Serotonin (5-Hydroxytryptamine): Metabolism, Signaling, Biological Functions, Diseases, and Emerging Therapeutic Opportunities

Yuxin Zhang , Nan Wang , Louqian Zhang , Yan Zhuang , Qilei Xin , Xiaosong Gu , Chunping Jiang , Junhua Wu

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70383

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70383 DOI: 10.1002/mco2.70383
REVIEW

Serotonin (5-Hydroxytryptamine): Metabolism, Signaling, Biological Functions, Diseases, and Emerging Therapeutic Opportunities

Author information +
History +
PDF

Abstract

Serotonin (5-hydroxytryptamine; 5-HT) is an evolutionarily conserved monoamine neurotransmitter that plays critical roles in various physiological systems, functioning as a neurotransmitter, hormone, and paracrine signaling molecule. This review synthesizes current research on 5-HT metabolism (biosynthesis, transport, and degradation), 5-HT receptor-mediated signaling pathways (seven receptor families and 14 subtypes), and broad biological functions of 5-HT. We emphasize the roles of 5-HT in both health and disease, with a particular focus on its emerging significance in the tumor immune microenvironment. Studies have shown that dysregulated 5-HT signaling is associated with various pathological conditions, including functional gastrointestinal disorders, psychiatric diseases, metabolic disorders, and cancer progression. Notably, this review describes novel mechanisms by which 5-HT modulates tumor immunity, including its effects on macrophage polarization, dendritic cell function, T cell activity, and PD-L1 expression, and it explores the therapeutic potential of targeting 5-HT-associated pathways. Promising therapeutic strategies that target 5-HT include combining selective serotonin reuptake inhibitors with immune checkpoint inhibitors, inhibiting key metabolic enzymes (e.g., Tph1 and MAO-A), and developing receptor subtype-specific agents (e.g., 5-HT7R antagonists). These findings position the 5-HT system as a pivotal target for next-generation precision therapeutics across multiple disease domains.

Keywords

5-hydroxytryptamine (5-HT) / 5-HT receptor (5-HTR) / serotonin / signaling pathways / therapeutic potential / tumor immune microenvironment

Cite this article

Download citation ▾
Yuxin Zhang, Nan Wang, Louqian Zhang, Yan Zhuang, Qilei Xin, Xiaosong Gu, Chunping Jiang, Junhua Wu. Serotonin (5-Hydroxytryptamine): Metabolism, Signaling, Biological Functions, Diseases, and Emerging Therapeutic Opportunities. MedComm, 2025, 6(9): e70383 DOI:10.1002/mco2.70383

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Veenstra-VanderWeele, G. M. Anderson, and E. H. Cook, “Pharmacogenetics and the Serotonin System: Initial Studies and Future Directions,” European Journal of Pharmacology 410, no. 2-3 (2000): 165-181.

[2]

B. Aryal, T. Shimizu, J. Kadono, et al., “Post-Resection Exhaustion of Intra-Platelet Serotonin: Also an Indicator of Early Hepatocellular Carcinoma Recurrence?” Journal of Cancer 8, no. 19 (2017): 3984-3991.

[3]

R. G. Ruddell, D. A. Mann, and G. A. Ramm, “The Function of Serotonin Within the Liver,” Journal of Hepatology 48, no. 4 (2008): 666-675.

[4]

S. N. Young, “How to Increase Serotonin in the human Brain Without Drugs,” Journal of Psychiatry & Neuroscience 32 (2007): 394-399.

[5]

A. P. Kerckhoffs, J. J. ter Linde, L. M. Akkermans, and M. Samsom, “SERT and TPH-1 mRNA Expression Are Reduced in Irritable Bowel Syndrome Patients Regardless of Visceral Sensitivity state in Large Intestine,” American Journal of Physiology Gastrointestinal and Liver Physiology 302, no. 9 (2012): G1053-G1060.

[6]

B. Pernow and J. Waldenstrom, “Paroxysmal Flushing and Other Symptoms Caused by 5-hydroxytryptamine and Histamine in Patients With Malignant Tumours,” Lancet 267, no. 6845 (1954): 951.

[7]

W. G. Rice and J. Mitchener, “Histochemical Evidence of 5-hydroxytryptamine in a Dog Mast Cell Tumour,” Nature 189 (1961): 767-768.

[8]

R. C. Cîmpeanu, M. V. Boldeanu, R. V. Ahrițculesei, et al., “Correlation Between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients,” International Journal of Molecular Sciences 25, no. 13 (2024): 6977.

[9]

R. Arreola, E. Becerril-Villanueva, and C. Cruz-Fuentes, “Immunomodulatory Effects Mediated by Serotonin,” Journal of Immunology Research 2015 (2015): 354957.

[10]

M. Lesurtel, C. Soll, R. Graf, and P. A. Clavien, “Role of Serotonin in the Hepato-gastroIntestinal Tract: An Old Molecule for New Perspectives,” Cellular and Molecular Life Sciences 65, no. 6 (2008): 940-952.

[11]

F. G. Boess and I. L. Martin, “Molecular Biology of 5-HT Receptors,” Neuropharmacology 33, no. 3-4 (1994): 275-317.

[12]

G. Richter, F. Stöckmann, J. M. Conlon, and W. Creutzfeldt, “Serotonin Release Into Blood After Food and Pentagastrin. Studies in Healthy Subjects and in Patients With Metastatic Carcinoid Tumors,” Gastroenterology 91, no. 3 (1986): 612-618.

[13]

M. Dioguardi Burgio, J. Cros, and N. Panvini, “Serotonin Immunoreactive Pancreatic Neuroendocrine Neoplasm Associated With Main Pancreatic Duct Dilation: A Recognizable Entity With Excellent Long-term Outcome,” European Radiology 31, no. 11 (2021): 8671-8681.

[14]

H. Tanaka, T. Sawano, N. Konishi, et al., “Serotonin Induces Arcadlin in Hippocampal Neurons,” Neuroscience Letters 721 (2020): 134783.

[15]

M. Pourhamzeh, F. G. Moravej, M. Arabi, et al., “The Roles of Serotonin in Neuropsychiatric Disorders,” Cellular and Molecular Neurobiology 42, no. 6 (2022): 1671-1692.

[16]

S. W. Watts, S. F. Morrison, R. P. Davis, and S. M. Barman, “Serotonin and Blood Pressure Regulation,” Pharmacological Reviews 64, no. 2 (2012): 359-388.

[17]

F. X. Chen, X. S. Chen, J. C. Guo, B. A. Zheng, and M. Guo, “Serotonin Transporter-linked Polymorphic Region Genotypes in Relation to Stress Conditions Among Patients With Papillary Thyroid Carcinoma,” International Journal of Clinical and Experimental Pathology 12, no. 3 (2019): 968-977.

[18]

M. Zopun, B. Lieder, A. K. Holik, J. P. Ley, J. Hans, and V. Somoza, “Noncaloric Sweeteners Induce Peripheral Serotonin Secretion via the T1R3-Dependent Pathway in Human Gastric Parietal Tumor Cells (HGT-1),” Journal of Agricultural and Food Chemistry 66, no. 27 (2018): 7044-7053.

[19]

Q. Pang, C. Liu, J. Y. Zhang, et al., “Serotonin in Liver Tumor: Friend or Foe?” Hepatology 62, no. 1 (2015): 319.

[20]

D. Sarrouilhe, J. Clarhaut, N. Defamie, and M. Mesnil, “Serotonin and Cancer: What Is the Link?” Current Molecular Medicine 15, no. 1 (2015): 62-77.

[21]

D. Sarrouilhe and M. Mesnil, “Serotonin and human Cancer: A Critical View,” Biochimie 161 (2019): 46-50.

[22]

P. Balakrishna, S. George, H. Hatoum, and S. Mukherjee, “Serotonin Pathway in Cancer,” International Journal of Molecular Sciences 22, no. 3 (2021): 1268.

[23]

W. T. Zandee, R. C. van Adrichem, K. Kamp, R. A. Feelders, M. F. van Velthuysen, and W. W. de Herder, “Incidence and Prognostic Value of Serotonin Secretion in Pancreatic Neuroendocrine Tumours,” Clinical Endocrinology 87, no. 2 (2017): 165-170.

[24]

C. G. Nebigil, J. M. Launay, P. Hickel, C. Tournois, and L. Maroteaux, “5-hydroxytryptamine 2B Receptor Regulates Cell-cycle Progression: Cross-talk With Tyrosine Kinase Pathways,” PNAS 97, no. 6 (2000): 2591-2596.

[25]

M. E. Maffei, “5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology,” International Journal of Molecular Sciences 22, no. 1 (2020): 181.

[26]

F. Cote, E. Thevenot, C. Fligny, et al., “Disruption of the Nonneuronal tph1 Gene Demonstrates the Importance of Peripheral Serotonin in Cardiac Function,” PNAS 100, no. 23 (2003): 13525-13530.

[27]

Q. Q. Liu, X. X. Yao, S. H. Gao, et al., “Role of 5-HT Receptors in Neuropathic Pain: Potential Therapeutic Implications,” Pharmacological Research 159 (2020): 104949.

[28]

A. Haduch, E. Bromek, W. Kuban, and W. A. Daniel, “The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism,” Metabolites 13, no. 5 (2023): 629.

[29]

J. S. Bhullar, J. M. Leung, and M. S. Almehthel, “Management of Refractory Hypoglycaemia in a Metastatic Neuroendocrine Tumour co-secreting Serotonin and Insulin,” BMJ Case Reports 13, no. 11 (2020): e236659.

[30]

L. Yu, S. Li, J. Wei, H. Sun, C. Yang, and H. Tan, “Association of Serotonin Transporter-linked Polymorphic Region (5-HTTLPR) With Heat Pain Stimulation and Postoperative Pain in Gastric Cancer Patients,” Molecular Pain 17 (2021): 17448069211006606.

[31]

K. Hussaarts, F. A. Berger, L. Binkhorst, et al., “The Risk of QTc-Interval Prolongation in Breast Cancer Patients Treated With Tamoxifen in Combination With Serotonin Reuptake Inhibitors,” Pharmaceutical Research 37, no. 1 (2019): 7.

[32]

T. Shinka, D. Onodera, T. Tanaka, et al., “Serotonin Synthesis and Metabolism-related Molecules in a human Prostate Cancer Cell Line,” Oncology Letters 2, no. 2 (2011): 211-215.

[33]

L. F. Mohammad-Zadeh, L. Moses, and S. M. Gwaltney-Brant, “Serotonin: A Review,” Journal of Veterinary Pharmacology and Therapeutics 31, no. 3 (2008): 187-199.

[34]

M. D. Ferrari, J. Odink, C. Tapparelli, G. M. Van Kempen, E. J. Pennings, and G. W. Bruyn, “Serotonin Metabolism in Migraine,” Neurology 39, no. 9 (1989): 1239-1242.

[35]

M. B. H. Youdim and M. Weinstock, “Therapeutic Applications of Selective and Non-Selective Inhibitors of Monoamine Oxidase A and B That Do Not Cause Significant Tyramine Potentiation,” Neurotoxicology 25, no. 1 (2004): 243-250.

[36]

H. Morita, E. Mochiki, N. Takahashi, et al., “Effects of 5-HT2B, 5-HT3 and 5-HT4 Receptor Antagonists on Gastrointestinal Motor Activity in Dogs,” World Journal of Gastroenterology 19, no. 39 (2013): 6604-6612.

[37]

D. G. Grahame-Smith, “Serotonin (5-hydroxytryptamine, 5-HT),” Quarterly Journal of Medicine 67, no. 254 (1988): 459-466.

[38]

P. G. McLean, R. A. Borman, and K. Lee, “5-HT in the Enteric Nervous System: Gut Function and Neuropharmacology,” Trends in Neuroscience (Tins) 30, no. 1 (2007): 9-13.

[39]

A. Meneses, “Physiological, Pathophysiological and Therapeutic Roles of 5-HT Systems in Learning and Memory,” Reviews in the Neurosciences 9, no. 4 (1998): 275-289.

[40]

A. R. Green, “Neuropharmacology of 5-hydroxytryptamine,” British Journal of Pharmacology 147, no. Suppl 1 (2006): S145-S152.

[41]

S. M. Stahl, C. Lee-Zimmerman, S. Cartwright, and D. A. Morrissette, “Serotonergic Drugs for Depression and Beyond,” Current Drug Targets 14, no. 5 (2013): 578-585.

[42]

H. Zhang, H. Xu, Q. Tang, and F. Bi, “The Selective Serotonin Reuptake Inhibitors Enhance the Cytotoxicity of sorafenib in Hepatocellular Carcinoma Cells,” Anti-Cancer Drugs 32, no. 8 (2021): 793-801.

[43]

L. Bardin, “The Complex Role of Serotonin and 5-HT Receptors in Chronic Pain,” Behavioural Pharmacology 22, no. 5-6 (2011): 390-404.

[44]

C. Sommer, “Serotonin in Pain and Analgesia: Actions in the Periphery,” Molecular Neurobiology 30, no. 2 (2004): 117-125.

[45]

C. Sommer, “Is Serotonin Hyperalgesic or Analgesic?” Current Pain and Headache Reports 10, no. 2 (2006): 101-106.

[46]

R. Suzuki, L. J. Rygh, and A. H. Dickenson, “Bad News From the Brain: Descending 5-HT Pathways That Control Spinal Pain Processing,” Trends in Pharmacological Sciences 25, no. 12 (2004): 613-617.

[47]

D. Armstrong, R. M. Dry, C. A. Keele, and J. W. Markham, “Pain-producing Actions of Tryptamine and 5-hydroxytryptamine,” The Journal of Physiology 117, no. 4 (1952): 70p-71p.

[48]

M. Fava, “The Role of the Serotonergic and Noradrenergic Neurotransmitter Systems in the Treatment of Psychological and Physical Symptoms of Depression,” Journal of Clinical Psychiatry 64, no. Suppl 13 (2003): 26-29.

[49]

K. Z. Peters, J. F. Cheer, and R. Tonini, “Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System,” Trends in Neuroscience (Tins) 44, no. 6 (2021): 464-477.

[50]

R. Yamamoto, T. Ito, T. Furuyama, M. Ono, and N. Kato, “5-HT and α-m-5-HT Attenuate Excitatory Synaptic Transmissions Onto the Lateral Amygdala Principal Neurons via Presynaptic 5-HT(1B) Receptors,” Biochemical and Biophysical Research Communications 624 (2022): 28-34.

[51]

S. Afshar, S. Shahidi, H. Baooshi, et al., “The Role of Hippocampal 5-HT(1D) and 5-HT(1F) Receptors on Learning and Memory in Rats,” Naunyn-Schmiedebergs Archives of Pharmacology 396, no. 7 (2023): 1451-1460.

[52]

J. Zeng, X. Li, R. Zhang, et al., “Local 5-HT Signaling bi-directionally Regulates the Coincidence Time Window for Associative Learning,” Neuron 111, no. 7 (2023): 1118-1135. e5.

[53]

M. J. Robson, M. A. Quinlan, and R. D. Blakely, “Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery,” Acs Chemical Neuroscience 8, no. 5 (2017): 932-942.

[54]

N. Israelyan, A. Del Colle, Z. Li, et al., “Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression,” Gastroenterology 157, no. 2 (2019): 507-521. e4.

[55]

Z. Chen, J. Luo, J. Li, et al., “Interleukin-33 Promotes Serotonin Release From Enterochromaffin Cells for Intestinal Homeostasis,” Immunity 54, no. 1 (2021): 151-163. e6.

[56]

N. J. Spencer and D. J. Keating, “Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding,” Advances in Experimental Medicine and Biology 891 (2016): 113-122.

[57]

M. Yang, H. Fukui, H. Eda, et al., “Involvement of Gut Microbiota in the Association Between Gastrointestinal Motility and 5‑HT Expression/M2 Macrophage Abundance in the Gastrointestinal Tract,” Molecular Medicine Reports 16, no. 3 (2017): 3482-3488.

[58]

I. Hanna-Jairala and D. A. Drossman, “Central Neuromodulators in Irritable Bowel Syndrome: Why, How, and When,” American Journal of Gastroenterology 119, no. 7 (2024): 1272-1284.

[59]

J. Bai, Y. Cai, Z. Huang, et al., “Shouhui Tongbian Capsule Ameliorates Constipation via Gut Microbiota-5-HT-intestinal Motility Axis,” Biomedicine & Pharmacotherapy 154 (2022): 113627.

[60]

K. Merecz, M. Hirsa, O. Biniszewska, J. Fichna, and A. Tarasiuk, “An Overview of 5-HT(3) Receptor Antagonists as a Treatment Option for Irritable Bowel Syndrome With Diarrhea,” Expert Opinion on Pharmacotherapy 24, no. 10 (2023): 1189-1198.

[61]

C. Stasi, S. Sadalla, and S. Milani, “The Relationship between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis,” Current Drug Metabolism 20, no. 8 (2019): 646-655.

[62]

Y. H. Kwon and W. I. Khan, “Peripheral Serotonin: Cultivating Companionship With Gut Microbiota in Intestinal Homeostasis,” American Journal of Physiology. Cell Physiology 323, no. 2 (2022): C550-C555.

[63]

E. Ayme-Dietrich, G. Aubertin-Kirch, L. Maroteaux, and L. Monassier, “Cardiovascular Remodeling and the Peripheral Serotonergic System,” Archives of Cardiovascular Diseases 110, no. 1 (2017): 51-59.

[64]

S. A. Doggrell, “The Role of 5-HT on the Cardiovascular and Renal Systems and the Clinical Potential of 5-HT Modulation,” Expert Opinion on Investigational Drugs 12, no. 5 (2003): 805-823.

[65]

N. Kajiwara, T. Kushiro, and H. Hayashi, “[Blood pressure regulation and serotonin],” Nihon Rinsho 43, no. 5 (1985): 923-928.

[66]

C. Schoenichen, C. Bode, and D. Duerschmied, “Role of Platelet Serotonin in Innate Immune Cell Recruitment,” Frontiers in Bioscience-Landmark 24, no. 3 (2019): 514-526.

[67]

K. Nishihira, A. Yamashita, N. Tanaka, et al., “Inhibition of 5-hydroxytryptamine Receptor Prevents Occlusive Thrombus Formation on Neointima of the Rabbit Femoral Artery,” Journal of Thrombosis and Haemostasis 4, no. 1 (2006): 247-255.

[68]

A. M. Galan, I. Lopez-Vilchez, M. Diaz-Ricart, et al., “Serotonergic Mechanisms Enhance Platelet-mediated Thrombogenicity,” Thromb Haemost 102, no. 3 (2009): 511-519.

[69]

N. Liu, S. Sun, P. Wang, Y. Sun, Q. Hu, and X. Wang, “The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine,” International Journal of Molecular Sciences 22, no. 15 (2021): 7931.

[70]

Y. Wu, J. Ma, J. Chen, et al., “Ablation of CD44 Attenuates Adipogenesis in White Adipocytes via the Tryptophan 5-Hydroxylase 2/5-Hydroxytryptamine Axis to Protect Mice From High-Fat Diet-Induced Obesity,” American Journal of Pathology 195, no. 2 (2025): 247-264.

[71]

H. Wu, T. H. Denna, J. N. Storkersen, and V. A. Gerriets, “Beyond a Neurotransmitter: The Role of Serotonin in Inflammation and Immunity,” Pharmacological Research 140 (2019): 100-114.

[72]

A. Parajulee and K. Kim, “Structural Studies of Serotonin Receptor family,” BMB Reports 56, no. 10 (2023): 527-536.

[73]

T. Sharp and N. M. Barnes, “Central 5-HT Receptors and Their Function; Present and Future,” Neuropharmacology 177 (2020): 108155.

[74]

N. I. Kalinina, A. V. Zaitsev, and N. P. Vesselkin, “Presynaptic Serotonin 5-HT(1B/D) Receptor-mediated Inhibition of Glycinergic Transmission to the Frog Spinal Motoneurons,” Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 204, no. 3 (2018): 329-337.

[75]

V. K. Sharma and Y. P. Loh, “The Discovery, Structure, and Function of 5-HTR1E Serotonin Receptor,” Cell Communication and Signaling 21, no. 1 (2023): 235.

[76]

J. Yu, Z. Wang, Y. Chen, and Y. Dong, “Restraint Stress Disrupted Intestinal Homeostasis via 5-HT/HTR7/Wnt/β-Catenin/NF-kB Signaling,” International Journal of Molecular Sciences 26, no. 9 (2025): 4021.

[77]

I. Moutkine, E. L. Collins, C. Béchade, and L. Maroteaux, “Evolutionary Considerations on 5-HT(2) Receptors,” Pharmacological Research 140 (2019): 14-20.

[78]

S. Chaumont-Dubel, V. Dupuy, J. Bockaert, C. Bécamel, and P. Marin, “The 5-HT(6) Receptor Interactome: New Insight in Receptor Signaling and Its Impact on Brain Physiology and Pathologies,” Neuropharmacology 172 (2020): 107839.

[79]

A. Chagraoui, F. Thibaut, and P. De Deurwaerdère, “5-HT6 receptors: Contemporary Views on Their Neurobiological and Pharmacological Relevance in Neuropsychiatric Disorders,” Dialogues in Clinical Neuroscience 27, no. 1 (2025): 112-128.

[80]

A. Åstrand, D. Guerrieri, S. Vikingsson, R. Kronstrand, and H. Green, “In Vitro Characterization of New Psychoactive Substances at the μ-opioid, CB1, 5HT(1A), and 5-HT(2A) Receptors-On-target Receptor Potency and Efficacy, and off-target Effects,” Forensic Science International 317 (2020): 110553.

[81]

A. Tadjalli and G. S. Mitchell, “Cervical Spinal 5-HT(2A) and 5-HT(2B) Receptors Are Both Necessary for Moderate Acute Intermittent Hypoxia-induced Phrenic Long-term Facilitation,” Journal of Applied Physiology 127, no. 2 (2019): 432-443.

[82]

P. Campos-Bedolla, E. G. Torrejón-González, D. Mendoza-Mejía, et al., “Role of 5-HT2 Receptors family in the Allergy-induced Increased Aorta Contractile Responses to 5-HT,” Physiological Research 72, no. 1 (2023): 111-116.

[83]

G. Fakhfouri, K. Mousavizadeh, S. E. Mehr, et al., “From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists,” Molecular Neurobiology 52, no. 3 (2015): 1670-1679.

[84]

Q. Cheng, X. Feng, Q. Meng, et al., “[6]-Gingerol Ameliorates Cisplatin-Induced Pica by Regulating the TPH/MAO-A/SERT/5-HT/5-HT(3) Receptor System in Rats,” Drug Design, Development and Therapy 14 (2020): 4085-4099.

[85]

J. B. Pineda-Farias, P. Barragán-Iglesias, A. Valdivieso-Sánchez, et al., “Spinal 5-HT(4) and 5-HT(6) Receptors Contribute to the Maintenance of Neuropathic Pain in Rats,” Pharmacology Reports 69, no. 5 (2017): 916-923.

[86]

A. Petelák, N. A. Lambert, and A. Bondar, “Serotonin 5-HT(7) Receptor Slows Down the G(s) Protein: A Single Molecule Perspective,” Molecular Biology of the Cell 34, no. 9 (2023): br14.

[87]

Y. Zhou, J. Ma, X. Lin, X. P. Huang, K. Wu, and N. Huang, “Structure-Based Discovery of Novel and Selective 5-Hydroxytryptamine 2B Receptor Antagonists for the Treatment of Irritable Bowel Syndrome,” Journal of Medicinal Chemistry 59, no. 2 (2016): 707-720.

[88]

B. Mao, S. Liu, S. Zhu, et al., “The janus Face of Serotonin: Regenerative Promoter and Chronic Liver Disease Aggravator,” Heliyon 10, no. 9 (2024): e30703.

[89]

R. E. Tay, C. M. Ho, N. D. Z. Ang, et al., “Serotonin Receptor 5-HT(2A) as a Potential Target for HCC Immunotherapy,” Journal for ImmunoTherapy of Cancer 13, no. 6 (2025): e011088.

[90]

D. Hoyer, “5-HT Receptor Nomenclature: Naming Names, Does It Matter? A Tribute to Maurice Rapport,” Acs Chemical Neuroscience 8, no. 5 (2017): 908-919.

[91]

O. E. Brodde, “5-Hydroxytryptamine-receptor Subtypes,” Clinical Physiology and Biochemistry 8, no. Suppl 3 (1990): 19-27.

[92]

J. F. López-Giménez and J. González-Maeso, “Hallucinogens and Serotonin 5-HT(2A) Receptor-Mediated Signaling Pathways,” Current Topics in Behavioral Neurosciences 36 (2018): 45-73.

[93]

K. Kim, T. Che, O. Panova, et al., “Structure of a Hallucinogen-Activated Gq-Coupled 5-HT(2A) Serotonin Receptor,” Cell 182, no. 6 (2020): 1574-1588. e19.

[94]

M. B. Zimering, “Severe COVID-19 Pneumonia Is Associated With Increased Plasma Immunoglobulin G Agonist Autoantibodies Targeting the 5-Hydroxytryptamine 2A Receptor,” Endocrinology, Diabetes & Metabolism 5, no. 1 (2021): 1-9.

[95]

D. O. Borroto-Escuela, X. Li, A. O. Tarakanov, et al., “Existence of Brain 5-HT1A-5-HT2A Isoreceptor Complexes With Antagonistic Allosteric Receptor-Receptor Interactions Regulating 5-HT1A Receptor Recognition,” ACS Omega 2, no. 8 (2017): 4779-4789.

[96]

Z. Barclay, L. Dickson, D. Robertson, et al., “Attenuated PLD1 Association and Signalling at the H452Y Polymorphic Form of the 5-HT(2A) Receptor,” Cell Signalling 25, no. 4 (2013): 814-821.

[97]

A. Iglesias, M. Cimadevila, M. I. Cadavid, M. I. Loza, and J. Brea, “Serotonin-2A Homodimers Are Needed for Signalling via both Phospholipase A(2) and Phospholipase C in Transfected CHO Cells,” European Journal of Pharmacology 800 (2017): 63-69.

[98]

Z. Barclay, L. Dickson, D. N. Robertson, et al., “5-HT2A receptor Signalling Through Phospholipase D1 Associated With Its C-terminal Tail,” Biochemical Journal 436, no. 3 (2011): 651-660.

[99]

L. A. Desouza, M. Benekareddy, S. E. Fanibunda, et al., “The Hallucinogenic Serotonin(2A) Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex,” Frontiers in Molecular Neuroscience 14 (2021): 790213.

[100]

H. Zhu, X. Liu, X. Wang, et al., “Gβγ Subunit Inhibitor Decreases DOM-induced Head Twitch Response via the PLCβ/IP3/Ca(2+)/ERK and cAMP Signaling Pathways,” European Journal of Pharmacology 957 (2023): 176038.

[101]

F. Borsini, E. Giraldo, and E. Monferini, “BIMT 17, a 5-HT2A Receptor Antagonist and 5-HT1A Receptor Full Agonist in Rat Cerebral Cortex,” Naunyn-Schmiedebergs Archives of Pharmacology 352, no. 3 (1995): 276-282.

[102]

D. M. El-Tanbouly, W. Wadie, and R. H. Sayed, “Modulation of TGF-β/Smad and ERK Signaling Pathways Mediates the Anti-fibrotic Effect of Mirtazapine in Mice,” Toxicology and Applied Pharmacology 329 (2017): 224-230.

[103]

Z. Marinova, S. Walitza, and E. Grünblatt, “5-HT2A serotonin Receptor Agonist DOI Alleviates Cytotoxicity in Neuroblastoma Cells: Role of the ERK Pathway,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 44 (2013): 64-72.

[104]

J. A. Florian and S. W. Watts, “Integration of Mitogen-activated Protein Kinase Kinase Activation in Vascular 5-hydroxytryptamine2A Receptor Signal Transduction,” Journal of Pharmacology and Experimental Therapeutics 284, no. 1 (1998): 346-355.

[105]

M. Göőz, P. Göőz, L. M. Luttrell, and J. R. Raymond, “5-HT2A receptor Induces ERK Phosphorylation and Proliferation Through ADAM-17 Tumor Necrosis Factor-alpha-converting Enzyme (TACE) Activation and Heparin-bound Epidermal Growth Factor-Like Growth Factor (HB-EGF) Shedding in Mesangial Cells,” Journal of Biological Chemistry 281, no. 30 (2006): 21004-21012.

[106]

S. W. Watts, “Activation of the Mitogen-activated Protein Kinase Pathway via the 5-HT2A Receptor,” Annals of the New York Academy of Sciences 861 (1998): 162-168.

[107]

P. V. Avdonin, A. D. Nadeev, G. Y. Mironova, I. L. Zharkikh, P. P. Avdonin, and N. V. Goncharov, “Enhancement by Hydrogen Peroxide of Calcium Signals in Endothelial Cells Induced by 5-HT1B and 5-HT2B Receptor Agonists,” Oxidative Medicine and Cellular Longevity 2019 (2019): 1701478.

[108]

T. Oufkir, M. Arseneault, J. T. Sanderson, and C. Vaillancourt, “The 5-HT 2A Serotonin Receptor Enhances Cell Viability, Affects Cell Cycle Progression and Activates MEK-ERK1/2 and JAK2-STAT3 Signalling Pathways in human Choriocarcinoma Cell Lines,” Placenta 31, no. 5 (2010): 439-447.

[109]

T. Klempan, A. A. Hudon-Thibeault, T. Oufkir, C. Vaillancourt, and J. T. Sanderson, “Stimulation of Serotonergic 5-HT2A Receptor Signaling Increases Placental Aromatase (CYP19) Activity and Expression in BeWo and JEG-3 human Choriocarcinoma Cells,” Placenta 32, no. 9 (2011): 651-656.

[110]

M. I. Ahmed, H. M. A. Abdelrazek, Y. M. Moustafa, et al., “Cardioprotective Effect of Flibanserin Against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca(2+) Pathway,” Pharmaceuticals (Basel) 16, no. 4 (2023): 502.

[111]

Y. Kanda, M. Okada, R. Ikarashi, E. Morioka, T. Kondo, and M. Ikeda, “Bimodal Modulation of Store-operated Ca(2+) Channels by Clozapine in Astrocytes,” Neuroscience Letters 635 (2016): 56-60.

[112]

I. P. Voronova, G. M. Khramova, E. A. Kulikova, D. V. Petrovskii, D. V. Bazovkina, and A. V. Kulikov, “5-HT2A receptors Control Body Temperature in Mice During LPS-induced Inflammation via Regulation of NO Production,” Pharmacological Research 103 (2016): 123-131.

[113]

K. Padhariya, R. Bhandare, D. Canney, and V. Velingkar, “Cardiovascular Concern of 5-HT2B Receptor and Recent Vistas in the Development of Its Antagonists,” Cardiovascular & Hematological Disorders-Drug Targets 17, no. 2 (2017): 86-104.

[114]

W. Janssen, Y. Schymura, T. Novoyatleva, et al., “5-HT2B receptor Antagonists Inhibit Fibrosis and Protect From RV Heart Failure,” BioMed Research International 2015 (2015): 438403.

[115]

S. Fatima, X. Shi, Z. Lin, et al., “5-Hydroxytryptamine Promotes Hepatocellular Carcinoma Proliferation by Influencing β-catenin,” Molecular Oncology 10, no. 2 (2016): 195-212.

[116]

J. M. Launay, G. Birraux, D. Bondoux, et al., “Ras Involvement in Signal Transduction by the Serotonin 5-HT2B Receptor,” Journal of Biological Chemistry 271, no. 6 (1996): 3141-3147.

[117]

N. M. Barnes, T. G. Hales, S. C. Lummis, and J. A. Peters, “The 5-HT3 Receptor-the Relationship Between Structure and Function,” Neuropharmacology 56, no. 1 (2009): 273-284.

[118]

S. C. Lummis, “5-HT(3) Receptors,” Journal of Biological Chemistry 287, no. 48 (2012): 40239-40245.

[119]

A. J. Thompson and S. C. Lummis, “5-HT3 receptors,” Current Pharmaceutical Design 12, no. 28 (2006): 3615-3630.

[120]

A. Barzegar-Fallah, H. Alimoradi, J. L. Dunlop, E. Torbati, and S. K. Baird, “Serotonin Type-3 Receptor Antagonists Selectively Kill Melanoma Cells Through Classical Apoptosis, Microtubule Depolymerisation, ERK Activation, and NF-kappaB Downregulation,” Cell Biology and Toxicology (2021).

[121]

S. M. El-Khatib and A. M. Preston, “Effect of Palytoxin and Serotonin on Murine Tumor Cells,” JNCI: Journal of the National Cancer Institute 63, no. 1 (1979): 75-79.

[122]

D. R. Linden and E. E. El-Fakahany, “Microglial Derived Nitric Oxide Decreases Serotonin Content in Rat Basophilic Leukemia (RBL-2H3) Cells,” European Journal of Pharmacology 436, no. 1-2 (2002): 53-56.

[123]

M. Tone, S. Tahara, S. Nojima, D. Motooka, D. Okuzaki, and E. Morii, “HTR3A is Correlated With Unfavorable Histology and Promotes Proliferation Through ERK Phosphorylation in Lung Adenocarcinoma,” Cancer Science 111, no. 10 (2020): 3953-3961.

[124]

L. Lanfumey and M. Hamon, “5-HT1 receptors,” Current Drug Targets. CNS and Neurological Disorders 3, no. 1 (2004): 1-10.

[125]

P. Xu, S. Huang, H. Zhang, et al., “Structural Insights Into the Lipid and Ligand Regulation of Serotonin Receptors,” Nature 592, no. 7854 (2021): 469-473.

[126]

G. Y. Tang, R. J. Wang, Y. Guo, and J. Liu, “5-HT(1B) Receptor-AC-PKA Signal Pathway in the Lateral Habenula Is Involved in the Regulation of Depressive-Like Behaviors in 6-hydroxydopamine-induced Parkinson's Rats,” Neurological Research 45, no. 2 (2023): 127-137.

[127]

P. R. Albert and F. Vahid-Ansari, “The 5-HT1A Receptor: Signaling to Behavior,” Biochimie 161 (2019): 34-45.

[128]

Y. G. Ni, M. M. Panicker, and R. Miledi, “Efficient Coupling of 5-HT1a Receptors to the Phospholipase C Pathway in Xenopus Oocytes,” Brain Research Molecular Brain Research 51, no. 1-2 (1997): 115-122.

[129]

K. A. Berg and W. P. Clarke, “Regulation of 5-HT(1A) and 5-HT(1B) Receptor Systems by Phospholipid Signaling Cascades,” Brain Research Bulletin 56, no. 5 (2001): 471-477.

[130]

M. Zhang, X. Qian, Z. Wei, et al., “Micro-Infusion of 5-HT1a Receptor Antagonists Into the Ventral Subiculum Ameliorate MK-801 Induced Schizophrenia-Like Behavior in Rats,” Neuroscience 552 (2024): 115-125.

[131]

N. Gurbuz, M. R. Asoglu, A. A. Ashour, S. Salama, G. S. Kilic, and B. Ozpolat, “A Selective Serotonin 5-HT(1B) Receptor Inhibition Suppresses Cells Proliferation and Induces Apoptosis in human Uterine Leiomyoma Cells,” European Journal of Obstetrics, Gynecology, and Reproductive Biology 206 (2016): 114-119.

[132]

Y. Liu, Y. J. Suzuki, R. M. Day, and B L. Fanburg, “Rho Kinase-induced Nuclear Translocation of ERK1/ERK2 in Smooth Muscle Cell Mitogenesis Caused by Serotonin,” Circulation Research 95, no. 6 (2004): 579-586.

[133]

Y. V. Mukhin, M. N. Garnovskaya, G. Collinsworth, et al., “5-Hydroxytryptamine1A receptor/Gibetagamma Stimulates Mitogen-activated Protein Kinase via NAD(P)H Oxidase and Reactive Oxygen Species Upstream of Src in chinese Hamster Ovary Fibroblasts,” Biochemical Journal 347, no. Pt 1 (2000): 61-67.

[134]

T. Machida, K. Iizuka, and M. Hirafuji, “5-hydroxytryptamine and Its Receptors in Systemic Vascular Walls,” Biological & pharmaceutical bulletin 36, no. 9 (2013): 1416-1419.

[135]

S. Hemmati, N. Rahimi, S. Dabiri, M. Alaeddini, S. Etemad-Moghadam, and A. R. Dehpour, “Inhibition of Ovalbumin-induced Allergic Rhinitis by sumatriptan Through the Nitric Oxide Pathway in Mice,” Life Sciences 236 (2019): 116901.

[136]

M. Iwabayashi, Y. Taniyama, F. Sanada, et al., “Role of Serotonin in Angiogenesis: Induction of Angiogenesis by Sarpogrelate via Endothelial 5-HT1B/Akt/eNOS Pathway in Diabetic Mice,” Atherosclerosis 220, no. 2 (2012): 337-342.

[137]

J. J. Lee, E. T. Hahm, C. H. Lee, and Y. W. Cho, “5-HT1A receptor-mediated Activation of a G-protein-coupled Inwardly Rectifying K+ Current in Rat Medial Preoptic Area Neurons,” European Journal of Pharmacology 586, no. 1-3 (2008): 114-122.

[138]

F. Amber-Cicek, O. Ugur, K. Sayar, and M. Ugur, “Cell Adhesion Modulates 5-HT(1D) and P2Y Receptor Signal Trafficking Differentially in LTK-8 Cells,” European Journal of Pharmacology 590, no. 1-3 (2008): 12-19.

[139]

D. N. Middlemiss, “The Putative 5-HT1 Receptor Agonist, RU 24969, Inhibits the Efflux of 5-hydroxytryptamine From Rat Frontal Cortex Slices by Stimulation of the 5-HT Autoreceptor,” Journal of Pharmacy and Pharmacology 37, no. 6 (1985): 434-437.

[140]

X. Zhao, Y. Zhang, W. Qin, et al., “Serotonin Type-1D Receptor Stimulation of A-type K(+) Channel Decreases Membrane Excitability Through the Protein Kinase A- and B-Raf-dependent p38 MAPK Pathways in Mouse Trigeminal Ganglion Neurons,” Cell Signalling 28, no. 8 (2016): 979-988.

[141]

P. R. Debata, B. Ranasinghe, A. Berliner, et al., “Erk1/2-dependent Phosphorylation of PKCalpha at Threonine 638 in Hippocampal 5-HT(1A) Receptor-mediated Signaling,” Biochemical and Biophysical Research Communications 397, no. 3 (2010): 401-406.

[142]

A. M. Leone, M. Errico, S. L. Lin, and D. S. Cowen, “Activation of Extracellular Signal-regulated Kinase (ERK) and Akt by human Serotonin 5-HT(1B) Receptors in Transfected BE(2)-C Neuroblastoma Cells Is Inhibited by RGS4,” Journal of Neurochemistry 75, no. 3 (2000): 934-938.

[143]

M. Capi, V. De Angelis, D. De Bernardini, et al., “CGRP Receptor Antagonists and 5-HT1F Receptor Agonist in the Treatment of Migraine,” Journal of Clinical Medicine 10, no. 7 (2021): 1429.

[144]

J. Bockaert, S. Claeysen, V. Compan, and A. Dumuis, “5-HT4 receptors,” Current Drug Targets CNS and Neurological Disorders 3, no. 1 (2004): 39-51.

[145]

S. S. Hegde and R. M. Eglen, “Peripheral 5-HT4 Receptors,” Faseb Journal 10, no. 12 (1996): 1398-1407.

[146]

S. Weninger, K. Van Craenenbroeck, R. T. Cameron, et al., “Phosphodiesterase 4 Interacts With the 5-HT4(b) Receptor to Regulate cAMP Signaling,” Cell Signalling 26, no. 11 (2014): 2573-2582.

[147]

Z. Yu, L. Zikela, D. Wang, et al., “Effects and Mechanisms of Sciadonic Acid on Colonic Transit Function Through Regulating 5-HT4/cAMP/PKA/AQP4 Signaling Pathway in STC Model Mice,” Journal of Nutritional Biochemistry 131 (2024): 109676.

[148]

A. P. Cherkashin, O. A. Rogachevskaja, N. V. Kabanova, P. D. Kotova, M. F. Bystrova, and S. S. Kolesnikov, “Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca(2+) in the Extracellular Medium,” Cells 11, no. 8 (2022): 1369.

[149]

J. M. Kellum, M. R. Budhoo, A. K. Siriwardena, E. P. Smith, and S. A. Jebraili, “Serotonin Induces Cl- secretion in human Jejunal Mucosa in Vitro via a Nonneural Pathway at a 5-HT4 Receptor,” American Journal of Physiology 267, no. 3 Pt 1 (1994): G357-G363.

[150]

M. R. Budhoo, R. P. Harris, and J. M. Kellum, “5-Hydroxytryptamine-induced Cl- transport Is Mediated by 5-HT3 and 5-HT4 Receptors in the Rat Distal Colon,” European Journal of Pharmacology 298, no. 2 (1996): 137-144.

[151]

H. W. Kim, H. Li, H. S. Kim, et al., “Cisapride, a Selective Serotonin 5-HT4-receptor Agonist, Inhibits Voltage-dependent K(+) Channels in Rabbit Coronary Arterial Smooth Muscle Cells,” Biochemical and Biophysical Research Communications 478, no. 3 (2016): 1423-1428.

[152]

L. Fagni, A. Dumuis, M. Sebben, and J. Bockaert, “The 5-HT4 Receptor Subtype Inhibits K+ Current in Colliculi Neurones via Activation of a Cyclic AMP-dependent Protein Kinase,” British Journal of Pharmacology 105, no. 4 (1992): 973-979.

[153]

P. Lecouflet, C. M. Roux, B. Potier, et al., “Interplay Between 5-HT4 Receptors and GABAergic System Within CA1 Hippocampal Synaptic Plasticity,” Cerebral Cortex 31, no. 1 (2021): 694-701.

[154]

V. Sgambato, “The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders,” International Journal of Molecular Sciences 25, no. 10 (2024): 5245.

[155]

S. Claeysen, P. Faye, M. Sebben, S. Taviaux, J. Bockaert, and A. Dumuis, “5-HT4 receptors: Cloning and Expression of New Splice Variants,” Annals of the New York Academy of Sciences 861 (1998): 49-56.

[156]

H. R. Irving, N. Tochon-Danguy, K. A. Chinkwo, et al., “Investigations Into the Binding Affinities of Different human 5-HT4 Receptor Splice Variants,” Pharmacology 85, no. 4 (2010): 224-233.

[157]

T. Brattelid, A. M. Kvingedal, K. A. Krobert, et al., “Cloning, Pharmacological Characterisation and Tissue Distribution of a Novel 5-HT4 Receptor Splice Variant, 5-HT4(i),” Naunyn-Schmiedebergs Archives of Pharmacology 369, no. 6 (2004): 616-628.

[158]

D. L. Nelson, “5-HT5 receptors,” Current Drug Targets CNS and Neurological Disorders 3, no. 1 (2004): 53-58.

[159]

L. Aparicio-Nava, L. A. Márquez-García, and A. Meneses, “Effects of 5-HT(5A) Receptor Blockade on Amnesia or Forgetting,” Behavioural Brain Research 357-358 (2019): 98-103.

[160]

A. M. Kinsey, A. Wainwright, R. Heavens, D. J. Sirinathsinghji, and K. R. Oliver, “Distribution of 5-ht(5A), 5-ht(5B), 5-ht(6) and 5-HT(7) Receptor mRNAs in the Rat Brain,” Brain Research Molecular Brain Research 88, no. 1-2 (2001): 194-198.

[161]

D. R. Thomas, “5-ht5A receptors as a Therapeutic Target,” Pharmacology & Therapeutics 111, no. 3 (2006): 707-714.

[162]

W. D. Gwynne, M. S. Shakeel, A. Girgis-Gabardo, et al., “Antagonists of the Serotonin Receptor 5A Target human Breast Tumor Initiating Cells,” BMC cancer 20, no. 1 (2020): 724.

[163]

M. Noda, S. Yasuda, M. Okada, et al., “Recombinant human Serotonin 5A Receptors Stably Expressed in C6 Glioma Cells Couple to Multiple Signal Transduction Pathways,” Journal of Neurochemistry 84, no. 2 (2003): 222-232.

[164]

M. Yamazaki, K. Harada, N. Yamamoto, et al., “ASP5736, a Novel 5-HT5A Receptor Antagonist, Ameliorates Positive Symptoms and Cognitive Impairment in Animal Models of Schizophrenia,” European Neuropsychopharmacology 24, no. 10 (2014): 1698-1708.

[165]

T. Riccioni, “5-HT6 receptor Characterization,” International Review of Neurobiology 94 (2010): 67-88.

[166]

A. J. Sleight, F. G. Boess, M. Bös, and A. Bourson, “The Putative 5-ht6 Receptor: Localization and Function,” Annals of the New York Academy of Sciences 861 (1998): 91-96.

[167]

A. Nikiforuk, “The Procognitive Effects of 5-HT6 Receptor Ligands in Animal Models of Schizophrenia,” Reviews in the Neurosciences 25, no. 3 (2014): 367-382.

[168]

Y. X. Zhang, M. Yang, F. Liang, et al., “The Pronociceptive Role of 5-HT(6) Receptors in Ventrolateral Orbital Cortex in a Rat Formalin Test Model,” Neurochemistry International 131 (2019): 104562.

[169]

N. Gottlieb, T. Y. Li, A. H. Young, and P. R. Stokes, “The 5-HT7 Receptor System as a Treatment Target for Mood and Anxiety Disorders: A Systematic Review,” Journal of Psychopharmacology 37, no. 12 (2023): 1167-1181.

[170]

E. Gellynck, K. Heyninck, K. W. Andressen, et al., “The Serotonin 5-HT7 Receptors: Two Decades of Research,” Experimental Brain Research 230, no. 4 (2013): 555-568.

[171]

J. M. Monti and H. Jantos, “The Role of Serotonin 5-HT7 Receptor in Regulating Sleep and Wakefulness,” Reviews in the Neurosciences 25, no. 3 (2014): 429-437.

[172]

K. Fukuyama, E. Motomura, and M. Okada, “Brexpiprazole Reduces 5-HT7 Receptor Function on Astroglial Transmission Systems,” International Journal of Molecular Sciences 23, no. 12 (2022): 6571.

[173]

P. B. Hedlund and J. G. Sutcliffe, “Functional, Molecular and Pharmacological Advances in 5-HT7 Receptor Research,” Trends in Pharmacological Sciences 25, no. 9 (2004): 481-486.

[174]

S. Lenglet, E. Louiset, C. Delarue, H. Vaudry, and V. Contesse, “Activation of 5-HT(7) Receptor in Rat Glomerulosa Cells Is Associated With an Increase in Adenylyl Cyclase Activity and Calcium Influx Through T-type Calcium Channels,” Endocrinology 143, no. 5 (2002): 1748-1760.

[175]

A. Matthys, G. Haegeman, K. Van Craenenbroeck, and P. Vanhoenacker, “Role of the 5-HT7 Receptor in the central Nervous System: From Current Status to Future Perspectives,” Molecular Neurobiology 43, no. 3 (2011): 228-253.

[176]

M. Kolaj, L. Zhang, and L. P. Renaud, “Novel Coupling Between TRPC-Like and KNa Channels Modulates Low Threshold Spike-induced Afterpotentials in Rat Thalamic Midline Neurons,” Neuropharmacology 86 (2014): 88-96.

[177]

F. Kawahara, H. Saito, and H. Katsuki, “Inhibition by 5-HT7 Receptor Stimulation of GABAA Receptor-activated Current in Cultured Rat Suprachiasmatic Neurones,” The Journal of Physiology 478, no. Pt 1 (1994): 67-73.

[178]

E. M. Chapin and R. Andrade, “A 5-HT(7) Receptor-mediated Depolarization in the Anterodorsal Thalamus. II. Involvement of the Hyperpolarization-activated Current I(h),” Journal of Pharmacology and Experimental Therapeutics 297, no. 1 (2001): 403-409.

[179]

S. Saha and J. González-Maeso, “The Crosstalk Between 5-HT(2A)R and mGluR2 in Schizophrenia,” Neuropharmacology 230 (2023): 109489.

[180]

R. Pan, L. Wang, X. Xu, et al., “Crosstalk Between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation,” Nutrients 14, no. 18 (2022): 3704.

[181]

T. M. Eriksson, S. Holst, T. L. Stan, et al., “5-HT1A and 5-HT7 Receptor Crosstalk in the Regulation of Emotional Memory: Implications for Effects of Selective Serotonin Reuptake Inhibitors,” Neuropharmacology 63, no. 6 (2012): 1150-1160.

[182]

H. Zhang, Y. Hasegawa, M. Suzuki, et al., “Mouse Enteric Neurons Control Intestinal Plasmacytoid Dendritic Cell Function via Serotonin-HTR7 Signaling,” Nature Communications 15, no. 1 (2024): 9237.

[183]

C. B. M. Poulie, N. Liu, A. A. Jensen, and L. Bunch, “Design, Synthesis, and Pharmacological Characterization of Heterobivalent Ligands for the Putative 5-HT(2A)/mGlu(2) Receptor Complex,” Journal of Medicinal Chemistry 63, no. 17 (2020): 9928-9949.

[184]

L. Albizu, T. Holloway, J. González-Maeso, and S. C. Sealfon, “Functional Crosstalk and Heteromerization of Serotonin 5-HT2A and Dopamine D2 Receptors,” Neuropharmacology 61, no. 4 (2011): 770-777.

[185]

D. Ibi, “Role of Interaction of mGlu2 and 5-HT(2A) Receptors in Antipsychotic Effects,” Pharmacology Biochemistry and Behavior 221 (2022): 173474.

[186]

A. Taddeucci, G. Olivero, A. Roggeri, et al., “Presynaptic 5-HT(2A)-mGlu2/3 Receptor-Receptor Crosstalk in the Prefrontal Cortex: Metamodulation of Glutamate Exocytosis,” Cells 11, no. 19 (2022): 3035.

[187]

L. Wischhof and M. Koch, “5-HT2A and mGlu2/3 Receptor Interactions: On Their Relevance to Cognitive Function and Psychosis,” Behavioural Pharmacology 27, no. 1 (2016): 1-11.

[188]

Y. Chang-Halabi, J. Cordero, X. Sarabia, D. Villalobos, and N. P. Barrera, “Crosstalking Interactions Between P2X4 and 5-HT(3A) Receptors,” Neuropharmacology 236 (2023): 109574.

[189]

G. Burnat, P. Brański, J. Solich, et al., “The Functional Cooperation of 5-HT(1A) and mGlu4R in HEK-293 Cell Line,” Pharmacology Reports 72, no. 5 (2020): 1358-1369.

[190]

B. Chruścicka, C. S. M. Cowan, and S. E. Wallace Fitzsimons, “Molecular, Biochemical and Behavioural Evidence for a Novel Oxytocin Receptor and Serotonin 2C Receptor Heterocomplex,” Neuropharmacology 183 (2021): 108394.

[191]

Y. Wang, D. Wang, Y. Chen, X. Fang, L. Yu, and C. Zhang, “A Novel Synthetic Interfering Peptide Tat-3L4F Attenuates Olanzapine-Induced Weight Gain through Disrupting Crosstalk between Serotonin Receptor 2C and Protein Phosphatase and Tensin Homolog in Rats,” The International Journal of Neuropsychopharmacology 23, no. 8 (2020): 481-490.

[192]

D. Hoyer, J. P. Hannon, and G. R. Martin, “Molecular, Pharmacological and Functional Diversity of 5-HT Receptors,” Pharmacology Biochemistry and Behavior 71, no. 4 (2002): 533-554.

[193]

R. R. Perim, D. P. Fields, and G. S. Mitchell, “Cross-talk Inhibition Between 5-HT(2B) and 5-HT(7) Receptors in Phrenic Motor Facilitation via NADPH Oxidase and PKA,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 314, no. 5 (2018): R709-R715.

[194]

H. Salkin, G. Satir-Basaran, S. Korkmaz, Z. Burcin Gonen, and K. Erdem Basaran, “Mesenchymal Stem Cell-derived Conditioned Medium and Methysergide Give Rise to Crosstalk Inhibition of 5-HT2A and 5-HT7 Receptors in Neuroblastoma Cells,” Brain Research 1808 (2023): 148354.

[195]

K. B. Fink and M. Göthert, “5-HT Receptor Regulation of Neurotransmitter Release,” Pharmacological Reviews 59, no. 4 (2007): 360-417.

[196]

M. Takahashi, Y. Kobayashi, K. Ando, Y. Saito, and S. I. Hisanaga, “Cyclin-dependent Kinase 5 Promotes Proteasomal Degradation of the 5-HT(1A) Receptor via Phosphorylation,” Biochemical and Biophysical Research Communications 510, no. 3 (2019): 370-375.

[197]

Y. Liu, A. W. Gibson, M. R. Levinstein, A. J. Lesiak, S. E. Ong, and J. F. Neumaier, “5-HT(1B) Receptor-Mediated Activation of ERK1/2 Requires both Gα(i/o) and β-Arrestin Proteins,” Acs Chemical Neuroscience 10, no. 7 (2019): 3143-3153.

[198]

A. C. Magalhaes, K. D. Holmes, L. B. Dale, et al., “CRF Receptor 1 Regulates Anxiety Behavior via Sensitization of 5-HT2 Receptor Signaling,” Nature Neuroscience 13, no. 5 (2010): 622-629.

[199]

C. H. Chen, M. M. Paing, and J. Trejo, “Termination of Protease-activated Receptor-1 Signaling by Beta-arrestins Is Independent of Receptor Phosphorylation,” Journal of Biological Chemistry 279, no. 11 (2004): 10020-10031.

[200]

J. Mialet, R. Fischmeister, and F. Lezoualc'h, “Characterization of human 5-HT4(d) Receptor Desensitization in CHO Cells,” British Journal of Pharmacology 138, no. 3 (2003): 445-452.

[201]

J. Janetzko, R. Kise, B. Barsi-Rhyne, et al., “Membrane Phosphoinositides Regulate GPCR-β-arrestin Complex Assembly and Dynamics,” Cell 185, no. 24 (2022): 4560-4573. e19.

[202]

S. Ragini, A. Saini, and I. Mani, “Endocytosis and Signaling of 5-HT1A Receptor,” Progress in Molecular Biology and Translational Science 196 (2023): 113-123.

[203]

S. Wang, H. Liu, J. B. Roberts, et al., “Prolonged Ethanol Exposure Modulates Constitutive Internalization and Recycling of 5-HT1A Receptors,” Journal of Neurochemistry 160, no. 4 (2022): 469-481.

[204]

I. Gaidarov, J. Frazer, X. Chen, et al., “Mechanisms of Constitutive and Agonist-induced 5-HT(2B) Internalization, Persistent Endosomal Signaling and Paradoxical Regulation of Agonist Pharmacology,” Cell Signalling 131 (2025): 111769.

[205]

H. A. Dunn, C. Walther, G. Y. Yuan, F. A. Caetano, C. M. Godin, and S. S. Ferguson, “Role of SAP97 in the Regulation of 5-HT2AR Endocytosis and Signaling,” Molecular Pharmacology 86, no. 3 (2014): 275-283.

[206]

D. Kowal, J. Zhang, S. Nawoschik, et al., “The C-terminus of Gi family G-proteins as a Determinant of 5-HT(1A) Receptor Coupling,” Biochemical and Biophysical Research Communications 294, no. 3 (2002): 655-659.

[207]

M. Soiza-Reilly and K. G. Commons, “Glutamatergic Drive of the Dorsal Raphe Nucleus,” Journal of Chemical Neuroanatomy 41, no. 4 (2011): 247-255.

[208]

B. Y. Li and W. H. Li, “Effects of 5-HT Released From Platelets on Thrombin-induced Aggregation and ATP Release in Rabbit Platelets in Vitro,” Zhongguo Yao Li Xue Bao = Acta Pharmacologica Sinica 19, no. 4 (1998): 383-386.

[209]

W. D. Gwynne, R. M. Hallett, A. Girgis-Gabardo, et al., “Serotonergic System Antagonists Target Breast Tumor Initiating Cells and Synergize With Chemotherapy to Shrink human Breast Tumor Xenografts,” Oncotarget 8, no. 19 (2017): 32101-32116.

[210]

M. Masab and M. W. Saif, “Telotristat ethyl: Proof of Principle and the First Oral Agent in the Management of Well-differentiated Metastatic Neuroendocrine Tumor and Carcinoid Syndrome Diarrhea,” Cancer Chemotheraphy and Pharmacology 80, no. 6 (2017): 1055-1062.

[211]

M. A. Morse, E. Liu, V. N. Joish, et al., “Antiproliferative Effects of Telotristat Ethyl in Patients With Neuroendocrine Tumors: The TELEACE Real-World Chart Review Study,” Cancer Management and Research 12 (2020): 6607-6614.

[212]

M. A. Schneider, L. Heeb, M. M. Beffinger, et al., “Attenuation of Peripheral Serotonin Inhibits Tumor Growth and Enhances Immune Checkpoint Blockade Therapy in Murine Tumor Models,” Science Translational Medicine 13, no. 611 (2021): eabc8188.

[213]

D. H. Tow, C. G. Tran, L. C. Borbon, et al., “Inhibition of Serotonin Biosynthesis in Neuroendocrine Neoplasm Suppresses Tumor Growth in Vivo,” BioRxiv (2023).

[214]

J. Zhang, Z. Guo, Q. Xie, C. Zhong, X. Gao, and Q. Yang, “Tryptophan Hydroxylase 1 Drives Glioma Progression by Modulating the Serotonin/L1CAM/NF-kappaB Signaling Pathway,” BMC cancer 22, no. 1 (2022): 457.

[215]

G. Alpini, P. Invernizzi, E. Gaudio, et al., “Serotonin Metabolism Is Dysregulated in Cholangiocarcinoma, Which Has Implications for Tumor Growth,” Cancer Research 68, no. 22 (2008): 9184-9193.

[216]

L. R. Frick, M. Rapanelli, M. L. Arcos, G. A. Cremaschi, and A M. Genaro, “Oral Administration of Fluoxetine Alters the Proliferation/Apoptosis Balance of Lymphoma Cells and Up-regulates T Cell Immunity in Tumor-bearing Mice,” European Journal of Pharmacology 659, no. 2-3 (2011): 265-272.

[217]

E. Saponara, M. Visentin, F. Baschieri, et al., “Serotonin Uptake Is Required for Rac1 Activation in Kras-induced Acinar-to-ductal Metaplasia in the Pancreas,” Journal of Pathology 246, no. 3 (2018): 352-365.

[218]

D. Peer, Y. Dekel, D. Melikhov, and R. Margalit, “Fluoxetine Inhibits Multidrug Resistance Extrusion Pumps and Enhances Responses to Chemotherapy in Syngeneic and in human Xenograft Mouse Tumor Models,” Cancer Research 64, no. 20 (2004): 7562-7569.

[219]

V. van Noort, S. Scholch, M. Iskar, et al., “Novel Drug Candidates for the Treatment of Metastatic Colorectal Cancer Through Global Inverse Gene-expression Profiling,” Cancer Research 74, no. 20 (2014): 5690-5699.

[220]

X. Jiang, W. Lu, X. Shen, et al., “Repurposing Sertraline Sensitizes Non-small Cell Lung Cancer Cells to Erlotinib by Inducing Autophagy,” JCI Insight 3, no. 11 (2018): e98921.

[221]

Y. Shen, X. Luo, H. Li, Z. Chen, Q. Guan, and L. Cheng, “Simple and Reliable Serotonin Assay in human Serum by LC-MS/MS Method Coupled With One Step Protein Precipitation for Clinical Testing in Patients With Carcinoid Tumors,” Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1158 (2020): 122395.

[222]

M. Mitsis, G. Markopoulos, G. A. Alexiou, et al., “Antiproliferative and Cytotoxic Action of N-(p-coumaroyl) serotonin in Lung Cancer Cells,” Journal of Buon 23, no. 6 (2018): 1693-1698.

[223]

J. B. Wu, T. P. Lin, J. D. Gallagher, et al., “Monoamine Oxidase A Inhibitor-near-infrared Dye Conjugate Reduces Prostate Tumor Growth,” Journal of the American Chemical Society 137, no. 6 (2015): 2366-2374.

[224]

S. Kushal, W. Wang, V. P. Vaikari, et al., “Monoamine Oxidase A (MAO A) Inhibitors Decrease Glioma Progression,” Oncotarget 7, no. 12 (2016): 13842-13853.

[225]

P. C. Li, S. Y. Chen, D. Xiangfei, C. Mao, C. H. Wu, and J C. Shih, “PAMs Inhibits Monoamine Oxidase a Activity and Reduces Glioma Tumor Growth, a Potential Adjuvant Treatment for Glioma,” BMC Complementary Medicine and Therapies 20, no. 1 (2020): 252.

[226]

Y. C. Wang, X. Wang, J. Yu, et al., “Targeting Monoamine Oxidase A-regulated Tumor-associated Macrophage Polarization for Cancer Immunotherapy,” Nature Communications 12, no. 1 (2021): 3530.

[227]

X. Wang, B. Li, Y. J. Kim, et al., “Targeting Monoamine Oxidase A for T Cell-based Cancer Immunotherapy,” Science Immunology 6, no. 59 (2021): eabh2383-eabh2383.

[228]

P. C. Li, I. N. Siddiqi, A. Mottok, et al., “Monoamine Oxidase A Is Highly Expressed in Classical Hodgkin Lymphoma,” Journal of Pathology 243, no. 2 (2017): 220-229.

[229]

K. Wang, J. Luo, S. Yeh, et al., “The MAO Inhibitors Phenelzine and Clorgyline Revert Enzalutamide Resistance in Castration Resistant Prostate Cancer,” Nature Communications 11, no. 1 (2020): 2689.

[230]

M. Vanneste, A. Venzke, S. Guin, et al., “The Anti-cancer Efficacy of a Novel Phenothiazine Derivative Is Independent of Dopamine and Serotonin Receptor Inhibition,” Frontiers in oncology 13 (2023): 1295185.

[231]

N. Dizeyi, P. Hedlund, A. Bjartell, M. Tinzl, K. Austild-Tasken, and P A. Abrahamsson, “Serotonin Activates MAP Kinase and PI3K/Akt Signaling Pathways in Prostate Cancer Cell Lines,” Urologic Oncology 29, no. 4 (2011): 436-445.

[232]

J. Jose, C. D. J. Tavares, N. D. Ebelt, et al., “Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth,” Acs Medicinal Chemistry Letters 8, no. 10 (2017): 1072-1076.

[233]

S. S. Kolan, T. Lidstrom, T. Mediavilla, et al., “Growth-inhibition of Cell Lines Derived From B Cell Lymphomas Through Antagonism of Serotonin Receptor Signaling,” Scientific Reports 9, no. 1 (2019): 4276.

[234]

C. Soll, M. O. Riener, C. E. Oberkofler, et al., “Expression of Serotonin Receptors in human Hepatocellular Cancer,” Clinical Cancer Research 18, no. 21 (2012): 5902-5910.

[235]

H. Sui, H. Xu, Q. Ji, et al., “5-hydroxytryptamine Receptor (5-HT1DR) Promotes Colorectal Cancer Metastasis by Regulating Axin1/Beta-catenin/MMP-7 Signaling Pathway,” Oncotarget 6, no. 28 (2015): 25975-25987.

[236]

X. Qin, J. Li, S. Wang, et al., “Serotonin/HTR1E Signaling Blocks Chronic Stress-promoted Progression of Ovarian Cancer,” Theranostics 11, no. 14 (2021): 6950-6965.

[237]

C. S. Sreevidya, N. M. Khaskhely, A. Fukunaga, P. Khaskina, and S E. Ullrich, “Inhibition of Photocarcinogenesis by Platelet-activating Factor or Serotonin Receptor Antagonists,” Cancer Research 68, no. 10 (2008): 3978-3984.

[238]

C. Liang, W. Chen, and X. Zhi, “Serotonin Promotes the Proliferation of Serum-deprived Hepatocellular Carcinoma Cells via Upregulation of FOXO3a,” Molecular cancer 12, no. 1 (2013): 14.

[239]

M. Asada, S. Ebihara, S. Yamanda, et al., “Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-regulated Kinase 1/2 Phosphorylation,” Neoplasia 11, no. 4 (2009): 408-417.

[240]

S. Liu, R. Miao, M. Zhai, et al., “Effects and Related Mechanisms of Serotonin on Malignant Biological Behavior of Hepatocellular Carcinoma via Regulation of Yap,” Oncotarget 8, no. 29 (2017): 47412-47424.

[241]

S. H. Jiang, J. Li, F. Y. Dong, et al., “Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice,” Gastroenterology 153, no. 1 (2017): 277-291. e19.

[242]

M. de las Casas-Engel, A. Dominguez-Soto, E. Sierra-Filardi, et al., “Serotonin Skews human Macrophage Polarization Through HTR2B and HTR7,” Journal of Immunology 190, no. 5 (2013): 2301-2310.

[243]

C. Weidmann, J. Berube, L. Piquet, A. de la Fouchardiere, and S. Landreville, “Expression of the Serotonin Receptor 2B in Uveal Melanoma and Effects of an Antagonist on Cell Lines,” Clinical & Experimental Metastasis 35, no. 3 (2018): 123-134.

[244]

B. Svejda, M. Kidd, F. Giovinazzo, et al., “The 5-HT(2B) Receptor Plays a Key Regulatory Role in both Neuroendocrine Tumor Cell Proliferation and the Modulation of the Fibroblast Component of the Neoplastic Microenvironment,” Cancer 116, no. 12 (2010): 2902-2912.

[245]

N. Dizeyi, A. Bjartell, P. Hedlund, K. A. Tasken, V. Gadaleanu, and P A. Abrahamsson, “Expression of Serotonin Receptors 2B and 4 in human Prostate Cancer Tissue and Effects of Their Antagonists on Prostate Cancer Cell Lines,” European Urology 47, no. 6 (2005): 895-900.

[246]

F. Jaffré, J. Callebert, A. Sarre, et al., “Involvement of the Serotonin 5-HT2B Receptor in Cardiac Hypertrophy Linked to Sympathetic Stimulation: Control of Interleukin-6, Interleukin-1beta, and Tumor Necrosis Factor-alpha Cytokine Production by Ventricular Fibroblasts,” Circulation 110, no. 8 (2004): 969-974.

[247]

J. S. Lee, S. Y. Park, N. Y. Kim, et al., “Anti-Tumor Potential of a 5-HT3 Receptor Antagonist as a Novel Autophagy Inducer in Lung Cancer: A Retrospective Clinical Study With in Vitro Confirmation,” Journal of Clinical Medicine 8, no. 9 (2019): 1380.

[248]

Y. Merrouche, G. Catimel, P. Rebattu, et al., “A Phase I Antiemetic Study of MDL 73,147EF, a Novel 5-hydroxytryptamine Antagonist in Cancer Patients Receiving Emetogenic Chemotherapy,” Annals of Oncology 5, no. 6 (1994): 549-551.

[249]

O. Mir, J. P. Durand, P. Boudou-Rouquette, et al., “Interaction Between Serotonin Reuptake Inhibitors, 5-HT3 Antagonists, and NK1 Antagonists in Cancer Patients Receiving Highly Emetogenic Chemotherapy: A Case-control Study,” Supportive Care in Cancer 20, no. 9 (2012): 2235-2239.

[250]

J. J. Curtis, N. T. K. Vo, C. B. Seymour, and C E. Mothersill, “5-HT(2A) and 5-HT(3) Receptors Contribute to the Exacerbation of Targeted and Non-targeted Effects of Ionizing Radiation-induced Cell Death in human Colon Carcinoma Cells,” International Journal of Radiation Biology 96, no. 4 (2020): 482-490.

[251]

J. Ishizuka, A. C. Hsieh, C. M. Townsend, and J. C. Thompson, “Effect of 5-HT3 Receptor Antagonist (ondansetron) on Functioning human Pancreatic Carcinoid Cells,” Surgical Oncology 2, no. 4 (1993): 221-225.

[252]

H. Qiao, Y. B. Wang, Y. M. Gao, and L L. Bi, “Prucalopride Inhibits the Glioma Cells Proliferation and Induces Autophagy via AKT-mTOR Pathway,” BMC Neurology [Electronic Resource] 18, no. 1 (2018): 80.

[253]

T. Nishikawa, N. H. Tsuno, Y. Shuno, et al., “Antiangiogenic Effect of a Selective 5-HT4 Receptor Agonist,” Journal of Surgical Research 159, no. 2 (2010): 696-704.

[254]

Q. Lu, Y. Ding, Y. Li, and Q. Lu, “5-HT Receptor Agonist Valerenic Acid Enhances the Innate Immunity Signal and Suppresses Glioblastoma Cell Growth and Invasion,” International Journal of Biological Sciences 16, no. 12 (2020): 2104-2115.

[255]

S. Fatima, X. Shi, Z. Lin, et al., “5-Hydroxytryptamine Promotes Hepatocellular Carcinoma Proliferation by Influencing Beta-catenin,” Molecular Oncology 10, no. 2 (2016): 195-212.

[256]

B. Svejda, M. Kidd, A. Timberlake, et al., “Serotonin and the 5-HT7 Receptor: The Link Between Hepatocytes, IGF-1 and Small Intestinal Neuroendocrine Tumors,” Cancer Science 104, no. 7 (2013): 844-855.

[257]

I. Cinar, B. Sirin, Z. Halici, S. S. Palabiyik-Yucelik, E. Akpinar, and E. Cadirci, “5-HT7 receptors as a New Target for Prostate Cancer Physiopathology and Treatment: An Experimental Study on PC-3 Cells and FFPE Tissues,” Naunyn-Schmiedebergs Archives of Pharmacology 394, no. 6 (2021): 1205-1213.

[258]

J. Gautam, S. Banskota, S. C. Regmi, et al., “Tryptophan Hydroxylase 1 and 5-HT(7) Receptor Preferentially Expressed in Triple-negative Breast Cancer Promote Cancer Progression Through Autocrine Serotonin Signaling,” Molecular cancer 15, no. 1 (2016): 75.

[259]

K. Lieb, L. Biersack, A. Waschbisch, et al., “Serotonin via 5-HT7 Receptors Activates p38 Mitogen-activated Protein Kinase and Protein Kinase C Epsilon Resulting in Interleukin-6 Synthesis in human U373 MG Astrocytoma Cells,” Journal of Neurochemistry 93, no. 3 (2005): 549-559.

[260]

X. Du, T. Wang, Z. Wang, et al., “5-HT(7) Receptor Contributes to Proliferation, Migration and Invasion in NSCLC Cells,” OncoTargets and Therapy 13 (2020): 2139-2151.

[261]

M. Camilleri, “LX-1031, a Tryptophan 5-hydroxylase Inhibitor That Reduces 5-HT Levels for the Potential Treatment of Irritable Bowel Syndrome,” Idrugs 13, no. 12 (2010): 921-928.

[262]

C. M. Ervin and A. W. Mangel, “Clinical Trials in Irritable Bowel Syndrome: A Review,” Reviews on Recent Clinical Trials 8, no. 1 (2013): 9-22.

[263]

P. M. Brown, D. A. Drossman, A. J. Wood, et al., “The Tryptophan Hydroxylase Inhibitor LX1031 Shows Clinical Benefit in Patients With Nonconstipating Irritable Bowel Syndrome,” Gastroenterology 141, no. 2 (2011): 507-516.

[264]

M. J. da Rocha, C. S. Pires, M. H. Presa, et al., “Involvement of the Serotonergic System in the Antidepressant-Like Effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine in Mice,” Psychopharmacology 240, no. 2 (2023): 373-389.

[265]

J. Fu, Q. Y. Yang, K. Sai, et al., “TGM2 inhibition Attenuates ID1 Expression in CD44-high Glioma-initiating Cells,” Neuro-oncology 15, no. 10 (2013): 1353-1365.

[266]

D. P. Figgitt and M. K. Fluvoxamine, “An Updated Review of Its Use in the Management of Adults With Anxiety Disorders,” Drugs 60, no. 4 (2000): 925-954.

[267]

Vilazodone. Drugs and Lactation Database (LactMed®). National Institute of Child Health and Human Development; 2006.

[268]

R. Aghajani, M. Tavalaee, N. Sadeghi, et al., “Paroxetine Treatment in an Animal Model of Depression Improves Sperm Quality,” PLoS ONE 17, no. 12 (2022): e0271217.

[269]

M. Bourin, P. Chue, and Y. Guillon, “Paroxetine: A Review,” CNS Drug Reviews 7, no. 1 (2001): 25-47.

[270]

R. Kumar, S. N. Ali, S. Saha, and S. Bhattacharjee, “SSRI Induced Hypnic Jerks: A Case Series,” Indian Journal of Psychiatry 65, no. 7 (2023): 785-788.

[271]

T. Sharp and H. Collins, “Mechanisms of SSRI Therapy and Discontinuation,” Current Topics in Behavioral Neurosciences 66 (2024): 21-47.

[272]

G. Crépeau-Gendron, H. K. Brown, C. Shorey, et al., “Association Between Citalopram, Escitalopram and QTc Prolongation in a Real-world Geriatric Setting,” Journal of Affective Disorders 250 (2019): 341-345.

[273]

P. F. Smith and C. L. Darlington, “A Possible Explanation for Dizziness Following SSRI Discontinuation,” Acta Oto-Laryngologica 130, no. 9 (2010): 981-983.

[274]

J. K. Mortensen and G. Andersen, “Safety Considerations for Prescribing SSRI Antidepressants to Patients at Increased Cardiovascular Risk,” Expert Opinion on Drug Safety 21, no. 4 (2022): 467-475.

[275]

A. Skalkidou, I. Sundström-Poromaa, A. Wikman, S. Hesselman, A. K. Wikström, and E. Elenis, “SSRI Use During Pregnancy and Risk for Postpartum Haemorrhage: A National Register-based Cohort Study in Sweden,” Bjog 127, no. 11 (2020): 1366-1373.

[276]

H. Brauch, T. E. Mürdter, M. Eichelbaum, and M. Schwab, “Pharmacogenomics of Tamoxifen Therapy,” Clinical Chemistry 55, no. 10 (2009): 1770-1782.

[277]

R. H. Howland, “MAOI Antidepressant Drugs,” Journal of Psychosocial Nursing and Mental Health Services 44, no. 6 (2006): 9-12.

[278]

V. Van den Eynde, G. Parker, H. G. Ruhé, et al., “On the Origins of MAOI Misconceptions: Reaffirming Their Role in Melancholic Depression,” Psychopharmacology Bulletin 53, no. 3 (2023): 35-54.

[279]

T. Sub Laban and A. Saadabadi, “Monoamine Oxidase Inhibitors (MAOI),” StatPearls (StatPearls Publishing. Copyright © 2025, StatPearls Publishing LLC., 2025).

[280]

V. Van den Eynde, W. R. Abdelmoemin, M. M. Abraham, et al., “The Prescriber's Guide to Classic MAO Inhibitors (phenelzine, tranylcypromine, isocarboxazid) for Treatment-resistant Depression,” CNS Spectrums 28, no. 4 (2023): 427-440.

[281]

P. Riederer, L. Lachenmayer, and G. Laux, “Clinical Applications of MAO-inhibitors,” Current Medicinal Chemistry 11, no. 15 (2004): 2033-2043.

[282]

B. Bandelow, J. Zohar, E. Hollander, S. Kasper, and H. J. Möller, “World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Pharmacological Treatment of Anxiety, Obsessive-compulsive and Posttraumatic Stress Disorders,” The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry 3, no. 4 (2002): 171-199.

[283]

Ł. Grabowski, “[Monoamine oxidase inhibitors (MAOI): Pharmacology, metabolism and application in the treatment of depression],” Postepy Biochemii 67, no. 2 (2021): 130-140. Inhibitory monoaminooksydazy (IMAO): farmakologia, metabolizm i zastosowanie w terapii depresji o różnej etiologii.

[284]

W. J. Scotton, L. J. Hill, A. C. Williams, and N. M. Barnes, “Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions,” International Journal of Tryptophan Research 12 (2019): 1178646919873925.

[285]

J. P. Feighner, W. F. Boyer, D. L. Tyler, and R. J. Neborsky, “Adverse Consequences of Fluoxetine-MAOI Combination Therapy,” Journal of Clinical Psychiatry 51, no. 6 (1990): 222-225.

[286]

V. Van den Eynde, P. K. Gillman, and B. B. Blackwell, “The Prescriber's Guide to the MAOI Diet-Thinking through Tyramine Troubles,” Psychopharmacology Bulletin 52, no. 2 (2022): 73-116.

[287]

E. Garcia and C. Santos, “Monoamine Oxidase Inhibitor Toxicity,” StatPearls (StatPearls Publishing. Copyright © 2025, StatPearls Publishing LLC., 2025).

[288]

S. C. Dilsaver, “Heterocyclic Antidepressant, Monoamine Oxidase Inhibitor and Neuroleptic Withdrawal Phenomena,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 14, no. 2 (1990): 137-161.

[289]

M. V. Vargas, L. E. Dunlap, C. Dong, et al., “Psychedelics Promote Neuroplasticity Through the Activation of Intracellular 5-HT2A Receptors,” Science 379, no. 6633 (2023): 700-706.

[290]

A. Zięba, P. Stępnicki, D. Matosiuk, and A A. Kaczor, “Overcoming Depression With 5-HT(2A) Receptor Ligands,” International Journal of Molecular Sciences 23, no. 1 (2021): 10.

[291]

D. E. Nichols, “Psychedelics,” Pharmacological Reviews 68, no. 2 (2016): 264-355.

[292]

K. H. Preller, J. B. Burt, J. L. Ji, et al., “Changes in Global and Thalamic Brain Connectivity in LSD-induced Altered States of Consciousness Are Attributable to the 5-HT2A Receptor,” Elife 7 (2018): e35082.

[293]

B. M. Smith, J. M. Smith, J. H. Tsai, et al., “Discovery and Structure-activity Relationship of (1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a Selective Serotonin 5-HT2C Receptor Agonist for the Treatment of Obesity,” Journal of Medicinal Chemistry 51, no. 2 (2008): 305-313.

[294]

C. T. Nguyen, S. Zhou, W. Shanahan, and R. Fain, “Lorcaserin in Obese and Overweight Patients Taking Prohibited Serotonergic Agents: A Retrospective Analysis,” Clinical Therapeutics 38, no. 6 (2016): 1498-1509.

[295]

S. Aznar and S. Hervig Mel, “The 5-HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases,” Neuroscience and Biobehavioral Reviews 64 (2016): 63-82.

[296]

L. Olajossy-Hilkesberger, B. Godlewska, A. Schosser-Haupt, et al., “Polymorphisms of the 5-HT2A Receptor Gene and Clinical Response to Olanzapine in Paranoid Schizophrenia,” Neuropsychobiology 64, no. 4 (2011): 202-210.

[297]

S. A. Gaitonde, C. Avet, M. de la Fuente Revenga, et al., “Pharmacological Fingerprint of Antipsychotic Drugs at the Serotonin 5-HT(2A) Receptor,” Molecular Psychiatry 29, no. 9 (2024): 2753-2764.

[298]

H. Hashizume, M. Kawakami, M. Yoshida, M. Okada, Y. Enyo, and Y. Inomata, “Sarpogrelate Hydrochloride, a 5-HT2A Receptor Antagonist, Attenuates Neurogenic Pain Induced by Nucleus Pulposus in Rats,” Spine (Phila Pa 1976) 32, no. 3 (2007): 315-320.

[299]

T. Nagatomo, M. Rashid, H. Muntasir, T. Komiyama, and H. Abul Muntasir, “Functions of 5-HT2A Receptor and Its Antagonists in the Cardiovascular System,” Pharmacology & Therapeutics 104, no. 1 (2004): 59-81.

[300]

Y. Gozes, M. Moayeri, J. F. Wiggins, and S H. Leppla, “Anthrax Lethal Toxin Induces Ketotifen-sensitive Intradermal Vascular Leakage in Certain Inbred Mice,” Infection and Immunity 74, no. 2 (2006): 1266-1272.

[301]

M. Idzko, E. Panther, C. Stratz, et al., “The Serotoninergic Receptors of human Dendritic Cells: Identification and Coupling to Cytokine Release,” Journal of Immunology 172, no. 10 (2004): 6011-6019.

[302]

C. Nieto, I. Rayo, L. de, et al., “Serotonin (5-HT) Shapes the Macrophage Gene Profile Through the 5-HT(2B)-Dependent Activation of the Aryl Hydrocarbon Receptor,” Journal of Immunology 204, no. 10 (2020): 2808-2817.

[303]

A. J. Thompson and S C. Lummis, “The 5-HT3 Receptor as a Therapeutic Target,” Expert Opinion on Therapeutic Targets 11, no. 4 (2007): 527-540.

[304]

T K. Machu, “Therapeutics of 5-HT3 Receptor Antagonists: Current Uses and Future Directions,” Pharmacology & Therapeutics 130, no. 3 (2011): 338-347.

[305]

G. Fakhfouri, R. Rahimian, J. E. Ghia, W. I. Khan, and A R. Dehpour, “Impact of 5-HT3 Receptor Antagonists on Peripheral and central Diseases,” Drug Discovery Today 17, no. 13-14 (2012): 741-747.

[306]

T. J. Gan, K. G. Belani, S. Bergese, et al., “Fourth Consensus Guidelines for the Management of Postoperative Nausea and Vomiting,” Anesthesia and Analgesia 131, no. 2 (2020): 411-448.

[307]

K. Gupta, R. Walton, and S P. Kataria, “Chemotherapy-Induced Nausea and Vomiting: Pathogenesis, Recommendations, and New Trends,” Cancer Treatment and Research Communications 26 (2021): 100278.

[308]

I. Butt and F. Kasmin, “Alosetron,” StatPearls (StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC., 2025).

[309]

C. J. Li, L. G. Zhang, L. B. Liu, et al., “Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson's Disease,” Molecular Neurobiology 59, no. 12 (2022): 7253-7264.

[310]

N. Eissazade, H. Mosavari, S. Eghdami, M. Boroon, F. Ashrafi, and M. Shalbafan, “Efficacy and Safety of 5-hydroxytryptamine-3 (5-HT3) Receptor Antagonists in Augmentation With Selective Serotonin Reuptake Inhibitors (SSRIs) in the Treatment of Moderate to Severe Obsessive-compulsive Disorder: A Systematic Review and Meta-analysis of Randomized Clinical Trials,” Scientific Reports 13, no. 1 (2023): 20837.

[311]

N. A. Khan and J P. Poisson, “5-HT3 receptor-channels Coupled With Na+ Influx in human T Cells: Role in T Cell Activation,” Journal of Neuroimmunology 99, no. 1 (1999): 53-60.

[312]

J. Ailani, R. C. Burch, and M S. Robbins, “The American Headache Society Consensus Statement: Update on Integrating New Migraine Treatments Into Clinical Practice,” Headache 61, no. 7 (2021): 1021-1039.

[313]

C. P. Zhu, S. Q. Liu, K. Q. Wang, et al., “Targeting 5-Hydroxytryptamine Receptor 1A in the Portal Vein to Decrease Portal Hypertension,” Gastroenterology 167, no. 5 (2024): 993-1007.

[314]

J. Staroń, R. Bugno, A. S. Hogendorf, and A J. Bojarski, “5-HT1A receptor Ligands and Their Therapeutic Applications: Review of New Patents,” Expert Opinion on Therapeutic Patents 28, no. 9 (2018): 679-689.

[315]

A. Kaur Gill, Y. Bansal, R. Bhandari, et al., “Gepirone Hydrochloride: A Novel Antidepressant With 5-HT1A Agonistic Properties,” Drugs of Today (Barcelona, Spain: 1998) 55, no. 7 (2019): 423-437.

[316]

L. A. Dawson and J M. Watson, “Vilazodone: A 5-HT1A Receptor Agonist/Serotonin Transporter Inhibitor for the Treatment of Affective Disorders,” CNS neuroscience & therapeutics 15, no. 2 (2009): 107-117.

[317]

Z. T. Sahli, P. Banerjee, and F I. Tarazi, “The Preclinical and Clinical Effects of Vilazodone for the Treatment of Major Depressive Disorder,” Expert Opin Drug Discov 11, no. 5 (2016): 515-523.

[318]

N. M. Bozkurt and G. Unal, “Vortioxetine Improved Negative and Cognitive Symptoms of Schizophrenia in Subchronic MK-801 Model in Rats,” Behavioural Brain Research 444 (2023): 114365.

[319]

S. Nikolaus, H. J. Wittsack, M. Beu, et al., “The 5-HT(1A) Receptor Antagonist WAY-100635 Decreases Motor/Exploratory Behaviors and Nigrostriatal and Mesolimbocortical Dopamine D(2/3) Receptor Binding in Adult Rats,” Pharmacology Biochemistry and Behavior 215 (2022): 173363.

[320]

H. C. Diener and A. May, “Drug Treatment of Cluster Headache,” Drugs 82, no. 1 (2022): 33-42.

[321]

P. J. Pauwels and G W. John, “Present and Future of 5-HT Receptor Agonists as Antimigraine Drugs,” Clinical Neuropharmacology 22, no. 3 (1999): 123-136.

[322]

C. Cameron, S. Kelly, S. C. Hsieh, et al., “Triptans in the Acute Treatment of Migraine: A Systematic Review and Network Meta-Analysis,” Headache 55, no. Suppl 4 (2015): 221-235.

[323]

M. Tanaka, N. Török, and L. Vécsei, “Are 5-HT(1) Receptor Agonists Effective Anti-migraine Drugs?” Expert Opinion on Pharmacotherapy 22, no. 10 (2021): 1221-1225.

[324]

D. Xue, X. Guo, J. Liu, et al., “Tryptophan-rich Diet and Its Effects on Htr7(+) Tregs in Alleviating Neuroinflammation and Cognitive Impairment Induced by Lipopolysaccharide,” Journal of Neuroinflammation 21, no. 1 (2024): 241.

[325]

Y N. Lamb, “Lasmiditan: First Approval,” Drugs 79, no. 18 (2019): 1989-1996.

[326]

R. Ataee, S. Ajdary, M. Zarrindast, M. Rezayat, and M R. Hayatbakhsh, “Anti-mitogenic and Apoptotic Effects of 5-HT1B Receptor Antagonist on HT29 Colorectal Cancer Cell Line,” Journal of Cancer Research and Clinical Oncology 136, no. 10 (2010): 1461-1469.

[327]

H. Hagena and D. Manahan-Vaughan, “The Serotonergic 5-HT4 Receptor: A Unique Modulator of Hippocampal Synaptic Information Processing and Cognition,” Neurobiology of Learning and Memory 138 (2017): 145-153.

[328]

Serotonin 5-HT4 Receptor Agonists. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

[329]

W. L. Hasler and P. Schoenfeld, “Safety Profile of tegaserod, a 5-HT4 Receptor Agonist, for the Treatment of Irritable Bowel Syndrome,” Drug Safety 27, no. 9 (2004): 619-631.

[330]

S. J. Hwang, J. H. Wang, J. S. Lee, et al., “Yeokwisan, a Standardized Herbal Formula, Enhances Gastric Emptying via Modulation of the Ghrelin Pathway in a Loperamide-induced Functional Dyspepsia Mouse Model,” Frontiers in pharmacology 12 (2021): 753153.

[331]

K. Conlon, J. H. De Maeyer, C. Bruce, et al., “Nonclinical Cardiovascular Studies of Prucalopride, a Highly Selective 5-Hydroxytryptamine 4 Receptor Agonist,” Journal of Pharmacology and Experimental Therapeutics 364, no. 2 (2018): 156-169.

[332]

F. Darcet, A. M. Gardier, D. J. David, and J P. Guilloux, “Chronic 5-HT4 Receptor Agonist Treatment Restores Learning and Memory Deficits in a Neuroendocrine Mouse Model of Anxiety/Depression,” Neuroscience Letters 616 (2016): 197-203.

[333]

N. Kozono, A. Ohtani, and T. Shiga, “Roles of the Serotonin 5-HT4 Receptor in Dendrite Formation of the Rat Hippocampal Neurons in Vitro,” Brain Research 1655 (2017): 114-121.

[334]

V. H. Dam, K. Köhler-Forsberg, B. Ozenne, et al., “Effect of Antidepressant Treatment on 5-HT(4) Receptor Binding and Associations with Clinical Outcomes and Verbal Memory in Major Depressive Disorder,” Biological Psychiatry 97, no. 3 (2025): 261-268.

[335]

M. Yamazaki, N. Yamamoto, J. Yarimizu, et al., “Functional Mechanism of ASP5736, a Selective Serotonin 5-HT(5A) Receptor Antagonist With Potential Utility for the Treatment of Cognitive Dysfunction in Schizophrenia,” European Neuropsychopharmacology 28, no. 5 (2018): 620-629.

[336]

J. Lalut, D. Karila, P. Dallemagne, and C. Rochais, “Modulating 5-HT(4) and 5-HT(6) Receptors in Alzheimer's Disease Treatment,” Future Medicinal Chemistry 9, no. 8 (2017): 781-795.

[337]

R. Khoury, N. Grysman, J. Gold, K. Patel, and G T. Grossberg, “The Role of 5 HT6-receptor Antagonists in Alzheimer's Disease: An Update,” Expert Opinion on Investigational Drugs 27, no. 6 (2018): 523-533.

[338]

R. Nirogi, R. Abraham, V. Benade, et al., “SUVN-502, a Novel, Potent, Pure, and Orally Active 5-HT6 Receptor Antagonist: Pharmacological, Behavioral, and Neurochemical Characterization,” Behavioural Pharmacology 30, no. 1 (2019): 16-35.

[339]

R. Nirogi, P. Jayarajan, A. Shinde, et al., “Progress in Investigational Agents Targeting Serotonin-6 Receptors for the Treatment of Brain Disorders,” Biomolecules 13, no. 2 (2023): 309.

[340]

A. Meneses, G. Perez-Garcia, G. Liy-Salmeron, T. Ponce-López, E. Lacivita, and M. Leopoldo, “5-HT7 receptor Activation: Procognitive and Antiamnesic Effects,” Psychopharmacology 232, no. 3 (2015): 595-603.

[341]

M. Leon-Ponte, G. P. Ahern, and P. J. O'Connell, “Serotonin Provides an Accessory Signal to Enhance T-cell Activation by Signaling Through the 5-HT7 Receptor,” Blood 109, no. 8 (2007): 3139-3146.

[342]

O. Mnie-Filali, L. Lambás-Señas, L. Zimmer, and N. Haddjeri, “5-HT7 receptor Antagonists as a New Class of Antidepressants,” Drug News & Perspectives 20, no. 10 (2007): 613-618.

[343]

B. Sahin, E. Ozdemir, E. Gumus, M. Ergul, and A S. Taskiran, “The 5-HT7 Receptor Antagonist SB-269970 Alleviates Seizure Activity and Downregulates Hippocampal c-Fos Expression in Pentylenetetrazole-induced Kindled Rats,” Neurological Research 44, no. 9 (2022): 786-796.

[344]

P. B. Hedlund, S. Huitron-Resendiz, S. J. Henriksen, and J G. Sutcliffe, “5-HT7 receptor Inhibition and Inactivation Induce Antidepressantlike Behavior and Sleep Pattern,” Biological Psychiatry 58, no. 10 (2005): 831-837.

[345]

M. Padelli, C. Bruno, J. Lemarchand, et al., “[Determination of thresholds values for platelet serotonin and urinary 5-HIAA concentrations for the biological diagnosis of digestive neuroendocrine tumors],” Annales de Biologie Clinique (Paris) 77, no. 2 (2019): 161-168. Quelles valeurs de référence pour la concentration de la sérotonine plaquettaire et du 5-HIAA urinaire pour le diagnostic des tumeurs neuroendocrines digestives?.

[346]

D. Ye, H. Xu, Q. Tang, H. Xia, C. Zhang, and F. Bi, “The Role of 5-HT Metabolism in Cancer,” Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1876, no. 2 (2021): 188618.

[347]

S. Karmakar and G. Lal, “Role of Serotonin Receptor Signaling in Cancer Cells and Anti-tumor Immunity,” Theranostics 11, no. 11 (2021): 5296-5312.

[348]

A. Chiechi, C. Novello, G. Magagnoli, et al., “Elevated TNFR1 and Serotonin in Bone Metastasis Are Correlated With Poor Survival Following Bone Metastasis Diagnosis for both Carcinoma and Sarcoma Primary Tumors,” Clinical Cancer Research 19, no. 9 (2013): 2473-2485.

[349]

O. Casar-Borota, J. Botling, D. Granberg, et al., “Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas: Markers in the Differential Diagnosis of Neuroendocrine Tumors of the Sellar Region,” American Journal of Surgical Pathology 41, no. 9 (2017): 1238-1246.

[350]

A. Nocito, F. Dahm, W. Jochum, et al., “Serotonin Regulates Macrophage-mediated Angiogenesis in a Mouse Model of Colon Cancer Allografts,” Cancer Research 68, no. 13 (2008): 5152-5158.

[351]

J. Y. Sakita, M. Bader, E. S. Santos, et al., “Serotonin Synthesis Protects the Mouse Colonic Crypt From DNA Damage and Colorectal Tumorigenesis,” Journal of Pathology 249, no. 1 (2019): 102-113.

[352]

T. Li, B. Fu, X. Zhang, et al., “Overproduction of Gastrointestinal 5-HT Promotes Colitis-Associated Colorectal Cancer Progression via Enhancing NLRP3 Inflammasome Activation,” Cancer immunology research 9, no. 9 (2021): 1008-1023.

[353]

T. Depoilly, R. Leroux, D. Andrade, et al., “Immunophenotypic and Molecular Characterization of Pancreatic Neuroendocrine Tumors Producing Serotonin,” Modern Pathology 35, no. 11 (2022): 1713-1722.

[354]

A. Fischer, H. S. Rennert, and G. Rennert, “Selective Serotonin Reuptake Inhibitors Associated With Increased Mortality Risk in Breast Cancer Patients in Northern Israel,” International Journal of Epidemiology 51, no. 3 (2022): 807-816.

[355]

S. W. Wesmiller, C. M. Bender, S. M. Sereika, et al., “Association Between Serotonin Transport Polymorphisms and Postdischarge Nausea and Vomiting in Women Following Breast Cancer Surgery,” Oncology Nursing Forum 41, no. 2 (2014): 195-202.

[356]

R. Gärtner, D. Cronin-Fenton, H. H. Hundborg, et al., “Use of Selective Serotonin Reuptake Inhibitors and Risk of Re-operation due to Post-surgical Bleeding in Breast Cancer Patients: A Danish Population-based Cohort Study,” BMC Surgery [Electronic Resource] 10 (2010): 3.

[357]

L. Grassi, E. Rossi, M. Cobianchi, et al., “Depression and Serotonin Transporter (5-HTTLPR) Polymorphism in Breast Cancer Patients,” Journal of Affective Disorders 124, no. 3 (2010): 346-350.

[358]

T. Ling, Z. Dai, H. Wang, et al., “Serotonylation in Tumor-associated Fibroblasts Contributes to the Tumor-promoting Roles of Serotonin in Colorectal Cancer,” Cancer Letters 600 (2024): 217150.

[359]

H. Yu, T. Qu, J. Yang, and Q. Dai, “Serotonin Acts Through YAP to Promote Cell Proliferation: Mechanism and Implication in Colorectal Cancer Progression,” Cell Communication and Signaling 21, no. 1 (2023): 75.

[360]

P. Zhu, T. Lu, Z. Chen, et al., “5-hydroxytryptamine Produced by Enteric Serotonergic Neurons Initiates Colorectal Cancer Stem Cell Self-renewal and Tumorigenesis,” Neuron 110, no. 14 (2022): 2268-2282. e4.

[361]

F. Mamdouh, S. Abdel Alem, and M. Abdo, “Serum Serotonin as a Potential Diagnostic Marker for Hepatocellular Carcinoma,” Journal of Interferon & Cytokine Research 39, no. 12 (2019): 780-785.

[362]

R. Iwase, H. Shiba, T. Gocho, et al., “Syndrome of Inappropriate Secretion of Antidiuretic Hormone Due to Selective Serotonin Reuptake Inhibitors After Pancreaticoduodenectomy for Carcinoma of the Ampulla of Vater: Case Report,” International Surgery 98, no. 4 (2013): 289-291.

[363]

A. Serafeim, G. Grafton, A. Chamba, et al., “5-Hydroxytryptamine Drives Apoptosis in Biopsylike Burkitt Lymphoma Cells: Reversal by Selective Serotonin Reuptake Inhibitors,” Blood 99, no. 7 (2002): 2545-2553.

[364]

K. Liu, Y. Zhang, G. Du, et al., “5-HT Orchestrates Histone Serotonylation and Citrullination to Drive Neutrophil Extracellular Traps and Liver Metastasis,” Journal of Clinical Investigation 135, no. 8 (2025): e183544.

[365]

D G. Tang, “Serotonin Sets up Neutrophil Extracellular Traps to Promote Neuroendocrine Prostate Cancer Metastasis in the Liver,” Journal of Clinical Investigation 135, no. 8 (2025): e191687.

[366]

L. Yin, J. Li, J. Wang, et al., “MAOA Promotes Prostate Cancer Cell Perineural Invasion Through SEMA3C/PlexinA2/NRP1-cMET Signaling,” Oncogene 40, no. 7 (2021): 1362-1374.

[367]

X. G. Yang, Y. Y. Li, D. X. Zhao, et al., “Repurposing of a Monoamine Oxidase A Inhibitor‑Heptamethine Carbocyanine Dye Conjugate for Paclitaxel‑Resistant Non‑Small Cell Lung Cancer,” Oncology Reports 45, no. 3 (2021): 1306-1314.

[368]

B. Huang, Z. Zhou, J. Liu, et al., “The Role of Monoamine Oxidase A in HPV-16 E7-induced Epithelial-mesenchymal Transition and HIF-1alpha Protein Accumulation in Non-small Cell Lung Cancer Cells,” International Journal of Biological Sciences 16, no. 14 (2020): 2692-2703.

[369]

V. C. Chen, M. J. Lee, Y. H. Yang, M. L. Lu, W. C. Chiu, and M E. Dewey, “Selective Serotonin Reuptake Inhibitors Use and Hepatocellular Carcinoma in Patients With Alcohol Use Disorder,” Drug and Alcohol Dependence 219 (2021): 108495.

[370]

N. Zhang, J. Sundquist, K. Sundquist, Z. G. Zhang, and J. Ji, “Combined Use of Aspirin and Selective Serotonin Reuptake Inhibitors Is Associated with Lower Risk of Colorectal Cancer: A Nested Case-Control Study,” American Journal of Gastroenterology 116, no. 6 (2021): 1313-1321.

[371]

V. Kannen, H. Hintzsche, D. L. Zanette, et al., “Antiproliferative Effects of Fluoxetine on Colon Cancer Cells and in a Colonic Carcinogen Mouse Model,” PLoS ONE 7, no. 11 (2012): e50043.

[372]

V. Kannen, S. B. Garcia, and W. A. Silva, “Oncostatic Effects of Fluoxetine in Experimental Colon Cancer Models,” Cell Signalling 27, no. 9 (2015): 1781-1788.

[373]

B. Grygier, B. Arteta, M. Kubera, et al., “Inhibitory Effect of Antidepressants on B16F10 Melanoma Tumor Growth,” Pharmacology Reports 65, no. 3 (2013): 672-681.

[374]

M. E. Di Rosso, H. A. Sterle, G. A. Cremaschi, and A M. Genaro, “Beneficial Effect of Fluoxetine and Sertraline on Chronic Stress-Induced Tumor Growth and Cell Dissemination in a Mouse Model of Lymphoma: Crucial Role of Antitumor Immunity,” Frontiers in immunology 9 (2018): 1341.

[375]

J. Li, B. Mei, L. Feng, et al., “Amitriptyline Revitalizes ICB Response via Dually Inhibiting Kyn/Indole and 5-HT Pathways of Tryptophan Metabolism in Ovarian Cancer,” Iscience 27, no. 12 (2024): 111488.

[376]

J. Li, T. Pu, L. Yin, Q. Li, C. P. Liao, and B J. Wu, “MAOA-mediated Reprogramming of Stromal Fibroblasts Promotes Prostate Tumorigenesis and Cancer Stemness,” Oncogene 39, no. 16 (2020): 3305-3321.

[377]

J. Wei, L. Yin, J. Li, et al., “Bidirectional Cross-talk Between MAOA and AR Promotes Hormone-Dependent and Castration-Resistant Prostate Cancer,” Cancer Research 81, no. 16 (2021): 4275-4289.

[378]

N. Gurbuz, A. A. Ashour, S. N. Alpay, and B. Ozpolat, “Down-regulation of 5-HT1B and 5-HT1D Receptors Inhibits Proliferation, Clonogenicity and Invasion of human Pancreatic Cancer Cells,” PLoS ONE 9, no. 8 (2014): e105245.

[379]

Y. Liu, H. Zhang, Z. Wang, P. Wu, and W. Gong, “5-Hydroxytryptamine1a receptors on Tumour Cells Induce Immune Evasion in Lung Adenocarcinoma Patients With Depression via Autophagy/pSTAT3,” European Journal of Cancer 114 (2019): 8-24.

[380]

X. Zuo, Z. Chen, J. Cai, et al., “5-Hydroxytryptamine Receptor 1D Aggravates Hepatocellular Carcinoma Progression through FoxO6 in AKT-Dependent and Independent Manners,” Hepatology 69, no. 5 (2019): 2031-2047.

[381]

L. Mao, F. Xin, J. Ren, et al., “5-HT2B-mediated Serotonin Activation in Enterocytes Suppresses Colitis-associated Cancer Initiation and Promotes Cancer Progression,” Theranostics 12, no. 8 (2022): 3928-3945.

[382]

F. Abedini, O. Amjadi, A. Hedayatizadeh-Omran, S. A. Lira, and G. Ahangari, “Serotonin Receptors and Acetylcholinesterase Gene Expression Alternations: The Potential Value on Tumor Microenvironment of Gastric Cancer,” Oncology 101, no. 7 (2023): 415-424.

[383]

I. Drozdov, M. Kidd, B. I. Gustafsson, et al., “Autoregulatory Effects of Serotonin on Proliferation and Signaling Pathways in Lung and Small Intestine Neuroendocrine Tumor Cell Lines,” Cancer 115, no. 21 (2009): 4934-4945.

[384]

T. Oufkir and C. Vaillancourt, “Phosphorylation of JAK2 by Serotonin 5-HT (2A) Receptor Activates both STAT3 and ERK1/2 Pathways and Increases Growth of JEG-3 human Placental Choriocarcinoma Cell,” Placenta 32, no. 12 (2011): 1033-1040.

[385]

J. Tang, Z. Wang, J. Liu, C. Zhou, and J. Chen, “Downregulation of 5-hydroxytryptamine Receptor 3A Expression Exerts an Anticancer Activity Against Cell Growth in Colorectal Carcinoma Cells in Vitro,” Oncology letters 16, no. 5 (2018): 6100-6108.

[386]

G. W. Huang, Q. Q. Chen, C. C. Ma, L. H. Xie, and J. Gu, “linc01305 promotes Metastasis and Proliferation of Esophageal Squamous Cell Carcinoma Through Interacting With IGF2BP2 and IGF2BP3 to Stabilize HTR3A mRNA,” International Journal of Biochemistry & Cell Biology 136 (2021): 106015.

[387]

A. Stewart, P. A. Davies, E. F. Kirkness, P. Safa, and T G. Hales, “Introduction of the 5-HT3B Subunit Alters the Functional Properties of 5-HT3 Receptors Native to Neuroblastoma Cells,” Neuropharmacology 44, no. 2 (2003): 214-223.

[388]

A. Barzegar-Fallah, H. Alimoradi, J. L. Dunlop, E. Torbati, and S K. Baird, “Serotonin Type-3 Receptor Antagonists Selectively Kill Melanoma Cells Through Classical Apoptosis, Microtubule Depolymerisation, ERK Activation, and NF-κB Downregulation,” Cell Biology and Toxicology (2021).

[389]

J. R. Chen, M. S. Huang, Y. C. Lee, M. H. Lin, and Y F. Yang, “Potential Clinical Value of 5-Hydroxytryptamine Receptor 3C as a Prognostic Biomarker for Lung Cancer,” Journal of oncology 2021 (2021): 1901191.

[390]

M. Itsumi, M. Shiota, Y. Sekino, et al., “High-throughput Screen Identifies 5-HT Receptor as a Modulator of AR and a Therapeutic Target for Prostate Cancer,” Prostate 80, no. 11 (2020): 885-894.

[391]

E. Louiset, K. Isvi, J. M. Gasc, et al., “Ectopic Expression of serotonin7 Receptors in an Adrenocortical Carcinoma co-secreting Renin and Cortisol,” Endocrine-Related Cancer 15, no. 4 (2008): 1025-1034.

[392]

S. H. Hejazi, G. Ahangari, M. Pornour, et al., “Evaluation of Gene Expression Changes of Serotonin Receptors, 5-HT3AR and 5-HT2AR as Main Stress Factors in Breast Cancer Patients,” Asian Pacific Journal of Cancer Prevention 15, no. 11 (2014): 4455-4458.

[393]

M. Kubera, M. Maes, G. Kenis, Y. K. Kim, and W. Lasoń, “Effects of Serotonin and Serotonergic Agonists and Antagonists on the Production of Tumor Necrosis Factor Alpha and Interleukin-6,” Psychiatry Research 134, no. 3 (2005): 251-258.

[394]

B. Yu, J. Becnel, M. Zerfaoui, R. Rohatgi, A. H. Boulares, and C D. Nichols, “Serotonin 5-hydroxytryptamine(2A) Receptor Activation Suppresses Tumor Necrosis Factor-alpha-induced Inflammation With Extraordinary Potency,” Journal of Pharmacology and Experimental Therapeutics 327, no. 2 (2008): 316-323.

[395]

B. Shu, M. Zhai, X. Miao, et al., “Serotonin and YAP/VGLL4 Balance Correlated With Progression and Poor Prognosis of Hepatocellular Carcinoma,” Scientific Reports 8, no. 1 (2018): 9739.

[396]

S. Liu, M. Zhai, and W. Xiao, “Intra-platelet Serotonin and YAP Contributed to Poor Prognosis of Hepatocellular Carcinoma,” Life Sciences 270 (2021): 119140.

[397]

P. K. Kopparapu, M. Tinzl, L. Anagnostaki, J. L. Persson, and N. Dizeyi, “Expression and Localization of Serotonin Receptors in human Breast Cancer,” Anticancer Research 33, no. 2 (2013): 363-370.

[398]

C. Soll, J. H. Jang, M. O. Riener, et al., “Serotonin Promotes Tumor Growth in human Hepatocellular Cancer,” Hepatology 51, no. 4 (2010): 1244-1254.

[399]

G G. Xiao, “Targeting Serotonin System in Pancreatic Cancer,” Pancreas 49, no. 1 (2020): e1.

[400]

G. Le-Bel, M. Benhassine, S. Landreville, and S L. Guerin, “Analysis of the Proteasome Activity and the Turnover of the Serotonin Receptor 2B (HTR2B) in human Uveal Melanoma,” Experimental Eye Research 184 (2019): 72-77.

[401]

T. Li, L. Wei, X. Zhang, et al., “Serotonin Receptor HTR2B Facilitates Colorectal Cancer Metastasis via CREB1-ZEB1 Axis-Mediated Epithelial-Mesenchymal Transition,” Molecular Cancer Research 22, no. 6 (2024): 538-554.

[402]

M. A. M. Peters, C. Meijer, R. S. N. Fehrmann, et al., “Serotonin and Dopamine Receptor Expression in Solid Tumours Including Rare Cancers,” Pathology Oncology Research 26, no. 3 (2020): 1539-1547.

[403]

S. H. Hejazi, G. Ahangari, and A. Deezagi, “Alternative Viewpoint against Breast Cancer Based on Selective Serotonin Receptors 5HTR3A and 5HTR2A Antagonists That Can Mediate Apoptosis in MCF-7 Cell Line,” Current Drug Discovery Technologies 12, no. 4 (2015): 240-249.

[404]

B. Sonier, M. Arseneault, C. Lavigne, R. J. Ouellette, and C. Vaillancourt, “The 5-HT2A Serotoninergic Receptor Is Expressed in the MCF-7 human Breast Cancer Cell Line and Reveals a Mitogenic Effect of Serotonin,” Biochemical and Biophysical Research Communications 343, no. 4 (2006): 1053-1059.

[405]

M. R. Ambrosio, E. Magli, G. Caliendo, et al., “Serotoninergic Receptor Ligands Improve Tamoxifen Effectiveness on Breast Cancer Cells,” BMC cancer 22, no. 1 (2022): 171.

[406]

Y. Ren, G. Bao, H. Yang, Z. Cao, Z. Shao, and Y. Zhang, “Ethiadin Induces Apoptosis and Suppresses Growth of MCF-7 Breast Cancer Cells by Regulating the Phosphorylation of Glycogen Synthase Kinase 3 Beta (GSK3beta),” Discovery Medicine 33, no. 169 (2022): 55-67.

[407]

Q. E. Xie, X. Du, M. Wang, et al., “Identification of Serotonin as a Predictive Marker for Breast Cancer Patients,” International Journal of General Medicine 14 (2021): 1939-1948.

[408]

K. Muller, K. P. Gilbertz, and V. Meineke, “Serotonin and Ionizing Radiation Synergistically Affect Proliferation and Adhesion Molecule Expression of Malignant Melanoma Cells,” Journal of Dermatological Science 68, no. 2 (2012): 89-98.

[409]

P. Eisenberg, J. Figueroa-Vadillo, R. Zamora, et al., “Improved Prevention of Moderately Emetogenic Chemotherapy-induced Nausea and Vomiting With palonosetron, a Pharmacologically Novel 5-HT3 Receptor Antagonist: Results of a Phase III, Single-dose Trial versus dolasetron,” Cancer 98, no. 11 (2003): 2473-2482.

[410]

Y. Nitta, M. Nishibori, H. Iwagaki, et al., “Changes in Serotonin Dynamics in the Gastrointestinal Tract of Colon-26 Tumour-bearing Mice: Effects of Cisplatin Treatment,” Naunyn-Schmiedebergs Archives of Pharmacology 364, no. 4 (2001): 329-334.

[411]

Z. Olfati, G. Rigi, H. Vaseghi, Z. Zamanzadeh, M. Sohrabi, and S H. Hejazi, “Evaluation of Serotonin Receptors (5HTR2A and 5HTR3A) mRNA Expression Changes in Tumor of Breast Cancer Patients,” Medical Journal of the Islamic Republic of Iran 34 (2020): 99.

[412]

R. Ataee, S. Ajdary, M. Rezayat, M. A. Shokrgozar, S. Shahriari, and M R. Zarrindast, “Study of 5HT3 and HT4 Receptor Expression in HT29 Cell Line and human Colon Adenocarcinoma Tissues,” Archives of Iranian Medicine 13, no. 2 (2010): 120-125.

[413]

M. El-Salhy and V. Dennerqvist, “Effects of Triple Therapy With Octreotide, Galanin and Serotonin on Liver Metastasis of human Colon Cancer in Xenografts,” Oncology Reports 11, no. 6 (2004): 117711-117782.

[414]

J. H. Jun, J. E. Oh, J. K. Shim, Y. L. Kwak, and J S. Cho, “Effects of Bisphenol A on the Proliferation, Migration, and Tumor Growth of Colon Cancer Cells: In Vitro and in Vivo Evaluation With Mechanistic Insights Related to ERK and 5-HT3,” Food and Chemical Toxicology 158 (2021): 112662.

[415]

F. Del Bello, A. Bonifazi, G. Giorgioni, et al., “Chemical Manipulations on the 1,4-dioxane Ring of 5-HT(1A) Receptor Agonists Lead to Antagonists Endowed With Antitumor Activity in Prostate Cancer Cells,” European Journal of Medicinal Chemistry 168 (2019): 461-473.

[416]

E. J. Siddiqui, M. Shabbir, D. P. Mikhailidis, C. S. Thompson, and F H. Mumtaz, “The Role of Serotonin (5-hydroxytryptamine1A and 1B) Receptors in Prostate Cancer Cell Proliferation,” Journal of Urology 176, no. 4 Pt 1 (2006): 1648-1653.

[417]

R. Henriksen, N. Dizeyi, and P A. Abrahamsson, “Expression of Serotonin Receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in Ovary and in Ovarian Tumours,” Anticancer Research 32, no. 4 (2012): 1361-1366.

[418]

E. J. Siddiqui, M. A. Shabbir, D. P. Mikhailidis, F. H. Mumtaz, and C S. Thompson, “The Effect of Serotonin and Serotonin Antagonists on Bladder Cancer Cell Proliferation,” Bju International 97, no. 3 (2006): 634-639.

[419]

M. G. Cattaneo, E. Palazzi, G. Bondiolotti, and L M. Vicentini, “5-HT1D receptor Type Is Involved in Stimulation of Cell Proliferation by Serotonin in human Small Cell Lung Carcinoma,” European Journal of Pharmacology 268, no. 3 (1994): 425-430.

[420]

N. M. Abdel-Hamid, D. E. Shehata, A. A. Abdel-Ghany, A. Ragaa, and A. Wahid, “Serum Serotonin as Unexpected Potential Marker for Staging of Experimental Hepatocellular Carcinoma,” Biomedicine & Pharmacotherapy 83 (2016): 407-411.

[421]

S. Niture, M. A. Gyamfi, H. Kedir, et al., “Serotonin Induced Hepatic Steatosis Is Associated With Modulation of Autophagy and Notch Signaling Pathway,” Cell Communication and Signaling 16, no. 1 (2018): 78.

[422]

K. A. Yagaloff, G. Lozano, T. V. Dyke, A. J. Levine, and P R. Hartig, “Serotonin 5-{HTlc} Receptors Are Expressed at High Density on Choroid Plexus Tumors From Transgenic Mice,” Brain Research (1986): 6-6.

[423]

V. Contesse, Y. Reznik, C. Duparc, et al., “Effects of Serotonin and Vasopressin on Cortisol Production From an Adrenocortical Tumor Causing Subclinical Cushing's Syndrome,” Endocrine Research 28, no. 4 (2002): 787-791.

[424]

Y. Nakamura, K. Ise, Y. Yamazaki, F. Fujishima, K. M. McNamara, and H. Sasano, “Serotonin Receptor 4 (5-hydroxytryptamine receptor Type 4) Regulates Expression of Estrogen Receptor Beta and Cell Migration in Hormone-naive Prostate Cancer,” Indian Journal of Pathology & Microbiology 60, no. 1 (2017): 33-37.

[425]

V. Cınar, Z. Hamurcu, A. Guler, N. Nurdinov, and B. Ozpolat, “Serotonin 5-HT7 Receptor Is a Biomarker Poor Prognostic Factor and Induces Proliferation of Triple-negative Breast Cancer Cells Through FOXM1,” Breast Cancer (Tokyo, Japan) 29, no. 6 (2022): 1106-1120.

[426]

C. Mahe, M. Bernhard, I. Bobirnac, et al., “Functional Expression of the Serotonin 5-HT7 Receptor in human Glioblastoma Cell Lines,” British Journal of Pharmacology 143, no. 3 (2004): 404-410.

[427]

V. P. Pai, A. M. Marshall, L. L. Hernandez, A. R. Buckley, and N D. Horseman, “Altered Serotonin Physiology in human Breast Cancers Favors Paradoxical Growth and Cell Survival,” Breast Cancer Research 11, no. 6 (2009): R81.

[428]

A. Al Saedi, S. Sharma, and E. Bani Hassan, “Characterization of Skeletal Phenotype and Associated Mechanisms with Chronic Intestinal Inflammation in the Winnie Mouse Model of Spontaneous Chronic Colitis,” Inflammatory Bowel Diseases 28, no. 2 (2022): 259-272.

[429]

M. S. Shajib, U. Chauhan, S. Adeeb, et al., “Characterization of Serotonin Signaling Components in Patients With Inflammatory Bowel Disease,” Journal of the Canadian Association of Gastroenterology 2, no. 3 (2019): 132-140.

[430]

J. W. Jørandli, S. Thorsvik, H. K. Skovdahl, et al., “The Serotonin Reuptake Transporter Is Reduced in the Epithelium of Active Crohn's Disease and Ulcerative Colitis,” American journal of physiology Gastrointestinal and liver physiology 319, no. 6 (2020): G761-G768.

[431]

F. Perez, N. Kotecha, B. Lavoie, G. M. Mawe, and B A. Patel, “Monitoring Gut Epithelium Serotonin and Melatonin Overflow Provides Spatial Mapping of Inflammation,” Chembiochem 24, no. 2 (2023): e202200334.

[432]

Y. H. Kwon, H. Wang, E. Denou, et al., “Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis,” Cellular and Molecular Gastroenterology and Hepatology 7, no. 4 (2019): 709-728.

[433]

A. Hizay, K. Dag, N. Oz, et al., “Lactobacillus Acidophilus Regulates Abnormal Serotonin Availability in Experimental Ulcerative Colitis,” Anaerobe 80 (2023): 102710.

[434]

S. González Delgado, I. Garza-Veloz, F. Trejo-Vazquez, and M. L. Martinez-Fierro, “Interplay Between Serotonin, Immune Response, and Intestinal Dysbiosis in Inflammatory Bowel Disease,” International Journal of Molecular Sciences 23, no. 24 (2022): 15632.

[435]

T. Tomita, H. Fukui, D. Morishita, et al., “Efficacy of Serotonin Type 3 Receptor Antagonist Ramosetron on Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D)-Like Symptoms in Patients With Quiescent Inflammatory Bowel Disease: A Randomized, Double-Blind, Placebo-Controlled Trial,” Journal of Clinical Medicine 11, no. 23 (2022): 6882.

[436]

Y. H. Kwon, B. E. Blass, H. Wang, et al., “Novel 5-HT(7) Receptor Antagonists Modulate Intestinal Immune Responses and Reduce Severity of Colitis,” American journal of physiology Gastrointestinal and liver physiology 327, no. 1 (2024): G57-G69.

[437]

M. Barth, V. Serre, L. Hubert, et al., “Kinetic Analyses Guide the Therapeutic Decision in a Novel Form of Moderate Aromatic Acid Decarboxylase Deficiency,” JIMD reports 3 (2012): 25-32.

[438]

L. Yang, H. Cai, J. Tou, et al., “The Role of the 5-hydroxytryptamine Pathway in Reflux-induced Esophageal Mucosal Injury in Rats,” World Journal of Surgical Oncology 10 (2012): 219.

[439]

Y. Saegusa, H. Takeda, S. Muto, et al., “Decreased Motility of the Lower Esophageal Sphincter in a Rat Model of Gastroesophageal Reflux Disease May be Mediated by Reductions of Serotonin and Acetylcholine Signaling,” Biological & pharmaceutical bulletin 34, no. 5 (2011): 704-711.

[440]

A. C. Ford, A. D. Sperber, M. Corsetti, and M. Camilleri, “Irritable Bowel Syndrome,” Lancet 396, no. 10263 (2020): 1675-1688.

[441]

K. G. Margolis, J. F. Cryan, and E A. Mayer, “The Microbiota-Gut-Brain Axis: From Motility to Mood,” Gastroenterology 160, no. 5 (2021): 1486-1501.

[442]

A. Sikander, S. V. Rana, S. K. Sinha, K. K. Prasad, and S K. Arora, “Association of Serotonin Transporter Promoter Polymorphism (5-HTTLPR) With Orocecal Transit Time in Irritable Bowel Syndrome,” Indian Journal of Gastroenterology 41, no. 6 (2022): 610-617.

[443]

M. El-Salhy, I. Wendelbo, and D. Gundersen, “Serotonin and Serotonin Transporter in the Rectum of Patients With Irritable Bowel Disease,” Molecular Medicine Reports 8, no. 2 (2013): 451-455.

[444]

C. Cremon, G. Carini, B. Wang, et al., “Intestinal Serotonin Release, Sensory Neuron Activation, and Abdominal Pain in Irritable bowel Syndrome,” American Journal of Gastroenterology 106, no. 7 (2011): 1290-1298.

[445]

J. Gao, T. Xiong, G. Grabauskas, and C. Owyang, “Mucosal Serotonin Reuptake Transporter Expression in Irritable Bowel Syndrome Is Modulated by Gut Microbiota via Mast Cell-Prostaglandin E2,” Gastroenterology 162, no. 7 (2022): 1962-1974.

[446]

Y. Mishima and S. Ishihara, “Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome,” International Journal of Molecular Sciences 22, no. 19 (2021): 10235.

[447]

L. Zhai, C. Huang, Z. Ning, et al., “Ruminococcus Gnavus Plays a Pathogenic Role in Diarrhea-predominant Irritable Bowel Syndrome by Increasing Serotonin Biosynthesis,” Cell Host & Microbe 31, no. 1 (2023): 33-44. e5.

[448]

Y. Gu, C. Wang, X. Qin, et al., “Saccharomyces Boulardii, a Yeast Probiotic, Inhibits Gut Motility Through Upregulating Intestinal Serotonin Transporter and Modulating Gut Microbiota,” Pharmacological Research 181 (2022): 106291.

[449]

X. Jin, Y. Hu, T. Lin, et al., “Selenium-enriched Bifidobacterium Longum DD98 Relieves Irritable Bowel Syndrome Induced by Chronic Unpredictable Mild Stress in Mice,” Food & Function 14, no. 11 (2023): 5355-5374.

[450]

C. Chojnacki, A. Błońska, P. Konrad, M. Chojnacki, M. Podogrocki, and T. Poplawski, “Changes in Tryptophan Metabolism on Serotonin and Kynurenine Pathways in Patients With Irritable Bowel Syndrome,” Nutrients 15, no. 5 (2023): 1262.

[451]

Z. F. Zhang, Z. J. Duan, L. X. Wang, D. Yang, G. Zhao, and L. Zhang, “The Serotonin Transporter Gene Polymorphism (5-HTTLPR) and Irritable Bowel Syndrome: A Meta-analysis of 25 Studies,” BMC Gastroenterology [Electronic Resource] 14 (2014): 23.

[452]

C. Almansa, A. Agrawal, and L A. Houghton, “Intestinal Microbiota, Pathophysiology and Translation to Probiotic Use in Patients With Irritable Bowel Syndrome,” Expert Review of Gastroenterology & Hepatology 6, no. 3 (2012): 383-398.

[453]

M. Y. Areeshi, S. Haque, A. K. Panda, and R K. Mandal, “A Serotonin Transporter Gene (SLC6A4) Polymorphism Is Associated With Reduced Risk of Irritable Bowel Syndrome in American and Asian Population: A Meta-analysis,” PLoS ONE 8, no. 9 (2013): e75567.

[454]

L. Bosman, L. Wauters, and T. Vanuytsel, “Neuromodulating Agents in Functional Dyspepsia: A Comprehensive Review,” Acta Gastro-Enterologica Belgica 86, no. 1 (2023): 49-57.

[455]

S. Shanmugham, M. Zuber, J. E. Chan, et al., “Efficacy of Antidepressants in Functional Dyspepsia: Systematic Review and Meta-analysis With Trial Sequential Analysis of Randomized Controlled Trials,” Indian Journal of Gastroenterology 44, no. 1 (2025): 24-34.

[456]

H. Zhou, X. Tang, D. Wang, et al., “Neuroregulatory and Clinical Efficacy of Auricular Vagus Nerve Stimulation in Elderly Patients With Chronic Insomnia Comorbid With Functional Dyspepsia: Protocol for a Randomized Controlled Trial,” Frontiers in Medicine 12 (2025): 1537515.

[457]

A. Kourikou, G. P. Karamanolis, G. D. Dimitriadis, and K. Triantafyllou, “Gene Polymorphisms Associated With Functional Dyspepsia,” World Journal of Gastroenterology 21, no. 25 (2015): 7672-7682.

[458]

I. V. Korendovych, A. S. Svintsits'kyĭ, K. M. Revenok, and S. O. Maliarov, “[Psychopharmacological approach With the usage of selective serotonin reuptake inhibitors in functional dyspepsia treatment],” Likarska Sprava no. 11 (2014): 58-64.

[459]

Y. A. Saito, G. R. Locke, A. E. Almazar, et al., “Polymorphisms of 5-HTT LPR and GNβ3 825C>T and Response to Antidepressant Treatment in Functional Dyspepsia: A Study From the Functional Dyspepsia Treatment Trial,” American Journal of Gastroenterology 112, no. 6 (2017): 903-909.

[460]

R. Bahuva, J. Yee, S. Gupta, and A. Atreja, “SSRI and the Risk of Gastrointestinal Bleed: More Than What Meets the Eye,” American Journal of Gastroenterology 110, no. 2 (2015): 346.

[461]

F. C. Jing, J. Zhang, C. Feng, et al., “Potential Rat Model of Anxiety-Like Gastric Hypersensitivity Induced by Sequential Stress,” World Journal of Gastroenterology 23, no. 42 (2017): 7594-7608.

[462]

N J. Talley, “Functional Dyspepsia: New Insights Into Pathogenesis and Therapy,” Korean Journal of Internal Medicine 31, no. 3 (2016): 444-456.

[463]

A. B. Witte, M. M. Walker, N. J. Talley, et al., “Decreased Number of Duodenal Endocrine Cells With Unaltered Serotonin-Containing Cells in Functional Dyspepsia,” American Journal of Gastroenterology 111, no. 12 (2016): 1852-1853.

[464]

Z. Wang, L. Wu, P. Dong, et al., “Meta-Analysis of the Association between 5-Hydroxytryptamine Transporter Gene-Linked Polymorphic Region and Functional Dyspepsia and Its Subtypes,” Genet Test Mol Biomarkers 27, no. 3 (2023): 100-108.

[465]

M. Jin, Y. Mo, K. Ye, M. Chen, Y. Liu, and C. He, “Efficacy of Serotonin Receptor Agonists in the Treatment of Functional Dyspepsia: A Meta-analysis,” Archives of Medical Science 15, no. 1 (2019): 23-32.

[466]

Z. Xiao, J. Xu, J. Tan, et al., “Zhizhu Kuanzhong, a Traditional Chinese Medicine, Alleviates Gastric Hypersensitivity and Motor Dysfunction on a Rat Model of Functional Dyspepsia,” Frontiers in pharmacology 13 (2022): 1026660.

[467]

J. Zhao, L. Zhao, S. Zhang, and C. Zhu, “Modified Liu-Jun-Zi Decoction Alleviates Visceral Hypersensitivity in Functional Dyspepsia by Regulating EC Cell-5HT3r Signaling in Duodenum,” Journal of Ethnopharmacology 250 (2020): 112468.

[468]

T. Amano, H. Ariga, A. Kurematsu, et al., “Effect of 5-hydroxytryptamine Receptor 4 Agonist Mosapride on human Gastric Accommodation,” Neurogastroenterology and Motility 27, no. 9 (2015): 1303-1309.

[469]

W. K. Goodman, E. A. Storch, and S A. Sheth, “Harmonizing the Neurobiology and Treatment of Obsessive-Compulsive Disorder,” American Journal of Psychiatry 178, no. 1 (2021): 17-29.

[470]

C. Xing, H. Chen, W. Bi, T. Lei, Z. Hang, and H. Du, “Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases,” International Journal of Molecular Sciences 25, no. 24 (2024): 13446.

[471]

D. O. Borroto-Escuela, P. Ambrogini, B. Chruścicka, et al., “The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects,” International Journal of Molecular Sciences 22, no. 4 (2021): 1927.

[472]

S. Jauhar, P. J. Cowen, and M. Browning, “Fifty Years On: Serotonin and Depression,” Journal of Psychopharmacology 37, no. 3 (2023): 237-241.

[473]

S. H. Lin, L. T. Lee, and Y K. Yang, “Serotonin and Mental Disorders: A Concise Review on Molecular Neuroimaging Evidence,” Clinical Psychopharmacology and Neuroscience 12, no. 3 (2014): 196-202.

[474]

T. Sharp, L. Boothman, J. Raley, and P. Quérée, “Important Messages in the 'post': Recent Discoveries in 5-HT Neurone Feedback Control,” Trends in Pharmacological Sciences 28, no. 12 (2007): 629-636.

[475]

J. P. Jacobsen, I. O. Medvedev, and M G. Caron, “The 5-HT Deficiency Theory of Depression: Perspectives From a Naturalistic 5-HT Deficiency Model, the Tryptophan Hydroxylase 2Arg439His Knockin Mouse,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 367, no. 1601 (2012): 2444-2459.

[476]

B. A. Samuels, C. Anacker, A. Hu, et al., “5-HT1A receptors on Mature Dentate Gyrus Granule Cells Are Critical for the Antidepressant Response,” Nature Neuroscience 18, no. 11 (2015): 1606-1616.

[477]

B. M. Ruf and Z. Bhagwagar, “The 5-HT1B Receptor: A Novel Target for the Pathophysiology of Depression,” Current Drug Targets 10, no. 11 (2009): 1118-1138.

[478]

A. L. W. Smith, C. J. Harmer, P. J. Cowen, and S E. Murphy, “The Serotonin 1A (5-HT(1A)) Receptor as a Pharmacological Target in Depression,” CNS Drugs 37, no. 7 (2023): 571-585.

[479]

M. Głuch-Lutwin, K. Sałaciak, K. Pytka, et al., “The 5-HT(1A) Receptor Biased Agonist, NLX-204, Shows Rapid-acting Antidepressant-Like Properties and Neurochemical Changes in Two Mouse Models of Depression,” Behavioural Brain Research 438 (2023): 114207.

[480]

M. Sekssaoui, J. Bockaert, P. Marin, and C. Bécamel, “Antidepressant-Like Effects of Psychedelics in a Chronic Despair Mouse Model: Is the 5-HT(2A) Receptor the Unique Player?” Neuropsychopharmacology 49, no. 4 (2024): 747-756.

[481]

J. Jastrzębska, M. Frankowska, I. Smaga, et al., “Evaluation of the 5-HT(2C) Receptor Drugs RO 60-0175, WAY 161503 and Mirtazepine in a Preclinical Model of Comorbidity of Depression and Cocaine Addiction,” Pharmacology Reports 75, no. 1 (2023): 99-118.

[482]

S. Bhatt, T. Devadoss, S. N. Manjula, and J. Rajangam, “HT(3) Receptor Antagonism a Potential Therapeutic Approach for the Treatment of Depression and Other Disorders,” Current Neuropharmacology 19, no. 9 (2021): 1545-1559.

[483]

R. Hamati, M. El Mansari, and P. Blier, “Serotonin-2B Receptor Antagonism Increases the Activity of Dopamine and Glutamate Neurons in the Presence of Selective Serotonin Reuptake Inhibition,” Neuropsychopharmacology 45, no. 12 (2020): 2098-2105.

[484]

A. N. de Cates, C. J. Harmer, P. J. Harrison, et al., “Association Between a Selective 5-HT(4) Receptor Agonist and Incidence of Major Depressive Disorder: Emulated Target Trial,” British Journal of Psychiatry 225, no. 3 (2024): 371-378.

[485]

Y. Kawahara, H. Kawahara, F. Kaneko, and M. Tanaka, “Long-term Administration of citalopram Reduces Basal and Stress-induced Extracellular Noradrenaline Levels in Rat Brain,” Psychopharmacology 194, no. 1 (2007): 73-81.

[486]

G. S. Sachs, P. P. Yeung, L. Rekeda, A. Khan, J. L. Adams, and M. Fava, “Adjunctive Cariprazine for the Treatment of Patients with Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study,” American Journal of Psychiatry 180, no. 3 (2023): 241-251.

[487]

D. Gupta, V. Prabhakar, and M. Radhakrishnan, “5HT3 receptors: Target for New Antidepressant Drugs,” Neuroscience and Biobehavioral Reviews 64 (2016): 311-325.

[488]

O. Mnie-Filali, C. Faure, L. Lambás-Señas, et al., “Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy,” Neuropsychopharmacology 36, no. 6 (2011): 1275-1288.

[489]

S. Bhatt, J. Kanoujia, S. Mohana Lakshmi, et al., “Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues,” CNS & Neurological Disorders - Drug Targets 22, no. 2 (2023): 276-288.

[490]

J. Ma, R. Wang, Y. Chen, Z. Wang, and Y. Dong, “5-HT Attenuates Chronic Stress-induced Cognitive Impairment in Mice Through Intestinal Flora Disruption,” Journal of Neuroinflammation 20, no. 1 (2023): 23.

[491]

Y. P. López-Echeverri, K. J. Cardona-Londoño, J. F. Garcia-Aguirre, and M. Orrego-Cardozo, “Effects of Serotonin Transporter and Receptor Polymorphisms on Depression,” Revista Colombiana de Psiquiatría (English Edition) 52, no. 2 (2023): 130-138.

[492]

D. Naber and M. Bullinger, “Should Antidepressants be Used in minor Depression?” Dialogues in Clinical Neuroscience 20, no. 3 (2018): 223-228.

[493]

W. Wei, L. Deng, C. Qiao, et al., “Neural Variability in Three Major Psychiatric Disorders,” Molecular Psychiatry 28, no. 12 (2023): 5217-5227.

[494]

C. A. Tamminga and H H. Holcomb, “Phenotype of Schizophrenia: A Review and Formulation,” Molecular Psychiatry 10, no. 1 (2005): 27-39.

[495]

K. Hrovatin, T. Kunej, and V. Dolžan, “Genetic Variability of Serotonin Pathway Associated With Schizophrenia Onset, Progression, and Treatment,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 183, no. 2 (2020): 113-127.

[496]

A. E. Eggers, “A Serotonin Hypothesis of Schizophrenia,” Medical Hypotheses 80, no. 6 (2013): 791-794.

[497]

R. Yamada, A. Wada, A. Stickley, Y. Yokoi, and T. Sumiyoshi, “Effect of 5-HT1A Receptor Partial Agonists of the Azapirone Class as an Add-On Therapy on Psychopathology and Cognition in Schizophrenia: A Systematic Review and Meta-Analysis,” The International Journal of Neuropsychopharmacology 26, no. 4 (2023): 249-258.

[498]

R. Yamada, A. Wada, A. Stickley, A. Newman-Tancredi, and T. Sumiyoshi, “Augmentation Therapy with Serotonin 5-HT(1A) Receptor Partial Agonists on Cognitive Function in Depressive Disorders: A Systematic Review of Randomized Controlled Studies,” Neuropsychopharmacology Reports 45, no. 2 (2025): e70023.

[499]

S. Selvaraj, D. Arnone, A. Cappai, and O. Howes, “Alterations in the Serotonin System in Schizophrenia: A Systematic Review and Meta-analysis of Postmortem and Molecular Imaging Studies,” Neuroscience and Biobehavioral Reviews 45 (2014): 233-245.

[500]

M. A. Cummings, A. W. Arias, and S M. Stahl, “What Is the Neurobiology of Schizophrenia?” CNS Spectrums 30, no. 1 (2024): e13.

[501]

K. Thomas and A. Saadabadi, “Olanzapine,” StatPearls (StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC., 2025).

[502]

E. Kossatz, R. Diez-Alarcia, S. A. Gaitonde, et al., “G Protein-specific Mechanisms in the Serotonin 5-HT(2A) Receptor Regulate Psychosis-related Effects and Memory Deficits,” Nature Communications 15, no. 1 (2024): 4307.

[503]

M. Tarzian, M. Soudan, M. Alhajji, M. Ndrio, and A O. Fakoya, “Lurasidone for Treating Schizophrenia and Bipolar Depression: A Review of Its Efficacy,” Cureus 15, no. 4 (2023): e38071.

[504]

L. A. Márquez, A. Meneses, and E J. Galván, “5-HT(6) Receptors Control GABAergic Transmission and CA1 Pyramidal Cell Output of Dorsal Hippocampus,” Neuroscience 532 (2023): 65-78.

[505]

I. Muneta-Arrate, P. Miranda-Azpiazu, I. Horrillo, R. Diez-Alarcia, and J J. Meana, “Ligand Bias and Inverse Agonism on 5-HT(2A) Receptor-mediated Modulation of G Protein Activity in Post-mortem human Brain,” British Journal of Pharmacology 182, no. 14 (2025): 3320-3335.

[506]

Y. S. Park, G. M. Kim, H. J. Sung, J. Y. Yu, and K W. Sung, “Atypical Antipsychotic Drug Olanzapine Inhibits 5-HT(3) Receptor-mediated Currents by Allosteric and Non-competitive Mechanisms,” Korean Journal of Physiology and Pharmacology 29, no. 4 (2025): 431-442.

[507]

O. Kassar, O. Shaheen, A. Selim, et al., “Efficacy and Safety of ondansetron in Schizophrenia: A Systematic Review and Meta-analysis of Randomized Controlled Trials,” General Hospital Psychiatry 96 (2025): 37-46.

[508]

A. Nikiforuk, M. Hołuj, T. Kos, and P. Popik, “The Effects of a 5-HT5A Receptor Antagonist in a Ketamine-based Rat Model of Cognitive Dysfunction and the Negative Symptoms of Schizophrenia,” Neuropharmacology 105 (2016): 351-360.

[509]

R. Okubo, T. Hasegawa, K. Fukuyama, T. Shiroyama, and M. Okada, “Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy,” Front Psychiatry 12 (2021): 623684.

[510]

R. Galici, J. D. Boggs, K. L. Miller, P. Bonaventure, and J R. Atack, “Effects of SB-269970, a 5-HT7 Receptor Antagonist, in Mouse Models Predictive of Antipsychotic-Like Activity,” Behavioural Pharmacology 19, no. 2 (2008): 153-159.

[511]

W. G. Frankle, I. Lombardo, L. S. Kegeles, et al., “Serotonin 1A Receptor Availability in Patients With Schizophrenia and Schizo-affective Disorder: A Positron Emission Tomography Imaging Study With [11C]WAY 100635,” Psychopharmacology 189, no. 2 (2006): 155-164.

[512]

S. Alvarez-Herrera, M. Rosel Vales, G. Pérez-Sánchez, et al., “Risperidone Decreases Expression of Serotonin Receptor-2A (5-HT2A) and Serotonin Transporter (SERT) but Not Dopamine Receptors and Dopamine Transporter (DAT) in PBMCs From Patients With Schizophrenia,” Pharmaceuticals (Basel) 17, no. 2 (2024): 167.

[513]

H. Y. Li, S. Y. Huang, D. D. Zhou, et al., “Theabrownin Inhibits Obesity and Non-alcoholic Fatty Liver Disease in Mice via Serotonin-related Signaling Pathways and Gut-liver Axis,” Journal of Advanced Research 52 (2023): 59-72.

[514]

M. Kimura, H. Moteki, and M. Ogihara, “Role of Hepatocyte Growth Regulators in Liver Regeneration,” Cells 12, no. 2 (2023): 208.

[515]

M. Lesurtel and P A. Clavien, “Platelet-derived Serotonin: Translational Implications for Liver Regeneration,” Hepatology 60, no. 1 (2014): 30-33.

[516]

P. Starlinger, S. Haegele, F. Offensperger, et al., “The Profile of Platelet α-granule Released Molecules Affects Postoperative Liver Regeneration,” Hepatology 63, no. 5 (2016): 1675-1688.

[517]

T. Yoshizumi, S. Itoh, D. Imai, et al., “Impact of Platelets and Serotonin on Liver Regeneration After Living Donor Hepatectomy,” Transplantation Proceedings 47, no. 3 (2015): 683-685.

[518]

C. He, M. Zhai, B. Shu, C. Deng, L. Li, and S. Liu, “5-HT and Intraplatelet 5-HT: A Potential Upstream Regulator of YAP in Liver Regeneration,” Experimental & Molecular Medicine 51, no. 10 (2019): 1-2.

[519]

Y. Fang, C. Liu, B. Shu, et al., “Axis of Serotonin -pERK-YAP in Liver Regeneration,” Life Sciences 209 (2018): 490-497.

[520]

M. R. Ebrahimkhani, F. Oakley, L. B. Murphy, et al., “Stimulating Healthy Tissue Regeneration by Targeting the 5-HT2B Receptor in Chronic Liver Disease,” Nature Medicine 17, no. 12 (2011): 1668-1673.

[521]

Y. Wen, C. Emontzpohl, L. Xu, et al., “Interleukin-33 Facilitates Liver Regeneration Through Serotonin-involved Gut-liver Axis,” Hepatology 77, no. 5 (2023): 1580-1592.

[522]

S. Pyroja, B. Joseph, and C S. Paulose, “Increased 5-HT2C Receptor Binding in the Brain Stem and Cerebral Cortex During Liver Regeneration and Hepatic Neoplasia in Rats,” Journal of the Neurological Sciences 254, no. 1-2 (2007): 3-8.

[523]

S. Redenšek Trampuž, S. van Riet, Å. Nordling, and M. Ingelman-Sundberg, “Mechanisms of 5-HT Receptor Antagonists in the Regulation of Fibrosis in a 3D human Liver Spheroid Model,” Scientific Reports 14, no. 1 (2024): 1396.

[524]

J. Fu, C. Li, G. Zhang, et al., “Crucial Roles of 5-HT and 5-HT2 Receptor in Diabetes-Related Lipid Accumulation and Pro-Inflammatory Cytokine Generation in Hepatocytes,” Cellular Physiology and Biochemistry 48, no. 6 (2018): 2409-2428.

[525]

C. Chung and Y. Iwakiri, “Activated Hepatic Stellate Cells: Negative Regulators of Hepatocyte Proliferation in Liver Diseases,” Hepatology 56, no. 1 (2012): 389-391.

[526]

J. Yoon, W. I. Choi, W. H. Lee, et al., “Synthesis and Biological Evaluation of Peripheral 5HT(2B) Antagonists for Liver Fibrosis,” Journal of Medicinal Chemistry 68, no. 6 (2025): 6493-6506.

[527]

K. Kyritsi, L. Chen, and A. O'Brien, “Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis during Cholestasis,” Hepatology 71, no. 3 (2020): 990-1008.

[528]

R. G. Ruddell, F. Oakley, Z. Hussain, et al., “A Role for Serotonin (5-HT) in Hepatic Stellate Cell Function and Liver Fibrosis,” American Journal of Pathology 169, no. 3 (2006): 861-876.

[529]

B. Polat, Z. Halici, E. Cadirci, et al., “Liver 5-HT7 Receptors: A Novel Regulator Target of Fibrosis and Inflammation-induced Chronic Liver Injury in Vivo and in Vitro,” International Immunopharmacology 43 (2017): 227-235.

[530]

J. Park, W. Jeong, C. Yun, H. Kim, and C M. Oh, “Serotonergic Regulation of Hepatic Energy Metabolism,” Endocrinology and Metabolism (Seoul) 36, no. 6 (2021): 1151-1160.

[531]

C. Teunis, M. Nieuwdorp, and N. Hanssen, “Interactions Between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases,” Metabolites 12, no. 6 (2022): 514.

[532]

A. Nocito, F. Dahm, W. Jochum, et al., “Serotonin Mediates Oxidative Stress and Mitochondrial Toxicity in a Murine Model of Nonalcoholic Steatohepatitis,” Gastroenterology 133, no. 2 (2007): 608-618.

[533]

J. D. Crane, R. Palanivel, E. P. Mottillo, et al., “Inhibiting Peripheral Serotonin Synthesis Reduces Obesity and Metabolic Dysfunction by Promoting Brown Adipose Tissue Thermogenesis,” Nature Medicine 21, no. 2 (2015): 166-172.

[534]

J. Binetti, L. Bertran, D. Riesco, et al., “Deregulated Serotonin Pathway in Women With Morbid Obesity and NAFLD,” Life (Basel) 10, no. 10 (2020): 245.

[535]

L. Wang, X. Fan, and J. Han, “Gut-Derived Serotonin Contributes to the Progression of Non-Alcoholic Steatohepatitis via the Liver HTR2A/PPARγ2 Pathway,” Frontiers in pharmacology 11 (2020): 553.

[536]

W. Choi, J. Namkung, I. Hwang, et al., “Serotonin Signals Through a Gut-liver Axis to Regulate Hepatic Steatosis,” Nature Communications 9, no. 1 (2018): 4824.

[537]

L. Sessa, S. Concilio, J. Fominaya, D. Eletto, S. Piotto, and X. Busquets, “A New Serotonin 2A Receptor Antagonist With Potential Benefits in Non-Alcoholic Fatty Liver Disease,” Life Sciences 314 (2023): 121315.

[538]

M. Kim, W. Choi, J. Yoon, et al., “Synthesis and Biological Evaluation of Tyrosine Derivatives as Peripheral 5HT(2A) Receptor Antagonists for Nonalcoholic Fatty Liver Disease,” European Journal of Medicinal Chemistry 239 (2022): 114517.

[539]

M. H. Kim, S. J. Kim, W. J. Park, D. H. Lee, and K K. Kim, “GR113808, a Serotonin Receptor 4 Antagonist, Prevents High-fat-diet-induced Obesity, Fatty Liver Formation, and Insulin Resistance in C57BL/6J Mice,” BMC Pharmacology and Toxicology 25, no. 1 (2024): 76.

[540]

S. Haub, Y. Ritze, I. Ladel, et al., “Serotonin Receptor Type 3 Antagonists Improve Obesity-associated Fatty Liver Disease in Mice,” Journal of Pharmacology and Experimental Therapeutics 339, no. 3 (2011): 790-798.

[541]

D. Chen, Y. Wang, J. Yang, et al., “Shenling Baizhu San Ameliorates Non-alcoholic Fatty Liver Disease in Mice by Modulating Gut Microbiota and Metabolites,” Frontiers in pharmacology 15 (2024): 1343755.

[542]

L. Cao, J. Chen, Y. Wang, et al., “Identification of Serotonin 2A Receptor as a Novel HCV Entry Factor by a Chemical Biology Strategy,” Protein Cell 10, no. 3 (2019): 178-195.

[543]

Y M. Wang, “[Abnormal platelet function and ultrastructure in patients With severe viral hepatitis],” Zhonghua Nei Ke Za Zhi [Chinese Journal of Internal Medicine] 29, no. 7 (1990): 416-418. 445.

[544]

J. M. Loftis, B. J. Morasco, D. Menasco, D. Fuchs, M. Strater, and P. Hauser, “Serum Serotonin Levels Are Associated With Antiviral Therapy Outcomes in Patients With Chronic Hepatitis C,” Open Infect Dis J 4 (2010): 132-141.

[545]

P. A. Lang, C. Contaldo, P. Georgiev, et al., “Aggravation of Viral hepatitis by Platelet-derived Serotonin,” Nature Medicine 14, no. 7 (2008): 756-761.

[546]

C. M. Chang, M. S. Hsieh, T. C. Yang, et al., “Selective Serotonin Reuptake Inhibitors and the Risk of Hepatocellular Carcinoma in hepatitis B Virus-infected Patients,” Cancer Management and Research 9 (2017): 709-720.

[547]

G. Sumara, O. Sumara, J. K. Kim, and G. Karsenty, “Gut-derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation,” Cell metabolism 16, no. 5 (2012): 588-600.

[548]

K. Y. Xie, S. J. Chien, B. C. Tan, and Y W. Chen, “RNA Editing of 5-HT(2C) R Impairs Insulin Secretion of Pancreatic Beta Cells via Altered Store-operated Calcium Entry,” Faseb Journal 35, no. 10 (2021): e21929.

[549]

E. Takishita, A. Takahashi, N. Harada, M. Yamato, M. Yoshizumi, and Y. Nakaya, “Effect of Sarpogrelate Hydrochloride, a 5-HT2 Blocker, on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats (OLETF rats), a Type 2 Diabetic Rat Model,” Journal of Cardiovascular Pharmacology 43, no. 2 (2004): 266-270.

[550]

J. Yamada, Y. Sugimoto, T. Yoshikawa, I. Kimura, and K. Horisaka, “The Involvement of the Peripheral 5-HT2A Receptor in Peripherally Administered Serotonin-induced Hyperglycemia in Rats,” Life Sciences 57, no. 8 (1995): 819-825.

[551]

H. Watanabe, T. Nakano, R. Saito, et al., “Serotonin Improves High Fat Diet Induced Obesity in Mice,” PLoS ONE 11, no. 1 (2016): e0147143.

[552]

K. V. Derkach, V. M. Bondareva, O. V. Chistyakova, L. M. Berstein, and A O. Shpakov, “The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats With High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes,” International Journal of Endocrinology 2015 (2015): 245459.

[553]

T. C. Chi, Y. J. Ho, W. P. Chen, et al., “Serotonin Enhances Beta-endorphin Secretion to Lower Plasma Glucose in Streptozotocin-induced Diabetic Rats,” Life Sciences 80, no. 20 (2007): 1832-1838.

[554]

H. Chen, F. Hong, Y. Chen, et al., “Activation of Islet 5-HT4 Receptor Regulates Glycemic Control Through Promoting Insulin Secretion,” European Journal of Pharmacology 789 (2016): 354-361.

[555]

K. Kim, C. M. Oh, M. Ohara-Imaizumi, et al., “Functional Role of Serotonin in Insulin Secretion in a Diet-induced Insulin-resistant state,” Endocrinology 156, no. 2 (2015): 444-452.

[556]

N. Paulmann, M. Grohmann, J. P. Voigt, et al., “Intracellular Serotonin Modulates Insulin Secretion From Pancreatic Beta-cells by Protein Serotonylation,” Plos Biology 7, no. 10 (2009): e1000229.

[557]

M. Hasni Ebou, A. Singh-Estivalet, and J. M. Launay, “Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells,” PLoS ONE 11, no. 2 (2016): e0149343.

[558]

N. Liu, T. Liu, N. Alim, et al., “5-HT Promotes Pancreatic α-to-β Cell Transdifferentiation,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1872, no. 5 (2025): 119958.

[559]

J. García-Pedraza, O. Hernández-Abreu, A. Morán, J. Carretero, M. García-Domingo, and C M. Villalón, “Role of Peripheral 5-HT(5A) Receptors in 5-HT-induced Cardiac Sympatho-inhibition in Type 1 Diabetic Rats,” Scientific Reports 10, no. 1 (2020): 19358.

[560]

M. Li, X. Chen, N. Cao, R. Lv, and B. Gu, “Improvement of Urethral Dysfunction by 5-HT(1A) Receptor Agonist NLX-112 in Diabetic Rats,” Neurourology and Urodynamics 41, no. 7 (2022): 1528-1538.

[561]

B. Jin, S. E. Ha, L. Wei, et al., “Colonic Motility Is Improved by the Activation of 5-HT(2B) Receptors on Interstitial Cells of Cajal in Diabetic Mice,” Gastroenterology 161, no. 2 (2021): 608-622. e7.

[562]

N. Munawar, M. S. Bitar, and W. Masocha, “Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain,” International Journal of Molecular Sciences 24, no. 18 (2023): 14334.

[563]

J. Shuai, Y. Gao, L. Chen, and Z. Wang, “Role of Serotonin in Regulation of Pancreatic and Mesenteric Arterial Function in Diabetic Mice,” European Journal of Pharmacology 901 (2021): 174070.

[564]

K. Hellstrand, C. Czerkinsky, A. Ricksten, et al., “Role of Serotonin in the Regulation of Interferon-gamma Production by human Natural Killer Cells,” Journal of Interferon Research 13, no. 1 (1993): 33-38.

[565]

K. Iken, S. Chheng, A. Fargin, A. C. Goulet, and E. Kouassi, “Serotonin Upregulates Mitogen-stimulated B Lymphocyte Proliferation Through 5-HT1A Receptors,” Cellular Immunology 163, no. 1 (1995): 1-9.

[566]

M. Wan, Z. Ma, J. Han, et al., “5-HT Induces Regulatory B Cells in Fighting Against Inflammation-driven Ulcerative Colitis,” International Immunopharmacology 125, no. Pt A (2023): 111042.

[567]

T. Müller, T. Dürk, B. Blumenthal, et al., “5-hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-cell Priming Capacity of Dendritic Cells in Vitro and in Vivo,” PLoS ONE 4, no. 7 (2009): e6453.

[568]

N. Katoh, F. Soga, T. Nara, et al., “Effect of Serotonin on the Differentiation of human Monocytes Into Dendritic Cells,” Clinical and Experimental Immunology 146, no. 2 (2006): 354-361.

[569]

L. Fabà, N. de Groot, G. Ramis, C. G. Cabrera-Gómez, and J. Doelman, “Serotonin Receptors and Their Association With the Immune System in the Gastrointestinal Tract of Weaning Piglets,” Porcine Health Manag 8, no. 1 (2022): 8.

[570]

S. Wang, L. Kong, L. Wang, et al., “Viral Expression of NE/PPE Enhances Anti-colorectal Cancer Efficacy of Oncolytic adenovirus by Promoting TAM M1 Polarization to Reverse Insufficient Effector Memory/Effector CD8(+) T Cell Infiltration,” Journal of Experimental & Clinical Cancer Research 44, no. 1 (2025): 97.

[571]

K. Liu, L. Kong, H. Cui, et al., “Thymosin α1 Reverses Oncolytic adenovirus-induced M2 Polarization of Macrophages to Improve Antitumor Immunity and Therapeutic Efficacy,” Cell Reports Medicine 5, no. 10 (2024): 101751.

[572]

L. Xiao, L. Zhang, C. Guo, et al., “Find Me" and "Eat Me" Signals: Tools to Drive Phagocytic Processes for Modulating Antitumor Immunity,” Cancer communications (London) 44, no. 7 (2024): 791-832.

[573]

J. Molina-Cerrillo, E. Grande, and T. Alonso-Gordoa, “Inhibition of Serotonin Synthesis May Have Antitumor Activity? Long-Term Efficacy in a Patient With Gastrointestinal Neuroendocrine Tumor,” The Oncologist 24, no. 7 (2019): e597-e599.

[574]

A. Szabo, P. Gogolak, G. Koncz, et al., “Immunomodulatory Capacity of the Serotonin Receptor 5-HT2B in a Subset of human Dendritic Cells,” Scientific Reports 8, no. 1 (2018): 1765.

[575]

S. Karmakar and G. Lal, “Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses,” Methods in Molecular Biology 2761 (2024): 181-207.

[576]

A. D. Waldman, J. M. Fritz, and M J. Lenardo, “A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice,” Nature Reviews Immunology 20, no. 11 (2020): 651-668.

[577]

H. Zhang, Y. Zhang, J. Dong, et al., “Recombinant Oncolytic adenovirus Expressing a Soluble PVR Elicits Long-term Antitumor Immune Surveillance,” Molecular Therapy Oncolytics 20 (2021): 12-22.

[578]

H. Zhang, Y. Zhang, J. Dong, et al., “Recombinant adenovirus Expressing the Fusion Protein PD1PVR Improves CD8(+) T Cell-mediated Antitumor Efficacy With Long-term Tumor-specific Immune Surveillance in Hepatocellular Carcinoma,” Cellular oncology (Dordrecht) 44, no. 6 (2021): 1243-1255.

[579]

Y. Zhang, J. Wu, H. Zhang, J. Wei, and J. Wu, “Extracellular Vesicles-Mimetic Encapsulation Improves Oncolytic Viro-Immunotherapy in Tumors with Low Coxsackie and Adenovirus Receptor,” Frontiers in Bioengineering and Biotechnology 8 (2020): 574007.

[580]

A. Chen, Y. Zhang, G. Meng, et al., “Oncolytic Measles Virus Enhances Antitumour Responses of Adoptive CD8(+)NKG2D(+) Cells in Hepatocellular Carcinoma Treatment,” Scientific Reports 7, no. 1 (2017): 5170.

[581]

A. Quintero-Villegas and S I. Valdés-Ferrer, “Role of 5-HT(7) Receptors in the Immune System in Health and Disease,” Molecular Medicine 26, no. 1 (2019): 2.

[582]

D. Zhan, X. Wang, Y. Zheng, et al., “Integrative Dissection of 5-hydroxytryptamine Receptors-related Signature in the Prognosis and Immune Microenvironment of Breast Cancer,” Frontiers in oncology 13 (2023): 1147189.

[583]

X. Wang, S. Q. Fu, X. Yuan, et al., “A GAPDH Serotonylation System Couples CD8(+) T Cell Glycolytic Metabolism to Antitumor Immunity,” Molecular Cell 84, no. 4 (2024): 760-775. e7.

[584]

S. Zhou, D. Ye, H. Xia, et al., “Sertraline Inhibits Stress-induced Tumor Growth Through Regulating CD8 + T Cell-mediated Anti-tumor Immunity,” Anti-Cancer Drugs 33, no. 9 (2022): 935-942.

[585]

K. Hellstrand and S. Hermodsson, “Role of Serotonin in the Regulation of human Natural Killer Cell Cytotoxicity,” Journal of Immunology 139, no. 3 (1987): 869-875.

[586]

B. Li, J. Elsten-Brown, M. Li, et al., “Serotonin Transporter Inhibits Antitumor Immunity Through Regulating the Intratumoral Serotonin Axis,” Cell 188, no. 14 (2025): 3823-3842.

[587]

N. Pivac, D. Kozaric-Kovacic, M. Mustapic, et al., “Platelet Serotonin in Combat Related Posttraumatic Stress Disorder With Psychotic Symptoms,” Journal of Affective Disorders 93, no. 1-3 (2006): 223-227.

[588]

B. W. Okaty, K. G. Commons, and S M. Dymecki, “Embracing Diversity in the 5-HT Neuronal System,” Nature Reviews Neuroscience 20, no. 7 (2019): 397-424.

[589]

S. Senol and M U. Es, “Is Serotonin a Valuable Parameter in Peripheral Arterial Disease?” Asian Cardiovascular & Thoracic Annals 23, no. 3 (2015): 289-291.

[590]

R. L. I. Pillai, M. Zhang, J. Yang, et al., “Will Imaging Individual Raphe Nuclei in Males With Major Depressive Disorder Enhance Diagnostic Sensitivity and Specificity?” Depression and Anxiety 35, no. 5 (2018): 411-420.

[591]

S. Jauhar, D. Arnone, D. S. Baldwin, et al., “A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression,” Molecular Psychiatry 28, no. 8 (2023): 3149-3152.

[592]

A. Mohammadi, E. Rashidi, and V G. Amooeian, “Brain, Blood, Cerebrospinal Fluid, and Serum Biomarkers in Schizophrenia,” Psychiatry Research 265 (2018): 25-38.

[593]

C. Li, Q. Cai, Z. Su, Z. Chen, J. Cao, and F. Xu, “Could Peripheral 5-HT Level be Used as a Biomarker for Depression Diagnosis and Treatment? A Narrative Minireview,” Frontiers in pharmacology 14 (2023): 1149511.

[594]

A. L. Lopresti, G. L. Maker, S. D. Hood, and P D. Drummond, “A Review of Peripheral Biomarkers in Major Depression: The Potential of Inflammatory and Oxidative Stress Biomarkers,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 48 (2014): 102-111.

[595]

M. Hagbom, F. M. De Faria, M. E. Winberg, et al., “Neurotrophic Factors Protect the Intestinal Barrier From Rotavirus Insult in Mice,” MBio 11, no. 1 (2020): e02834-e02919.

[596]

A. Grozić, K. Coker, C. M. Dussik, et al., “Identification of Putative Transcriptomic Biomarkers in Irritable Bowel Syndrome (IBS): Differential Gene Expression and Regulation of TPH1 and SERT by Vitamin D,” PLoS ONE 17, no. 10 (2022): e0275683.

[597]

Z. Xu, J. J. Chen, Q. Mei, Y. Li, and J. Xu, “Expression of 5-hydroxytryptamine 7 Receptor in Intestinal Mucosa Correlates With the Degree of Intestinal Inflammation in Crohn's disease,” BMC Gastroenterology [Electronic Resource] 22, no. 1 (2022): 457.

[598]

M. Ghiboub, R. S. Boneh, B. Sovran, et al., “Sustained Diet-Induced Remission in Pediatric Crohn's Disease Is Associated with Kynurenine and Serotonin Pathways,” Inflammatory Bowel Diseases 29, no. 5 (2023): 684-694.

[599]

C. Cirillo, J. Tack, and P. Vanden Berghe, “Nerve Activity Recordings in Routine human Intestinal Biopsies,” Gut 62, no. 2 (2013): 227-235.

[600]

C. R. Manzella, D. Jayawardena, W. Pagani, et al., “Serum Serotonin Differentiates between Disease Activity States in Crohn's Patients,” Inflammatory Bowel Diseases 26, no. 10 (2020): 1607-1618.

[601]

P. Grieco and I. Gomez-Monterrey, “Natural and Synthetic Peptides in the Cardiovascular Diseases: An Update on Diagnostic and Therapeutic Potentials,” Archives of Biochemistry and Biophysics 662 (2019): 15-32.

[602]

L. Wei, R. R. Warburton, I. R. Preston, et al., “Serotonylated Fibronectin Is Elevated in Pulmonary Hypertension,” American Journal of Physiology. Lung Cellular and Molecular Physiology 302, no. 12 (2012): L1273-L1279.

[603]

Y. Ban, T. Watanabe, A. Miyazaki, et al., “Impact of Increased Plasma Serotonin Levels and Carotid Atherosclerosis on Vascular Dementia,” Atherosclerosis 195, no. 1 (2007): 153-159.

[604]

Y. Xia, D. Wang, N. Zhang, Z. Wang, and L. Pang, “Plasma Serotonin Level Is a Predictor for Recurrence and Poor Prognosis in Colorectal Cancer Patients,” Journal of Clinical Laboratory Analysis 32, no. 2 (2018): e22263.

[605]

G. K. Fröberg, R. Lindberg, M. Ritter, and K. Nordlind, “Expression of Serotonin and Its 5-HT1A Receptor in Canine Cutaneous Mast Cell Tumours,” Journal of Comparative Pathology 141, no. 2-3 (2009): 89-97.

[606]

A. Fröbe, L. Čičin-Šain, G. Jones, et al., “Plasma Free Serotonin as a Marker for Early Detection of Breast Cancer Recurrence,” Anticancer Research 34, no. 3 (2014): 1167-1169.

[607]

J. M. Zuetenhorst and B G. Taal, “Metastatic Carcinoid Tumors: A Clinical Review,” The Oncologist 10, no. 2 (2005): 123-131.

[608]

A. P. AhYoung, S. C. Eckard, A. Gogineni, et al., “Neutrophil Serine Protease 4 Is Required for Mast Cell-dependent Vascular Leakage,” Communications Biology 3, no. 1 (2020): 687.

[609]

M. Bernardes, T. Vieira, R. Lucas, et al., “Serum Serotonin Levels and Bone in Rheumatoid Arthritis Patients,” Rheumatology International 37, no. 11 (2017): 1891-1898.

[610]

A. Al-Sharman, H. M. Al-Khazaaleh, H. Khalil, A. Aburub, and K. El-Salem, “The Relationship between Sleep Quality, Sleep-Related Biomarkers, and Motor Skill Acquisition in People with Multiple Sclerosis: A Pilot Study,” Physical Therapy 101, no. 10 (2021): pzab175.

[611]

K. Khoshnevisan, M. Chehrehgosha, S. M. Sajjadi-Jazi, and A M. Meftah, “Tryptophan and Serotonin Levels as Potent Biomarkers in Diabetes Mellitus Complications: A New Approach of Diagnostic Role,” Journal of Diabetes & Metabolic Disorders 21, no. 2 (2022): 1923-1934.

[612]

S. Yubero-Lahoz, P. Robledo, M. Farré, and R. de laTorre, “Platelet SERT as a Peripheral Biomarker of Serotonergic Neurotransmission in the central Nervous System,” Current Medicinal Chemistry 20, no. 11 (2013): 1382-1396.

[613]

F. De Vadder, E. Grasset, L. Mannerås Holm, et al., “Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks,” PNAS 115, no. 25 (2018): 6458-6463.

[614]

A. Agus, J. Planchais, and H. Sokol, “Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease,” Cell Host & Microbe 23, no. 6 (2018): 716-724.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/