited and Somatic Mutations,” Nature Reviews Genetics 13, no. 12 (2012): 878-890.

[28]

P. Mordel, S. Schaeffer, Q. Dupas, et al., “A 2 Bp Deletion in the Mitochondrial ATP 6 Gene Responsible for the NARP (neuropathy, ataxia, and retinitis pigmentosa) Syndrome,” Biochemical and Biophysical Research Communications 494, no. 1-2 (2017): 133-137.

[29]

L. Kytövuori, J. Lipponen, H. Rusanen, T. Komulainen, M. H. Martikainen, and K. Majamaa, “A Novel Mutation M.8561C>g in MT-ATP6/8 Causing a Mitochondrial Syndrome With Ataxia, Peripheral Neuropathy, Diabetes Mellitus, and Hypergonadotropic Hypogonadism,” Journal of Neurology 263, no. 11 (2016): 2188-2195.

[30]

V. Carelli, M. Carbonelli, I. F. de Coo, et al., “International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy,” Journal of Neuro-Ophthalmology: the Official Journal of the North American Neuro-Ophthalmology Society 37, no. 4 (2017): 371-381.

[31]

D. C. Wallace, G. Singh, M. T. Lott, et al., “Mitochondrial DNA Mutation Associated With Leber's Hereditary Optic Neuropathy,” Science (New York, NY) 242, no. 4884 (1988): 1427-1430.

[32]

S. Rahman, R. Blok, H. H. Dahl, et al., “Leigh Syndrome: Clinical Features and Biochemical and DNA Abnormalities,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 39, no. 3 (1996): 343-351.

[33]

K. Naess, C. Freyer, H. Bruhn, et al., “MtDNA Mutations Are a Common Cause of Severe Disease Phenotypes in Children With Leigh Syndrome,” Biochimica Et Biophysica Acta (BBA)-Bioenergetics 1787, no. 5 (2009): 484-490.

[34]

J.-H. Na and Y.-M. Lee, “Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes Syndrome,” Biomolecules 14, no. 12 (2024): 1524.

[35]

Y.-I. Goto, I. Nonaka, and S. Horai, “A Mutation in the tRNALeu (UUR) Gene Associated With the MELAS Subgroup of Mitochondrial Encephalomyopathies,” Nature 348, no. 6302 (1990): 651-653.

[36]

M. Mancuso, L. Petrozzi, M. Filosto, et al., “MERRF Syndrome Without Ragged-red Fibers: The Need for Molecular Diagnosis,” Biochemical and Biophysical Research Communications 354, no. 4 (2007): 1058-1060.

[37]

A. Noer, H. Sudoyo, P. Lertrit, et al., “A tRNA (Lys) Mutation in the mtDNA Is the Causal Genetic Lesion Underlying Myoclonic Epilepsy and Ragged-red fiber (MERRF) Syndrome,” American Journal of Human Genetics 49, no. 4 (1991): 715.

[38]

A. Bianco, L. Bisceglia, L. Russo, et al., “High Mitochondrial DNA Copy Number Is a Protective Factor From Vision Loss in Heteroplasmic Leber's Hereditary Optic Neuropathy (LHON),” Investigative Ophthalmology & Visual Science 58, no. 4 (2017): 2193-2197.

[39]

C. Meyerson, G. Van Stavern, and C. McClelland, “Leber Hereditary Optic Neuropathy: Current Perspectives,” Clinical Ophthalmology 9 (2015): 1165-1176.

[40]

I. G. Arena, A. Pugliese, S. Volta, A. Toscano, and O. Musumeci, “Molecular Genetics Overview of Primary Mitochondrial Myopathies,” Journal of Clinical Medicine 11, no. 3 (2022): 632.

[41]

G. Pfeffer and P. F. Chinnery, “Diagnosis and Treatment of Mitochondrial Myopathies,” Annals of Medicine 45, no. 1 (2013): 4-16.

[42]

E. Watson, R. Davis, and C. M. Sue, “New Diagnostic Pathways for Mitochondrial Disease,” Journal of Translational Genetics and Genomics 4, no. 3 (2020): 188-202.

[43]

J. Magnusson, M. Orth, P. Lestienne, and J. W. Taanman, “Replication of Mitochondrial DNA Occurs throughout the Mitochondria of Cultured human Cells,” Experimental Cell Research 289, no. 1 (2003): 133-142.

[44]

C. M. Gustafsson, M. Falkenberg, and N. G. Larsson, “Maintenance and Expression of Mammalian Mitochondrial DNA,” Annual Review of Biochemistry 85 (2016): 133-160.

[45]

K. Troulinaki and D. Bano, “Mitochondrial Deficiency: A Double-edged Sword for Aging and Neurodegeneration,” Frontiers in Genetics 3 (2012): 244.

[46]

L. Kazak, A. Reyes, and I. J. Holt, “Minimizing the Damage: Repair Pathways Keep Mitochondrial DNA Intact,” Nature Reviews Molecular Cell Biology 13, no. 10 (2012): 659-671.

[47]

L. Kytövuori, J. Lipponen, H. Rusanen, T. Komulainen, M. H. Martikainen, and K. Majamaa, “A Novel Mutation M. 8561C>g in MT-ATP6/8 Causing a Mitochondrial Syndrome With Ataxia, Peripheral Neuropathy, Diabetes Mellitus, and Hypergonadotropic Hypogonadism,” Journal of Neurology 263 (2016): 2188-2195.

[48]

J. Finsterer, “Neuropathy, Ataxia, and Retinitis Pigmentosa Syndrome,” Journal of Clinical Neuromuscular Disease 24, no. 3 (2023): 140-146.

[49]

G. M. Dar, E. Ahmad, A. Ali, B. Mahajan, G. M. Ashraf, and S. S. Saluja, “Genetic Aberration Analysis of Mitochondrial respiratory Complex I Implications in the Development of Neurological Disorders and Their Clinical Significance,” Ageing Research Reviews 87 (2023): 101906.

[50]

R. Gupta, M. Kanai, T. J. Durham, et al., “Nuclear Genetic Control of mtDNA Copy Number and Heteroplasmy in Humans,” Nature 620, no. 7975 (2023): 839-848.

[51]

J. B. Stewart and P. F. Chinnery, “Extreme Heterogeneity of human Mitochondrial DNA From Organelles to Populations,” Nature Reviews Genetics 22, no. 2 (2021): 106-118.

[52]

G. S. Gorman, P. F. Chinnery, S. DiMauro, et al., “Mitochondrial Diseases,” Nature Reviews Disease Primers 2 (2016): 16080.

[53]

A. Bianco, L. Bisceglia, P. Trerotoli, et al., “Leber's Hereditary Optic Neuropathy (LHON) in an Apulian Cohort of Subjects,” Acta Myologica: Myopathies and Cardiomyopathies: Official Journal of the Mediterranean Society of Myology 36, no. 3 (2017): 163-177.

[54]

D. J. White, J. N. Wolff, M. Pierson, and N. J. Gemmell, “Revealing the Hidden Complexities of mtDNA Inheritance,” Molecular Ecology 17, no. 23 (2008): 4925-4942.

[55]

J. S. John, “The Control of mtDNA Replication During Differentiation and Development,” Biochimica Et Biophysica Acta (BBA)-General Subjects 1840, no. 4 (2014): 1345-1354.

[56]

Y. Cao, J. Zheng, H. Wan, et al., “A Mitochondrial SCF-FBXL4 Ubiquitin E3 Ligase Complex Degrades BNIP3 and NIX to Restrain Mitophagy and Prevent Mitochondrial Disease,” The EMBO Journal 42, no. 13 (2023): e113033.

[57]

A. Chakravorty, C. T. Jetto, and R. Manjithaya, “Dysfunctional Mitochondria and Mitophagy as Drivers of Alzheimer's Disease Pathogenesis,” Frontiers in Aging Neuroscience 11 (2019): 311.

[58]

A. Prakash and S. Doublié, “Base Excision Repair in the Mitochondria,” Journal of Cellular Biochemistry 116, no. 8 (2015): 1490-1499.

[59]

V. Peeva, D. Blei, G. Trombly, et al., “Linear Mitochondrial DNA Is Rapidly Degraded by Components of the Replication Machinery,” Nature Communications 9, no. 1 (2018): 1727.

[60]

N. Nissanka, S. R. Bacman, M. J. Plastini, and C. T. Moraes, “The Mitochondrial DNA Polymerase Gamma Degrades Linear DNA Fragments Precluding the Formation of Deletions,” Nature Communications 9, no. 1 (2018): 2491.

[61]

A. Suomalainen and B. J. Battersby, “Mitochondrial Diseases: The Contribution of Organelle Stress Responses to Pathology,” Nature Reviews Molecular Cell Biology 19, no. 2 (2018): 77-92.

[62]

L. C. Greaves, A. K. Reeve, R. W. Taylor, and D. M. Turnbull, “Mitochondrial DNA and Disease,” The Journal of Pathology 226, no. 2 (2012): 274-286.

[63]

R. Acín-Pérez, M. P. Bayona-Bafaluy, P. Fernández-Silva, et al., “Respiratory Complex III Is Required to Maintain Complex I in Mammalian Mitochondria,” Molecular Cell 13, no. 6 (2004): 805-815.

[64]

C. S. Lin, M. S. Sharpley, W. Fan, et al., “Mouse mtDNA Mutant Model of Leber Hereditary Optic Neuropathy,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 49 (2012): 20065-20070.

[65]

W. J. Valente, N. G. Ericson, A. S. Long, P. A. White, F. Marchetti, and J. H. Bielas, “Mitochondrial DNA Exhibits Resistance to Induced Point and Deletion Mutations,” Nucleic Acids Research 44, no. 18 (2016): 8513-8524.

[66]

A. Trifunovic, A. Wredenberg, M. Falkenberg, et al., “Premature Ageing in Mice Expressing Defective Mitochondrial DNA Polymerase,” Nature 429, no. 6990 (2004): 417-423.

[67]

G. C. Kujoth, A. Hiona, T. D. Pugh, et al., “Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging,” Science (New York, NY) 309, no. 5733 (2005): 481-484.

[68]

J. H. K. Kauppila, H. L. Baines, A. Bratic, et al., “A Phenotype-Driven Approach to Generate Mouse Models With Pathogenic mtDNA Mutations Causing Mitochondrial Disease,” Cell Reports 16, no. 11 (2016): 2980-2990.

[69]

R. McFarland, H. Swalwell, E. L. Blakely, et al., “The M.5650G>a Mitochondrial tRNAAla Mutation Is Pathogenic and Causes a Phenotype of Pure Myopathy,” Neuromuscular Disorders: NMD 18, no. 1 (2008): 63-67.

[70]

R. Horváth, H. Lochmüller, C. Scharfe, et al., “A tRNA(Ala) Mutation Causing Mitochondrial Myopathy Clinically Resembling Myotonic Dystrophy,” Journal of Medical Genetics 40, no. 10 (2003): 752-757.

[71]

G. S. Gorman, A. M. Schaefer, Y. Ng, et al., “Prevalence of Nuclear and Mitochondrial DNA Mutations Related to Adult Mitochondrial Disease,” Annals of Neurology 77, no. 5 (2015): 753-759.

[72]

R. Z. Fayzulin, M. Perez, N. Kozhukhar, D. Spadafora, G. L. Wilson, and M. F. Alexeyev, “A Method for Mutagenesis of Mouse mtDNA and a Resource of Mouse mtDNA Mutations for Modeling human Pathological Conditions,” Nucleic Acids Research 43, no. 9 (2015): e62.

[73]

A. Bratic, T. E. Kauppila, B. Macao, et al., “Complementation Between Polymerase- and Exonuclease-deficient Mitochondrial DNA Polymerase Mutants in Genomically Engineered Flies,” Nature Communications 6 (2015): 8808.

[74]

C. L. Samstag, J. G. Hoekstra, C. H. Huang, et al., “Deleterious Mitochondrial DNA Point Mutations Are Overrepresented in Drosophila Expressing a Proofreading-defective DNA Polymerase γ,” PLoS Genetics 14, no. 11 (2018): e1007805.

[75]

S. Andreazza, C. L. Samstag, A. Sanchez-Martinez, et al., “Mitochondrially-targeted APOBEC1 Is a Potent mtDNA Mutator Affecting Mitochondrial Function and Organismal Fitness in Drosophila,” Nature Communications 10, no. 1 (2019): 3280.

[76]

E. Fernandez-Vizarra and M. Zeviani, “Mitochondrial Disorders of the OXPHOS System,” FEBS Letters 595, no. 8 (2021): 1062-1106.

[77]

A. U. Amaral and M. Wajner, “Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids,” Frontiers in Genetics 11 (2020): 598976.

[78]

S.-B. Wu and Y.-H. Wei, “AMPK-mediated Increase of Glycolysis as an Adaptive Response to Oxidative Stress in human Cells: Implication of the Cell Survival in Mitochondrial Diseases,” Biochimica Et Biophysica Acta (BBA)-Molecular Basis of Disease 1822, no. 2 (2012): 233-247.

[79]

N. Nissanka and C. T. Moraes, “Mitochondrial DNA Damage and Reactive Oxygen Species in Neurodegenerative Disease,” FEBS Letters 592, no. 5 (2018): 728-742.

[80]

C. Guo, L. Sun, X. Chen, and D. Zhang, “Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases,” Neural Regeneration Research 8, no. 21 (2013): 2003-2014.

[81]

E. Radi, P. Formichi, C. Battisti, and A. Federico, “Apoptosis and Oxidative Stress in Neurodegenerative Diseases,” Journal of Alzheimer's Disease 42, no. s3 (2014): S125-S152.

[82]

H. Cui, Y. Kong, and H. Zhang, “Oxidative Stress, Mitochondrial Dysfunction, and Aging,” Journal of Signal Transduction 2012, no. 1 (2012): 646354.

[83]

G. Sharma, G. Pfeffer, and T. E. Shutt, “Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics,” Biology 10, no. 4 (2021): 268.

[84]

A. W. El-Hattab, J. Suleiman, M. Almannai, and F. Scaglia, “Mitochondrial Dynamics: Biological Roles, Molecular Machinery, and Related Diseases,” Molecular Genetics and Metabolism 125, no. 4 (2018): 315-321.

[85]

D. Li, Y. Li, W. Pan, B. Yang, and C. Fu, “Role of Dynamin-related Protein 1-dependent Mitochondrial Fission in Drug-induced Toxicity,” Pharmacological Research 206 (2024): 107250.

[86]

S. Xu, J. Jia, R. Mao, X. Cao, and Y. Xu, “Mitophagy in Acute central Nervous System Injuries: Regulatory Mechanisms and Therapeutic Potentials,” Neural Regeneration Research 20, no. 9 (2025): 2437-2453.

[87]

S. Marchi, E. Guilbaud, S. W. Tait, T. Yamazaki, and L. Galluzzi, “Mitochondrial Control of Inflammation,” Nature Reviews Immunology 23, no. 3 (2023): 159-173.

[88]

J. S. Riley and S. W. Tait, “Mitochondrial DNA in Inflammation and Immunity,” EMBO Reports 21, no. 4 (2020): e49799.

[89]

A. De Gaetano, K. Solodka, G. Zanini, et al., “Molecular Mechanisms of mtDNA-mediated Inflammation,” Cells 10, no. 11 (2021): 2898.

[90]

J. Kim, H.-S. Kim, and J. H. Chung, “Molecular Mechanisms of Mitochondrial DNA Release and Activation of the cGAS-STING Pathway,” Experimental & Molecular Medicine 55, no. 3 (2023): 510-519.

[91]

B. Andrade, C. Jara-Gutiérrez, M. Paz-Araos, M. C. Vázquez, P. Díaz, and P. Murgas, “The Relationship Between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process,” International Journal of Molecular Sciences 23, no. 23 (2022): 15182.

[92]

T. Klopstock, P. Yu-Wai-Man, K. Dimitriadis, et al., “A Randomized Placebo-controlled Trial of Idebenone in Leber's Hereditary Optic Neuropathy,” Brain: a Journal of Neurology 134, no. 9 (2011): 2677-2686.

[93]

D. R. Lynch, S. L. Perlman, and T. Meier, “A Phase 3, Double-blind, Placebo-controlled Trial of idebenone in friedreich ataxia,” Archives of Neurology 67, no. 8 (2010): 941-947.

[94]

F. Baertling, R. J. Rodenburg, J. Schaper, et al., “A Guide to Diagnosis and Treatment of Leigh Syndrome,” Journal of Neurology, Neurosurgery & Psychiatry 85, no. 3 (2014): 257-265.

[95]

G. M. Enns and B. H. Cohen, “Clinical Trials in Mitochondrial Disease: An Update on EPI-743 and RP103,” Journal of Inborn Errors of Metabolism and Screening 5 (2019): e170011.

[96]

S. Yatsuga and A. Suomalainen, “Effect of Bezafibrate Treatment on Late-onset Mitochondrial Myopathy in Mice,” Human Molecular Genetics 21, no. 3 (2012): 526-535.

[97]

H. Steele, A. Gomez-Duran, A. Pyle, et al., “Metabolic Effects of Bezafibrate in Mitochondrial Disease,” EMBO Molecular Medicine 12, no. 3 (2020): e11589.

[98]

P. Bernsen, F. Gabreëls, W. Ruitenbeek, and H. Hamburger, “Treatment of Complex I Deficiency With Riboflavin,” Journal of the Neurological Sciences 118, no. 2 (1993): 181-187.

[99]

S. Li, H. Li, X. Xu, P. E. Saw, and L. Zhang, “Nanocarrier-mediated Antioxidant Delivery for Liver Diseases,” Theranostics 10, no. 3 (2020): 1262.

[100]

A. Pingoud, G. G. Wilson, and W. Wende, “Type II Restriction Endonucleases—a Historical Perspective and More,” Nucleic Acids Research 44, no. 16 (2016): 8011.

[101]

M. Tanaka, H. J. Borgeld, J. Zhang, et al., “Gene Therapy for Mitochondrial Disease by Delivering Restriction Endonuclease SmaI Into Mitochondria,” Journal of Biomedical Science 9, no. 6 Pt 1 (2002): 534-541.

[102]

S. Srivastava and C. T. Moraes, “Manipulating Mitochondrial DNA Heteroplasmy by a Mitochondrially Targeted Restriction Endonuclease,” Human Molecular Genetics 10, no. 26 (2001): 3093-3099.

[103]

P. Reddy, A. Ocampo, K. Suzuki, et al., “Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing,” Cell 161, no. 3 (2015): 459-469.

[104]

J. P. Jenuth, A. C. Peterson, K. Fu, and E. A. Shoubridge, “Random Genetic Drift in the Female Germline Explains the Rapid Segregation of Mammalian Mitochondrial DNA,” Nature Genetics 14, no. 2 (1996): 146-151.

[105]

M. Mani, K. Kandavelou, F. J. Dy, S. Durai, and S. Chandrasegaran, “Design, Engineering, and Characterization of Zinc Finger Nucleases,” Biochemical and Biophysical Research Communications 335, no. 2 (2005): 447-457.

[106]

F. D. Urnov, J. C. Miller, Y. L. Lee, et al., “Highly Efficient Endogenous human Gene Correction Using Designed Zinc-finger Nucleases,” Nature 435, no. 7042 (2005): 646-651.

[107]

M. H. Porteus and D. Baltimore, “Chimeric Nucleases Stimulate Gene Targeting in human Cells,” Science (New York, NY) 300, no. 5620 (2003): 763.

[108]

M. Papworth, P. Kolasinska, and M. Minczuk, “Designer Zinc-finger Proteins and Their Applications,” Gene 366, no. 1 (2006): 27-38.

[109]

S. Durai, M. Mani, K. Kandavelou, J. Wu, M. H. Porteus, and S. Chandrasegaran, “Zinc Finger Nucleases: Custom-designed Molecular Scissors for Genome Engineering of Plant and Mammalian Cells,” Nucleic Acids Research 33, no. 18 (2005): 5978-5990.

[110]

M. Alexeyev, I. Shokolenko, G. Wilson, and S. LeDoux, “The Maintenance of Mitochondrial DNA Integrity-critical Analysis and Update,” Cold Spring Harbor Perspectives in Biology 5, no. 5 (2013): a012641.

[111]

P. A. Gammage, C. Viscomi, M. L. Simard, et al., “Genome Editing in Mitochondria Corrects a Pathogenic mtDNA Mutation in Vivo,” Nature Medicine 24, no. 11 (2018): 1691-1695.

[112]

M. Minczuk, M. A. Papworth, J. C. Miller, M. P. Murphy, and A. Klug, “Development of a Single-chain, Quasi-dimeric Zinc-finger Nuclease for the Selective Degradation of Mutated human Mitochondrial DNA,” Nucleic Acids Research 36, no. 12 (2008): 3926-3938.

[113]

P. A. Gammage, J. Rorbach, A. I. Vincent, E. J. Rebar, and M. Minczuk, “Mitochondrially Targeted ZFNs for Selective Degradation of Pathogenic Mitochondrial Genomes Bearing Large-scale Deletions or Point Mutations,” EMBO Molecular Medicine 6, no. 4 (2014): 458-466.

[114]

M. Minczuk, M. A. Papworth, P. Kolasinska, M. P. Murphy, and A. Klug, “Sequence-specific Modification of Mitochondrial DNA Using a Chimeric Zinc Finger Methylase,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 52 (2006): 19689-19694.

[115]

G. E. Meister, S. Chandrasegaran, and M. Ostermeier, “Heterodimeric DNA Methyltransferases as a Platform for Creating Designer Zinc Finger Methyltransferases for Targeted DNA Methylation in Cells,” Nucleic Acids Research 38, no. 5 (2010): 1749-1759.

[116]

P. A. Gammage, E. Gaude, L. Van Haute, et al., “Near-complete Elimination of Mutant mtDNA by Iterative or Dynamic Dose-controlled Treatment With mtZFNs,” Nucleic Acids Research 44, no. 16 (2016): 7804-7816.

[117]

S. R. Bacman, S. L. Williams, M. Pinto, S. Peralta, and C. T. Moraes, “Specific Elimination of Mutant Mitochondrial Genomes in Patient-derived Cells by mitoTALENs,” Nature Medicine 19, no. 9 (2013): 1111-1113.

[118]

M. Christian, T. Cermak, E. L. Doyle, et al., “Targeting DNA Double-strand Breaks With TAL Effector Nucleases,” Genetics 186, no. 2 (2010): 757-761.

[119]

D. Deng, C. Yan, X. Pan, et al., “Structural Basis for Sequence-specific Recognition of DNA by TAL Effectors,” Science (New York, NY) 335, no. 6069 (2012): 720-723.

[120]

M. Kulkarni, N. Nirwan, K. van Aelst, M. D. Szczelkun, and K. Saikrishnan, “Structural Insights Into DNA Sequence Recognition by Type ISP Restriction-modification Enzymes,” Nucleic Acids Research 44, no. 9 (2016): 4396-4408.

[121]

T. Nakanishi, Y. Kato, T. Matsuura, and H. Watanabe, “TALEN-mediated Knock-in via Non-homologous End Joining in the Crustacean Daphnia Magna,” Scientific Reports 6, no. 1 (2016): 36252.

[122]

J. Boch, H. Scholze, S. Schornack, et al., “Breaking the Code of DNA Binding Specificity of TAL-type III Effectors,” Science (New York, NY) 326, no. 5959 (2009): 1509-1512.

[123]

J. K. Joung and J. D. Sander, “TALENs: A Widely Applicable Technology for Targeted Genome Editing,” Nature Reviews Molecular Cell Biology 14, no. 1 (2013): 49-55.

[124]

M. Hashimoto, S. R. Bacman, S. Peralta, et al., “MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases,” Molecular Therapy: the Journal of the American Society of Gene Therapy 23, no. 10 (2015): 1592-1599.

[125]

E. Gaude, C. Schmidt, P. A. Gammage, et al., “NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine With Glycolysis in Cells With Mitochondrial Dysfunction,” Molecular Cell 69, no. 4 (2018): 581-593. e7.

[126]

U. Zekonyte, S. R. Bacman, J. Smith, et al., “Mitochondrial Targeted Meganuclease as a Platform to Eliminate Mutant mtDNA in Vivo,” Nature Communications 12, no. 1 (2021): 3210.

[127]

P. D. Hsu, E. S. Lander, and F. Zhang, “Development and Applications of CRISPR-Cas9 for Genome Engineering,” Cell 157, no. 6 (2014): 1262-1278.

[128]

S. R. Bacman, J. H. K. Kauppila, C. V. Pereira, et al., “MitoTALEN Reduces Mutant mtDNA Load and Restores tRNAAla Levels in a Mouse Model of Heteroplasmic mtDNA Mutation,” Nature Medicine 24, no. 11 (2018): 1696-1700.

[129]

P. A. Gammage, C. T. Moraes, and M. Minczuk, “Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized,” Trends in Genetics: TIG 34, no. 2 (2018): 101-110.

[130]

P. Silva-Pinheiro and M. Minczuk, “The Potential of Mitochondrial Genome Engineering,” Nature Reviews Genetics 23, no. 4 (2022): 199-214.

[131]

S.-I. Cho, S. Lee, Y. G. Mok, et al., “Targeted A-to-G Base Editing in human Mitochondrial DNA With Programmable Deaminases,” Cell 185, no. 10 (2022): 1764-1776. e12.

[132]

Z. Yi, X. Zhang, W. Tang, et al., “Strand-selective Base Editing of human Mitochondrial DNA Using mitoBEs,” Nature Biotechnology 42, no. 3 (2023): 498-509.

[133]

J. Hu, Y. Sun, B. Li, et al., “Strand-preferred Base Editing of Organellar and Nuclear Genomes Using CyDENT,” Nature Biotechnology 42, no. 6 (2023): 936-945.

[134]

X. Yang and B. Zhang, “A Review on CRISPR/Cas: A Versatile Tool for Cancer Screening, Diagnosis, and Clinic Treatment,” Functional & Integrative Genomics 23, no. 2 (2023): 182.

[135]

C. Long, J. R. McAnally, J. M. Shelton, A. A. Mireault, R. Bassel-Duby, and E. N. Olson, “Prevention of Muscular Dystrophy in Mice by CRISPR/Cas9-mediated Editing of Germline DNA,” Science (New York, NY) 345, no. 6201 (2014): 1184-1188.

[136]

M. A. DeWitt, W. Magis, N. L. Bray, et al., “Selection-free Genome Editing of the Sickle Mutation in human Adult Hematopoietic Stem/Progenitor Cells,” Science Translational Medicine 8, no. 360 (2016): 360ra134-360ra134.

[137]

G. Schwank, B.-K. Koo, V. Sasselli, et al., “Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients,” Cell Stem Cell 13, no. 6 (2013): 653-658.

[138]

M. C. Canver, E. C. Smith, F. Sher, et al., “BCL11A enhancer Dissection by Cas9-mediated in Situ Saturating Mutagenesis,” Nature 527, no. 7577 (2015): 192-197.

[139]

H. Frangoul, D. Altshuler, M. D. Cappellini, et al., “CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-thalassemia,” New England Journal of Medicine 384, no. 3 (2021): 252-260.

[140]

R. Kaminski, Y. Chen, T. Fischer, et al., “Elimination of HIV-1 Genomes From human T-lymphoid Cells by CRISPR/Cas9 Gene Editing,” Scientific Reports 6, no. 1 (2016): 22555.

[141]

C. Seeger and J. A. Sohn, “Targeting hepatitis B Virus With CRISPR/Cas9,” Molecular Therapy-Nucleic Acids 3 (2014): e216.

[142]

I. M. Slaymaker, L. Gao, B. Zetsche, D. A. Scott, W. X. Yan, and F. Zhang, “Rationally Engineered Cas9 Nucleases With Improved Specificity,” Science (New York, NY) 351, no. 6268 (2016): 84-88.

[143]

B. P. Kleinstiver, V. Pattanayak, M. S. Prew, et al., “High-fidelity CRISPR-Cas9 Nucleases With no Detectable Genome-wide off-target Effects,” Nature 529, no. 7587 (2016): 490-495.

[144]

G. Wang, E. Shimada, J. Zhang, et al., “Correcting human Mitochondrial Mutations With Targeted RNA Import,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 13 (2012): 4840-4845.

[145]

Y. Tonin, A. M. Heckel, M. Vysokikh, et al., “Modeling of Antigenomic Therapy of Mitochondrial Diseases by Mitochondrially Addressed RNA Targeting a Pathogenic Point Mutation in Mitochondrial DNA,” The Journal of Biological Chemistry 289, no. 19 (2014): 13323-13334.

[146]

V. P. Torchilin, “Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting,” Annual Review of Biomedical Engineering 8 (2006): 343-375.

[147]

B. C. Yoo, N. S. Yadav, E. M. Orozco, and H. Sakai, “Cas9/gRNA-mediated Genome Editing of Yeast Mitochondria and Chlamydomonas Chloroplasts,” PeerJ 8 (2020): e8362.

[148]

P. Yuan, X. Mao, X. Wu, S. S. Liew, L. Li, and S. Q. Yao, “Mitochondria-Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles,” Angewandte Chemie (International Ed in English) 58, no. 23 (2019): 7657-7661.

[149]

S. Haddad, I. Abánades Lázaro, M. Fantham, et al., “Design of a Functionalized Metal-Organic Framework System for Enhanced Targeted Delivery to Mitochondria,” Journal of the American Chemical Society 142, no. 14 (2020): 6661-6674.

[150]

R. Loutre, A. M. Heckel, A. Smirnova, N. Entelis, and I. Tarassov, “Can Mitochondrial DNA be CRISPRized: Pro and Contra,” Iubmb Life 70, no. 12 (2018): 1233-1239.

[151]

D. C. Swarts, J. W. Hegge, I. Hinojo, et al., “Argonaute of the Archaeon Pyrococcus Furiosus Is a DNA-guided Nuclease That Targets Cognate DNA,” Nucleic Acids Research 43, no. 10 (2015): 5120-5129.

[152]

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, “Programmable Editing of a Target Base in Genomic DNA Without Double-stranded DNA Cleavage,” Nature 533, no. 7603 (2016): 420-424.

[153]

N. M. Gaudelli, A. C. Komor, H. A. Rees, et al., “Programmable Base Editing of A•T to G•C in Genomic DNA Without DNA Cleavage,” Nature 551, no. 7681 (2017): 464-471.

[154]

B. Y. Mok, M. H. de Moraes, J. Zeng, et al., “A Bacterial Cytidine Deaminase Toxin Enables CRISPR-free Mitochondrial Base Editing,” Nature 583, no. 7817 (2020): 631-637.

[155]

H. Lee, S. Lee, G. Baek, et al., “Mitochondrial DNA Editing in Mice With DddA-TALE Fusion Deaminases,” Nature Communications 12, no. 1 (2021): 1190.

[156]

J. Guo, X. Chen, Z. Liu, et al., “DdCBE Mediates Efficient and Inheritable Modifications in Mouse Mitochondrial Genome,” Molecular Therapy Nucleic Acids 27 (2022): 73-80.

[157]

X. Qi, X. Chen, J. Guo, et al., “Precision Modeling of Mitochondrial Disease in Rats via DdCBE-mediated mtDNA Editing,” Cell Discovery 7, no. 1 (2021): 95.

[158]

J. Guo, X. Zhang, X. Chen, et al., “Precision Modeling of Mitochondrial Diseases in Zebrafish via DdCBE-mediated mtDNA Base Editing,” Cell Discovery 7, no. 1 (2021): 78.

[159]

P. Silva-Pinheiro, P. A. Nash, L. Van Haute, C. D. Mutti, K. Turner, and M. Minczuk, “In Vivo Mitochondrial Base Editing via Adeno-associated Viral Delivery to Mouse Post-mitotic Tissue,” Nature Communications 13, no. 1 (2022): 750.

[160]

X. Chen, D. Liang, J. Guo, et al., “DdCBE-mediated Mitochondrial Base Editing in human 3PN Embryos,” Cell Discovery 8, no. 1 (2022): 8.

[161]

Y. Wei, C. Xu, H. Feng, et al., “Human Cleaving Embryos Enable Efficient Mitochondrial Base-editing With DdCBE,” Cell Discovery 8, no. 1 (2022): 7.

[162]

Y. G. Mok, J. M. Lee, E. Chung, et al., “Base Editing in human Cells With Monomeric DddA-TALE Fusion Deaminases,” Nature Communications 13, no. 1 (2022): 4038.

[163]

S. Lee, H. Lee, G. Baek, and J.-S. Kim, “Precision Mitochondrial DNA Editing With High-fidelity DddA-derived Base Editors,” Nature Biotechnology 41, no. 3 (2022): 378-386.

[164]

T. B. Roth, B. M. Woolston, G. Stephanopoulos, and D. R. Liu, “Phage-Assisted Evolution of Bacillus Methanolicus Methanol Dehydrogenase 2,” ACS Synthetic Biology 8, no. 4 (2019): 796-806.

[165]

B. W. Thuronyi, L. W. Koblan, J. M. Levy, et al., “Continuous Evolution of Base Editors With Expanded Target Compatibility and Improved Activity,” Nature Biotechnology 37, no. 9 (2019): 1070-1079.

[166]

B. Y. Mok, A. V. Kotrys, A. Raguram, T. P. Huang, V. K. Mootha, and D. R. Liu, “CRISPR-free Base Editors With Enhanced Activity and Expanded Targeting Scope in Mitochondrial and Nuclear DNA,” Nature Biotechnology 40, no. 9 (2022): 1378-1387.

[167]

M. F. Richter, K. T. Zhao, E. Eton, et al., “Phage-assisted Evolution of an Adenine Base Editor With Improved Cas Domain Compatibility and Activity,” Nature Biotechnology 38, no. 7 (2020): 883-891.

[168]

E. Zuo, Y. Sun, W. Wei, et al., “GOTI, a Method to Identify Genome-wide off-target Effects of Genome Editing in Mouse Embryos,” Nature Protocols 15, no. 9 (2020): 3009-3029.

[169]

E. Zuo, Y. Sun, W. Wei, et al., “Cytosine Base Editor Generates Substantial off-target Single-nucleotide Variants in Mouse Embryos,” Science (New York, NY) 364, no. 6437 (2019): 289-292.

[170]

Y. Wei, Z. Li, K. Xu, et al., “Mitochondrial Base Editor DdCBE Causes Substantial DNA off-target Editing in Nuclear Genome of Embryos,” Cell Discovery 8, no. 1 (2022): 27.

[171]

Z. Lei, H. Meng, L. Liu, et al., “Mitochondrial Base Editor Induces Substantial Nuclear off-target Mutations,” Nature 606, no. 7915 (2022): 804-811.

[172]

M. T. Lott, J. N. Leipzig, O. Derbeneva, et al., “mtDNA Variation and Analysis Using Mitomap and Mitomaster,” Current Protocols in Bioinformatics 44, no. 123 (2013): 1.23.1-26.

[173]

S. Rahman, “Mitochondrial Disease in Children,” Journal of Internal Medicine 287, no. 6 (2020): 609-633.

[174]

C. Lopez-Gomez, M. J. Sanchez-Quintero, E. J. Lee, et al., “Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency,” Annals of Neurology 90, no. 4 (2021): 640-652.

[175]

G. Inak, A. Rybak-Wolf, P. Lisowski, et al., “SURF1 mutations Causative of Leigh syndrome Impair human Neurogenesis,” BioRxiv (2019): 551390.

[176]

A. Di Donfrancesco, G. Massaro, I. Di Meo, V. Tiranti, E. Bottani, and D. Brunetti, “Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective,” Pharmaceutics 14, no. 6 (2022): 1287.

[177]

N. Castelluccio, K. Spath, D. Li, et al., “Genetic and Reproductive Strategies to Prevent Mitochondrial Diseases,” Human Reproduction Update 31, no. 4 (2025): 269-306.

[178]

A. Park, M. Oh, S. J. Lee, et al., “Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases,” International Journal of Molecular Sciences 22, no. 9 (2021): 4793.

[179]

D. Paull, V. Emmanuele, K. A. Weiss, et al., “Nuclear Genome Transfer in human Oocytes Eliminates Mitochondrial DNA Variants,” Nature 493, no. 7434 (2013): 632-637.

[180]

M. Tachibana, P. Amato, M. Sparman, et al., “Towards Germline Gene Therapy of Inherited Mitochondrial Diseases,” Nature 493, no. 7434 (2013): 627-631.

[181]

L. A. Hyslop, P. Blakeley, L. Craven, et al., “Towards Clinical Application of Pronuclear Transfer to Prevent Mitochondrial DNA Disease,” Nature 534, no. 7607 (2016): 383-386.

[182]

F. Baylis, “The Ethics of Creating Children With Three Genetic Parents,” Reproductive Biomedicine Online 26, no. 6 (2013): 531-534.

[183]

T. Ishii, “Potential Impact of human Mitochondrial Replacement on Global Policy Regarding Germline Gene Modification,” Reproductive Biomedicine Online 29, no. 2 (2014): 150-155.

[184]

A. K. Kaza, I. Wamala, I. Friehs, et al., “Myocardial Rescue With Autologous Mitochondrial Transplantation in a Porcine Model of Ischemia/Reperfusion,” The Journal of Thoracic and Cardiovascular Surgery 153, no. 4 (2017): 934-943.

[185]

Y. Yamada, M. Ito, M. Arai, M. Hibino, T. Tsujioka, and H. Harashima, “Challenges in Promoting Mitochondrial Transplantation Therapy,” International Journal of Molecular Sciences 21, no. 17 (2020): 6365.

[186]

A. G. Bury, A. E. Vincent, D. M. Turnbull, P. Actis, and G. Hudson, “Mitochondrial Isolation: When Size Matters,” Wellcome Open Research 5 (2020): 226.

[187]

I. R. Lanza and K. S. Nair, “Functional Assessment of Isolated Mitochondria in Vitro,” Methods in Enzymology 457 (2009): 349-372.

[188]

M. Sun, W. Jiang, N. Mu, Z. Zhang, L. Yu, and H. Ma, “Mitochondrial Transplantation as a Novel Therapeutic Strategy for Cardiovascular Diseases,” Journal of Translational Medicine 21, no. 1 (2023): 347.

[189]

J. C. Chang, F. Hoel, K. H. Liu, et al., “Peptide-mediated Delivery of Donor Mitochondria Improves Mitochondrial Function and Cell Viability in human Cybrid Cells With the MELAS A3243G Mutation,” Scientific Reports 7, no. 1 (2017): 10710.

[190]

M. Watanabe and N. Sasaki, “Mechanisms and Future Research Perspectives on Mitochondrial Diseases Associated With Isoleucyl-tRNA Synthetase Gene Mutations,” Genes 15, no. 7 (2024): 894.

[191]

S. T. Ahmed, L. Craven, O. M. Russell, D. M. Turnbull, and A. E. Vincent, “Diagnosis and Treatment of Mitochondrial Myopathies,” Neurotherapeutics 15, no. 4 (2018): 943-953.

[192]

E. McCormick, E. Place, and M. J. Falk, “Molecular Genetic Testing for Mitochondrial Disease: From One Generation to the next,” Neurotherapeutics 10, no. 2 (2013): 251-261.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/