AI Algorithm for Lung Adenocarcinoma Pattern Quantification (PATQUANT): International Validation and Advanced Risk Stratification Superior to Conventional Grading

Yuan Wang , Kris Lami , Waleed Ahmad , Simon Schallenberg , Andrey Bychkov , Yuanzi Ye , Danny Jonigk , Xiaoya Zhu , Sofia Campelos , Anne Schultheis , Matthias Heldwein , Alexander Quaas , Ales Ryska , Andre L. Moreira , Junya Fukuoka , Reinhard Büttner , Yuri Tolkach

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70380

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70380 DOI: 10.1002/mco2.70380
ORIGINAL ARTICLE

AI Algorithm for Lung Adenocarcinoma Pattern Quantification (PATQUANT): International Validation and Advanced Risk Stratification Superior to Conventional Grading

Author information +
History +
PDF

Abstract

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists. Several independent test datasets and 13 expert pathologists were involved in validation. Five large, multinational cohorts of resectable LUAD (patient n = 1120) were analyzed concerning prognostic value. PATQUANT demonstrated excellent pattern segmentation/classification accuracy and outperformed 8 out of 13 pathologists. The prognostic study revealed a distinct prognostic profile for the complex glandular pattern. While all contemporary grading systems had prognostic value, the predominant pattern-based and simplified IASLC systems were superior. We propose and validate two new, fully explainable grading principles, providing fine-grained, statistically independent patient risk stratification. We developed a fully automated, robust AI tool for pattern analysis/quantification that surpasses the performance of experienced pathologists. Additionally, we demonstrate the excellent prognostic capabilities of two new grading approaches that outperform traditional grading methods. We make our extensive agreement dataset publicly available to advance the developments in the field.

Keywords

AI / grading / lung adenocarcinoma / lung cancer / pattern / PATQUANT

Cite this article

Download citation ▾
Yuan Wang, Kris Lami, Waleed Ahmad, Simon Schallenberg, Andrey Bychkov, Yuanzi Ye, Danny Jonigk, Xiaoya Zhu, Sofia Campelos, Anne Schultheis, Matthias Heldwein, Alexander Quaas, Ales Ryska, Andre L. Moreira, Junya Fukuoka, Reinhard Büttner, Yuri Tolkach. AI Algorithm for Lung Adenocarcinoma Pattern Quantification (PATQUANT): International Validation and Advanced Risk Stratification Superior to Conventional Grading. MedComm, 2025, 6(9): e70380 DOI:10.1002/mco2.70380

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer Statistics,” CA: A Cancer Journal for Clinicians 73 (2023): 17-48.

[2]

WHO Classification of Tumours Editorial Board, Thoracic Tumours, 5th ed. ( International Agency for Research on Cancer, 2021).

[3]

A. L. Moreira, P. S. S. Ocampo, Y. Xia, et al., “A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal from the International Association for the Study of Lung Cancer Pathology Committee,” Journal of Thoracic Oncology 15 (2020): 1599-1610.

[4]

N. Nakajima, A. Yoshizawa, M. Rokutan-Kurata, et al., “Prognostic Significance of Cribriform Adenocarcinoma of the Lung: Validation Analysis of 1,057 Japanese Patients With Resected Lung Adenocarcinoma and a Review of the Literature,” Translational Lung Cancer Research 10 (2021): 117-127.

[5]

A. Warth, T. Muley, C. Kossakowski, et al., “Prognostic Impact and Clinicopathological Correlations of the Cribriform Pattern in Pulmonary Adenocarcinoma,” Journal of Thoracic Oncology 10 (2015): 638-644.

[6]

A. L. Moreira, P. Joubert, R. J. Downey, and N. Rekhtman, “Cribriform and Fused Glands Are Patterns of High-Grade Pulmonary Adenocarcinoma,” Human Pathology 45 (2014): 213-220.

[7]

K. Bera, K. A. Schalper, D. L. Rimm, V. Velcheti, and A. Madabhushi, “Artificial Intelligence in Digital Pathology—New Tools for Diagnosis and Precision Oncology,” Nature Reviews Clinical Oncology 16 (2019): 703-715.

[8]

A. Echle, N. T. Rindtorff, T. J. Brinker, T. Luedde, A. T. Pearson, and J. N. Kather, “Deep Learning in Cancer Pathology: A New Generation of Clinical Biomarkers,” British Journal of Cancer 124 (2021): 686-696.

[9]

G. Campanella, M. G. Hanna, L. Geneslaw, et al., “Clinical-Grade Computational Pathology Using Weakly Supervised Deep Learning on Whole Slide Images,” Nature Medicine 25 (2019): 1301-1309.

[10]

Y. Tolkach, T. Dohmgörgen, M. Toma, and G. Kristiansen, “High-Accuracy Prostate Cancer Pathology Using Deep Learning,” Nature Machine Intelligence 2 (2020): 411-418.

[11]

Y. Tolkach, L. M. Wolgast, A. Damanakis, et al., “Artificial Intelligence for Tumour Tissue Detection and Histological Regression Grading in Oesophageal Adenocarcinomas: A Retrospective Algorithm Development and Validation Study,” Lancet Digital Health 5 (2023): e265-e275.

[12]

B. E. Bejnordi, M. Veta, P. J. Van Diest, et al., “Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer,” Jama 318 (2017): 2199-2210.

[13]

L. Pantanowitz, G. M. Quiroga-Garza, L. Bien, et al., “An Artificial Intelligence Algorithm for Prostate Cancer Diagnosis in Whole Slide Images of Core Needle Biopsies: A Blinded Clinical Validation and Deployment Study,” Lancet Digital Health 2 (2020): e407-e416.

[14]

C. Kludt, Y. Wang, W. Ahmad, et al., “Next-Generation Lung Cancer Pathology: Development and Validation of Diagnostic and Prognostic Algorithms,” Cell Reports Medicine 5 (2024): 101697.

[15]

J. W. Wei, L. J. Tafe, Y. A. Linnik, L. J. Vaickus, N. Tomita, and S. Hassanpour, “Pathologist-Level Classification of Histologic Patterns on Resected Lung Adenocarcinoma Slides With Deep Neural Networks,” Scientific Reports 9 (2019): 3358.

[16]

A. Gertych, Z. Swiderska-Chadaj, Z. Ma, et al., “Convolutional Neural Networks Can Accurately Distinguish Four Histologic Growth Patterns of Lung Adenocarcinoma in Digital Slides,” Scientific Reports 9 (2019): 1483.

[17]

K. Lami, N. Ota, S. Yamaoka, et al., “Standardized Classification of Lung Adenocarcinoma Subtypes and Improvement of Grading Assessment Through Deep Learning,” American Journal of Pathology 193 (2023): 2066-2079.

[18]

A. Al-Rubaian, G. N. Gunesli, W. A. Althakfi, A. Azam, N. Rajpoot, and S. E. A. Raza, “Cell Maps Representation for Lung Adenocarcinoma Growth Patterns Classification in Whole Slide Images,” (2023): ArXiv: 2311.15847v2, https://arxiv.org/abs/2311.15847.

[19]

J. H. Lockhart, H. D. Ackerman, K. Lee, et al., “Grading of Lung Adenocarcinomas With Simultaneous Segmentation by Artificial Intelligence (GLASS-AI),” npj Precision Oncology 7 (2023): 68.

[20]

Y. Zhao, S. He, D. Zhao, et al., “Deep Learning-Based Diagnosis of Histopathological Patterns for Invasive Non-Mucinous Lung Adenocarcinoma Using Semantic Segmentation,” BMJ Open 13 (2023): e069181.

[21]

X. Pan, K. AbdulJabbar, J. Coelho-Lima, et al., “The Artificial Intelligence-Based Model ANORAK Improves Histopathological Grading of Lung Adenocarcinoma,” Nature Cancer 5 (2024): 347-363.

[22]

K. Lami, A. Bychkov, K. Matsumoto, et al., “Overcoming the Interobserver Variability in Lung Adenocarcinoma Subtyping: A Clustering Approach to Establish a Ground Truth for Downstream Applications,” Archives of Pathology & Laboratory Medicine 147 (2023): 888-895.

[23]

Y. Bossé, A. Gagné, W. A. Althakfi, et al., “A Simplified Version of the IASLC Grading System for Invasive Pulmonary Adenocarcinomas with Improved Prognosis Discrimination,” American Journal of Surgical Pathology 47 (2023): 686-693.

[24]

L. Hou, T. Wang, D. Chen, et al., “Prognostic and Predictive Value of the Newly Proposed Grading System of Invasive Pulmonary Adenocarcinoma in Chinese Patients: A Retrospective Multicohort Study,” Modern Pathology 35 (2022): 749-756.

[25]

C. Deng, Q. Zheng, Y. Zhang, et al., “Validation of the Novel International Association for the Study of Lung Cancer Grading System for Invasive Pulmonary Adenocarcinoma and Association with Common Driver Mutations,” Journal of Thoracic Oncology 16 (2021): 1684-1693.

[26]

M. Rokutan-Kurata, A. Yoshizawa, K. Ueno, et al., “Validation Study of the International Association for the Study of Lung Cancer Histologic Grading System of Invasive Lung Adenocarcinoma,” Journal of Thoracic Oncology 16 (2021): 1753-1758.

[27]

A. Kagimoto, Y. Tsutani, T. Kambara, et al., “Utility of Newly Proposed Grading System from International Association for the Study of Lung Cancer for Invasive Lung Adenocarcinoma,” JTO Clinical and Research Reports 2 (2020): 100126.

[28]

G. Sica, A. Yoshizawa, C. S. Sima, et al., “A Grading System of Lung Adenocarcinomas Based on Histologic Pattern Is Predictive of Disease Recurrence in Stage I Tumors,” American Journal of Surgical Pathology 34 (2010): 1155-1162.

[29]

P. Bankhead, M. B. Loughrey, J. A. Fernández, et al., “QuPath: Open Source Software for Digital Pathology Image Analysis,” Scientific Reports 7 (2017): 1-7.

[30]

J. Griem, M.-L. Eich, S. Schallenberg, et al., “Artificial Intelligence-Based Tool for Tumor Detection and Quantitative Tissue Analysis in Colorectal Specimens,” Modern Pathology 36 (2023): 100327.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/