Immunoglobulin A Nephropathy: Molecular Pathogenesis and Targeted Therapy

Xu-Jie Zhou

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70382

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70382 DOI: 10.1002/mco2.70382
REVIEW

Immunoglobulin A Nephropathy: Molecular Pathogenesis and Targeted Therapy

Author information +
History +
PDF

Abstract

Immunoglobulin A nephropathy (IgAN), the most prevalent primary glomerulonephritis globally, is characterized by mesangial IgA deposition and heterogeneous clinical trajectories. Historically, management relied on renin–angiotensin system inhibition and empirical immunosuppression, yet high lifetime kidney failure risk persists despite optimized care. This review synthesizes advances in molecular pathogenesis, highlighting how the traditional multi-hit hypothesis—while foundational for targeted therapy development—fails to capture IgAN's recurrent, self-amplifying nature. We introduce the “spiral hypothesis” as a dynamic model of cyclical immune-injury cascades, better explaining disease chronicity and necessitating sustained maintenance therapy. Emerging targeted therapies—including B-cell targeted agents (e.g., APRIL/BAFF inhibitors), complement inhibitors (e.g., iptacopan), and mucosal immunomodulators (e.g., TRF-budesonide)—enable early intervention addressing both upstream immunological drivers and downstream fibrotic pathways. We critically evaluate treat-to-target frameworks, defining remission endpoints (proteinuria <0.3 g/day, hematuria resolution, estimated glomerular filtration rate slope <−1 mL/min/year) and emphasizing biomarker-guided personalization. The paradigm shift toward proactive management prioritizes individualized therapeutic sequencing of novel agents based on dynamic risk stratification. Future priorities include optimizing protocols for high-risk phenotypes and refining long-term safety monitoring to ensure sustainable efficacy.

Keywords

B lymphocyte / clinical trials / complement / IgA nephropathy / molecular pathogenesis / targeted therapy

Cite this article

Download citation ▾
Xu-Jie Zhou. Immunoglobulin A Nephropathy: Molecular Pathogenesis and Targeted Therapy. MedComm, 2025, 6(9): e70382 DOI:10.1002/mco2.70382

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Berger and N. Hinglais, “[Intercapillary deposits of IgA-IgG],” Journal D urologie Et De Nephrologie 74 (1968): 694-695.

[2]

H. Trimarchi, J. Barratt, R. C. Monteiro, and J. Feehally, “IgA Nephropathy: "State of the Art": A Report From the 15th International Symposium on IgA Nephropathy Celebrating the 50th Anniversary of Its First Description,” Kidney International 95 (2019): 750-756.

[3]

P. Pattrapornpisut, C. Avila-Casado, and H. N. Reich, “IgA Nephropathy: Core Curriculum 2021,” American Journal of Kidney Diseases 78 (2021): 429-441.

[4]

E. Stamellou, C. Seikrit, S. Tang, et al., “IgA Nephropathy,” Nature reviews Disease primers 9 (2023): 67.

[5]

C. K. Cheung, S. Alexander, H. N. Reich, H. Selvaskandan, H. Zhang, and J. Barratt, “The Pathogenesis of IgA Nephropathy and Implications for Treatment,” Nature Reviews Nephrology 21 (2025): 9-23.

[6]

B. Parlato, “The Journey to Advocacy: Celebrating the IgA Nephropathy Foundation's 20th Anniversary,” Seminars in Nephrology 44 (2024): 151575.

[7]

F. Kamal, J. Kim, and R. Lafayette, “Current Biomarkers of IgA Nephropathy,” Seminars in Nephrology 44 (2024): 151572.

[8]

X. Zhou and H. Zhang, “The Genetics of IgA Nephropathy: Implications for Future Therapies,” Seminars in Nephrology 44 (2024): 151567.

[9]

J. Novak, C. Reily, N. J. Steers, et al., “Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy,” Seminars in Nephrology 44 (2024): 151565.

[10]

S. C. Ong and B. A. Julian, “Post-transplant IgA Nephropathy,” Seminars in Nephrology 44 (2024): 151570.

[11]

D. V. Rizk, “Updates on IgA Nephropathy,” Seminars in Nephrology 44 (2024): 151574.

[12]

M. Ghaddar, M. Canney, and S. J. Barbour, “IgA Nephropathy: Epidemiology and Disease Risk across the World,” Seminars in Nephrology 44 (2024): 151564.

[13]

L. Peruzzi and R. Coppo, “IgAN Across the Age Spectrum: The Pediatric Perspective,” Seminars in Nephrology 44 (2024): 151569.

[14]

P. J. Gleeson and R. C. Monteiro, “The Role of Mucosal Immunity: What Can We Learn from Animal and Human Studies?,” Seminars in Nephrology 44 (2024): 151566.

[15]

M. Haas, “The Pathology of IgA Nephropathy: How Can It Inform Management?,” Seminars in Nephrology 44 (2024): 151568.

[16]

E. Pillebout, “IgA Vasculitis and IgA Nephropathy: Two Sides of the Same Coin?,” Seminars in Nephrology 44 (2024): 151571.

[17]

C. K. Cheung and J. Barratt, “The Rapidly Changing Treatment Landscape of IgA Nephropathy,” Seminars in Nephrology 44 (2024): 151573.

[18]

D. Pitcher, F. Braddon, B. Hendry, et al., “Long-Term Outcomes in IgA Nephropathy,” Clinical Journal of the American Society of Nephrology 18 (2023): 727-738.

[19]

X. Shen, P. Chen, M. Liu, et al., “Long-term Outcomes of IgA Nephropathy in China,” Nephrology, Dialysis, Transplantation 40, no. 6 (2024): 1137-1146.

[20]

J. Floege, A. Bernier-Jean, J. Barratt, and B. Rovin, “Treatment of Patients With IgA Nephropathy: A Call for a New Paradigm,” Kidney International 107 (2025): 640-651.

[21]

C. J. Willey, R. Coppo, F. Schaefer, M. Mizerska-Wasiak, M. Mathur, and M. J. Schultz, “The Incidence and Prevalence of IgA Nephropathy in Europe,” Nephrology, Dialysis, Transplantation 38 (2023): 2340-2349.

[22]

K. Kiryluk, D. E. Freedberg, J. Radhakrishnan, et al., “Global Incidence of IgA Nephropathy by Race and Ethnicity: A Systematic Review,” Kidney360 4 (2023): 1112-1122.

[23]

E. V. Lerma, M. E. Bensink, K. M. Thakker, et al., “Impact of Proteinuria and Kidney Function Decline on Health Care Costs and Resource Utilization in Adults with IgA Nephropathy in the United States: A Retrospective Analysis,” Kidney Medicine 5 (2023): 100693.

[24]

C. Yang, B. Gao, F. Wang, et al., “Executive Summary for the China Kidney Disease Network (CK-NET) 2017-2018 Annual Data Report,” Kidney International 107 (2025): 980-984.

[25]

H. Selvaskandan and J. Barratt, “Dynamic Individualized Risk Prediction in IgA Nephropathy: Entering the Era of Artificial Intelligence,” Clinical Journal of the American Society of Nephrology 19 (2024): 826-828.

[26]

J. Bharati and K. D. Jhaveri, “Prognosis of IgA Nephropathy: A Lifetime Story,” Clinical Journal of the American Society of Nephrology 18 (2023): 699-701.

[27]

D. J. Caster and R. A. Lafayette, “The Treatment of Primary IgA Nephropathy: Change, Change, Change,” American Journal of Kidney Diseases 83 (2024): 229-240.

[28]

A. Kronbichler, I. Bajema, D. Geetha, and M. Säemann, “Novel Aspects in the Pathophysiology and Diagnosis of Glomerular Diseases,” Annals of the Rheumatic Diseases 82 (2023): 585-593.

[29]

U. Kunter, C. Seikrit, and J. Floege, “Novel Agents for Treating IgA Nephropathy,” Current Opinion in Nephrology and Hypertension 32 (2023): 418-426.

[30]

R. J. Glassock, “IgA Nephropathy: "the Times They Are a-Changin",” Glomerular Diseases 2 (2022): 4-14.

[31]

P. J. Gleeson, M. M. O'Shaughnessy, and J. Barratt, “IgA Nephropathy in Adults-treatment Standard,” Nephrology, Dialysis, Transplantation 38 (2023): 2464-2473.

[32]

Y. Zhang and H. Zhang, “Current Understanding and New Insights in the Treatment of IgA Nephropathy,” Nephrology (Carlton, Vic.) 29, no. Suppl 2 (2024): 75-79.

[33]

F. P. Schena and S. N. Cox, “Biomarkers and Precision Medicine in IgA Nephropathy,” Seminars in Nephrology 38 (2018): 521-530.

[34]

H. Suzuki, “Biomarkers for IgA Nephropathy on the Basis of Multi-hit Pathogenesis,” Clinical and Experimental Nephrology 23 (2019): 26-31.

[35]

M. Wu, C. Chen, G. Yiang, et al., “The Emerging Role of Pathogenesis of IgA Nephropathy,” Journal of Clinical Medicine 7 (2018): 225.

[36]

A. Tortajada, E. Gutierrez, M. C. Pickering, M. Praga Terente, and N. Medjeral-Thomas, “The Role of Complement in IgA Nephropathy,” Molecular Immunology 114 (2019): 123-132.

[37]

E. Gutiérrez, F. Carvaca-Fontán, L. Luzardo, E. Morales, M. Alonso, and M. Praga, “A Personalized Update on IgA Nephropathy: A New Vision and New Future Challenges,” Nephron 144 (2020): 555-571.

[38]

H. Zhang and J. Barratt, “Is IgA Nephropathy the Same Disease in Different Parts of the World?,” Seminars in Immunopathology 43 (2021): 707-715.

[39]

C. Bechtler, O. Barneoud-Rousset, L. Pang, et al., “Optimized Synthesis, Polymer Conjugation, and Proof-of-concept Studies of the gd-IgA1 Epitope for Antibody-scavenging Therapies in IgA Nephropathy,” Chemical Biology and Drug Design 102 (2023): 580-586.

[40]

Y. Suzuki, H. Suzuki, J. Yasutake, and Y. Tomino, “Paradigm Shift in Activity Assessment of IgA Nephropathy—optimizing the next Generation of Diagnostic and Therapeutic Maneuvers via Glycan Targeting,” Expert Opinion on Biological Therapy 15 (2015): 583-593.

[41]

K. Yamasaki, H. Suzuki, J. Yasutake, Y. Yamazaki, and Y. Suzuki, “Galactose-Deficient IgA1-Specific Antibody Recognizes GalNAc-Modified Unique Epitope on Hinge Region of IgA1,” Monoclon Antib Immunodiagn Immunother 37 (2018): 252-256.

[42]

J. Gornowicz-Porowska, A. Seraszek-Jaros, M. Bowszyc-Dmochowska, E. Kaczmarek, and M. Dmochowski, “Immunoexpression of IgA Receptors (CD89, CD71) in Dermatitis Herpetiformis,” Folia Histochemica Et Cytobiologica 55 (2017): 212-220.

[43]

E. Haddad, I. C. Moura, M. Arcos-Fajardo, M. Macher, V. Baudouin, and C. Alberti, “Enhanced Expression of the CD71 Mesangial IgA1 Receptor in Berger Disease and Henoch-Schönlein Nephritis: Association Between CD71 Expression and IgA Deposits,” Journal of the American Society of Nephrology 14 (2003): 327-337.

[44]

S. M. Lechner, C. Papista, J. M. Chemouny, L. Berthelot, and R. C. Monteiro, “Role of IgA Receptors in the Pathogenesis of IgA Nephropathy,” Journal of Nephrology 29 (2016): 5-11.

[45]

H. Tamouza, J. M. Chemouny, L. Raskova Kafkova, L. Berthelot, M. Flamant, and M. Demion, “The IgA1 Immune Complex-mediated Activation of the MAPK/ERK Kinase Pathway in Mesangial Cells Is Associated With Glomerular Damage in IgA Nephropathy,” Kidney International 82 (2012): 1284-1296.

[46]

L. Abbad, R. C. Monteiro, and L. Berthelot, “Food Antigens and Transglutaminase 2 in IgA Nephropathy: Molecular Links Between Gut and Kidney,” Molecular Immunology 121 (2020): 1-6.

[47]

J. Floege, I. C. Moura, and M. R. Daha, “New Insights Into the Pathogenesis of IgA Nephropathy,” Seminars in immunopathology 36 (2014): 431-442.

[48]

J. H. Jhee, B. Y. Nam, J. T. Park, et al., “CD71 mesangial IgA1 Receptor and the Progression of IgA Nephropathy,” Translational Research 230 (2021): 34-43.

[49]

R. C. Monteiro, I. C. Moura, P. Launay, et al., “Pathogenic Significance of IgA Receptor Interactions in IgA Nephropathy,” Trends in Molecular Medicine 8 (2002): 464-468.

[50]

P. Launay, B. Grossetête, M. Arcos-Fajardo, et al., “Fcalpha Receptor (CD89) Mediates the Development of Immunoglobulin A (IgA) Nephropathy (Berger's disease). Evidence for Pathogenic Soluble Receptor-Iga Complexes in Patients and CD89 Transgenic Mice,” Journal of Experimental Medicine 191 (2000): 1999-2009.

[51]

A. Cambier, J. Da Silva, J. Bex, et al., “Blockade of mTOR Ameliorates IgA Nephropathy by Correcting CD89 and CD71 Dysfunctions in Humanized Mice,” BioRxiv (2025): 2021-2025.

[52]

A. Cambier, P. J. Gleeson, L. Abbad, et al., “Soluble CD89 Is a Critical Factor for Mesangial Proliferation in Childhood IgA Nephropathy,” Kidney International 101 (2022): 274-287.

[53]

L. Xu, B. Li, M. Huang, et al., “Critical Role of Kupffer Cell CD89 Expression in Experimental IgA Nephropathy,” PLoS ONE 11 (2016): e0159426.

[54]

H. Lee, Y. Shin, X. Fang, et al., “Single-cell RNA Sequencing Revealed the Role of the Th17 Pathway in the Development of Anti- human Leukocyte Antigen Antibodies in a Highly Sensitized Mouse Model,” Kidney Research and Clinical Practice (2024).

[55]

M. Xia, Y. Li, Y. Liu, Z. Dong, and H. Liu, “Single-Cell RNA-Sequencing Analysis Provides Insights Into IgA Nephropathy,” Biomolecules 15 (2025): 191.

[56]

J. Qing, C. Li, H. Zhi, L. Zhang, J. Wu, and Y. Li, “Exploring Macrophage Heterogeneity in IgA Nephropathy: Mechanisms of Renal Impairment and Current Therapeutic Targets,” International Immunopharmacology 140 (2024): 112748.

[57]

X. Chen, T. Wang, L. Chen, et al., “Cross-species Single-cell Analysis Uncovers the Immunopathological Mechanisms Associated With IgA Nephropathy Progression,” JCI Insight 9 (2024): e173651.

[58]

S. Zambrano, L. He, T. Kano, et al., “Molecular Insights Into the Early Stage of Glomerular Injury in IgA Nephropathy Using Single-cell RNA Sequencing,” Kidney International 101 (2022): 752-765.

[59]

W. Du, C. Gao, X. You, et al., “Increased Proportion of Follicular Helper T Cells Is Associated With B Cell Activation and Disease Severity in IgA Nephropathy,” Frontiers in immunology 13 (2022): 901465.

[60]

W. Tang, Q. Li, X. Yang, and H. Yang, “Causal Relationships Between Immune Cell Phenotypes and Primary Glomerular Diseases: Genetic Evidence From Bidirectional Mendelian Randomization Study,” Clinical Kidney Journal 18 (2025): sfaf057.

[61]

H. Huang, B. Chen, C. Feng, W. Chen, and D. Wu, “Exploring the Mediating Role of Immune Cells in the Pathogenesis of IgA Nephropathy Through the Inflammatory Axis of Gut Microbiota From a Genomic Perspective,” Mammalian Genome 36 (2025): 306-316.

[62]

J. Shu, Y. Ge, and Y. Wu, “Causal Role of Immune Cells in IgA Nephropathy: A Mendelian Randomization Study,” Renal Failure 46 (2024): 2381593.

[63]

E. Meffre and H. Wardemann, “B-cell Tolerance Checkpoints in Health and Autoimmunity,” Current Opinion in Immunology 20 (2008): 632-638.

[64]

R. Davies, S. L. Peng, J. Lickliter, et al., “A First-in-human, Randomized Study of the Safety, Pharmacokinetics and Pharmacodynamics of Povetacicept, an Enhanced Dual BAFF/APRIL Antagonist, in Healthy Adults,” Clinical and Translational Science 17 (2024): e70055.

[65]

L. Martín-Penagos, A. Benito-Hernández, D. San Segundo, C. Sango, A. Azueta, and J. Gómez-Román, “A Proliferation-inducing Ligand Increase Precedes IgA Nephropathy Recurrence in Kidney Transplant Recipients,” Clinical Transplantation 33 (2019): e13502.

[66]

J. Sun, Y. Cheng, W. Zhang, et al., “TACI Ig Fusion Protein Inhibits TLR4/MyD88/NF-κB Pathway Alleviates Renal Injury in IgA Nephropathy Rats,” Iranian Journal of Kidney Diseases 18 (2024): 326-336.

[67]

Y. Jin, J. Zhu, A. Sheng, et al., “Telitacicept as a BAFF/APRIL Dual Inhibitor: Efficacy and Safety in Reducing Proteinuria for Refractory Childhood IgA Vasculitis Nephritis,” Pediatric Nephrology 40, no. 8 (2025): 2561-2569.

[68]

M. J. Luvizotto, L. Menezes-Silva, V. Woronik, R. C. Monteiro, and N. O. S. Câmara, “Gut-kidney Axis in IgA Nephropathy: Role on Mesangial Cell Metabolism and Inflammation,” Frontiers in Cell and Developmental Biology 10 (2022): 993716.

[69]

A. Popova, B. Slisere, K. Racenis, et al., “IgA Class-switched CD27-CD21+ B Cells in IgA Nephropathy,” Nephrology, Dialysis, Transplantation 40 (2025): 505-515.

[70]

Z. Xu, H. Zhan, J. Zhang, et al., “New Biomarkers in IgA Nephropathy,” Clinical Immunology 274 (2025): 110468.

[71]

M. S. Nurmi, L. Pérez-Alós, P. Garred, B. Fellström, K. Gabrysch, and S. Lundberg, “Urine Complement-related Proteins in IgA Nephropathy and IgA Vasculitis Nephritis, Possible Biomarkers of Disease Activity,” Clinical Kidney Journal 18 (2025): sfae395.

[72]

D. Wang, C. Wu, S. Chen, et al., “Urinary Complement Profile in IgA Nephropathy and Its Correlation With the Clinical and Pathological Characteristics,” Frontiers in Immunology 14 (2023): 1117995.

[73]

T. Gan, L. Qu, S. Qu, et al., “Unveiling Biomarkers and Therapeutic Targets in IgA Nephropathy Through Large-scale Blood Transcriptome Analysis,” International Immunopharmacology 132 (2024): 111905.

[74]

B. C. Yu, J. H. Park, K. H. Lee, et al., “Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy,” Journal of Clinical Medicine 11 (2022): 820.

[75]

H. Cetinkaya, M. Gursu, H. Yazici, et al., “Could Mesangial C3 Deposition be an Independent Prognostic Marker in Immunoglobulin A Nephropathy?,” Journal of Nephrology 37 (2024): 923-932.

[76]

B. P. Dixon, L. A. Greenbaum, L. Huang, et al., “Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients With C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases,” Kidney International Reports 8 (2023): 2284-2293.

[77]

V. Tesař, J. Radhakrishnan, V. Charu, and J. Barratt, “Challenges in IgA Nephropathy Management: An Era of Complement Inhibition,” Kidney International Reports 8 (2023): 1730-1740.

[78]

G. Yu, J. Zhao, M. Wang, et al., “Urinary C4d and Progression of Kidney Disease in IgA Vasculitis,” Nephrology, Dialysis, Transplantation 39 (2024): 1642-1648.

[79]

Y. Dong, Z. Wang, W. Guo, et al., “Association Between Urinary C4d Levels and Disease Progression in IgA Nephropathy,” Nephrology, Dialysis, Transplantation 39 (2024): 1279-1287.

[80]

Z. Wang, Y. Jiang, P. Chen, et al., “The Level of Urinary C4d Is Associated With Disease Progression in IgA Nephropathy With Glomerular Crescentic Lesions: A Cohort Study,” Nephrology, Dialysis, Transplantation 37 (2022): 2119-2127.

[81]

E. Tringali, D. Vetrano, F. Tondolo, et al., “Role of Serum Complement C3 and C4 on Kidney Outcomes in IgA Nephropathy,” Scientific Reports 14 (2024): 16224.

[82]

W. Guo, Q. Liu, L. Zhu, et al., “Coding and Noncoding Variants in CFH Act Synergistically for Complement Activation in Immunoglobulin A Nephropathy,” American Journal of the Medical Sciences 356 (2018): 114-120.

[83]

Y. Kang, B. Xu, S. Shi, et al., “Mesangial C3 Deposition, Complement-Associated Variant, and Disease Progression in IgA Nephropathy,” Clin J Am Soc Nephrol 18 (2023): 1583-1591.

[84]

Y. Li, X. Ni, X. Li, et al., “Glomerular Mesangial Cells Derived Complement Factor H Regulates Complement Activation, Influences Cell Proliferation, and Maintains Actin Cytoskeleton,” International Immunopharmacology 154 (2025): 114544.

[85]

W. Hou, S. Shi, X. Zhou, et al., “Complement Factor H Variants Are Associated With Microangiopathy Lesions in IgA Nephropathy,” International Immunopharmacology 112 (2022): 109234.

[86]

J. Xie, K. Kiryluk, Y. Li, et al., “Fine Mapping Implicates a Deletion of CFHR1 and CFHR3 in Protection From IgA Nephropathy in Han Chinese,” Journal of the American Society of Nephrology 27 (2016): 3187-3194.

[87]

Y. Zhai, S. Meng, L. Zhu, et al., “Rare Variants in the Complement Factor H-Related Protein 5 Gene Contribute to Genetic Susceptibility to IgA Nephropathy,” Journal of the American Society of Nephrology 27 (2016): 2894-2905.

[88]

L. Zhu, Y. Zhai, F. Wang, et al., “Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy,” Journal of the American Society of Nephrology 26 (2015): 1195-1204.

[89]

M. Jia, L. Zhu, Y. Zhai, et al., “Variation in Complement Factor H Affects Complement Activation in Immunoglobulin A Vasculitis With Nephritis,” Nephrology (Carlton, Vic.) 25 (2020): 40-47.

[90]

F. Caravaca-Fontán, E. Gutiérrez, Á. M. Sevillano, and M. Praga, “Targeting Complement in IgA Nephropathy,” Clinical Kidney Journal 16 (2023): ii28-ii39.

[91]

D. V. Rizk, B. H. Rovin, H. Zhang, et al., “Targeting the Alternative Complement Pathway with Iptacopan to Treat IgA Nephropathy: Design and Rationale of the APPLAUSE-IgAN Study,” Kidney International Reports 8 (2023): 968-979.

[92]

P. Wang, M. Luo, E. Song, et al., “Long Noncoding RNA Lnc-TSI Inhibits Renal Fibrogenesis by Negatively Regulating the TGF-β/Smad3 Pathway,” Science Translational Medicine 10 (2018): eaat2039.

[93]

K. Mucha, M. Pac, and L. Pączek, “Omics Are Getting Us Closer to Understanding IgA Nephropathy,” Archivum Immunologiae Et Therapiae Experimentalis 71 (2023): 12.

[94]

Y. Nihei, K. Haniuda, M. Higashiyama, et al., “Identification of IgA Autoantibodies Targeting Mesangial Cells Redefines the Pathogenesis of IgA Nephropathy,” Science Advances 9 (2023): eadd6734.

[95]

M. Higashiyama, K. Haniuda, Y. Nihei, et al., “Oral Bacteria Induce IgA Autoantibodies Against a Mesangial Protein in IgA Nephropathy Model Mice,” Life Science Alliance 7 (2024): e202402588.

[96]

J. Jemelkova, M. Stuchlova Horynova, P. Kosztyu, K. Zachova, J. Zadrazil, and D. Galuszkova, “GalNAc-T14 May Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy,” Life Sci Alliance 8 (2023): 1068-1075.

[97]

X. Wang, X. Zhou, X. Qiao, M. Falchi, J. Liu, and H. Zhang, “The Evolving Understanding of Systemic Mechanisms in Organ-specific IgA Nephropathy: A Focus on Gut-kidney Crosstalk,” Theranostics 15 (2025): 656-681.

[98]

S. Tejedor Vaquero, H. Neuman, L. Comerma, et al., “Immunomolecular and Reactivity Landscapes of Gut IgA Subclasses in Homeostasis and Inflammatory Bowel Disease,” Journal of Experimental Medicine 221 (2024): e20230079.

[99]

M. Hong, E. Song, H. J. Yoon, W. Chung, H. Y. Seo, and D. Kim, “Clade-specific Extracellular Vesicles From Akkermansia Muciniphila Mediate Competitive Colonization via Direct Inhibition and Immune Stimulation,” Nature Communications 16 (2025): 2708.

[100]

P. J. Gleeson, N. Benech, J. Chemouny, et al., “The Gut Microbiota Posttranslationally Modifies IgA1 in Autoimmune Glomerulonephritis,” Science Translational Medicine 16 (2024): eadl6149.

[101]

M. Muto, B. Manfroi, H. Suzuki, et al., “Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy,” Journal of the American Society of Nephrology 28 (2017): 1227-1238.

[102]

S. Chang and X. Li, “The Role of Immune Modulation in Pathogenesis of IgA Nephropathy,” Frontiers in Medicine (Lausanne) 7 (2020): 92.

[103]

S. Prakash, N. J. Steers, Y. Li, et al., “Loss of GalNAc-T14 Links O-glycosylation Defects to Alterations in B Cell Homing in IgA Nephropathy,” Journal of Clinical Investigation 135, no. 10 (2025): e181164.

[104]

J. Hong, S. Y. Adam, S. Wang, et al., “Melatonin Modulates ZAP70 and CD40 Transcripts via Histone Modifications in Canine Ileum Epithelial Cells,” Veterinary Sciences 12 (2025): 87.

[105]

S. Kanswal, N. Katsenelson, A. Selvapandiyan, R. J. Bram, and M. Akkoyunlu, “Deficient TACI Expression on B Lymphocytes of Newborn Mice Leads to Defective Ig Secretion in Response to BAFF or APRIL,” Journal of Immunology 181 (2008): 976-990.

[106]

G. Z. Quinn and K. Susztak, “Is IgA Class Switching Epigenetically Wired?: Untangling the Evidence,” Journal of the American Society of Nephrology 35 (2024): 1630-1632.

[107]

S. Yu, X. Li, T. Wang, et al., “B-Cell Epigenetic Modulation of IgA Response by 5-Azacytidine and IgA Nephropathy,” Journal of the American Society of Nephrology 35 (2024): 1686-1701.

[108]

D. Xie, H. Zhao, X. Xu, et al., “Intensity of Macrophage Infiltration in Glomeruli Predicts Response to Immunosuppressive Therapy in Patients With IgA Nephropathy,” Journal of the American Society of Nephrology 32 (2021): 3187-3196.

[109]

J. Li, J. Lv, M. G. Wong, et al., “Correlation of Urinary Soluble CD163 Levels with Disease Activity and Treatment Response in IgA Nephropathy,” Kidney International Reports 9 (2024): 3016-3026.

[110]

Y. Liu, Y. Gong, and G. Xu, “The Role of Mononuclear Phagocyte System in IgA Nephropathy: Pathogenesis and Prognosis,” Frontiers in immunology 14 (2023): 1192941.

[111]

C. K. Cheung and J. Barratt, “Further Evidence for the Mucosal Origin of Pathogenic IgA in IgA Nephropathy,” Journal of the American Society of Nephrology 33 (2022): 873-875.

[112]

Y. Makita, H. Suzuki, T. Kano, et al., “TLR9 activation Induces Aberrant IgA Glycosylation via APRIL- and IL-6-mediated Pathways in IgA Nephropathy,” Kidney International 97 (2020): 340-349.

[113]

M. Buren, M. Yamashita, Y. Suzuki, Y. Tomino, and S. N. Emancipator, “Altered Expression of Lymphocyte Homing Chemokines in the Pathogenesis of IgA Nephropathy,” Contributions to Nephrology 157 (2007): 50-55.

[114]

K. Zachova, J. Jemelkova, P. Kosztyu, et al., “Galactose-Deficient IgA1 B Cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors,” Journal of the American Society of Nephrology 33 (2022): 908-917.

[115]

F. Sallustio, C. Curci, N. Chaoul, et al., “High Levels of Gut-homing Immunoglobulin A+ B Lymphocytes Support the Pathogenic Role of Intestinal Mucosal Hyperresponsiveness in Immunoglobulin A Nephropathy Patients,” Nephrology, Dialysis, Transplantation 36 (2021): 452-464.

[116]

A. Popova, B. Slisere, K. Racenis, et al., “Enhanced Differentiation of IgA+ Class-switched CD27-CD21+ B Cells in Patients With IgA Nephropathy,” Medrxiv (2024): 2024.

[117]

A. W. van den Wall Bake, M. R. Daha, J. Evers-Schouten, and L. A. van Es, “Serum IgA and the Production of IgA by Peripheral Blood and Bone Marrow Lymphocytes in Patients With Primary IgA Nephropathy: Evidence for the Bone Marrow as the Source of Mesangial IgA,” American Journal of Kidney Diseases 12 (1988): 410-414.

[118]

J. W. De Fijter, M. R. Daha, W. E. Schroeijers, L. A. van Es, and C. Van Kooten, “Increased IL-10 Production by Stimulated Whole Blood Cultures in Primary IgA Nephropathy,” Clinical and Experimental Immunology 111 (1998): 429-434.

[119]

M. Aizawa, Y. Suzuki, H. Suzuki, et al., “Roles of Bone Marrow, Mucosa and Lymphoid Tissues in Pathogenesis of Murine IgA Nephropathy,” Contributions to Nephrology 157 (2007): 164-168.

[120]

H. Meng, H. Ohtake, A. Ishida, N. Ohta, S. Kakehata, and M. Yamakawa, “IgA Production and Tonsillar Focal Infection in IgA Nephropathy,” Journal of Clinical and Experimental Hematopathology 52 (2012): 161-170.

[121]

Y. Suzuki, “B Cell Targeting in IgA Nephropathy,” Nephrology (Carlton, Vic.) 29, no. Suppl 2 (2024): 39-43.

[122]

Y. Wang, L. Zhang, P. Zhao, et al., “Functional Implications of Regulatory B Cells in human IgA Nephropathy,” Scandinavian Journal of Immunology 79 (2014): 51-60.

[123]

D. Chen, Z. Zhang, Y. Yang, Q. Hong, W. Li, and L. Zhuo, “High-throughput Sequencing Analysis of Genes Encoding the B-lymphocyte Receptor Heavy-chain CDR3 in Renal and Peripheral Blood of IgA Nephropathy,” Bioscience Reports 39 (2019): BSR20190482.

[124]

X. Zhang, J. Zeng, Y. Tong, et al., “CDR3 sequences in IgA Nephropathy Are Shorter and Exhibit Reduced Diversity,” FEBS Open Bio 10 (2020): 2702-2711.

[125]

S. W. Du, H. M. Jacobs, T. Arkatkar, D. J. Rawlings, and S. W. Jackson, “Integrated B Cell, Toll-Like, and BAFF Receptor Signals Promote Autoantibody Production by Transitional B Cells,” Journal of Immunology 201 (2018): 3258-3268.

[126]

M. Ou, F. Zheng, X. Zhang, et al., “Integrated Analysis of B‑Cell and T‑Cell Receptors by High‑Throughput Sequencing Reveals Conserved Repertoires in IgA Nephropathy,” Molecular Medicine Reports 17 (2018): 7027-7036.

[127]

C. Huang, X. Li, J. Wu, et al., “The Landscape and Diagnostic Potential of T and B Cell Repertoire in Immunoglobulin A Nephropathy,” Journal of Autoimmunity 97 (2019): 100-107.

[128]

Y. Zheng, P. Lu, Y. Deng, et al., “Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy,” Cell Reports 33 (2020): 108525.

[129]

X. Chen, M. Li, S. Zhu, et al., “Proteomic Profiling of IgA Nephropathy Reveals Distinct Molecular Prognostic Subtypes,” Iscience 26 (2023): 105961.

[130]

L. Chen, X. Chen, G. Cai, H. Jiang, X. Chen, and M. Zhang, “An Inflammatory Cytokine Signature Predicts IgA Nephropathy Severity and Progression,” MedComm 5 (2024): e783.

[131]

R. Nachiappa Ganesh, G. Garcia, and L. Truong, “Monocytes and Macrophages in Kidney Disease and Homeostasis,” International Journal of Molecular Sciences 25 (2024): 3763.

[132]

H. Paust, J. Turner, O. M. Steinmetz, et al., “The IL-23/Th17 Axis Contributes to Renal Injury in Experimental Glomerulonephritis,” Journal of the American Society of Nephrology 20 (2009): 969-979.

[133]

N. Yano, M. Endoh, Y. Nomoto, H. Sakai, K. Fadden, and A. Rifai, “Phenotypic Characterization of Cytokine Expression in Patients With IgA Nephropathy,” Journal of Clinical Immunology 17 (1997): 396-403.

[134]

O. Hotta, N. Yusa, M. Ooyama, K. Unno, T. Furuta, and Y. Taguma, “Detection of Urinary Macrophages Expressing the CD16 (Fc gamma RIII) Molecule: A Novel Marker of Acute Inflammatory Glomerular Injury,” Kidney International 55 (1999): 1927-1934.

[135]

S. N. Cox, G. Serino, F. Sallustio, et al., “Altered Monocyte Expression and Expansion of Non-classical Monocyte Subset in IgA Nephropathy Patients,” Nephrology, Dialysis, Transplantation 30 (2015): 1122-1232.

[136]

A. Eljaszewicz, K. Kleina, K. Grubczak, et al., “Elevated Numbers of Circulating Very Small Embryonic-Like Stem Cells (VSELs) and Intermediate CD14++CD16+ Monocytes in IgA Nephropathy,” Stem Cell Reviews and Reports 14 (2018): 686-693.

[137]

J. Qing, C. Li, X. Hu, et al., “Differentiation of T Helper 17 Cells May Mediate the Abnormal Humoral Immunity in IgA Nephropathy and Inflammatory Bowel Disease Based on Shared Genetic Effects,” Frontiers in Immunology 13 (2022): 916934.

[138]

Y. Zhang, X. Liu, X. Zhou, et al., “A Functional Variant rs3093023 in CCR6 Is Associated with IgA Nephropathy by Regulating Th17 Cells in a North Han Chinese Population,” Frontiers in Immunology 12 (2021): 600598.

[139]

K. Liu, Y. Yang, Y. Chen, S. Li, Y. Gong, and Y. Liang, “The Therapeutic Effect of Dendritic Cells Expressing Indoleamine 2,3-dioxygenase (IDO) on an IgA Nephropathy Mouse Model,” International Urology and Nephrology 52 (2020): 399-407.

[140]

Y. Chou, H. Chen, B. Hsu, et al., “Galectin-3 Contributes to Pathogenesis of IgA Nephropathy,” Kidney International 106 (2024): 658-670.

[141]

B. Bicanski, M. Wenderdel, P. R. Mertens, et al., “PDGF-B Gene Single-nucleotide Polymorphisms Are Not Predictive for Disease Onset or Progression of IgA Nephropathy,” Clinical Nephrology 67 (2007): 65-72.

[142]

A. N. Stein-Oakley, J. A. Maguire, J. Dowling, G. Perry, and N. M. Thomsom, “Altered Expression of Fibrogenic Growth Factors in IgA Nephropathy and Focal and Segmental Glomerulosclerosis,” Kidney International 51 (1997): 195-204.

[143]

K. M. O'Sullivan, S. L. Ford, A. Longano, A. R. Kitching, and S. R. Holdsworth, “Intrarenal Toll-Like Receptor 4 and Toll-Like Receptor 2 Expression Correlates With Injury in Antineutrophil Cytoplasmic Antibody-associated Vasculitis,” American Journal of Physiology. Renal Physiology 315 (2018): F1283-F1294.

[144]

Z. Peng, X. Huang, Y. Pan, et al., “USP22 promotes Angiotensin II-induced Podocyte Injury by Deubiquitinating and Stabilizing HMGB1,” Cell. Signalling 131 (2025): 111771.

[145]

S. Datta, M. A. Rahman, S. Koka, and K. M. Boini, “High Mobility Group Box 1 (HMGB1) Mediates Nicotine-induced Podocyte Injury,” Frontiers in Pharmacology 15 (2024): 1540639.

[146]

J. Liu, T. Zhao, H. Cui, et al., “HMGB1 Encapsulated in Podocyte-Derived Exosomes Plays a Central Role in Glomerular Endothelial Cell Injury in Lupus Nephritis by Regulating TRIM27 Expression,” Laboratory Investigation 105 (2025): 104096.

[147]

E. G. G. Sprenkeler, J. Zandstra, N. D. van Kleef, et al., “S100A8/A9 Is a Marker for the Release of Neutrophil Extracellular Traps and Induces Neutrophil Activation,” Cells 11 (2022): 236.

[148]

R. J. Pepper, H. Wang, G. K. Rajakaruna, et al., “S100A8/A9 (calprotectin) is Critical for Development of Glomerulonephritis and Promotes Inflammatory Leukocyte-renal Cell Interactions,” American Journal of Pathology 185 (2015): 1264-1274.

[149]

K. Ebefors, P. Liu, E. Lassén, J. Elvin, E. Candemark, and K. Levan, “Mesangial Cells From Patients With IgA Nephropathy Have Increased Susceptibility to Galactose-deficient IgA1,” BMC Nephrology [Electronic Resource] 17 (2016): 40.

[150]

S. Srsen, M. Held, M. Sestan, et al., “Serum Levels of S100A8/A9 as a Biomarker of Disease Activity in Patients With IgA Vasculitis,” Biomedicines 12 (2024): 750.

[151]

S. K. Panda, V. Facchinetti, E. Voynova, et al., “Galectin-9 Inhibits TLR7-mediated Autoimmunity in Murine Lupus Models,” Journal of Clinical Investigation 128 (2018): 1873-1887.

[152]

N. Gestermann, J. Di Domizio, R. Lande, et al., “Netting Neutrophils Activate Autoreactive B Cells in Lupus,” Journal of Immunology 200 (2018): 3364-3371.

[153]

F. Capolunghi, S. Cascioli, E. Giorda, et al., “CpG Drives human Transitional B Cells to Terminal Differentiation and Production of Natural Antibodies,” Journal of Immunology 180 (2008): 800-808.

[154]

X. Chen, L. Tu, Q. Tang, L. Huang, and Y. Qin, “An Emerging Role for Neutrophil Extracellular Traps in IgA Vasculitis: A Mini-Review,” Frontiers in Immunology 13 (2022): 912929.

[155]

A. Gimpel, A. Maccataio, H. Unterweger, M. V. Sokolova, G. Schett, and U. Steffen, “IgA Complexes Induce Neutrophil Extracellular Trap Formation More Potently than IgG Complexes,” Frontiers in Immunology 12 (2021): 761816.

[156]

X. Chen, L. Tu, J. Zou, S. Zhu, Y. Zhao, and Y. Qin, “The Involvement of Neutrophil Extracellular Traps in Disease Activity Associated with IgA Vasculitis,” Frontiers in Immunology 12 (2021): 668974.

[157]

S. Mayer-Hain, K. Gebhardt, M. Neufeld, et al., “Systemic Activation of Neutrophils by Immune Complexes Is Critical to IgA Vasculitis,” Journal of Immunology 209 (2022): 1048-1058.

[158]

E. Aleyd, M. Al, C. W. Tuk, C. J. van der Laken, and M. van Egmond, “IgA Complexes in Plasma and Synovial Fluid of Patients With Rheumatoid Arthritis Induce Neutrophil Extracellular Traps via FcαRI,” Journal of Immunology 197 (2016): 4552-4559.

[159]

A. A. Tuz, S. Ghosh, L. Karsch, et al., “Stroke and Myocardial Infarction Induce Neutrophil Extracellular Trap Release Disrupting Lymphoid Organ Structure and Immunoglobulin Secretion,” Nature Cardiovascular Research 3 (2024): 525-540.

[160]

X. Chen, L. Tu, Q. Tang, J. Zou, X. Yun, and Y. Qin, “DNase I Targeted Degradation of Neutrophil Extracellular Traps to Reduce the Damage on IgAV Rat,” PLoS ONE 18 (2023): e0291592.

[161]

X. Chen, J. Zou, L. Tu, X. Yun, and Y. Qin, “Neutrophil Extracellular Traps Involved in the Pathogenesis of IgA Vasculitis: Confirmed in Two IgAV Rat Models,” PLoS ONE 18 (2023): e0288538.

[162]

H. D. Stacey, D. Golubeva, A. Posca, et al., “IgA Potentiates NETosis in Response to Viral Infection,” PNAS 118 (2021): e2101497118.

[163]

F. Berthoux, H. Suzuki, L. Thibaudin, et al., “Autoantibodies Targeting Galactose-deficient IgA1 Associate With Progression of IgA Nephropathy,” Journal of the American Society of Nephrology 23 (2012): 1579-1587.

[164]

D. Maixnerova, C. Ling, S. Hall, et al., “Galactose-deficient IgA1 and the Corresponding IgG Autoantibodies Predict IgA Nephropathy Progression,” PLoS ONE 14 (2019): e0212254.

[165]

W. J. Placzek, H. Yanagawa, Y. Makita, et al., “Serum Galactose-deficient-IgA1 and IgG Autoantibodies Correlate in Patients With IgA Nephropathy,” PLoS ONE 13 (2018): e0190967.

[166]

Y. Nihei, H. Suzuki, and Y. Suzuki, “Current Understanding of IgA Antibodies in the Pathogenesis of IgA Nephropathy,” Frontiers in Immunology 14 (2023): 1165394.

[167]

Y. Ohyama, H. Yamaguchi, S. Ogata, et al., “Racial Heterogeneity of IgA1 Hinge-region O-glycoforms in Patients With IgA Nephropathy,” Iscience 25 (2022): 105223.

[168]

Y. Ohyama, M. B. Renfrow, J. Novak, and K. Takahashi, “Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know,” Journal of Clinical Medicine 10 (2021): 3467.

[169]

L. W. Gaber, F. N. Khan, E. A. Graviss, et al., “Prevalence, Characteristics, and Outcomes of Incidental IgA Glomerular Deposits in Donor Kidneys,” Kidney International Reports 5 (2020): 1914-1924.

[170]

Y. Matsumoto, R. P. Aryal, J. Heimburg-Molinaro, et al., “Identification and Characterization of Circulating Immune Complexes in IgA Nephropathy,” Science Advances 8 (2022): eabm8783.

[171]

A. Roos, M. P. Rastaldi, N. Calvaresi, et al., “Glomerular Activation of the Lectin Pathway of Complement in IgA Nephropathy Is Associated With More Severe Renal Disease,” Journal of the American Society of Nephrology 17 (2006): 1724-1734.

[172]

D. V. Rizk, N. Maillard, B. A. Julian, et al., “The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy,” Frontiers in immunology 10 (2019): 504.

[173]

A. Duval, S. Caillard, and V. Frémeaux-Bacchi, “The Complement System in IgAN: Mechanistic Context for Therapeutic Opportunities,” Nephrology, Dialysis, Transplantation 38 (2023): 2685-2693.

[174]

C. K. Cheung, J. Barratt, A. Liew, H. Zhang, V. Tesar, and R. Lafayette, “The Role of BAFF and APRIL in IgA Nephropathy: Pathogenic Mechanisms and Targeted Therapies,” Frontiers in Nephrology 3 (2023): 1346769.

[175]

H. Yanagawa, H. Suzuki, Y. Suzuki, et al., “A Panel of Serum Biomarkers Differentiates IgA Nephropathy From Other Renal Diseases,” PLoS ONE 9 (2014): e98081.

[176]

H. Zeng, L. Wang, J. Li, et al., “Single-cell RNA-sequencing Reveals Distinct Immune Cell Subsets and Signaling Pathways in IgA Nephropathy,” Cell & Bioscience 11 (2021): 203.

[177]

C. Xu, Y. Zhang, J. Zhou, et al., “Integrated Temporal Transcriptional and Epigenetic Single-cell Analysis Reveals the Intrarenal Immune Characteristics in an Early-stage Model of IgA Nephropathy During Its Acute Injury,” Frontiers in Immunology 15 (2024): 1405748.

[178]

R. Tang, T. Meng, W. Lin, et al., “A Partial Picture of the Single-Cell Transcriptomics of Human IgA Nephropathy,” Frontiers in Immunology 12 (2021): 645988.

[179]

F. P. Schena, M. Rossini, D. I. Abbrescia, and G. Zaza, “The Molecular Mechanisms of Inflammation and Scarring in the Kidneys of Immunoglobulin A Nephropathy: Gene Involvement in the Mechanisms of Inflammation and Scarring in Kidney Biopsy of IgAN Patients,” Seminars in Immunopathology 43 (2021): 691-705.

[180]

T. Rauen, C. Fitzner, F. Eitner, et al., “Effects of Two Immunosuppressive Treatment Protocols for IgA Nephropathy,” Journal of the American Society of Nephrology 29 (2018): 317-325.

[181]

T. Rauen, S. Wied, C. Fitzner, et al., “After Ten Years of Follow-up, no Difference Between Supportive Care plus Immunosuppression and Supportive Care Alone in IgA Nephropathy,” Kidney International 98 (2020): 1044-1052.

[182]

J. Lv, M. G. Wong, M. A. Hladunewich, et al., “Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial,” Jama 327 (2022): 1888-1898.

[183]

J. Lv, H. Zhang, M. G. Wong, et al., “Effect of Oral Methylprednisolone on Clinical Outcomes in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial,” Jama 318 (2017): 432-442.

[184]

B. H. Rovin, J. Barratt, H. J. L. Heerspink, C. E. Alpers, S. Bieler, and D. Chae, “Efficacy and Safety of sparsentan versus irbesartan in Patients With IgA Nephropathy (PROTECT): 2-year Results From a Randomised, Active-controlled, Phase 3 Trial,” Lancet 402 (2023): 2077-2090.

[185]

V. Perkovic, J. Barratt, B. Rovin, et al., “Alternative Complement Pathway Inhibition With Iptacopan in IgA Nephropathy,” New England Journal of Medicine (2024).

[186]

R. Lafayette, J. Kristensen, A. Stone, et al., “Efficacy and Safety of a Targeted-release Formulation of budesonide in Patients With Primary IgA Nephropathy (NefIgArd): 2-year Results From a Randomised Phase 3 Trial,” Lancet 402 (2023): 859-870.

[187]

H. Selvaskandan and J. Barratt, “Charting New Frontiers in IgA Nephropathy: A Paradigm Shift Toward Precision Medicine and Early Intervention?,” Kidney International 105 (2024): 659-661.

[188]

J. Radhakrishnan and D. C. Cattran, “The KDIGO Practice Guideline on Glomerulonephritis: Reading Between the (guide)Lines-application to the Individual Patient,” Kidney International 82 (2012): 840-856.

[189]

R. J. Wyatt, “Are We Ready for Targeted Therapy for IgA Nephropathy?,” Lancet 389 (2017): 2083-2084.

[190]

B. C. Fellström, J. Barratt, H. Cook, et al., “Targeted-release Budesonide versus Placebo in Patients With IgA Nephropathy (NEFIGAN): A Double-blind, Randomised, Placebo-controlled Phase 2b Trial,” Lancet 389 (2017): 2117-2127.

[191]

D. Maixnerova, J. Hartinger, and V. Tesar, “Expanding Options of Supportive Care in IgA Nephropathy,” Clinical Kidney Journal 16 (2023): ii47-ii54.

[192]

D. W. Grabe, “Preventing Progression in IgA Nephropathy: A Managed Care Focus on Emerging Therapies,” American Journal of Managed Care 29 (2023): S31-S43.

[193]

Y. Guo, S. Shi, J. Zhao, et al., “Prognosis of IgA Nephropathy Patient With Proteinuria Remission by Supportive Therapy: Cohort From Screening Failed Chinese Patients in TESTING Study,” Renal Failure 46 (2024): 2398826.

[194]

A. M. Gomes, B. Schau, and A. Farinha, “Emerging Perspectives in the Management of IgA Nephropathy: A Comprehensive Review,” Porto Biomedical Journal 9 (2024): 264.

[195]

E. J. Filippone, R. Gulati, and J. L. Farber, “The Road Ahead: Emerging Therapies for Primary IgA Nephropathy,” Frontiers in Nephrology 5 (2025): 1545329.

[196]

M. Schanz, C. Seikrit, B. Hohenstein, et al., “First Real-world Evidence of Sparsentan Efficacy in Patients With IgA Nephropathy Treated With SGLT2 Inhibitors,” Clinical Kidney Journal 18 (2025): sfae394.

[197]

J. Barratt, A. M. Stone, H. N. Reich, and R. A. Lafayette, “eGFR Slope Modelling Predicts Long-term Clinical Benefit With Nefecon in a Real-world IgAN Population,” Clinical Kidney Journal 18 (2025): sfae404.

[198]

J. Barratt, J. Kristensen, C. Pedersen, and M. Jerling, “Insights on Nefecon(®), a Targeted-Release Formulation of Budesonide and Its Selective Immunomodulatory Effects in Patients With IgA Nephropathy,” Drug Design, Development and Therapy 18 (2024): 3415-3428.

[199]

Z. Tian, Y. Yang, J. Mei, et al., “Efficacy and Safety of Endothelin A Receptor Antagonists in IgA Nephropathy: A Systematic Review and Meta-analysis,” Clinical Kidney Journal 18 (2025): sfaf066.

[200]

H. J. L. Heerspink, M. Jardine, D. E. Kohan, et al., “Study Design and Baseline Characteristics of ALIGN, a Randomized Controlled Study of Atrasentan in Patients with IgA Nephropathy,” Kidney International Reports 10 (2025): 217-226.

[201]

L. Willcocks, “ALIGNing the Treatment of IgA Nephropathy: Reducing Proteinuria With Endothelin A Receptor Inhibition,” Med 6 (2025): 100564.

[202]

M. Hunter-Dickson and M. G. Wong, “The Role of Endothelin Receptor Antagonists in IgA Nephropathy,” Nephrology (Carlton, Vic.) 29, no. Suppl 2 (2024): 30-33.

[203]

S. C. Yeo and J. Barratt, “The Contribution of a Proliferation-inducing Ligand (APRIL) and Other TNF Superfamily Members in Pathogenesis and Progression of IgA Nephropathy,” Clinical Kidney Journal 16 (2023): ii9-ii18.

[204]

L. Kooienga, E. Y. Lee, S. G. Kim, et al., “Zigakibart Demonstrates Clinical Safety and Efficacy in a Phase 1/2 Trial of Healthy Volunteers and Patients With IgA Nephropathy,” Kidney International (2025). S0085-2538(25)00414-4.

[205]

T. Rauen, F. Eitner, C. Fitzner, et al., “Intensive Supportive Care plus Immunosuppression in IgA Nephropathy,” New England Journal of Medicine 373 (2015): 2225-2236.

[206]

C. Pozzi, “Pro: STOP Immunosuppression in IgA Nephropathy?,” Nephrology, Dialysis, Transplantation 31 (2016): 1766-1770.

[207]

B. H. Rovin, S. G. Adler, J. Barratt, et al., “Executive Summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases,” Kidney International 100 (2021): 753-779.

[208]

J. Floege, T. Rauen, and S. C. W. Tang, “Current Treatment of IgA Nephropathy,” Seminars in immunopathology 43 (2021): 717-728.

[209]

J. Floege, D. R. W. Jayne, J. F. Sanders, et al., “Executive Summary of the KDIGO 2024 Clinical Practice Guideline for the Management of ANCA-Associated Vasculitis,” Kidney International 105 (2024): 447-449.

[210]

B. H. Rovin, I. M. Ayoub, T. M. Chan, Z. Liu, J. M. Mejía-Vilet, and E. M. Balk, “Executive Summary of the KDIGO 2024 Clinical Practice Guideline for the Management of Lupus Nephritis,” Kidney International 105 (2024): 31-34.

[211]

M. Praga, F. Caravaca-Fontán, I. Da Silva, G. Fernández-Juárez, E. Gutiérrez, and A. M. Sevillano, “Tailored Management Strategies for IgA Nephropathy Based on Clinical Presentations,” Nephrology, Dialysis, Transplantation 40 (2025): 874-883.

[212]

H. N. Reich and J. Floege, “How I Treat IgA Nephropathy,” Clinical Journal of the American Society of Nephrology 17 (2022): 1243-1246.

[213]

P. K. Li, B. C. Kwan, K. Chow, C. Leung, and C. Szeto, “Treatment of Early Immunoglobulin A Nephropathy by Angiotensin-converting Enzyme Inhibitor,” American Journal of Medicine 126 (2013): 162-168.

[214]

P. K. Li, C. B. Leung, K. M. Chow, et al., “Hong Kong Study Using valsartan in IgA Nephropathy (HKVIN): A Double-blind, Randomized, Placebo-controlled Study,” American Journal of Kidney Diseases 47 (2006): 751-760.

[215]

M. Praga, E. Gutiérrez, E. González, E. Morales, and E. Hernández, “Treatment of IgA Nephropathy With ACE Inhibitors: A Randomized and Controlled Trial,” Journal of the American Society of Nephrology 14 (2003): 1578-1583.

[216]

S. Bagchi, K. Mani, A. Swamy, et al., “Supportive Management of IgA Nephropathy with Renin-Angiotensin Blockade, the AIIMS Primary IgA Nephropathy Cohort (APPROACH) Study,” Kidney International Reports 6 (2021): 1661-1668.

[217]

Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists' Consortium. Impact of Diabetes on the Effects of Sodium Glucose co-transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-analysis of Large Placebo-controlled Trials. Lancet 2022; 400: 1788-1801.

[218]

D. C. Wheeler, R. D. Toto, B. V. Stefánsson, et al., “A Pre-specified Analysis of the DAPA-CKD Trial Demonstrates the Effects of dapagliflozin on Major Adverse Kidney Events in Patients With IgA Nephropathy,” Kidney International 100 (2021): 215-224.

[219]

J. H. Hwang and C. Hsu, “In CKD, empagliflozin Reduced Kidney Disease Progression at a Median 2 y, Regardless of Primary Kidney Disease Type,” Annals of Internal Medicine 177 (2024): JC40.

[220]

EMPA-KIDNEY Collaborative Group. “Impact of Primary Kidney Disease on the Effects of empagliflozin in Patients With Chronic Kidney Disease: Secondary Analyses of the EMPA-KIDNEY Trial,” The Lancet Diabetes & Endocrinology 12 (2024): 51-60.

[221]

A. Riggleman, J. Harvey, and C. Baylis, “Endothelin Mediates Some of the Renal Actions of Acutely Administered Angiotensin II,” Hypertension 38 (2001): 105-109.

[222]

J. J. Boffa, P. L. Tharaux, J. C. Dussaule, and C. Chatziantoniou, “Regression of Renal Vascular Fibrosis by Endothelin Receptor Antagonism,” Hypertension 37 (2001): 490-496.

[223]

P. Iñigo, J. M. Campistol, S. Lario, et al., “Effects of losartan and Amlodipine on Intrarenal Hemodynamics and TGF-beta(1) Plasma Levels in a Crossover Trial in Renal Transplant Recipients,” Journal of the American Society of Nephrology 12 (2001): 822-827.

[224]

F. C. Enevoldsen, J. Sahana, M. Wehland, D. Grimm, M. Infanger, and M. Krüger, “Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy,” Journal of Clinical Medicine 9 (2020): 824.

[225]

B. Hocher, I. George, F. Diekmann, et al., “ETA Receptor Blockade Induces Fibrosis of the Clipped Kidney in Two-kidney-one-clip Renovascular Hypertensive Rats,” Journal of Hypertension 18 (2000): 1807-1814.

[226]

R. Raina, A. Chauvin, R. Chakraborty, et al., “The Role of Endothelin and Endothelin Antagonists in Chronic Kidney Disease,” Kidney Dis (Basel) 6 (2020): 22-34.

[227]

A. S. Bomback, A. V. Kshirsagar, M. A. Amamoo, and P. J. Klemmer, “Change in Proteinuria After Adding Aldosterone Blockers to ACE Inhibitors or Angiotensin Receptor Blockers in CKD: A Systematic Review,” American Journal of Kidney Diseases 51 (2008): 199-211.

[228]

E. Y. Chung, M. Ruospo, P. Natale, et al., “Aldosterone Antagonists in Addition to Renin Angiotensin System Antagonists for Preventing the Progression of Chronic Kidney Disease,” Cochrane Database of Systematic Reviews (Online) 10 (2020): CD007004.

[229]

M. Alexandrou, A. Papagianni, A. Tsapas, et al., “Effects of Mineralocorticoid Receptor Antagonists in Proteinuric Kidney Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials,” Journal of Hypertension 37 (2019): 2307-2324.

[230]

Q. Gao, H. Lin, Z. Zhao, et al., “Effectiveness and Safety of finerenone in the Treatment of IgA Nephrology Patients: A Retrospective, Real-world Study,” International Urology and Nephrology (2025).

[231]

C. Tang, F. Si, P. Chen, et al., “Effectiveness and Safety of finerenone in Non-diabetic Patients With IgA Nephropathy,” Journal of Nephrology (2025).

[232]

E. Longhitano, V. Calabrese, C. Casuscelli, et al., “Proteinuria and Progression of Renal Damage: The Main Pathogenetic Mechanisms and Pharmacological Approach,” Medicina (Kaunas, Lithuania) 60 (2024): 1821.

[233]

D. E. Kohan, J. Barratt, H. J. L. Heerspink, et al., “Targeting the Endothelin A Receptor in IgA Nephropathy,” Kidney International Reports 8 (2023): 2198-2210.

[234]

H. J. L. Heerspink, M. Jardine, D. E. Kohan, et al., “Atrasentan in Patients With IgA Nephropathy,” New England Journal of Medicine 392 (2025): 544-554.

[235]

H. J. L. Heerspink, X. Du, Y. Xu, et al., “The Selective Endothelin Receptor Antagonist SC0062 in IgA Nephropathy: A Randomized Double-Blind Placebo-Controlled Clinical Trial,” Journal of the American Society of Nephrology 36 (2025): 657-667.

[236]

D. N. Müller and F. C. Luft, “Renin Receptor Blockade: A Better Strategy for Renal Protection Than Renin-angiotensin System Inhibition?,” Current Hypertension Reports 10 (2008): 405-409.

[237]

H. Yoshiji, S. Kuriyama, and H. Fukui, “Blockade of Renin-angiotensin System in Antifibrotic Therapy,” Journal of Gastroenterology and Hepatology 22, no. Suppl 1 (2007): S93-S95.

[238]

H. M. Kok, L. L. Falke, R. Goldschmeding, and T. Q. Nguyen, “Targeting CTGF, EGF and PDGF Pathways to Prevent Progression of Kidney Disease,” Nature Reviews Nephrology 10 (2014): 700-711.

[239]

S. Lee, S. I. Kim, and M. E. Choi, “Therapeutic Targets for Treating Fibrotic Kidney Diseases,” Translational Research 165 (2015): 512-530.

[240]

M. M. Akunjee, S. G. Khosla, E. S. Nylen, and S. Sen, “SGLT2 inhibitors Use in Kidney Disease: What Did We Learn?,” American Journal of Physiology. Endocrinology and Metabolism 328, no. 6 (2025): E856-E868.

[241]

X. Chen, C. Hocher, L. Shen, B. K. Krämer, and B. Hocher, “Reno- and Cardioprotective Molecular Mechanisms of SGLT2 Inhibitors Beyond Glycemic Control: From Bedside to Bench,” American Journal of Physiology Cell Physiology 325 (2023): C661-C681.

[242]

M. Muto, H. Suzuki, and Y. Suzuki, “New Insights and Future Perspectives of APRIL in IgA Nephropathy,” International Journal of Molecular Sciences 25 (2024): 10340.

[243]

Y. Shimizu, Y. Tomino, and Y. Suzuki, “IgA Nephropathy: Beyond the Half-Century,” Medicina (Kaunas, Lithuania) 60 (2023): 54.

[244]

L. L. Liu, L. N. Wang, Y. Jiang, et al., “Tonsillectomy for IgA Nephropathy: A Meta-analysis,” American Journal of Kidney Diseases 65 (2015): 80-87.

[245]

H. Komatsu, S. Fujimoto, S. Hara, Y. Sato, K. Yamada, and K. Kitamura, “Effect of Tonsillectomy plus Steroid Pulse Therapy on Clinical Remission of IgA Nephropathy: A Controlled Study,” Clinical Journal of the American Society of Nephrology 3 (2008): 1301-1307.

[246]

K. Hirano, K. Matsuzaki, T. Yasuda, et al., “Association between Tonsillectomy and Outcomes in Patients with Immunoglobulin A Nephropathy,” JAMA Network Open 2 (2019): e194772.

[247]

J. A. Jefferson, “Complications of Immunosuppression in Glomerular Disease,” Clinical Journal of the American Society of Nephrology 13 (2018): 1264-1275.

[248]

R. A. Lafayette, P. A. Canetta, B. H. Rovin, et al., “A Randomized, Controlled Trial of Rituximab in IgA Nephropathy With Proteinuria and Renal Dysfunction,” Journal of the American Society of Nephrology 28 (2017): 1306-1313.

[249]

V. L. Del, M. Allinovi, S. Comolli, S. Peiti, C. Rimoldi, and F. Locatelli, “Drugs in Development to Treat IgA Nephropathy,” Drugs 84 (2024): 503-525.

[250]

D. Maixnerova, M. D. El, D. V. Rizk, H. Zhang, and V. Tesar, “New Treatment Strategies for IgA Nephropathy: Targeting Plasma Cells as the Main Source of Pathogenic Antibodies,” Journal of Clinical Medicine 11 (2022): 2810.

[251]

H. Selvaskandan, K. D. Jhaveri, and D. V. Rizk, “Primary IgA Nephropathy: New Insights and Emerging Therapies,” Advances in Kidney Disease and Health 31 (2024): 180-193.

[252]

A. Rajasekaran, B. A. Julian, and D. V. Rizk, “IgA Nephropathy: An Interesting Autoimmune Kidney Disease,” American Journal of the Medical Sciences 361 (2021): 176-194.

[253]

M. Mathur, M. Sahay, B. Pereira, and D. V. Rizk, “State-of-Art Therapeutics in IgA Nephropathy,” Indian Journal of Nephrology 34 (2024): 417-430.

[254]

I. R. Rao, A. Kolakemar, S. V. Shenoy, et al., “Hydroxychloroquine in Nephrology: Current Status and Future Directions,” Journal of Nephrology 36 (2023): 2191-2208.

[255]

N. Zheng, K. Xie, H. Ye, et al., “TLR7 in B Cells Promotes Renal Inflammation and Gd-IgA1 Synthesis in IgA Nephropathy,” JCI Insight 5 (2020): e136965.

[256]

M. Lee, H. Suzuki, K. Ogiwara, et al., “The Nucleotide-sensing Toll-Like Receptor 9/Toll-Like Receptor 7 System Is a Potential Therapeutic Target for IgA Nephropathy,” Kidney International 104 (2023): 943-955.

[257]

Y. N. Wang, T. Gan, S. Qu, et al., “MTMR3 risk Alleles Enhance Toll like Receptor 9-induced IgA Immunity in IgA Nephropathy,” Kidney International 104 (2023): 562-576.

[258]

T. Kano, H. Suzuki, Y. Makita, Y. Fukao, and Y. Suzuki, “Nasal-associated Lymphoid Tissue Is the Major Induction Site for Nephritogenic IgA in Murine IgA Nephropathy,” Kidney International 100 (2021): 364-376.

[259]

L. J. Liu, Y. Z. Yang, S. F. Shi, et al., “Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Randomized Controlled Trial,” American Journal of Kidney Diseases 74 (2019): 15-22.

[260]

B. Barr and S. Barbour, “New Therapies for Immunoglobulin A Nephropathy: What's the Standard of Care in 2023?,” Current Opinion in Nephrology and Hypertension 33 (2024): 311-317.

[261]

P. Chen and J. Lv, “Low Dose Glucocorticoids, Mycophenolate Mofetil and Hydroxychloroquine in IgA Nephropathy, an Update of Current Clinical Trials,” Nephrology (Carlton, Vic.) 29, no. Suppl 2 (2024): 25-29.

[262]

J. Hou, W. Le, N. Chen, W. Wang, Z. Liu, and D. Liu, “Mycophenolate Mofetil Combined with Prednisone versus Full-Dose Prednisone in IgA Nephropathy with Active Proliferative Lesions: A Randomized Controlled Trial,” American Journal of Kidney Diseases 69 (2017): 788-795.

[263]

R. J. Hogg, R. C. Bay, J. C. Jennette, et al., “Randomized Controlled Trial of Mycophenolate Mofetil in Children, Adolescents, and Adults With IgA Nephropathy,” American Journal of Kidney Diseases 66 (2015): 783-791.

[264]

B. Yan, X. Tie, L. Wang, X. Qiao, and X. Su, “Enteric-coated Mycophenolate Sodium plus Hydroxychloroquine therApy versus Hydroxychloroquine for the Remission of Proteinuria in IgA Nephropathy (EMSAR-IgAN trial): Study Protocol for a Randomised Trial,” BMJ Open 15 (2025): e098688.

[265]

X. Peng, W. Zheng, R. Fu, et al., “Efficacy and Safety of Mycophenolate Mofetil in the Treatment for IgA Nephropathy: A Meta-analysis of Randomized Controlled Trials,” Clinical and Experimental Nephrology 25 (2021): 788-801.

[266]

J. Zheng, T. Bi, L. Zhu, and L. Liu, “Efficacy and Safety of Mycophenolate Mofetil for IgA Nephropathy: An Updated Meta-analysis of Randomized Controlled Trials,” Experimental and Therapeutic Medicine 16 (2018): 1882-1890.

[267]

F. M. Rasche, F. Keller, L. von Müller, L. Sailer, W. Karges, and D. Czock, “Mycophenolic Acid Therapy After Cyclophosphamide Pulses in Progressive IgA Nephropathy,” Journal of Nephrology 19 (2006): 465-472.

[268]

A. Dal Canton, A. Amore, G. Barbano, et al., “One-year Angiotensin-converting Enzyme Inhibition plus Mycophenolate Mofetil Immunosuppression in the Course of Early IgA Nephropathy: A Multicenter, Randomised, Controlled Study,” Journal of Nephrology 18 (2005): 136-140.

[269]

F. F. Hou, D. Xie, J. Wang, et al., “Effectiveness of Mycophenolate Mofetil among Patients with Progressive IgA Nephropathy: A Randomized Clinical Trial,” JAMA Network Open 6 (2023): e2254054.

[270]

S. Tang, J. C. K. Leung, L. Y. Y. Chan, et al., “Mycophenolate Mofetil Alleviates Persistent Proteinuria in IgA Nephropathy,” Kidney International 68 (2005): 802-812.

[271]

B. D. Maes, R. Oyen, K. Claes, et al., “Mycophenolate Mofetil in IgA Nephropathy: Results of a 3-year Prospective Placebo-controlled Randomized Study,” Kidney International 65 (2004): 1842-1849.

[272]

E. F. Carney, “Clinical Trial: Lack of Benefit of MMF in IgAN,” Nature Reviews Nephrology 11 (2015): 567.

[273]

J. Tan, L. Dong, D. Ye, et al., “The Efficacy and Safety of Immunosuppressive Therapies in the Treatment of IgA Nephropathy: A Network Meta-analysis,” Scientific Reports 10 (2020): 6062.

[274]

C. H. R. Tan, P. T. Loh, W. S. Yang, and C. M. Chan, “Mycophenolate Mofetil in the Treatment of IgA Nephropathy: A Systematic Review,” Singapore Medical Journal 49 (2008): 780-785.

[275]

X. J. Zhou, F. J. Cheng, L. Zhu, et al., “Association of Systemic Lupus Erythematosus Susceptibility Genes With IgA Nephropathy in a Chinese Cohort,” Clinical Journal of the American Society of Nephrology 9 (2014): 788-797.

[276]

T. Gan, Y. Li, X. J. Zhou, and H. Zhang, “Immunoproteasome in IgA Nephropathy: State-of-Art and Future Perspectives,” International Journal of Biological Sciences 16 (2020): 2518-2526.

[277]

L. L. Xu, T. Gan, Y. Li, et al., “Combined Genetic Association and Differed Expression Analysis of UBE2L3 Uncovers a Genetic Regulatory Role of (Immuno)Proteasome in IgA Nephropathy,” Kidney Diseases (Basel) 10 (2024): 167-180.

[278]

S. C. Tang and K. N. Lai, “The Ubiquitin-proteasome Pathway and IgA Nephropathy: A Novel Link?,” Kidney International 75 (2009): 457-459.

[279]

R. Coppo, R. Camilla, A. Alfarano, et al., “Upregulation of the Immunoproteasome in Peripheral Blood Mononuclear Cells of Patients With IgA Nephropathy,” Kidney International 75 (2009): 536-541.

[280]

C. Hartono, M. Chung, A. S. Perlman, et al., “Bortezomib for Reduction of Proteinuria in IgA Nephropathy,” Kidney International Reports 3 (2018): 861-866.

[281]

R. Coppo, “Proteasome Inhibitors in Progressive Renal Diseases,” Nephrology, Dialysis, Transplantation 29, no. Suppl 1 (2014): i25-i30.

[282]

K. V. Lemley and R. J. Glassock, “APRIL—Springtime for New IgA Nephropathy Therapy?,” New England Journal of Medicine 390 (2024): 80-81.

[283]

M. Mathur, J. Barratt, B. Chacko, et al., “A Phase 2 Trial of Sibeprenlimab in Patients With IgA Nephropathy,” New England Journal of Medicine 390 (2024): 20-31.

[284]

M. Wang, “Targeting APRIL to Slow Progression of IgA Nephropathy,” Nature Reviews Nephrology 20 (2024): 6.

[285]

J. Zan, L. Liu, G. Li, et al., “Effect of Telitacicept on Circulating Gd-IgA1 and IgA-Containing Immune Complexes in IgA Nephropathy,” Kidney International Reports 9 (2024): 1067-1071.

[286]

L. Liu, Y. Liu, J. Li, et al., “Efficacy and Safety of Telitacicept in IgA Nephropathy: A Retrospective, Multicenter Study,” Nephron (2024): 1-10.

[287]

L. S. Evans, K. E. Lewis, D. DeMonte, et al., “Povetacicept, an Enhanced Dual APRIL/BAFF Antagonist That Modulates B Lymphocytes and Pathogenic Autoantibodies for the Treatment of Lupus and Other B Cell-Related Autoimmune Diseases,” Arthritis Rheumatol 75 (2023): 1187-1202.

[288]

T. Miwa, S. Sato, M. Golla, and W. C. Song, “Expansion of Anticomplement Therapy Indications From Rare Genetic Disorders to Common Kidney Diseases,” Annual Review of Medicine 75 (2024): 189-204.

[289]

H. Zhang, D. V. Rizk, V. Perkovic, et al., “Results of a Randomized Double-blind Placebo-controlled Phase 2 Study Propose iptacopan as an Alternative Complement Pathway Inhibitor for IgA Nephropathy,” Kidney International 105 (2024): 189-199.

[290]

J. Floege and M. R. Daha, “IgA Nephropathy: New Insights Into the Role of Complement,” Kidney International 94 (2018): 16-18.

[291]

N. R. Medjeral-Thomas, H. J. Lomax-Browne, H. Beckwith, et al., “Circulating Complement Factor H-related Proteins 1 and 5 Correlate With Disease Activity in IgA Nephropathy,” Kidney International 92 (2017): 942-952.

[292]

A. Tortajada, E. Gutiérrez, D. J. E. Goicoechea, et al., “Elevated Factor H-related Protein 1 and Factor H Pathogenic Variants Decrease Complement Regulation in IgA Nephropathy,” Kidney International 92 (2017): 953-963.

[293]

T. Wada and M. Nangaku, “Novel Roles of Complement in Renal Diseases and Their Therapeutic Consequences,” Kidney International 84 (2013): 441-450.

[294]

J. Barratt, R. A. Lafayette, H. Zhang, et al., “IgA Nephropathy: The Lectin Pathway and Implications for Targeted Therapy,” Kidney International 104 (2023): 254-264.

[295]

L. Zhu, W. Y. Guo, S. F. Shi, et al., “Circulating Complement Factor H-related Protein 5 Levels Contribute to Development and Progression of IgA Nephropathy,” Kidney International 94 (2018): 150-158.

[296]

R. A. Lafayette, B. H. Rovin, H. N. Reich, J. A. Tumlin, J. Floege, and J. Barratt, “Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy,” Kidney International Reports 5 (2020): 2032-2041.

[297]

H. Selvaskandan, C. C. Kay, J. Dormer, et al., “Inhibition of the Lectin Pathway of the Complement System as a Novel Approach in the Management of IgA Vasculitis-Associated Nephritis,” Nephron 144 (2020): 453-458.

[298]

A. Migliorini, M. C. Nostro, and J. B. Sneddon, “Human Pluripotent Stem Cell-derived Insulin-producing Cells: A Regenerative Medicine Perspective,” Cell Metabolism 33 (2021): 721-731.

[299]

W. J. Leonard and J. X. Lin, “Strategies to Therapeutically Modulate Cytokine Action,” Nature Reviews Drug Discovery 22 (2023): 827-854.

[300]

M. P. McNerney, K. E. Doiron, T. L. Ng, T. Z. Chang, and P. A. Silver, “Theranostic Cells: Emerging Clinical Applications of Synthetic Biology,” Nature Reviews Genetics 22 (2021): 730-746.

[301]

C. Mohan, T. Zhang, and C. Putterman, “Pathogenic Cellular and Molecular Mediators in Lupus Nephritis,” Nature Reviews Nephrology 19 (2023): 491-508.

[302]

G. Schett, F. Müller, J. Taubmann, et al., “Advancements and Challenges in CAR T Cell Therapy in Autoimmune Diseases,” Nature Reviews Rheumatology 20 (2024): 531-544.

[303]

S. Fasano, A. Milone, G. F. Nicoletti, D. A. Isenberg, and F. Ciccia, “Precision Medicine in Systemic Lupus Erythematosus,” Nature Reviews Rheumatology 19 (2023): 331-342.

[304]

D. J. Baker, Z. Arany, J. A. Baur, J. A. Epstein, and C. H. June, “CAR T Therapy Beyond Cancer: The Evolution of a Living Drug,” Nature 619 (2023): 707-715.

[305]

A. Alunno, O. Bistoni, P. Montanucci, G. Basta, R. Calafiore, and R. Gerli, “Umbilical Cord Mesenchymal Stem Cells for the Treatment of Autoimmune Diseases: Beware of Cell-to-cell Contact,” Annals of the Rheumatic Diseases 77 (2018): e14.

[306]

D. Deng, P. Zhang, Y. Guo, and T. O. Lim, “A Randomised Double-blind, Placebo-controlled Trial of Allogeneic Umbilical Cord-derived Mesenchymal Stem Cell for Lupus Nephritis,” Annals of the Rheumatic Diseases 76 (2017): 1436-1439.

[307]

J. Liang, H. Zhang, B. Hua, et al., “Allogenic Mesenchymal Stem Cells Transplantation in Refractory Systemic Lupus erythematosus: A Pilot Clinical Study,” Annals of the Rheumatic Diseases 69 (2010): 1423-1429.

[308]

A. Tyndall and F. A. Houssiau, “Mesenchymal Stem Cells in the Treatment of Autoimmune Diseases,” Annals of the Rheumatic Diseases 69 (2010): 1413-1414.

[309]

I. Abeles, C. Palma, N. Meednu, A. S. Payne, R. J. Looney, and J. H. Anolik, “B Cell-Directed Therapy in Autoimmunity,” Annual Review of Immunology 42 (2024): 103-126.

[310]

E. Gremese, D. Bruno, and G. Ferraccioli, “CAR T-cell Perspectives in Lupus,” Lancet 404 (2024): 336.

[311]

T. Krickau, N. Naumann-Bartsch, M. Aigner, et al., “CAR T-cell Therapy Rescues Adolescent With Rapidly Progressive Lupus Nephritis From Haemodialysis,” Lancet 403 (2024): 1627-1630.

[312]

G. Schett, A. Mackensen, and D. Mougiakakos, “CAR T-cell Therapy in Autoimmune Diseases,” Lancet 402 (2023): 2034-2044.

[313]

K. Lungova and M. Putman, “Barriers to CAR T-cell Therapy in Rheumatology,” The Lancet Rheumatology (2024).

[314]

A. Mackensen, F. Müller, D. Mougiakakos, et al., “Anti-CD19 CAR T Cell Therapy for Refractory Systemic Lupus Erythematosus,” Nature Medicine 28 (2022): 2124-22132.

[315]

A. Mullard, “CAR T Cell Therapies Raise Hopes—and Questions—for Lupus and Autoimmune Disease,” Nature Reviews Drug Discovery 22 (2023): 859-861.

[316]

M. W. Moles, H. Erdlei, L. Menzel, et al., “CXCR4 has a Dual Role in Improving the Efficacy of BCMA-redirected CAR-NK Cells in Multiple Myeloma,” Frontiers in Immunology 15 (2024): 1383136.

[317]

S. H. Hassan, M. Y. Alshahrani, R. O. Saleh, et al., “A New Vision of the Efficacy of both CAR-NK and CAR-T Cells in Treating Cancers and Autoimmune Diseases,” Medical Oncology 41 (2024): 127.

[318]

J. Shu, W. Xie, Z. Chen, R. Offringa, Y. Hu, and H. Mei, “The Enchanting Canvas of CAR Technology: Unveiling Its Wonders in Non-neoplastic Diseases,” Med 5 (2024): 495-529.

[319]

M. H. Foster, “Optimizing the Translational Value of Animal Models of Glomerulonephritis: Insights From Recent murine Prototypes,” American Journal of Physiology. Renal Physiology 311 (2016): F487-F495.

[320]

B. Moszczuk, K. Mucha, R. Kucharczyk, and R. Zagożdżon, “The Role of Glomerular and Serum Expression of Lymphocyte Activating Factors BAFF and APRIL in Patient With Membranous and IgA Nephropathies,” Archivum Immunologiae Et Therapiae Experimentalis 73 (2025).

[321]

T. K. Ma, S. P. McAdoo, and F. W. K. Tam, “Targeting the Tyrosine Kinase Signalling Pathways for Treatment of Immune-mediated Glomerulonephritis: From Bench to Bedside and Beyond,” Nephrology, Dialysis, Transplantation 32 (2017): i129-i138.

[322]

R. C. Monteiro and Y. Suzuki, “Are There Animal Models of IgA Nephropathy?,” Seminars in immunopathology 43 (2021): 639-648.

[323]

H. Suzuki, Y. Suzuki, J. Novak, and Y. Tomino, “Development of Animal Models of Human IgA Nephropathy,” Drug Discovery Today: Disease Models 11 (2014): 5-11.

[324]

T. Kano, H. Suzuki, Y. Makita, et al., “Lessons From IgA Nephropathy Models,” International Journal of Molecular Sciences 25 (2024): 11484.

[325]

K. Okazaki, Y. Suzuki, M. Otsuji, et al., “Development of a Model of Early-onset IgA Nephropathy,” Journal of the American Society of Nephrology 23 (2012): 1364-1374.

[326]

J. R. Myette, T. Kano, H. Suzuki, et al., “A Proliferation Inducing Ligand (APRIL) Targeted Antibody Is a Safe and Effective Treatment of Murine IgA Nephropathy,” Kidney International 96 (2019): 104-116.

[327]

T. Nishie, O. Miyaishi, H. Azuma, et al., “Development of Immunoglobulin A Nephropathy- Like Disease in Beta-1,4-galactosyltransferase-I-deficient Mice,” American Journal of Pathology 170 (2007): 447-456.

[328]

S. M. Lechner, L. Abbad, E. Boedec, C. Papista, M. Le Stang, and C. Moal, “IgA1 Protease Treatment Reverses Mesangial Deposits and Hematuria in a Model of IgA Nephropathy,” Journal of the American Society of Nephrology 27 (2016): 2622-2629.

[329]

J. M. Chemouny, P. J. Gleeson, L. Abbad, G. Lauriero, E. Boedec, and K. Le Roux, “Modulation of the Microbiota by Oral Antibiotics Treats Immunoglobulin A Nephropathy in Humanized Mice,” Nephrology, Dialysis, Transplantation 34 (2019): 1135-1144.

[330]

P. J. Gleeson, N. Benech, J. Chemouny, E. Metallinou, L. Berthelot, and J. Da Silva, “The Gut Microbiota Posttranslationally Modifies IgA1 in Autoimmune Glomerulonephritis,” Science Translational Medicine 16 (2024): eadl6149.

[331]

H. Nagasawa, S. Ueda, H. Suzuki, et al., “Sparsentan Is Superior to losartan in the gddY Mouse Model of IgA Nephropathy,” Nephrology, Dialysis, Transplantation 39 (2024): 1494-1503.

[332]

R. Li, M. Wang, J. Li, et al., “Lactobacillus Casei Cell Wall Extract and Production of Galactose-Deficient IgA1 in a Humanized IGHA1 Mouse Model,” Journal of the American Society of Nephrology 36 (2025): 60-72.

[333]

H. Suzuki, R. Fan, Z. Zhang, et al., “Aberrantly Glycosylated IgA1 in IgA Nephropathy Patients Is Recognized by IgG Antibodies With Restricted Heterogeneity,” Journal of Clinical Investigation 119 (2009): 1668-1677.

[334]

L. Kooienga, E. Y. Lee, S. G. Kim, et al., “Zigakibart Demonstrates Clinical Safety and Efficacy in a Phase 1/2 Trial of Healthy Volunteers and Patients With IgA Nephropathy,” Kidney International (2025).

[335]

R. Lafayette, S. Barbour, R. Israni, et al., “A Phase 2b, Randomized, Double-blind, Placebo-controlled, Clinical Trial of atacicept for Treatment of IgA Nephropathy,” Kidney International 105 (2024): 1306-1315.

[336]

J. Barratt, J. Tumlin, Y. Suzuki, et al., “Randomized Phase II JANUS Study of Atacicept in Patients with IgA Nephropathy and Persistent Proteinuria,” Kidney International Reports 7 (2022): 1831-1841.

[337]

J. Lv, L. Liu, C. Hao, et al., “Randomized Phase 2 Trial of Telitacicept in Patients with IgA Nephropathy with Persistent Proteinuria,” Kidney International Reports 8 (2023): 499-506.

[338]

V. Perkovic, J. Barratt, B. Rovin, et al., “Alternative Complement Pathway Inhibition With Iptacopan in IgA Nephropathy,” New England Journal of Medicine 392 (2025): 531-543.

[339]

T. Nakamura, I. Ebihara, M. Fukui, Y. Tomino, and H. Koide, “Effect of a Specific Endothelin Receptor A Antagonist on Glomerulonephritis of ddY Mice With IgA Nephropathy,” Nephron 72 (1996): 454-460.

[340]

S. Michinaga, M. Nagase, E. Matsuyama, et al., “Amelioration of Cold Injury-induced Cortical Brain Edema Formation by Selective Endothelin ETB Receptor Antagonists in Mice,” PLoS ONE 9 (2014): e102009.

[341]

E. Moedt, V. S. Wasehuus, and H. J. L. Heerspink, “Selective endothelin A Receptor Antagonism in Chronic Kidney Disease: Improving Clinical Application,” Nephrology, Dialysis, Transplantation 40 (2025): i37-i46.

[342]

D. Maixnerova and V. Tesar, “Emerging Role of Monoclonal Antibodies in the Treatment of IgA Nephropathy,” Expert Opinion on Biological Therapy 23 (2023): 419-427.

[343]

K. A. Mayer, K. Budde, M. Schatzl, et al., “CD38 monoclonal Antibody felzartamab for Late Antibody-mediated Rejection: A Phase II Drug Evaluation,” Expert Opinion on Investigational Drugs 34 (2025): 1-10.

[344]

C. Tang, P. Chen, F. L. Si, et al., “Time-Varying Proteinuria and Progression of IgA Nephropathy: A Cohort Study,” American Journal of Kidney Diseases 84 (2024): 170-178.

[345]

R. J. Johnson, A. Hurtado, J. Merszei, B. Rodriguez-Iturbe, and L. Feng, “Hypothesis: Dysregulation of Immunologic Balance Resulting From Hygiene and Socioeconomic Factors May Influence the Epidemiology and Cause of Glomerulonephritis Worldwide,” American Journal of Kidney Diseases 42 (2003): 575-581.

[346]

J. C. Rodrigues, M. Haas, and H. N. Reich, “IgA Nephropathy,” Clinical Journal of the American Society of Nephrology 12 (2017): 677-686.

[347]

Z. Y. Duan, C. Zhang, X. M. Chen, and G. Y. Cai, “Blood and Urine Biomarkers of Disease Progression in IgA Nephropathy,” Biomarker Research 12 (2024): 72.

[348]

F. P. Schena, C. Manno, and G. Strippoli, “Understanding Patient Needs and Predicting Outcomes in IgA Nephropathy Using Data Analytics and Artificial Intelligence: A Narrative Review,” Clinical Kidney Journal 16 (2023): ii55-ii61.

[349]

L. Zhao, L. Peng, D. Yang, et al., “Immunostaining of Galactose-deficient IgA1 by KM55 Is Not Specific for Immunoglobulin A Nephropathy,” Clinical Immunology 217 (2020): 108483.

[350]

X. Zhang, J. Lv, P. Liu, et al., “Poly-IgA Complexes and Disease Severity in IgA Nephropathy,” Clinical Journal of the American Society of Nephrology 16 (2021): 1652-1664.

[351]

P. Chen, G. Yu, X. Zhang, et al., “Plasma Galactose-Deficient IgA1 and C3 and CKD Progression in IgA Nephropathy,” Clinical Journal of the American Society of Nephrology 14 (2019): 1458-1465.

[352]

Y. N. Wang, X. J. Zhou, P. Chen, et al., “Interaction Between GALNT12 and C1GALT1 Associates With Galactose-Deficient IgA1 and IgA Nephropathy,” Journal of the American Society of Nephrology 32 (2021): 545-552.

[353]

C. Reily, T. Rice, D. K. Crossman, and D. V. Rizk, “Phosphatase Control of Cytokine-mediated Overproduction of Galactose-deficient IgA1, the Main Autoantigen in IgA Nephropathy,” Journal of Autoimmunity 132 (2022): 102883.

[354]

H. Suzuki and J. Novak, “IgA Glycosylation and Immune Complex Formation in IgAN,” Seminars in immunopathology 43 (2021): 669-678.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/