Mitochondria-Associated Endoplasmic Reticulum Membranes in Health and Diseases

Hangnan Hong , Zhenyang Guo , Junbo Ge , Hua Li

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70379

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70379 DOI: 10.1002/mco2.70379
REVIEW

Mitochondria-Associated Endoplasmic Reticulum Membranes in Health and Diseases

Author information +
History +
PDF

Abstract

Membrane contact sites enable organelles to interact closely, thereby coordinating cellular homeostasis and functional regulation. Among diverse subcellular membrane architectures, mitochondria-associated endoplasmic reticulum membranes (MAMs) assume a crucial role in the physiological and pathological environments. A plethora of cellular processes are intertwined with MAMs, such as Ca2+ translocation, lipid metabolism, endoplasmic reticulum (ER) stress response, mitochondrial dynamics, and mitophagy. In the event of improper modulation of MAMs components, the incidence of diseases would surge remarkably. This review endeavors to expound upon the functions of key MAMs proteins in healthy state and decipher their regulatory mechanisms under physiological and pathological circumstances. In addition, we try to probe into the specific contribution of MAMs within the occurrence and development of diseases, and subsequently collate drug compounds and clinical trials that target MAMs components. Finally, we proffer our insights regarding the contentious perspectives and prospective research directions of MAMs. Understanding the roles and mechanisms of MAMs may potentially offer novel diagnostic biomarkers and treatment targets in clinical practice, paving the way for more precise and effective clinical interventions for common diseases.

Keywords

cancers / cardiovascular diseases / metabolic diseases / mitochondrial-associated membranes / neurodegenerative diseases

Cite this article

Download citation ▾
Hangnan Hong, Zhenyang Guo, Junbo Ge, Hua Li. Mitochondria-Associated Endoplasmic Reticulum Membranes in Health and Diseases. MedComm, 2025, 6(10): e70379 DOI:10.1002/mco2.70379

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Eisenberg-Bord, N. Shai, M. Schuldiner, and M. Bohnert, “A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites,” Developmental Cell 39 (2016): 395-409.

[2]

M. Guo, R. Liu, F. Zhang, J. Qu, Y. Yang, and X. Li, “A New Perspective on Liver Diseases: Focusing on the Mitochondria-Associated Endoplasmic Reticulum Membranes,” Pharmacological Research 208 (2024): 107409.

[3]

S. X. Zhang, J. J. Wang, C. R. Starr, et al., “The Endoplasmic Reticulum: Homeostasis and Crosstalk in Retinal Health and Disease,” Progress in Retinal and Eye Research 98 (2024): 101231.

[4]

T. Simmen and M. S. Herrera-Cruz, “Plastic Mitochondria-Endoplasmic Reticulum (ER) Contacts Use Chaperones and Tethers to Mould Their Structure and Signaling,” Current Opinion in Cell Biology 53 (2018): 61-69.

[5]

M. R. Wieckowski, C. Giorgi, M. Lebiedzinska, J. Duszynski, and, P. Pinton, “Isolation of Mitochondria-Associated Membranes and Mitochondria From Animal Tissues and Cells,” Nature Protocols 4 (2009): 1582-1590.

[6]

M. Schuldiner and M. Bohnert, “A Different Kind of Love—Lipid Droplet Contact Sites,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1862 (2017): 1188-1196.

[7]

P. Gao, Z. Yan, and Z. Zhu, “Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases,” Frontiers in Cell and Developmental Biology 8 (2020): 604240.

[8]

L. Barazzuol, F. Giamogante, and T. Calì, “Mitochondria Associated Membranes (MAMs): Architecture and Physiopathological Role,” Cell Calcium 94 (2021): 102343.

[9]

S. S. Zhang, S. Zhou, Z. J. Crowley-McHattan, R. Y. Wang, and, J. P. Li, “A Review of the Role of Endo/Sarcoplasmic Reticulum-Mitochondria Ca(2+) Transport in Diseases and Skeletal Muscle Function,” International Journal of Environmental Research and Public Health 18 (2021): 3874.

[10]

J. Szymański, J. Janikiewicz, B. Michalska, et al., “Interaction of Mitochondria With the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure,” International Journal of Molecular Sciences 18 (2017): 1576.

[11]

H. M. Zeeshan, G. H. Lee, H. R. Kim, and, H. J. Chae, “Endoplasmic Reticulum Stress and Associated ROS,” International Journal of Molecular Sciences 17 (2016): 327.

[12]

V. Manganelli, P. Matarrese, M. Antonioli, et al., “Raft-Like Lipid Microdomains Drive Autophagy Initiation via AMBRA1-ERLIN1 Molecular Association Within MAMs,” Autophagy 17 (2021): 2528-2548.

[13]

S. M. Yoo and Y. K. Jung, “A Molecular Approach to Mitophagy and Mitochondrial Dynamics,” Molecules and Cells 41 (2018): 18-26.

[14]

Y. Elbaz and M. Schuldiner, “Staying in Touch: The Molecular Era of Organelle Contact Sites,” Trends in Biochemical Sciences 36 (2011): 616-623.

[15]

S. Cohen, A. M. Valm, and J. Lippincott-Schwartz, “Interacting Organelles,” Current Opinion in Cell Biology 53 (2018): 84-91.

[16]

H. Wu, P. Carvalho, and G. K. Voeltz, “Here, There, and Everywhere: The Importance of ER Membrane Contact Sites,” Science 361 (2018): 466-475, https://doi.org/10.1126/science.aan5835.

[17]

M. Bohnert, “Tether Me, Tether Me Not—Dynamic Organelle Contact Sites in Metabolic Rewiring,” Developmental Cell 54 (2020): 212-225.

[18]

W. A. Prinz, A. Toulmay, and T. Balla, “The Functional Universe of Membrane Contact Sites,” Nature Reviews Molecular Cell Biology 21 (2020): 7-24.

[19]

C. J. Stefan, “Endoplasmic Reticulum-Plasma Membrane Contacts: Principals of Phosphoinositide and Calcium Signaling,” Current Opinion in Cell Biology 63 (2020): 125-134.

[20]

R. Venditti, M. C. Masone, and M. A. De Matteis, “ER-Golgi Membrane Contact Sites,” Biochemical Society Transactions 48 (2020): 187-197.

[21]

M. J. Phillips and G. K. Voeltz, “Structure and Function of ER Membrane Contact Sites With Other Organelles,” Nature Reviews Molecular Cell Biology 17 (2016): 69-82.

[22]

A. M. Valm, S. Cohen, W. R. Legant, et al., “Applying Systems-Level Spectral Imaging and Analysis to Reveal the Organelle Interactome,” Nature 546 (2017): 162-167.

[23]

M. H. R. Ludtmann, P. R. Angelova, M. H. Horrocks, et al., “α-Synuclein Oligomers Interact With ATP Synthase and Open the Permeability Transition Pore in Parkinson's Disease,” Nature Communications 9 (2018): 2293.

[24]

Y. Luan, Y. Luan, R.-X. Yuan, Q. Feng, X. Chen, and Y. Yang, “Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases,” Oxidative Medicine and Cellular Longevity 2021 (2021): 4578809.

[25]

A. Silva-Palacios, C. Zazueta, and J. Pedraza-Chaverri, “ER Membranes Associated With Mitochondria: Possible Therapeutic Targets in Heart-Associated Diseases,” Pharmacological Research 156 (2020): 104758.

[26]

J.-R. Zhang, S.-Y. Shen, M.-Y. Zhai, et al., “Augmented Microglial Endoplasmic Reticulum-Mitochondria Contacts Mediate Depression-Like Behavior in Mice Induced by Chronic Social Defeat Stress,” Nature Communications 15 (2024): 5199.

[27]

M. R. Wozny, A. Di Luca, D. R. Morado, et al., “In Situ Architecture of the ER-Mitochondria Encounter Structure,” Nature 618 (2023): 188-192.

[28]

C. Wang, X. Dai, S. Wu, et al., “FUNDC1-Dependent Mitochondria-Associated Endoplasmic Reticulum Membranes Are Involved in Angiogenesis and Neoangiogenesis,” Nature Communications 12 (2021): 2616.

[29]

C. J. Obara, J. Nixon-Abell, A. S. Moore, et al., “Motion of VAPB Molecules Reveals ER-Mitochondria Contact Site Subdomains,” Nature 626 (2024): 169-176.

[30]

D. Martinvalet, “The Role of the Mitochondria and the Endoplasmic Reticulum Contact Sites in the Development of the Immune Responses,” Cell Death & Disease 9 (2018): 336.

[31]

S. Lee and K. T. Min, “The Interface Between ER and Mitochondria: Molecular Compositions and Functions,” Molecules and Cells 41 (2018): 1000-1007.

[32]

J. Gu, T. Zhang, J. Guo, K. Chen, H. Li, and J. Wang, “PINK1 Activation and Translocation to Mitochondria-Associated Membranes Mediates Mitophagy and Protects against Hepatic Ischemia/Reperfusion Injury,” Shock (Augusta, GA) 54 (2020): 783-793.

[33]

G. An, J. Park, J. Song, T. Hong, G. Song, and W. Lim, “Relevance of the Endoplasmic Reticulum-Mitochondria Axis in Cancer Diagnosis and Therapy,” Experimental & Molecular Medicine 56 (2024): 40-50.

[34]

Y. Liu, X. Ma, H. Fujioka, J. Liu, S. Chen, and X. Zhu, “DJ-1 Regulates the Integrity and Function of ER-Mitochondria Association Through Interaction With IP3R3-Grp75-VDAC1,” Proceedings of the National Academy of Sciences 116 (2019): 25322-25328.

[35]

S. Ribarič, “The Rationale for Insulin Therapy in Alzheimer's Disease,” Molecules (Basel, Switzerland) 21 (2016): 689.

[36]

H.-L. Zhang, B.-X. Hu, Z.-L. Li, et al., “PKCβII Phosphorylates ACSL4 to Amplify Lipid Peroxidation to Induce Ferroptosis,” Nature Cell Biology 24 (2022): 88-98.

[37]

R. Bravo-Sagua, V. Parra, C. Ortiz-Sandoval, et al., “Caveolin-1 Impairs PKA-DRP1-Mediated Remodelling of ER-Mitochondria Communication During the Early Phase of ER Stress,” Cell Death & Differentiation 26 (2019): 1195-1212.

[38]

C. Hetz, K. Zhang, and R. J. Kaufman, “Mechanisms, Regulation and Functions of the Unfolded Protein Response,” Nature Reviews Molecular Cell Biology 21 (2020): 421-438.

[39]

T. Anelli, L. Bergamelli, E. Margittai, et al., “Ero1α Regulates Ca2+ Fluxes at the Endoplasmic Reticulum-Mitochondria Interface (MAM),” Antioxidants & Redox Signaling 16 (2012): 1077-1087.

[40]

M. Gierhardt, O. Pak, A. Sydykov, et al., “Genetic Deletion of p66shc and/or Cyclophilin D Results in Decreased Pulmonary Vascular Tone,” Cardiovascular Research 118 (2022): 305-315.

[41]

A. Franco, X. Dang, L. Zhang, P. B. Molinoff, and G. W. Dorn, “Mitochondrial Dysfunction and Pharmacodynamics of Mitofusin Activation in Murine Charcot-Marie-Tooth Disease Type 2A,” Journal of Pharmacology and Experimental Therapeutics 383 (2022): 137-148.

[42]

P. Mishra, V. Carelli, G. Manfredi, and D. C. Chan, “Proteolytic Cleavage of Opa1 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative Phosphorylation,” Cell Metabolism 19 (2014): 630-641.

[43]

J. R. Friedman, L. L. Lackner, M. West, J. R. Dibenedetto, J. Nunnari, and G. K. Voeltz, “ER Tubules Mark Sites of Mitochondrial Division,” Science 334 (2011): 358-362.

[44]

V. Gelmetti, P. De Rosa, L. Torosantucci, et al., “PINK1 and BECN1 Relocalize at Mitochondria-Associated Membranes During Mitophagy and Promote ER-Mitochondria Tethering and Autophagosome Formation,” Autophagy 13 (2017): 654-669.

[45]

L. Liu, Y. Li, and Q. Chen, “The Emerging Role of FUNDC1-Mediated Mitophagy in Cardiovascular Diseases,” Frontiers in Physiology 12 (2021): 807654.

[46]

L. C. Davis, A. J. Morgan, and A. Galione, “NAADP-Regulated Two-Pore Channels Drive Phagocytosis Through Endo-Lysosomal Ca2+ Nanodomains, Calcineurin and Dynamin,” EMBO Journal 39 (2020): e104058.

[47]

J. More, N. Galusso, P. Veloso, et al., “N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model,” Frontiers in Aging Neuroscience 10 (2018): 399.

[48]

H. Lin, Y. Peng, J. Li, et al., “Reactive Oxygen Species Regulate Endoplasmic Reticulum Stress and ER-Mitochondrial Ca2+ Crosstalk to Promote Programmed Necrosis of Rat Nucleus Pulposus Cells Under Compression,” Oxidative Medicine and Cellular Longevity 2021 (2021): 8810698.

[49]

V. Basso, E. Marchesan, and E. Ziviani, “A Trio Has Turned Into a Quartet: DJ-1 Interacts With the IP3R-Grp75-VDAC Complex to Control ER-Mitochondria Interaction,” Cell Calcium 87 (2020): 102186.

[50]

G. Fan, M L. Baker, Z. Wang, et al., “Gating Machinery of InsP3R Channels Revealed by Electron Cryomicroscopy,” Nature 527 (2015): 336-341.

[51]

H. Qi, L. Li, and J. Shuai, “Optimal Microdomain Crosstalk Between Endoplasmic Reticulum and Mitochondria for Ca2+ Oscillations,” Scientific Reports 5 (2015): 7984.

[52]

J. Ligeza, P. Marona, N. Gach, et al., “MCPIP1 Contributes to Clear Cell Renal Cell Carcinomas Development,” Angiogenesis 20 (2017): 325-340.

[53]

D. De Stefani, A. Raffaello, E. Teardo, I. Szabò, and, R. Rizzuto, “A Forty-Kilodalton Protein of the Inner Membrane Is the Mitochondrial Calcium Uniporter,” Nature 476 (2011): 336-340.

[54]

J. Rieusset, J. Fauconnier, M. Paillard, et al., “Disruption of Calcium Transfer From ER to Mitochondria Links Alterations of Mitochondria-Associated ER Membrane Integrity to Hepatic Insulin Resistance,” Diabetologia 59 (2016): 614-623.

[55]

L. Gomez, P.-A. Thiebaut, M. Paillard, et al., “The SR/ER-Mitochondria Calcium Crosstalk Is Regulated by GSK3β During Reperfusion Injury,” Cell Death & Differentiation 23 (2016): 313-322.

[56]

S. Wu, Q. Lu, Q. Wang, et al., “Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts In Vivo,” Circulation 136 (2017): 2248-2266.

[57]

S. K. Joseph, D. M. Booth, M. P. Young, and G. Hajnóczky, “Redox Regulation of ER and Mitochondrial Ca2+ Signaling in Cell Survival and Death,” Cell Calcium 79 (2019): 89-97.

[58]

S. K. Joseph, M. P. Young, K. Alzayady, et al., “Redox Regulation of Type-I Inositol Trisphosphate Receptors in Intact Mammalian Cells,” Journal of Biological Chemistry 293 (2018): 17464-17476.

[59]

O. M. de Brito and L. Scorrano, “Mitofusin 2 Tethers Endoplasmic Reticulum to Mitochondria,” Nature 456 (2008): 605-610.

[60]

T. Teng, H. Yang, T. Xu, et al., “Activation of Inflammatory Networks in the Lungs Caused by Chronic Cold Stress Is Moderately Attenuated by Glucose Supplementation,” International Journal of Molecular Sciences 23 (2022): 10697.

[61]

N. Wiedemann, C. Meisinger, and N. Pfanner, “Connecting Organelles,” Science 325 (2009): 403-404.

[62]

T. Jiang, N. Ruan, P. Luo, et al., “Modulation of ER-Mitochondria Tethering Complex VAPB-PTPIP51: Novel Therapeutic Targets for Aging-Associated Diseases,” Ageing Research Reviews 98 (2024): 102320.

[63]

Y. Hirabayashi, S.-K. Kwon, H. Paek, et al., “ER-Mitochondria Tethering by PDZD8 Regulates Ca2+ Dynamics in Mammalian Neurons,” Science 358 (2017): 623-630.

[64]

S. Tian, P. Lei, J. Zhang, Y. Sun, B. Li, and Y. Shan, “Sulforaphane Balances Ca2+ Homeostasis Injured by Excessive Fat via Mitochondria-Associated Membrane (MAM),” Molecular Nutrition & Food Research 65 (2021): e2001076.

[65]

G. Gherardi, H. Monticelli, R. Rizzuto, and C. Mammucari, “The Mitochondrial Ca2+ Uptake and the Fine-Tuning of Aerobic Metabolism,” Frontiers in Physiology 11 (2020): 554904.

[66]

A. Rossi, P. Pizzo, and R. Filadi, “Calcium, Mitochondria and Cell Metabolism: A Functional Triangle in Bioenergetics,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 1866 (2019): 1068-1078.

[67]

K. C. Vinnakota, A. Singhal, F. Van Den Bergh, M. Bagher-Oskouei, R. W. Wiseman, and D. A. Beard, “Open-Loop Control of Oxidative Phosphorylation in Skeletal and Cardiac Muscle Mitochondria by Ca2+,” Biophysical Journal 110 (2016): 954-961.

[68]

S. Marchi, S. Patergnani, S. Missiroli, et al., “Mitochondrial and Endoplasmic Reticulum Calcium Homeostasis and Cell Death,” Cell Calcium 69 (2018): 62-72.

[69]

C. Giorgi, M. Bonora, G. Sorrentino, et al., “p53 at the Endoplasmic Reticulum Regulates Apoptosis in a Ca2+-Dependent Manner,” Proceedings of the National Academy of Sciences 112 (2015): 1779-1784.

[70]

E. Bahar, J. Y. Kim, D. C. Kim, H. S. Kim, and H. Yoon, “Combination of Niraparib, Cisplatin and Twist Knockdown in Cisplatin-Resistant Ovarian Cancer Cells Potentially Enhances Synthetic Lethality Through ER-Stress Mediated Mitochondrial Apoptosis Pathway,” International Journal of Molecular Sciences 22 (2021): 3916.

[71]

V. Giorgio, V. Burchell, M. Schiavone, et al., “Ca2+ Binding to F-ATP Synthase β Subunit Triggers the Mitochondrial Permeability Transition,” EMBO Reports 18 (2017): 1065-1076.

[72]

C. Giorgi, S. Marchi, and P. Pinton, “The Machineries, Regulation and Cellular Functions of Mitochondrial Calcium,” Nature Reviews Molecular Cell Biology 19 (2018): 713-730.

[73]

M. Bonora, C. Giorgi, and P. Pinton, “Molecular Mechanisms and Consequences of Mitochondrial Permeability Transition,” Nature Reviews Molecular Cell Biology 23 (2022): 266-285.

[74]

S. NavaneethaKrishnan, J. L. Rosales, and K. Y. Lee, “mPTP opening caused by Cdk5 loss is due to increased mitochondrial Ca2+ uptake,” Oncogene 39 (2020): 2797-2806.

[75]

I. C. M. Simoes, G. Morciano, M. Lebiedzinska-Arciszewska, et al., “The Mystery of Mitochondria-ER Contact Sites in Physiology and Pathology: A Cancer Perspective,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 1866 (2020): 165834.

[76]

S. Kuchay, C. Giorgi, D. Simoneschi, et al., “PTEN Counteracts FBXL2 to Promote IP3R3- and Ca2+-Mediated Apoptosis Limiting Tumour Growth,” Nature 546 (2017): 554-558.

[77]

D. A. Kobrinski, H. Yang, and M. Kittaneh, “BAP1: Role in Carcinogenesis and Clinical Implications,” Translational Lung Cancer Research 9 (2020): S60-S66.

[78]

M. A. Carpio, R. E. Means, A. L. Brill, A. Sainz, B. E. Ehrlich, and S. G. Katz, “BOK Controls Apoptosis by Ca2+ Transfer Through ER-Mitochondrial Contact Sites,” Cell Reports 34 (2021): 108827.

[79]

J. Ren, M. Sun, H. Zhou, et al., “FUNDC1 Interacts With FBXL2 to Govern Mitochondrial Integrity and Cardiac Function Through an IP3R3-Dependent Manner in Obesity,” Science Advances 6 (2020): eabc8561.

[80]

A. Rimessi, G. Pedriali, B. Vezzani, et al., “Interorganellar Calcium Signaling in the Regulation of Cell Metabolism: A Cancer Perspective,” Seminars in Cell & Developmental Biology 98 (2020): 167-180.

[81]

R. Bravo, J. M. Vicencio, V. Parra, et al., “Increased ER-Mitochondrial Coupling Promotes Mitochondrial Respiration and Bioenergetics During Early Phases of ER Stress,” Journal of Cell Science 124 (2011): 2143-2152.

[82]

C. T. Madreiter-Sokolowski, B. Gottschalk, A. A. Sokolowski, R. Malli, and W. F. Graier, “Dynamic Control of Mitochondrial Ca2+ Levels as a Survival Strategy of Cancer Cells,” Frontiers in Cell and Developmental Biology 9 (2021): 614668.

[83]

M. Kerkhofs, M. Bittremieux, G. Morciano, et al., “Emerging Molecular Mechanisms in Chemotherapy: Ca2+ Signaling at the Mitochondria-Associated Endoplasmic Reticulum Membranes,” Cell Death & Disease 9 (2018): 334.

[84]

M. Doghman-Bouguerra and E. Lalli, “ER-Mitochondria Interactions: Both Strength and Weakness Within Cancer Cells,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 1866 (2019): 650-662.

[85]

J. E. Vance, “MAM (Mitochondria-Associated Membranes) in Mammalian Cells: Lipids and Beyond,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1841 (2014): 595-609.

[86]

I. Anastasia, N. Ilacqua, A. Raimondi, et al., “Mitochondria-Rough-ER Contacts in the Liver Regulate Systemic Lipid Homeostasis,” Cell Reports 34 (2021): 108873.

[87]

N. Miyata and O. Kuge, “Topology of Phosphatidylserine Synthase 1 in the Endoplasmic Reticulum Membrane,” Protein Science 30 (2021): 2346-2353.

[88]

M. L. Sassano, A. R. Van Vliet, E. Vervoort, et al., “PERK Recruits E-Syt1 at ER-Mitochondria Contacts for Mitochondrial Lipid Transport and Respiration,” Journal of Cell Biology 222 (2023): e202206008.

[89]

H. T. Perkins and V. Allan, “Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases,” Cells 10 (2021): 2341.

[90]

D.-M. Yu, S. H. Jung, H-T. An, et al., “Caveolin-1 Deficiency Induces Premature Senescence With Mitochondrial Dysfunction,” Aging Cell 16 (2017): 773-784.

[91]

A. Sala-Vila, I. Navarro-Lérida, M. Sánchez-Alvarez, et al., “Interplay Between Hepatic Mitochondria-Associated Membranes, Lipid Metabolism and Caveolin-1 in Mice,” Scientific Reports 6 (2016): 27351.

[92]

W. Shi, H. Wu, S. Liu, et al., “Progesterone Suppresses Cholesterol Esterification in APP/PS1 Mice and a Cell Model of Alzheimer's Disease,” Brain Research Bulletin 173 (2021): 162-173.

[93]

M. Fujimoto, T. Hayashi, and T. P. Su, “The Role of Cholesterol in the Association of Endoplasmic Reticulum Membranes With Mitochondria,” Biochemical and Biophysical Research Communications 417 (2012): 635-639.

[94]

J. Zabielska, T. Sledzinski, and E. Stelmanska, “Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibition in Cancer Treatment,” Anticancer Research 39 (2019): 3385-3394.

[95]

C. Li, L. Li, M. Yang, L. Zeng, and L. Sun, “PACS-2: A Key Regulator of Mitochondria-Associated Membranes (MAMs),” Pharmacological Research 160 (2020): 105080.

[96]

M. Hamasaki, N. Furuta, A. Matsuda, et al., “Autophagosomes Form at ER-Mitochondria Contact Sites,” Nature 495 (2013): 389-393.

[97]

A. Bassot, C. Prip-Buus, A. Alves, et al., “Loss and Gain of Function of Grp75 or Mitofusin 2 Distinctly Alter Cholesterol Metabolism, but All Promote Triglyceride Accumulation in Hepatocytes,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1866 (2021): 159030.

[98]

R. Bhattacharyya, S. E. Black, M. S. Lotlikar, et al., “Axonal Generation of Amyloid-β From Palmitoylated APP in Mitochondria-Associated Endoplasmic Reticulum Membranes,” Cell Reports 35 (2021): 109134.

[99]

J. R. Friedman, M. Kannan, A. Toulmay, et al., “Lipid Homeostasis Is Maintained by Dual Targeting of the Mitochondrial PE Biosynthesis Enzyme to the ER,” Developmental Cell 44 (2018): 261-270.e6. e266.

[100]

M. G. Acoba, N. Senoo, and S. M. Claypool, “Phospholipid Ebb and Flow Makes Mitochondria Go,” Journal of Cell Biology 219 (2020): e202003131.

[101]

M. Vukotic, H. Nolte, T. König, et al., “Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria,” Molecular Cell 67 (2017): 471-483.e7. e477.

[102]

H. Ku Yeo, T. H. Park, H. Y. Kim, et al., “Phospholipid Transfer Function of PTPIP51 at Mitochondria-Associated ER Membranes,” EMBO Reports 22 (2021): e51323.

[103]

P. Hsu and Y. Shi, “Regulation of Autophagy by Mitochondrial Phospholipids in Health and Diseases,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1862 (2017): 114-129.

[104]

K. Fiedorczuk, J. A. Letts, G. Degliesposti, K. Kaszuba, M. Skehel, and L. A. Sazanov, “Atomic Structure of the Entire Mammalian Mitochondrial Complex I,” Nature 538 (2016): 406-410.

[105]

M. Schlame and M. L. Greenberg, “Biosynthesis, Remodeling and Turnover of Mitochondrial Cardiolipin,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1862 (2017): 3-7.

[106]

C. T. Chu, H. Bayır, and V. E. Kagan, “LC3 Binds Externalized Cardiolipin on Injured Mitochondria to Signal Mitophagy in Neurons,” Autophagy 10 (2014): 376-378.

[107]

Z. Antón, A. Landajuela, J. H. Hervás, et al., “Human Atg8-Cardiolipin Interactions in Mitophagy: Specific Properties of LC3B, GABARAPL2 and GABARAP,” Autophagy 12 (2016): 2386-2403.

[108]

V. Manganelli, A. Capozzi, S. Recalchi, et al., “The Role of Cardiolipin as a Scaffold Mitochondrial Phospholipid in Autophagosome Formation: In Vitro Evidence,” Biomolecules 11 (2021): 222.

[109]

M. Mahajan, N. Bharambe, Y. Shang, et al., “NMR Identification of a Conserved Drp1 Cardiolipin-Binding Motif Essential for Stress-Induced Mitochondrial Fission,” Proceedings of the National Academy of Sciences 118 (2021): e2023079118.

[110]

I. Bustillo-Zabalbeitia, S. Montessuit, E. Raemy, G. Basañez, O. Terrones, and J.-C. Martinou, “Specific Interaction With Cardiolipin Triggers Functional Activation of Dynamin-Related Protein 1,” PLoS ONE 9 (2014): e102738.

[111]

T. Ban, T. Ishihara, H. Kohno, et al., “Molecular Basis of Selective Mitochondrial Fusion by Heterotypic Action Between OPA1 and Cardiolipin,” Nature Cell Biology 19 (2017): 856-863.

[112]

A. V. Birk, W. M. Chao, S. Liu, Y. Soong, and H. H. Szeto, “Disruption of Cytochrome c Heme Coordination Is Responsible for Mitochondrial Injury During Ischemia,” Biochimica et Biophysica Acta (BBA)—Bioenergetics 1847 (2015): 1075-1084.

[113]

E. Calzada, E. Avery, P. N. Sam, et al., “Phosphatidylethanolamine Made in the Inner Mitochondrial Membrane Is Essential for Yeast Cytochrome bc1 Complex Function,” Nature Communications 10 (2019): 1432.

[114]

T. D. Heden, J. M. Johnson, P. J. Ferrara, et al., “Mitochondrial PE Potentiates Respiratory Enzymes to Amplify Skeletal Muscle Aerobic Capacity,” Science Advances 5 (2019): eaax8352.

[115]

J. Hwang and L. Qi, “Quality Control in the Endoplasmic Reticulum: Crosstalk Between ERAD and UPR Pathways,” Trends in Biochemical Sciences 43 (2018): 593-605.

[116]

D. Guido, N. Demaurex, and P. Nunes, “Junctate Boosts Phagocytosis by Recruiting Endoplasmic Reticulum Ca2+ Stores Near Phagosomes,” Journal of Cell Science 128 (2015): 4074-4082.

[117]

M. C. Kopp, N. Larburu, V. Durairaj, C. J. Adams, and M. M. U. Ali, “UPR Proteins IRE1 and PERK Switch BiP From Chaperone to ER Stress Sensor,” Nature Structural & Molecular Biology 26 (2019): 1053-1062.

[118]

S. Park, Y. Lim, D. Lee, et al., “Modulation of Protein Synthesis by eIF2α Phosphorylation Protects Cell From Heat Stress-Mediated Apoptosis,” Cells 7 (2018): 254.

[119]

J. Han, S. H. Back, J. Hur, et al., “ER-Stress-Induced Transcriptional Regulation Increases Protein Synthesis Leading to Cell Death,” Nature Cell Biology 15 (2013): 481-490.

[120]

F. Zhong, J. Xie, D. Zhang, Y. Han, and C. Wang, “Polypeptide From Chlamys farreri Suppresses Ultraviolet-B Irradiation-Induced Apoptosis Through Restoring ER Redox Homeostasis, Scavenging ROS Generation, and Suppressing the PERK-eIF2a-CHOP Pathway in HaCaT Cells,” Journal of Photochemistry and Photobiology B: Biology 151 (2015): 10-16.

[121]

Z. Liu, Y. Lv, N. Zhao, G. Guan, and J. Wang, “Protein Kinase R-Like ER Kinase and Its Role in Endoplasmic Reticulum Stress-Decided Cell Fate,” Cell Death & Disease 6 (2015): e1822.

[122]

A. Bassot, J. Chen, K. Takahashi-Yamashiro, et al., “The Endoplasmic Reticulum Kinase PERK Interacts With the Oxidoreductase ERO1 to Metabolically Adapt Mitochondria,” Cell Reports 42 (2023): 111899.

[123]

T. Verfaillie, N. Rubio, A. D. Garg, et al., “PERK Is Required at the ER-Mitochondrial Contact Sites to Convey Apoptosis After ROS-Based ER Stress,” Cell Death & Differentiation 19 (2012): 1880-1891.

[124]

C. Fecher, A. Sodmann, F. Schlott, et al., “Resting Ca2+ Fluxes Protect Cells From Fast Mitochondrial Fragmentation, Cell Stress Responses, and Immediate Transcriptional Reprogramming,” Cellular and Molecular Life Sciences 82 (2025): 238.

[125]

Y. Lu, F. X. Liang, and X. Wang, “A Synthetic Biology Approach Identifies the Mammalian UPR RNA Ligase RtcB,” Molecular Cell 55 (2014): 758-770.

[126]

J. Jurkin, T. Henkel, A. F. Nielsen, et al., “The Mammalian tRNA Ligase Complex Mediates Splicing of XBP1 mRNA and Controls Antibody Secretion in Plasma Cells,” EMBO Journal 33 (2014): 2922-2936.

[127]

A. Papaioannou, A. Higa, G. Jégou, et al., “Alterations of EDEM 1 Functions Enhance ATF 6 Pro-Survival Signaling,” FEBS Journal 285 (2018): 4146-4164.

[128]

P. Walter and D. Ron, “The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation,” Science 334 (2011): 1081-1086.

[129]

M. Kong, Z. Chen, Z. Lin, P. Yin, and Q. Zhao, “SIGMAR1 Targets AMPK/ULK1 Pathway to Inhibit SH-SY5Y Cell Apoptosis by Regulating Endoplasmic Reticulum Stress and Autophagy,” Functional & Integrative Genomics 24 (2024): 134.

[130]

T. Gómez-Sierra, O. N. Medina-Campos, J. D. Solano, M. E. Ibarra-Rubio, and J. Pedraza-Chaverri, “Isoliquiritigenin Pretreatment Induces Endoplasmic Reticulum Stress-Mediated Hormesis and Attenuates Cisplatin-Induced Oxidative Stress and Damage in LLC-PK1 Cells,” Molecules (Basel, Switzerland) 25 (2020): 4442.

[131]

E. Dufey, D. Sepúlveda, D. Rojas-Rivera, and C. Hetz, “Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An Overview,” American Journal of Physiology-Cell Physiology 307 (2014): C582-C594.

[132]

M. Bonora, S. Patergnani, D. Ramaccini, et al., “Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology,” Biomolecules 10 (2020): 998.

[133]

L. Scorrano, “Keeping Mitochondria in Shape: A Matter of Life and Death,” European Journal of Clinical Investigation 43 (2013): 886-893.

[134]

R. J. Youle and A. M. van der Bliek, “Mitochondrial Fission, Fusion, and Stress,” Science 337 (2012): 1062-1065.

[135]

A. Wang, D. Zhang, J. Liu, et al., “Guanxinning Injection Combined with Ischemic Postconditioning Attenuate Myocardial Ischemic Reperfusion Injury in Chronic Renal Failure Rats by Modulating Mitochondrial Dynamics,” Frontiers in Cardiovascular Medicine 9 (2022): 905254.

[136]

T. Vezza, P. Díaz-Pozo, F. Canet, et al., “The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes,” World Journal of Men's Health 40 (2022): 399.

[137]

M. Al Ojaimi, A. Salah, and A. W. El-Hattab, “Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders,” Membranes (Basel) 12 (2022): 893.

[138]

J. Y. Lee, M. Kapur, M. Li, et al., “MFN1 Deacetylation Activates Adaptive Mitochondrial Fusion and Protects Metabolically Challenged Mitochondria,” Journal of Cell Science 127 (2014): 4954-4963.

[139]

G. L. McLelland and E. A. Fon, “MFN2 Retrotranslocation Boosts Mitophagy by Uncoupling Mitochondria From the ER,” Autophagy 14 (2018): 1658-1660.

[140]

G. P. Leboucher, Y. C. Tsai, M. Yang, et al., “Stress-Induced Phosphorylation and Proteasomal Degradation of Mitofusin 2 Facilitates Mitochondrial Fragmentation and Apoptosis,” Molecular Cell 47 (2012): 547-557.

[141]

R. Wang, H. Xu, B. Tan, et al., “SIRT3 Promotes Metabolic Maturation of Human iPSC-Derived Cardiomyocytes via OPA1-Controlled Mitochondrial Dynamics,” Free Radical Biology and Medicine 195 (2023): 270-282.

[142]

L. Yuan, J. Yang, Y. Li, et al., “Matrine Alleviates Cisplatin-Induced Acute Kidney Injury by Inhibiting Mitochondrial Dysfunction and Inflammation via SIRT3/OPA1 Pathway,” Journal of Cellular and Molecular Medicine 26 (2022): 3702-3715.

[143]

T. B. Fonseca, Á. Sánchez-Guerrero, I. Milosevic, and N. Raimundo, “Mitochondrial Fission Requires DRP1 but Not Dynamins,” Nature 570 (2019): E34-E42.

[144]

S. M. Adaniya, J. O-Uchi, M. W. Cypress , Y. Kusakari, and B. S. Jhun, “Posttranslational Modifications of Mitochondrial Fission and Fusion Proteins in Cardiac Physiology and Pathophysiology,” American Journal of Physiology-Cell Physiology 316 (2019): C583-C604.

[145]

I. Zaja, X. Bai, Y. Liu, et al., “Cdk1, PKCδ and Calcineurin-Mediated Drp1 Pathway Contributes to Mitochondrial Fission-Induced Cardiomyocyte Death,” Biochemical and Biophysical Research Communications 453 (2014): 710-721.

[146]

H. Yang, Lu Wang, C. Zang, et al., “Squamosamide Derivative FLZ Diminishes Aberrant Mitochondrial Fission by Inhibiting Dynamin-Related Protein 1,” Frontiers in Pharmacology 12 (2021): 588003.

[147]

Y. Fu, F. Ricciardiello, G. Yang, et al., “The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells,” Cells 10 (2021): 497.

[148]

C. Guo, K. L. Hildick, J. Luo, L. Dearden, K. A. Wilkinson, and J. M. Henley, “SENP3-Mediated deSUMOylation of Dynamin-Related Protein 1 Promotes Cell Death Following Ischaemia,” EMBO Journal 32 (2013): 1514-1528.

[149]

E. Q. Toyama, S. Herzig, J. Courchet, et al., “AMP-Activated Protein Kinase Mediates Mitochondrial Fission in Response to Energy Stress,” Science 351 (2016): 275-281.

[150]

S. Ducommun, M. Deak, D. Sumpton, et al., “Motif Affinity and Mass Spectrometry Proteomic Approach for the Discovery of Cellular AMPK Targets: Identification of Mitochondrial Fission Factor as a New AMPK Substrate,” Cellular Signalling 27 (2015): 978-988.

[151]

S. Xu, E. Cherok, S. Das, et al., “Mitochondrial E3 Ubiquitin Ligase MARCH5 Controls Mitochondrial Fission and Cell Sensitivity to Stress-Induced Apoptosis Through Regulation of MiD49 Protein,” Molecular Biology of the Cell 27 (2016): 349-359.

[152]

S. Sekine, C. Wang, D. P. Sideris, E. Bunker, Z. Zhang, and R. J. Youle, “Reciprocal Roles of Tom7 and OMA1 During Mitochondrial Import and Activation of PINK1,” Molecular Cell 73 (2019): 1028-1043.e5. e1025.

[153]

M. Lazarou, D. A. Sliter, L. A. Kane, et al., “The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy,” Nature 524 (2015): 309-314.

[154]

J. W. Harper, A. Ordureau, and J. M. Heo, “Building and Decoding Ubiquitin Chains for Mitophagy,” Nature Reviews Molecular Cell Biology 19 (2018): 93-108.

[155]

N. D. Georgakopoulos, G. Wells, and M. Campanella, “The Pharmacological Regulation of Cellular Mitophagy,” Nature Chemical Biology 13 (2017): 136-146.

[156]

T. Saito, K. Hamano, and J. Sadoshima, “Molecular Mechanisms and Clinical Implications of Multiple Forms of Mitophagy in the Heart,” Cardiovascular Research 117 (2021): 2730-2741.

[157]

L. Liu, D. Feng, G. Chen, et al., “Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells,” Nature Cell Biology 14 (2012): 177-185.

[158]

P. E. Morales, C. Arias-Durán, Y. Ávalos-Guajardo, et al., “Emerging Role of Mitophagy in Cardiovascular Physiology and Pathology,” Molecular Aspects of Medicine 71 (2020): 100822.

[159]

K. Palikaras, E. Lionaki, and N. Tavernarakis, “Mechanisms of Mitophagy in Cellular Homeostasis, Physiology and Pathology,” Nature Cell Biology 20 (2018): 1013-1022.

[160]

Y. Kuang, K. Ma, C. Zhou, et al., “Structural Basis for the Phosphorylation of FUNDC1 LIR as a Molecular Switch of Mitophagy,” Autophagy 12 (2016): 2363-2373.

[161]

M. Lv, C. Wang, F. Li, et al., “Structural Insights Into the Recognition of Phosphorylated FUNDC1 by LC3B in Mitophagy,” Protein & Cell 8 (2017): 25-38.

[162]

K. Ma, Z. Zhang, R. Chang, et al., “Dynamic PGAM5 Multimers Dephosphorylate BCL-xL or FUNDC1 to Regulate Mitochondrial and Cellular Fate,” Cell Death & Differentiation 27 (2020): 1036-1051.

[163]

C. Cárdenas, M. Müller, A. Mcneal, et al., “Selective Vulnerability of Cancer Cells by Inhibition of Ca2+ Transfer From Endoplasmic Reticulum to Mitochondria,” Cell Reports 14 (2016): 2313-2324.

[164]

H. Ivanova, M. Kerkhofs, R. M. La Rovere, and G. Bultynck, “Endoplasmic Reticulum-Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival,” Frontiers in Oncology 7 (2017): 70.

[165]

A. Singh, M. Chagtoo, S. Tiwari, et al., “Inhibition of Inositol 1,4,5-Trisphosphate Receptor Induce Breast Cancer Cell Death Through Deregulated Autophagy and Cellular Bioenergetics,” Journal of Cellular Biochemistry 118 (2017): 2333-2346.

[166]

F. Iommelli, V. De Rosa, C. Terlizzi, et al., “Inositol Trisphosphate Receptor Type 3-Mediated Enhancement of EGFR and MET Cotargeting Efficacy in Non-Small Cell Lung Cancer Detected by 18F-Fluorothymidine,” Clinical Cancer Research 24 (2018): 3126-3136.

[167]

A. Bartok, D. Weaver, T. Golenár, et al., “IP3 Receptor Isoforms Differently Regulate ER-Mitochondrial Contacts and Local Calcium Transfer,” Nature Communications 10 (2019): 3726.

[168]

H. Ando, M. Hirose, and K. Mikoshiba, “Aberrant IP 3 Receptor Activities Revealed by Comprehensive Analysis of Pathological Mutations Causing Spinocerebellar Ataxia 29,” Proceedings of the National Academy of Sciences 115 (2018): 12259-12264.

[169]

A. Sharma and R. C. Elble, “From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis,” Biomedicines 8 (2020): 169.

[170]

M. Beretta, C. X. Santos, C. Molenaar, et al., “Nox4 Regulates InsP3 Receptor-Dependent Ca2+ Release Into Mitochondria to Promote Cell Survival,” EMBO Journal 39 (2020): e103530.

[171]

L. Avalle, A. Camporeale, G. Morciano, et al., “STAT3 Localizes to the ER, Acting as a Gatekeeper for ER-Mitochondrion Ca2+ Fluxes and Apoptotic Responses,” Cell Death & Differentiation 26 (2019): 932-942.

[172]

M. Bittremieux, R. M. La Rovere, H. Akl, et al., “Constitutive IP3 Signaling Underlies the Sensitivity of B-Cell Cancers to the Bcl-2/IP3 Receptor Disruptor BIRD-2,” Cell Death & Differentiation 26 (2019): 531-547.

[173]

A. Raturi, T. Gutiérrez, C. Ortiz-Sandoval, et al., “TMX1 Determines Cancer Cell Metabolism as a Thiol-Based Modulator of ER-Mitochondria Ca2+ Flux,” Journal of Cell Biology 214 (2016): 433-444.

[174]

H. Urra, E. Dufey, T. Avril, E. Chevet, and C. Hetz, “Endoplasmic Reticulum Stress and the Hallmarks of Cancer,” Trends in Cancer 2 (2016): 252-262.

[175]

S. Lhomond, T. Avril, N. Dejeans, et al., “Dual IRE1 RNase Functions Dictate Glioblastoma Development,” EMBO Molecular Medicine 10 (2018): e7929.

[176]

X. Chen, D. Iliopoulos, Q. Zhang, et al., “XBP1 Promotes Triple-Negative Breast Cancer by Controlling the HIF1α Pathway,” Nature 508 (2014): 103-107.

[177]

X. Sheng, H. Z. Nenseth, S. Qu, et al., “IRE1α-XBP1s Pathway Promotes Prostate Cancer by Activating c-MYC Signaling,” Nature Communications 10 (2019): 323.

[178]

Y. Wu, B. Shan, J. Dai, et al., “Dual Role for Inositol-Requiring Enzyme 1α in Promoting the Development of Hepatocellular Carcinoma During Diet-Induced Obesity in Mice,” Hepatology 68 (2018): 533-546.

[179]

H. G. Nguyen, C. S. Conn, Y. Kye, et al., “Development of a Stress Response Therapy Targeting Aggressive Prostate Cancer,” Science Translational Medicine 10 (2018): eaar2036.

[180]

S. Vyas, E. Zaganjor, and M. C. Haigis, “Mitochondria and Cancer,” Cell 166 (2016): 555-566.

[181]

S. Nagdas, J. A. Kashatus, A. Nascimento, et al., “Drp1 Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth,” Cell Reports 28 (2019): 1845-1859.e5. e1845.

[182]

Y. Yu, X.-D. Peng, X.-J. Qian, et al., “Fis1 phosphorylation by Met Promotes Mitochondrial Fission and Hepatocellular Carcinoma Metastasis,” Signal Transduction and Targeted Therapy 6 (2021): 401.

[183]

Z. Lin, X. Lin, J. Chen, G. Huang, T. Chen, and L. Zheng, “Mitofusin-2 Is a Novel Anti-Angiogenic Factor in Pancreatic Cancer,” Journal of Gastrointestinal Oncology 12 (2021): 484-495.

[184]

M. Vara-Perez, B. Felipe-Abrio, and P. Agostinis, “Mitophagy in Cancer: A Tale of Adaptation,” Cells 8 (2019): 493.

[185]

A. H. Chourasia, K. Tracy, C. Frankenberger, et al., “Mitophagy Defects Arising From BNip3 Loss Promote Mammary Tumor Progression to Metastasis,” EMBO Reports 16 (2015): 1145-1163.

[186]

J. P. Bernardini, M. Lazarou, and G. Dewson, “Parkin and Mitophagy in Cancer,” Oncogene 36 (2017): 1315-1327.

[187]

J. Liu and J. Yang, “Mitochondria-Associated Membranes: A Hub for Neurodegenerative Diseases,” Biomedicine & Pharmacotherapy 149 (2022): 112890.

[188]

N. S. Leal and L. M. Martins, “Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases,” Biomedicines 9 (2021): 227.

[189]

M. Grayson, “Parkinson's Disease,” Nature 538 (2016): S1.

[190]

C. Guardia-Laguarta, E. Area-Gomez, C. Rüb, et al., “α-Synuclein Is Localized to Mitochondria-Associated ER Membranes,” Journal of Neuroscience 34 (2014): 249-259.

[191]

C. A. Gautier, Z. Erpapazoglou, F. Mouton-Liger, et al., “The Endoplasmic Reticulum-Mitochondria Interface Is Perturbed in PARK2 Knockout Mice and Patients With PARK2 Mutations,” Human Molecular Genetics 25 (2016): 2972-2984.

[192]

D. Safiulina, M. Kuum, V. Choubey, et al., “Miro Proteins Prime Mitochondria for Parkin Translocation and Mitophagy,” EMBO Journal 38 (2019): e99384.

[193]

M. Cagalinec, A. Mohd, S. Borecka, et al., “Improving Mitochondria-Associated Endoplasmic Reticulum Membranes Integrity as Converging Therapeutic Strategy for Rare Neurodegenerative Diseases and Cancer,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 1872 (2025): 119954.

[194]

A. Rana, M. Rera, and D. W. Walker, “Parkin Overexpression During Aging Reduces Proteotoxicity, Alters Mitochondrial Dynamics, and Extends Lifespan,” Proceedings of the National Academy of Sciences 110 (2013): 8638-8643.

[195]

W.-T. Dong, L.-H. Long, Q. Deng, et al., “Mitochondrial Fission Drives Neuronal Metabolic Burden to Promote Stress Susceptibility in Male Mice,” Nature Metabolism 5 (2023): 2220-2236.

[196]

T. J. Krzystek, R. Banerjee, L. Thurston, et al., “Differential Mitochondrial Roles for α-Synuclein in DRP1-Dependent Fission and PINK1/Parkin-Mediated Oxidation,” Cell Death & Disease 12 (2021): 796.

[197]

B. De Strooper and E. Karran, “The Cellular Phase of Alzheimer's Disease,” Cell 164 (2016): 603-615.

[198]

L. Hedskog, C. M. Pinho, R. Filadi, et al., “Modulation of the Endoplasmic Reticulum-Mitochondria Interface in Alzheimer's Disease and Related Models,” Proceedings of the National Academy of Sciences 110 (2013): 7916-7921.

[199]

E. Area-Gomez, M. Del Carmen Lara Castillo, M. D. Tambini, et al., “Upregulated Function of Mitochondria-Associated ER Membranes in Alzheimer Disease,” EMBO Journal 31 (2012): 4106-4123.

[200]

M. M. Khan, H. G. Paez, C. R. Pitzer, and S. E. Alway, “The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders,” Current Neuropharmacology 21 (2023): 1100-1116.

[201]

D.-H. Cho, T. Nakamura, J. Fang, et al., “S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury,” Science 324 (2009): 102-105.

[202]

X. Ye, X. Sun, V. Starovoytov, and Q. Cai, “Parkin-Mediated Mitophagy in Mutant hAPP Neurons and Alzheimer's Disease Patient Brains,” Human Molecular Genetics 24 (2015): 2938-2951.

[203]

P. Martín-Maestro, R. Gargini, G. Perry, J. Avila, and V. García-Escudero, “PARK2 enhancement Is Able to Compensate Mitophagy Alterations Found in Sporadic Alzheimer's Disease,” Human Molecular Genetics 25 (2016): 792-806.

[204]

E. F. Fang, Y. Hou, K. Palikaras, et al., “Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer's Disease,” Nature Neuroscience 22 (2019): 401-412.

[205]

S. Kshirsagar, N. Sawant, H. Morton, A. P. Reddy, and P. H. Reddy, “RETRACTED: Mitophagy Enhancers Against Phosphorylated Tau-Induced Mitochondrial and Synaptic Toxicities in Alzheimer Disease,” Pharmacological Research 174 (2021): 105973.

[206]

C. M. Testa and J. Jankovic, “Huntington Disease: A Quarter Century of Progress Since the Gene Discovery,” Journal of the Neurological Sciences 396 (2019): 52-68.

[207]

A. Bruno, C. Milillo, F. Anaclerio, et al., “Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases,” International Journal of Molecular Sciences 25 (2024): 976.

[208]

L. A. Raymond, “Striatal Synaptic Dysfunction and Altered Calcium Regulation in Huntington Disease,” Biochemical and Biophysical Research Communications 483 (2017): 1051-1062.

[209]

W. Song, J. Chen, A. Petrilli, et al., “Mutant Huntingtin Binds the Mitochondrial Fission GTPase Dynamin-Related Protein-1 and Increases Its Enzymatic Activity,” Nature Medicine 17 (2011): 377-382.

[210]

S. Upadhayay and P. Kumar, “Mitochondrial Targeted Antioxidants as Potential Therapy for Huntington's Disease,” Pharmacological Reports 76 (2024): 693-713.

[211]

M. Cherubini, L. Lopez-Molina, and S. Gines, “Mitochondrial Fission in Huntington's Disease Mouse Striatum Disrupts ER-Mitochondria Contacts Leading to Disturbances in Ca2+ Efflux and Reactive Oxygen Species (ROS) Homeostasis,” Neurobiology of Disease 136 (2020): 104741.

[212]

B. Khalil, N. El Fissi, A. Aouane, M.-J. Cabirol-Pol, T. Rival, and J.-C. Liévens, “PINK1-Induced Mitophagy Promotes Neuroprotection in Huntington's Disease,” Cell Death & Disease 6 (2015): e1617.

[213]

D. L. Eizirik, L. Pasquali, and M. Cnop, “Pancreatic β-Cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure,” Nature Reviews Endocrinology 16 (2020): 349-362.

[214]

C. Klec, C. T. Madreiter-Sokolowski, S. Stryeck, et al., “Glycogen Synthase Kinase 3 Beta Controls Presenilin-1-Mediated Endoplasmic Reticulum Ca2⁺ Leak Directed to Mitochondria in Pancreatic Islets and β-Cells,” Cellular Physiology and Biochemistry 52 (2019): 57-75.

[215]

T. Thoudam, C.-M. Ha, J. Leem, et al., “PDK4 Augments ER-Mitochondria Contact to Dampen Skeletal Muscle Insulin Signaling During Obesity,” Diabetes 68 (2019): 571-586.

[216]

F. Dingreville, B. Panthu, C. Thivolet, et al., “Differential Effect of Glucose on ER-Mitochondria Ca2+ Exchange Participates in Insulin Secretion and Glucotoxicity-Mediated Dysfunction of β-Cells,” Diabetes 68 (2019): 1778-1794.

[217]

J. Rieusset, “The Role of Endoplasmic Reticulum-Mitochondria Contact Sites in the Control of Glucose Homeostasis: An Update,” Cell Death & Disease 9 (2018): 388.

[218]

Y. Dong, C. Fernandes, Y. Liu, et al., “Role of Endoplasmic Reticulum Stress Signalling in Diabetic Endothelial Dysfunction and Atherosclerosis,” Diabetes and Vascular Disease Research 14 (2017): 14-23.

[219]

J. Šrámek, V. Němcová-Fürstová, and J. Kovář, “Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells,” International Journal of Molecular Sciences 22 (2021): 4285.

[220]

S. Rovira-Llopis, C. Bañuls, N. Diaz-Morales, A. Hernandez-Mijares, M. Rocha, and V. M. Victor, “Mitochondrial Dynamics in Type 2 Diabetes: Pathophysiological Implications,” Redox Biology 11 (2017): 637-645.

[221]

D. E. Kleiner and H. R. Makhlouf, “Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children,” Clinics in Liver Disease 20 (2016): 293-312.

[222]

A. P. Arruda, B. M. Pers, G. Parlakgül, E. Güney, K. Inouye, and G. S. Hotamisligil, “Chronic Enrichment of Hepatic Endoplasmic Reticulum-Mitochondria Contact Leads to Mitochondrial Dysfunction in Obesity,” Nature Medicine 20 (2014): 1427-1435.

[223]

C. N. Feriod, A. Gustavo Oliveira, M. T. Guerra, et al., “Hepatic Inositol 1,4,5 Trisphosphate Receptor Type 1 Mediates Fatty Liver,” Hepatology Communications 1 (2017): 23-35.

[224]

C. H. Wilson, E. S. Ali, N. Scrimgeour, et al., “Steatosis Inhibits Liver Cell Store-Operated Ca2+ Entry and Reduces ER Ca2+ Through a Protein Kinase C-Dependent Mechanism,” Biochemical Journal 466 (2015): 379-390.

[225]

K. M. Brennan, L. L. Kroener, G. D. Chazenbalk, and D. A. Dumesic, “Polycystic Ovary Syndrome: Impact of Lipotoxicity on Metabolic and Reproductive Health,” Obstetrical & Gynecological Survey 74 (2019): 223-231.

[226]

C. A. Galloway, H. Lee, P. S. Brookes, and Y. Yoon, “Decreasing Mitochondrial Fission Alleviates Hepatic Steatosis in a Murine Model of Nonalcoholic Fatty Liver Disease,” American Journal of Physiology-Gastrointestinal and Liver Physiology 307 (2014): G632-G641.

[227]

F. Gong, L. Gao, and T. Ding, “IDH2 Protects Against Nonalcoholic Steatohepatitis by Alleviating Dyslipidemia Regulated by Oxidative Stress,” Biochemical and Biophysical Research Communications 514 (2019): 593-600.

[228]

X. Li, Z. Shi, Y. Zhu, et al., “Cyanidin-3-O-Glucoside Improves Non-Alcoholic Fatty Liver Disease by Promoting PINK1-Mediated Mitophagy in Mice,” British Journal of Pharmacology 177 (2020): 3591-3607.

[229]

J. Cai, J. Huang, J. Yang, et al., “The Protective Effect of Selenoprotein M on Non-Alcoholic Fatty Liver Disease: The Role of the AMPKα1-MFN2 Pathway and Parkin Mitophagy,” Cellular and Molecular Life Sciences 79 (2022): 354.

[230]

N. P. Zhang, X. J. Liu, L. Xie, X. Z. Shen, and J. Wu, “Impaired Mitophagy Triggers NLRP3 Inflammasome Activation During the Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis,” Laboratory Investigation 99 (2019): 749-763.

[231]

M. Michalak and L. B. Agellon, “Stress Coping Strategies in the Heart: An Integrated View,” Frontiers in Cardiovascular Medicine 5 (2018): 168.

[232]

A. Silva-Palacios, M. Königsberg, and C. Zazueta, “Nrf2 Signaling and Redox Homeostasis in the Aging Heart: A Potential Target to Prevent Cardiovascular Diseases?,” Ageing Research Reviews 26 (2016): 81-95.

[233]

K. N. Belosludtsev, M. V. Dubinin, N. V. Belosludtseva, and G. D. Mironova, “Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells,” Biochemistry (Moscow) 84 (2019): 593-607.

[234]

I. Sambri, F. Massa, F. Gullo, et al., “Impaired Flickering of the Permeability Transition Pore Causes SPG7 Spastic Paraplegia,” EBioMedicine 61 (2020): 103050.

[235]

Y. Gong, J. Lin, Z. Ma, et al., “Mitochondria-Associated Membrane-Modulated Ca2+ Transfer: A Potential Treatment Target in Cardiac Ischemia Reperfusion Injury and Heart Failure,” Life Sciences 278 (2021): 119511.

[236]

A. R. Hall, N. Burke, R. K. Dongworth, et al., “Hearts Deficient in Both Mfn1 and Mfn2 Are Protected Against Acute Myocardial Infarction,” Cell Death & Disease 7 (2016): e2238.

[237]

Y. Y. Tyurina, I. Shrivastava, V. A. Tyurin, et al., “Only a Life Lived for Others Is Worth Living": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions,” Antioxidants & Redox Signaling 29 (2018): 1333-1358.

[238]

X. Wang, L. Xu, T. G. Gillette, X. Jiang, and Z. V. Wang, “The Unfolded Protein Response in Ischemic Heart Disease,” Journal of Molecular and Cellular Cardiology 117 (2018): 19-25.

[239]

J. Han and R. J. Kaufman, “Physiological/Pathological Ramifications of Transcription Factors in the Unfolded Protein Response,” Genes & Development 31 (2017): 1417-1438.

[240]

C. Hetz and F. R. Papa, “The Unfolded Protein Response and Cell Fate Control,” Molecular Cell 69 (2018): 169-181.

[241]

S. Wang, P. Binder, Q. Fang, et al., “Endoplasmic Reticulum Stress in the Heart: Insights Into Mechanisms and Drug Targets,” British Journal of Pharmacology 175 (2018): 1293-1304.

[242]

L. Chang, Z. Wang, F. Ma, et al., “ZYZ-803 Mitigates Endoplasmic Reticulum Stress-Related Necroptosis After Acute Myocardial Infarction Through Downregulating the RIP3-CaMKII Signaling Pathway,” Oxidative Medicine and Cellular Longevity 2019 (2019): 1-18.

[243]

C. Maneechote, S. Palee, S. C. Chattipakorn, and N. Chattipakorn, “Roles of Mitochondrial Dynamics Modulators in Cardiac Ischaemia/Reperfusion Injury,” Journal of Cellular and Molecular Medicine 21 (2017): 2643-2653.

[244]

M. Yang, B. S. Linn, Y. Zhang, and J. Ren, “Mitophagy and Mitochondrial Integrity in Cardiac Ischemia-Reperfusion Injury,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 1865 (2019): 2293-2302.

[245]

H. X. Xu, S. M. Cui, Y. M. Zhang, and J. Ren, “Mitochondrial Ca2+ Regulation in the Etiology of Heart Failure: Physiological and Pathophysiological Implications,” Acta Pharmacologica Sinica 41 (2020): 1301-1309.

[246]

Q. Jin, R. Li, N. Hu, et al., “DUSP1 Alleviates Cardiac Ischemia/Reperfusion Injury by Suppressing the Mff-Required Mitochondrial Fission and Bnip3-Related Mitophagy via the JNK Pathways,” Redox Biology 14 (2018): 576-587.

[247]

L. Guan, Z. Che, X. Meng, et al., “MCU Up-Regulation Contributes to Myocardial Ischemia-Reperfusion Injury Through Calpain/OPA-1-Mediated Mitochondrial Fusion/Mitophagy Inhibition,” Journal of Cellular and Molecular Medicine 23 (2019): 7830-7843.

[248]

P. Li, J. Wang, X. Zhao, et al., “PTEN Inhibition Attenuates Endothelial Cell Apoptosis in Coronary Heart Disease via Modulating the AMPK-CREB-Mfn2-Mitophagy Signaling Pathway,” Journal of Cellular Physiology 235 (2020): 4878-4889.

[249]

Y. Liao, B. Ke, X. Long, J. Xu, and Y. Wu, “Abnormalities in the SIRT1-SIRT3 Axis Promote Myocardial Ischemia-Reperfusion Injury Through Ferroptosis Caused by Silencing the PINK1/Parkin Signaling Pathway,” BMC Cardiovascular Disorders 23 (2023): 582.

[250]

J. Zhao, T. Yang, J. Yi, et al., “AP39 Through AMPK-ULK1-FUNDC1 Pathway Regulates Mitophagy, Inhibits Pyroptosis, and Improves Doxorubicin-Induced Myocardial Fibrosis,” Iscience 27 (2024): 109321.

[251]

A. Palazzuoli, S. Masson, C. Ronco, and A. Maisel, “Clinical Relevance of Biomarkers in Heart Failure and Cardiorenal Syndrome: The Role of Natriuretic Peptides and Troponin,” Heart Failure Reviews 19 (2014): 267-284.

[252]

H. J. Yuan, Y. T. Xue, and Y. Liu, “Cuproptosis, the Novel Therapeutic Mechanism for Heart Failure: A Narrative Review,” Cardiovascular Diagnosis and Therapy 12 (2022): 681-692.

[253]

H. Zhou, P. Zhu, J. Wang, S. Toan, and J. Ren, “DNA-PKcs Promotes Alcohol-Related Liver Disease by Activating Drp1-Related Mitochondrial Fission and Repressing FUNDC1-Required Mitophagy,” Signal Transduction and Targeted Therapy 4 (2019): 56.

[254]

S. Wu, Q. Lu, Y. Ding, et al., “Hyperglycemia-Driven Inhibition of AMP-Activated Protein Kinase α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes In Vivo,” Circulation 139 (2019): 1913-1936.

[255]

T. A. Ajith, “Mitochondria-Targeted Agents: Future Perspectives of Mitochondrial Pharmaceutics in Cardiovascular Diseases,” World Journal of Cardiology 6 (2014): 1091.

[256]

L. T. T. Pham, S. Mangmool, and W. Parichatikanond, “Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians Against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases,” ACS Pharmacology & Translational Science 7 (2024): 3279-3298.

[257]

K. Yang, P. Zhang, J. Li, G. Zhang, and X. Chang, “Potential of Natural Drug Modulation of Endoplasmic Reticulum Stress in the Treatment of Myocardial Injury,” Journal of Pharmaceutical Analysis 14 (2024): 101034.

[258]

A. Ortega, E. Roselló-Lletí, E. Tarazón, et al., “Endoplasmic Reticulum Stress Induces Different Molecular Structural Alterations in Human Dilated and Ischemic Cardiomyopathy,” PLoS ONE 9 (2014): e107635.

[259]

Q. Duan, C. Chen, L. Yang, et al., “MicroRNA Regulation of Unfolded Protein Response Transcription Factor XBP1 in the Progression of Cardiac Hypertrophy and Heart Failure In Vivo,” Journal of Translational Medicine 13 (2015): 363.

[260]

F. B. Ortega, C. J. Lavie, and S. N. Blair, “Obesity and Cardiovascular Disease,” Circulation Research 118 (2016): 1752-1770.

[261]

Y. Yao, Q. Lu, Z. Hu, Y. Yu, Q. Chen, and Q. K. Wang, “A Non-Canonical Pathway Regulates ER Stress Signaling and Blocks ER Stress-Induced Apoptosis and Heart Failure,” Nature Communications 8 (2017): 133.

[262]

C. Liu, X. Guo, Y. Zhou, and H. Wang, “AMPK Signalling Pathway: A Potential Strategy for the Treatment of Heart Failure With Chinese Medicine,” Journal of Inflammation Research 16 (2023): 5451-5464.

[263]

X. Yu, Y. Yang, T. Chen, et al., “Cell Death Regulation in Myocardial Toxicity Induced by Antineoplastic Drugs,” Frontiers in Cell and Developmental Biology 11 (2023): 1075917.

[264]

J.-P. Wang, R.-F. Chi, J. Liu, et al., “The Role of Endogenous Reactive Oxygen Species in Cardiac Myocyte Autophagy,” Physiological Research 67 (2018): 31-40.

[265]

M. Ortíz-Rentería, R. Juárez-Contreras, R. González-Ramírez, et al., “TRPV1 channels and the Progesterone Receptor Sig-1R Interact to Regulate Pain,” PNAS 115 (2018): E1657-e1666.

[266]

J. Chen, J. Shao, Y. Wang, K. Wu, and M. Huang, “OPA1, a Molecular Regulator of Dilated Cardiomyopathy,” Journal of Cellular and Molecular Medicine 27 (2023): 3017-3025.

[267]

H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, “Mitofusins Mfn1 and Mfn2 Coordinately Regulate Mitochondrial Fusion and Are Essential for Embryonic Development,” Journal of Cell Biology 160 (2003): 189-200.

[268]

H. N. Sabbah, R. C. Gupta, V. Singh-Gupta, K. Zhang, and D. E. Lanfear, “Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy With Elamipretide,” Cardiovascular Drugs and Therapy 32 (2018): 319-328.

[269]

S. Xu, P. Wang, H. Zhang, et al., “CaMKII Induces Permeability Transition Through Drp1 Phosphorylation During Chronic β-AR Stimulation,” Nature Communications 7 (2016): 13189.

[270]

T. Saito, J. Nah, S.-I. Oka, et al., “An Alternative Mitophagy Pathway Mediated by Rab9 Protects the Heart Against Ischemia,” Journal of Clinical Investigation 129 (2019): 802-819.

[271]

F. Billia, L. Hauck, F. Konecny, V. Rao, J. Shen, and T. W. Mak, “PTEN-inducible Kinase 1 (PINK1)/Park6 Is Indispensable for Normal Heart Function,” Proceedings of the National Academy of Sciences 108 (2011): 9572-9577.

[272]

L. Liu, K. Sakakibara, Q. Chen, and K. Okamoto, “Receptor-Mediated Mitophagy in Yeast and Mammalian Systems,” Cell Research 24 (2014): 787-795.

[273]

S. Sciarretta, Y. Maejima, D. Zablocki, and J. Sadoshima, “The Role of Autophagy in the Heart,” Annual Review of Physiology 80 (2018): 1-26.

[274]

M. O. J. Grootaert, M. Moulis, L. Roth, et al., “Vascular Smooth Muscle Cell Death, Autophagy and Senescence in Atherosclerosis,” Cardiovascular Research 114 (2018): 622-634.

[275]

A. Frismantiene, M. Philippova, P. Erne, and T. J. Resink, “Smooth Muscle Cell-Driven Vascular Diseases and Molecular Mechanisms of VSMC Plasticity,” Cellular Signalling 52 (2018): 48-64.

[276]

J. Ding, Z. Li, L. Li, et al., “Myosin Light Chain Kinase Inhibitor ML7 Improves Vascular Endothelial Dysfunction and Permeability via the Mitogen-Activated Protein Kinase Pathway in a Rabbit Model of Atherosclerosis,” Biomedicine & Pharmacotherapy 128 (2020): 110258.

[277]

G. L. Basatemur, H. F. Jørgensen, M. C. H. Clarke, M. R. Bennett, and Z. Mallat, “Vascular Smooth Muscle Cells in Atherosclerosis,” Nature Reviews Cardiology 16 (2019): 727-744.

[278]

N. T. Nguyen, T. T. Nguyen, D. Da Ly, et al., “Oxidative Stress by Ca2+ Overload Is Critical for Phosphate-Induced Vascular Calcification,” American Journal of Physiology-Heart and Circulatory Physiology 319 (2020): H1302-H1312.

[279]

G. F. Alencar, K. M. Owsiany, S. Karnewar, et al., “Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis,” Circulation 142 (2020): 2045-2059.

[280]

D. T. N. Huynh and K. S. Heo, “Role of Mitochondrial Dynamics and Mitophagy of Vascular Smooth Muscle Cell Proliferation and Migration in Progression of Atherosclerosis,” Archives of Pharmacal Research 44 (2021): 1051-1061.

[281]

Z. Zou, M. Pan, F. Mo, et al., “High-Fidelity ATP Imaging via an Isothermal Cascade Catalytic Amplifier,” Chemical Science 13 (2022): 12198-12207.

[282]

V. V. Matchkov, O. Kudryavtseva, and C. Aalkjaer, “Intracellular Ca2+ Signalling and Phenotype of Vascular Smooth Muscle Cells,” Basic & Clinical Pharmacology & Toxicology 110 (2012): 42-48.

[283]

E. K. Nguyen, O. M. Koval, P. Noble, et al., “CaMKII (Ca2+/Calmodulin-Dependent Kinase II) in Mitochondria of Smooth Muscle Cells Controls Mitochondrial Mobility, Migration, and Neointima Formation,” Arteriosclerosis, Thrombosis, and Vascular Biology 38 (2018): 1333-1345.

[284]

Z. Chen, Q. Zhou, J. Chen, et al., “MCU-Dependent Mitochondrial Calcium Uptake-Induced Mitophagy Contributes to Apelin-13-Stimulated VSMCs Proliferation,” Vascular Pharmacology 144 (2022): 106979.

[285]

Z. Cai, F. Li, W. Gong, et al., “Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals,” Arteriosclerosis, Thrombosis, and Vascular Biology 33 (2013): 2345-2354.

[286]

H. Yuan, Q. Hou, X. Feng, et al., “5,2'-Dibromo-2,4',5'-Trihydroxydiphenylmethanone Inhibits LPS-Induced Vascular Inflammation by Targeting the Cav1 Protein,” Molecules (Basel, Switzerland) 27 (2022): 2884.

[287]

M. Wan, X. Hua, J. Su, et al., “Oxidized but Not Native Cardiolipin Has Pro-Inflammatory Effects, Which Are Inhibited by Annexin A5,” Atherosclerosis 235 (2014): 592-598.

[288]

Z. Yin, J. Zhang, Z. Shen, J.-J. Qin, J. Wan, and M. Wang, “Regulated Vascular Smooth Muscle Cell Death in Vascular Diseases,” Cell Proliferation 57 (2024): e13688.

[289]

J.-L. Ren, Y. Chen, L.-S. Zhang, et al., “Intermedin1-53 Attenuates Atherosclerotic Plaque Vulnerability by Inhibiting CHOP-Mediated Apoptosis and Inflammasome in Macrophages,” Cell Death & Disease 12 (2021): 436.

[290]

X. Liao, J. C. Sluimer, Y. Wang, et al., “Macrophage Autophagy Plays a Protective Role in Advanced Atherosclerosis,” Cell Metabolism 15 (2012): 545-553.

[291]

S. Chalmers, C. Saunter, C. Wilson, P. Coats, J. M. Girkin, and J. G. Mccarron, “Mitochondrial Motility and Vascular Smooth Muscle Proliferation,” Arteriosclerosis, Thrombosis, and Vascular Biology 32 (2012): 3000-3011.

[292]

S. Lim, S.-Y. Lee, H.-H. Seo, et al., “Regulation of Mitochondrial Morphology by Positive Feedback Interaction Between PKCδ and Drp1 in Vascular Smooth Muscle Cell,” Journal of Cellular Biochemistry 116 (2015): 648-660.

[293]

M. A. Rogers, N. Maldonado, J. D. Hutcheson, et al., “Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress,” Circulation Research 121 (2017): 220-233.

[294]

P.-W. Wang, Q. Pang, T. Zhou, et al., “Irisin Alleviates Vascular Calcification by Inhibiting VSMC Osteoblastic Transformation and Mitochondria Dysfunction via AMPK/Drp1 Signaling Pathway in Chronic Kidney Disease,” Atherosclerosis 346 (2022): 36-45.

[295]

Y. Lei, X. Peng, Y. Hu, et al., “The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission,” Oxidative Medicine and Cellular Longevity 2020 (2020): 4132785.

[296]

R. Filadi, E. Greotti, and P. Pizzo, “Highlighting the Endoplasmic Reticulum-Mitochondria Connection: Focus on Mitofusin 2,” Pharmacological Research 128 (2018): 42-51.

[297]

M. Humbert, G. Kovacs, M. M. Hoeper, et al., “2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension,” European Respiratory Journal 61 (2023): 2200879.

[298]

R. Tobal, J. Potjewijd, V. P. M. V. Empel, et al., “Vascular Remodeling in Pulmonary Arterial Hypertension: The Potential Involvement of Innate and Adaptive Immunity,” Frontiers in Medicine 8 (2021): 806899.

[299]

L.-A. Cussac, G. Cardouat, N. Tiruchellvam Pillai, et al., “TRPV4 Channel Mediates Adventitial Fibroblast Activation and Adventitial Remodeling in Pulmonary Hypertension,” American Journal of Physiology-Lung Cellular and Molecular Physiology 318 (2020): L135-L146.

[300]

W. Xu, A. J. Janocha, and S. C. Erzurum, “Metabolism in Pulmonary Hypertension,” Annual Review of Physiology 83 (2021): 551-576.

[301]

Y. Bessho, T. Akaki, Y. Hara, et al., “Structure-Based Drug Design of Novel and Highly Potent Pyruvate Dehydrogenase Kinase Inhibitors,” Bioorganic & Medicinal Chemistry 52 (2021): 116514.

[302]

Z. Yang, S. R. Yoshii, Y. Sakai, et al., “Autophagy Adaptors Mediate Parkin-Dependent Mitophagy by Forming Sheet-Like Liquid Condensates,” EMBO Journal 43 (2024): 5613-5634.

[303]

J. J. Ryan, G. Marsboom, Y.-H. Fang, et al., “PGC1α-Mediated Mitofusin-2 Deficiency in Female Rats and Humans With Pulmonary Arterial Hypertension,” American Journal of Respiratory and Critical Care Medicine 187 (2013): 865-878.

[304]

J. Omura, K. Satoh, N. Kikuchi, et al., “ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure,” Circulation Research 125 (2019): 884-906.

[305]

R. Liu, C. Xu, W. Zhang, et al., “FUNDC1-Mediated Mitophagy and HIF1α Activation Drives Pulmonary Hypertension During Hypoxia,” Cell Death & Disease 13 (2022): 634.

[306]

Y. Zhao, W. Xiong, C. Li, et al., “Hypoxia-Induced Signaling in the Cardiovascular System: Pathogenesis and Therapeutic Targets,” Signal Transduction and Targeted Therapy 8 (2023): 431.

[307]

Y. Hu, H. Lu, H. Li, and J. Ge, “Molecular Basis and Clinical Implications of HIFs in Cardiovascular Diseases,” Trends in Molecular Medicine 28 (2022): 916-938.

[308]

Y. Hu, Y. Zhao, P. Li, H. Lu, H. Li, and J. Ge, “Hypoxia and Panvascular Diseases: Exploring the Role of Hypoxia-Inducible Factors in Vascular Smooth Muscle Cells Under Panvascular Pathologies,” Science Bulletin 68 (2023): 1954-1974.

[309]

P. Salin Raj, A. Nair, M. R. Preetha Rani, K. Rajankutty, S. Ranjith, and K. G. Raghu, “Ferulic Acid Attenuates High Glucose-Induced MAM Alterations via PACS2/IP3R2/FUNDC1/VDAC1 Pathway Activating Proapoptotic Proteins and Ameliorates Cardiomyopathy in Diabetic Rats,” International Journal of Cardiology 372 (2023): 101-109.

[310]

L. Hu, M. Ding, D. Tang, et al., “Targeting Mitochondrial Dynamics by Regulating Mfn2 for Therapeutic Intervention in Diabetic Cardiomyopathy,” Theranostics 9 (2019): 3687-3706.

[311]

X. Wang, G. Zhang, S. Dasgupta, et al., “ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress,” Circulation Research 131 (2022): 91-105.

[312]

H.-T. Lu, R.-Q. Feng, J.-K. Tang, J.-J. Zhou, F. Gao, and J. Ren, “CaMKII/Calpain Interaction Mediates Ischemia/Reperfusion Injury in Isolated Rat Hearts,” Cell Death & Disease 11 (2020): 388.

[313]

P. Zhu, S. Hu, Q. Jin, et al., “Ripk3 Promotes ER Stress-Induced Necroptosis in Cardiac IR Injury: A Mechanism Involving Calcium Overload/XO/ROS/mPTP Pathway,” Redox Biology 16 (2018): 157-168.

[314]

L. Wang, T. Yu, H. Lee, D. K. O'Brien, H. Sesaki, and Y. Yoon, “Decreasing Mitochondrial Fission Diminishes Vascular Smooth Muscle Cell Migration and Ameliorates Intimal Hyperplasia,” Cardiovascular Research 106 (2015): 272-283.

[315]

V. W. Dolinsky, L. K. Cole, G. C. Sparagna, and G. M. Hatch, “Cardiac Mitochondrial Energy Metabolism in Heart Failure: Role of Cardiolipin and Sirtuins,” Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 1861 (2016): 1544-1554.

[316]

A. K. Sharma, P. V. Thanikachalam, and S. Bhatia, “The Signaling Interplay of GSK-3β in Myocardial Disorders,” Drug Discovery Today 25 (2020): 633-641.

[317]

Y.-N. Liu, J.-F. Yang, D.-J. Huang, et al., “Hypoxia Induces Mitochondrial Defect That Promotes T Cell Exhaustion in Tumor Microenvironment Through MYC-Regulated Pathways,” Frontiers in Immunology 11 (2020): 1906.

[318]

X. Zheng, Y. Qian, B. Fu, et al., “Mitochondrial Fragmentation Limits NK Cell-Based Tumor Immunosurveillance,” Nature Immunology 20 (2019): 1656-1667.

[319]

Y. Wang, G. Li, J. Goode, et al., “Inositol-1,4,5-Trisphosphate Receptor Regulates Hepatic Gluconeogenesis in Fasting and Diabetes,” Nature 485 (2012): 128-132.

[320]

H. Tagashira, C. Zhang, Y.-M. Lu, et al., “Stimulation of σ1-Receptor Restores Abnormal Mitochondrial Ca2+ Mobilization and ATP Production Following Cardiac Hypertrophy,” Biochimica et Biophysica Acta (BBA)—General Subjects 1830 (2013): 3082-3094.

[321]

C. S. Abdullah, S. Alam, R. Aishwarya, et al., “Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics,” Journal of the American Heart Association 7 (2018): e009775.

[322]

D. Jia, J. Zhang, J. Nie, et al., “Cardiolipin Remodeling by ALCAT1 Links Hypoxia to Coronary Artery Disease by Promoting Mitochondrial Dysfunction,” Molecular Therapy 29 (2021): 3498-3511.

[323]

K. Gumpper-Fedus, K. H. Park, H. Ma, et al., “MG53 Preserves Mitochondrial Integrity of Cardiomyocytes During Ischemia Reperfusion-Induced Oxidative Stress,” Redox Biology 54 (2022): 102357.

[324]

J. R. Hill, X. Shao, J. S. Wright, et al., “Synthesis and Evaluation of 11 C- and 18 F-Labeled SOAT1 Inhibitors as Macrophage Foam Cell Imaging Agents,” ACS Medicinal Chemistry Letters 11 (2020): 1299-1304.

[325]

T. Peng, K. Xiong, Z. He, et al., “Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibitor avasimibe Suppresses Tumorigenesis and Induces G1-Phase Cell-Cycle Arrest by Activating PPARγ Signaling Pathway in Bladder Cancer,” Journal of Cancer 15 (2024): 370-382.

[326]

H. Mollazadeh, S. L. Atkin, A. E. Butler, M. Ruscica, C. R. Sirtori, and A. Sahebkar, “The Effect of Statin Therapy on Endoplasmic Reticulum Stress,” Pharmacological Research 137 (2018): 150-158.

[327]

H. Wu, Q. Tang, J. Yang, J. Ding, M. Ye, and W. Dong, “Atorvastatin Ameliorates Myocardial Ischemia/Reperfusion Injury Through Attenuation of Endoplasmic Reticulum Stress-Induced Apoptosis,” International Journal of Clinical and Experimental Medicine 7 (2014): 4915-4923.

[328]

F. Peng, M. Liao, W. Jin, et al., “2-APQC, a Small-Molecule Activator of Sirtuin-3 (SIRT3), Alleviates Myocardial Hypertrophy and Fibrosis by Regulating Mitochondrial Homeostasis,” Signal Transduction and Targeted Therapy 9 (2024): 133.

[329]

Q. Zhang, J. Ren, F. Wang, et al., “Chinese Herbal Medicine Alleviates the Pathogenesis of Polycystic Ovary Syndrome by Improving Oxidative Stress and Glucose Metabolism via Mitochondrial Sirtuin 3 Signaling,” Phytomedicine 109 (2023): 154556.

[330]

J. Hu, T. Liu, F. Fu, et al., “Omentin1 Ameliorates Myocardial Ischemia-Induced Heart Failure via SIRT3/FOXO3a-Dependent Mitochondrial Dynamical Homeostasis and Mitophagy,” Journal of Translational Medicine 20 (2022): 447.

[331]

Y. Zhang, Y. Wang, J. Xu, et al., “Melatonin Attenuates Myocardial Ischemia-Reperfusion Injury via Improving Mitochondrial Fusion/Mitophagy and Activating the AMPK-OPA1 Signaling Pathways,” Journal of Pineal Research 66 (2019): e12542.

[332]

C. Duan, Li Wang, J. Zhang, et al., “Mdivi-1 Attenuates Oxidative Stress and Exerts Vascular Protection in Ischemic/Hypoxic Injury by a Mechanism Independent of Drp1 GTPase Activity,” Redox Biology 37 (2020): 101706.

[333]

W. Wang, J. Yin, X. Ma, et al., “Inhibition of Mitochondrial Fragmentation Protects Against Alzheimer's Disease in Rodent Model,” Human Molecular Genetics 26 (2017): 4118-4131.

[334]

Y. Zhang, X. Tan, Y. Cao, X. An, J. Chen, and L. Yang, “Punicalagin Protects Against Diabetic Liver Injury by Upregulating Mitophagy and Antioxidant Enzyme Activities,” Nutrients 14 (2022): 2782.

[335]

C. Liu, Y. Han, X. Gu, et al., “Paeonol Promotes Opa1-Mediated Mitochondrial Fusion via Activating the CK2α-Stat3 Pathway in Diabetic Cardiomyopathy,” Redox Biology 46 (2021): 102098.

[336]

X. Cen, Y. Chen, X. Xu, et al., “Pharmacological Targeting of MCL-1 Promotes Mitophagy and Improves Disease Pathologies in an Alzheimer's Disease Mouse Model,” Nature Communications 11 (2020): 5731.

[337]

G. Torres, P. E. Morales, M. García-Miguel, et al., “Glucagon-Like Peptide-1 Inhibits Vascular Smooth Muscle Cell Dedifferentiation Through Mitochondrial Dynamics Regulation,” Biochemical Pharmacology 104 (2016): 52-61.

[338]

G. Naruse, H. Kanamori, A. Yoshida, et al., “The Intestine Responds to Heart Failure by Enhanced Mitochondrial Fusion Through Glucagon-Like Peptide-1 Signalling,” Cardiovascular Research 115 (2019): 1873-1885.

[339]

H. Dridi, A. Kushnir, R. Zalk, Q. Yuan, Z. Melville, and A. R. Marks, “Intracellular Calcium Leak in Heart Failure and Atrial Fibrillation: A Unifying Mechanism and Therapeutic Target,” Nature Reviews Cardiology 17 (2020): 732-747.

[340]

C. Kingnate, K. Charoenkwan, S. Kumfu, et al., “Platinum-Based Chemotherapy and Bevacizumab Instigate the Destruction of Human Ovarian Cancers via Different Signaling Pathways,” Biochemical Pharmacology 188 (2021): 114587.

[341]

A. M. De Marañón, P. Díaz-Pozo, F. Canet, et al., “Metformin Modulates Mitochondrial Function and Mitophagy in Peripheral Blood Mononuclear Cells From Type 2 Diabetic Patients,” Redox Biology 53 (2022): 102342.

[342]

S. Tian, P. Lei, C. Teng, et al., “Targeting PLIN2/PLIN5-PPARγ: Sulforaphane Disturbs the Maturation of Lipid Droplets,” Molecular Nutrition & Food Research 63 (2019): e1900183.

[343]

Y. Hong, J. Feng, Z. Dou, et al., “Berberine as a Novel ACSL4 Inhibitor to Suppress Endothelial Ferroptosis and Atherosclerosis,” Biomedicine & Pharmacotherapy 177 (2024): 117081.

[344]

F. Fu, C. Liu, R. Shi, et al., “Punicalagin Protects Against Diabetic Cardiomyopathy by Promoting Opa1-Mediated Mitochondrial Fusion via Regulating PTP1B-Stat3 Pathway,” Antioxidants & Redox Signaling 35 (2021): 618-641.

[345]

X. Chang, T. Zhang, Q. Meng, et al., “Quercetin Improves Cardiomyocyte Vulnerability to Hypoxia by Regulating SIRT1/TMBIM6-Related Mitophagy and Endoplasmic Reticulum Stress,” Oxidative Medicine and Cellular Longevity 2021 (2021): 5529913.

[346]

T. Maurice, “Bi-Phasic Dose Response in the Preclinical and Clinical Developments of Sigma-1 Receptor Ligands for the Treatment of Neurodegenerative Disorders,” Expert Opinion on Drug Discovery 16 (2021): 373-389.

[347]

D. Ueno, K. Ikeda, E. Yamazaki, A. Katayama, R. Urata, and S. Matoba, “Spermidine Improves Angiogenic Capacity of Senescent Endothelial Cells, and Enhances Ischemia-Induced Neovascularization in Aged Mice,” Scientific Reports 13 (2023): 8338.

[348]

Y. Hu, H. Chen, L. Zhang, et al., “The AMPK-MFN2 Axis Regulates MAM Dynamics and Autophagy Induced by Energy Stresses,” Autophagy 17 (2021): 1142-1156.

[349]

E. Cho, Y. Woo, Y. Suh, et al., “Ratiometric Measurement of MAM Ca2+ Dynamics Using a Modified CalfluxVTN,” Nature Communications 14 (2023): 3586.

[350]

Y. Gong, X. Lu, X. Wang, et al., “Mitochondrial Tumor Suppressor 1A Attenuates Myocardial Infarction Injury by Maintaining the Coupling between Mitochondria and Endoplasmic Reticulum,” Circulation 152, no. 3 (2025): 183-201.

[351]

J. Biswas, S. Gupta, D. K. Verma, et al., “Involvement of Glucose Related Energy Crisis and Endoplasmic Reticulum Stress: Insinuation of Streptozotocin Induced Alzheimer's Like Pathology,” Cellular Signalling 42 (2018): 211-226.

[352]

C. Betz, D. Stracka, C. Prescianotto-Baschong, M. Frieden, N. Demaurex, and M N. Hall, “mTOR Complex 2-Akt Signaling at Mitochondria-Associated Endoplasmic Reticulum Membranes (MAM) Regulates Mitochondrial Physiology,” Proceedings of the National Academy of Sciences 110 (2013): 12526-12534.

[353]

X. Feng, J. Guo, H. C. Sigmon, et al., “Brain Regions Vulnerable and Resistant to Aging Without Alzheimer's Disease,” PLoS ONE 15 (2020): e0234255.

[354]

T. Hirschhorn and B. R. Stockwell, “The Development of the Concept of Ferroptosis,” Free Radical Biology and Medicine 133 (2019): 130-143.

[355]

T. Kleele, T. Rey, J. Winter, et al., “Distinct Fission Signatures Predict Mitochondrial Degradation or Biogenesis,” Nature 593 (2021): 435-439.

[356]

H. Wu, W. Chen, Z. Chen, X. Li, and M. Wang, “Novel Tumor Therapy Strategies Targeting Endoplasmic Reticulum-Mitochondria Signal Pathways,” Ageing Research Reviews 88 (2023): 101951.

[357]

A. Larrañaga-SanMiguel, N. Bengoa-Vergniory, and H. Flores-Romero, “Crosstalk Between Mitochondria-ER Contact Sites and the Apoptotic Machinery as a Novel Health Meter,” Trends in Cell Biology 35 (2025): 33-45.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/