G Protein-Coupled Receptor Signaling: Implications and Therapeutic Development Advances in Cancers

Inamu Rashid Khan , Sana Khurshid , Saud Almawash , Rakesh Kumar , Ammira S. Al-Shabeeb Akil , Ajaz A. Bhat , Muzafar A. Macha

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70375

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70375 DOI: 10.1002/mco2.70375
REVIEW

G Protein-Coupled Receptor Signaling: Implications and Therapeutic Development Advances in Cancers

Author information +
History +
PDF

Abstract

G protein-coupled receptors (GPCRs) are the largest and most diverse class of membrane proteins, mediating cellular responses to a wide range of extracellular stimuli. GPCRs initiate complex intracellular signaling networks that regulate vital physiological functions and are associated with numerous diseases, including various types of cancer. Their conserved seven-transmembrane (7TM) structure enables these signaling networks by allowing interactions with multiple ligands and intracellular effectors. In several types of tumors, abnormal GPCR signaling promotes carcinogenesis by supporting immune evasion, cell proliferation, and therapeutic resistance. A significant research gap exists in fully understanding the molecular mechanisms behind pathway-specific activation and biased ligand discovery of GPCRs, which could lead to the development of more effective therapies. This review examines the complexity of GPCRs, with a focus on their role in signaling through the differential activation of pathways regulated by β-arrestin and G proteins. It discusses how targeted modulation of signaling outcomes by receptor mutants might offer therapeutic benefits in cancer treatment. The review also highlights emerging technologies, such as aptamers, PROTACs, and nanobodies, that more precisely target GPCRs. In addition to exploring receptor structure–function relationships and pathway selectivity, this review provides valuable insights into GPCR-biased signaling and its implications in cancer biology.

Keywords

GPCRs / signaling / diseases / cancer / bias / therapeutics

Cite this article

Download citation ▾
Inamu Rashid Khan, Sana Khurshid, Saud Almawash, Rakesh Kumar, Ammira S. Al-Shabeeb Akil, Ajaz A. Bhat, Muzafar A. Macha. G Protein-Coupled Receptor Signaling: Implications and Therapeutic Development Advances in Cancers. MedComm, 2025, 6(10): e70375 DOI:10.1002/mco2.70375

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. A. Insel, K. Sriram, M. W. Gorr, et al., “GPCRomics: An Approach to Discover GPCR Drug Targets,” Trends in Pharmacological Sciences 40, no. 6 (2019): 378-387.

[2]

D. Calebiro, Z. Koszegi, Y. Lanoiselée, T. Miljus, and S. O'Brien, “G Protein-coupled Receptor-G Protein Interactions: A Single-molecule Perspective,” Physiological Reviews 101, no. 3 (2021): 857-906.

[3]

Y. Zhang, M. E. Devries, and J. Skolnick, “Structure Modeling of all Identified G Protein-coupled Receptors in the human Genome,” PLoS Computational Biology 2, no. 2 (2006): e13.

[4]

D. M. Rosenbaum, S. G. Rasmussen, and B. K. Kobilka, “The Structure and Function of G-protein-coupled Receptors,” Nature 459, no. 7245 (2009): 356-363.

[5]

R. Fredriksson, M. C. Lagerström, L. G. Lundin, and H. B. Schiöth, “The G-protein-coupled Receptors in the human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints,” Molecular Pharmacology 63, no. 6 (2003): 1256-1272.

[6]

I. Shimada, T. Ueda, Y. Kofuku, M. T. Eddy, and K. Wüthrich, “GPCR Drug Discovery: Integrating Solution NMR Data With Crystal and Cryo-EM Structures,” Nature Reviews Drug Discovery 18, no. 1 (2019): 59-82.

[7]

A. S. Hauser, A. J. Kooistra, C. Munk, et al., “GPCR Activation Mechanisms Across Classes and Macro/Microscales,” Nature Structural & Molecular Biology 28, no. 11 (2021): 879-888.

[8]

A. S. Pupo, D. A. Duarte, V. Lima, L. B. Teixeira, E. S. L. T. Parreiras, and C. M. Costa-Neto, “Recent Updates on GPCR Biased Agonism,” Pharmacological Research 112 (2016): 49-57.

[9]

S. K. Shenoy, M. T. Drake, C. D. Nelson, et al., “beta-arrestin-dependent, G Protein-independent ERK1/2 Activation by the beta2 Adrenergic Receptor,” The Journal of Biological Chemistry 281, no. 2 (2006): 1261-1273.

[10]

S. M. DeWire, S. Ahn, R. J. Lefkowitz, and S. K. Shenoy, “Beta-arrestins and Cell Signaling,” Annual Review of Physiology 69 (2007): 483-510.

[11]

A. Srivastava, B. Gupta, C. Gupta, and A. K. Shukla, “Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function,” Trends in Endocrinology and Metabolism: TEM 26, no. 11 (2015): 628-642.

[12]

U. Gether, “Uncovering Molecular Mechanisms Involved in Activation of G Protein-coupled Receptors,” Endocrine Reviews 21, no. 1 (2000): 90-113.

[13]

R. Lappano and M. Maggiolini, “G Protein-coupled Receptors: Novel Targets for Drug Discovery in Cancer,” Nature Reviews Drug Discovery 10, no. 1 (2011): 47-60.

[14]

D. Young, G. Waitches, C. Birchmeier, O. Fasano, and M. Wigler, “Isolation and Characterization of a New Cellular Oncogene Encoding a Protein With Multiple Potential Transmembrane Domains,” Cell 45, no. 5 (1986): 711-719.

[15]

S. Li, S. Huang, and S. B. Peng, “Overexpression of G Protein-coupled Receptors in Cancer Cells: Involvement in Tumor Progression,” International Journal of Oncology 27, no. 5 (2005): 1329-1339.

[16]

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, “Seven-transmembrane Receptors,” Nature Reviews Molecular Cell Biology 3, no. 9 (2002): 639-650.

[17]

D. Wootten, A. Christopoulos, and P. M. Sexton, “Emerging Paradigms in GPCR Allostery: Implications for Drug Discovery,” Nature Reviews Drug Discovery 12, no. 8 (2013): 630-644.

[18]

A. Christopoulos, “Advances in G Protein-coupled Receptor Allostery: From Function to Structure,” Molecular Pharmacology 86, no. 5 (2014): 463-478.

[19]

D. Yang, Q. Zhou, V. Labroska, et al., “G Protein-coupled Receptors: Structure- and Function-based Drug Discovery,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 7.

[20]

V. Casadó and V. Casadó-Anguera, “What Are the Current Trends in G Protein-coupled Receptor Targeted Drug Discovery?,” Expert Opinion on Drug Discovery 18, no. 8 (2023): 815-820.

[21]

A. S. Hauser, M. M. Attwood, M. Rask-Andersen, H. B. Schiöth, and D. E. Gloriam, “Trends in GPCR Drug Discovery: New Agents, Targets and Indications,” Nature Reviews Drug Discovery 16, no. 12 (2017): 829-842.

[22]

J. S. Smith, R. J. Lefkowitz, and S. Rajagopal, “Biased Signalling: From Simple Switches to Allosteric Microprocessors,” Nature Reviews Drug Discovery 17, no. 4 (2018): 243-260.

[23]

L. Tan, W. Yan, J. D. McCorvy, and J. Cheng, “Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential,” Journal of Medicinal Chemistry 61, no. 22 (2018): 9841-9878.

[24]

T. Kenakin, “Biased Receptor Signaling in Drug Discovery,” Pharmacological Reviews 71, no. 2 (2019): 267-315.

[25]

B. L. Kieffer, “Opioids: First Lessons From Knockout Mice,” Trends in Pharmacological Sciences 20, no. 1 (1999): 19-26.

[26]

J. D. Violin, A. L. Crombie, D. G. Soergel, and M. W. Lark, “Biased Ligands at G-protein-coupled Receptors: Promise and Progress,” Trends in Pharmacological Sciences 35, no. 7 (2014): 308-316.

[27]

N. M. Urs, S. M. Peterson, and M. G. Caron, “New Concepts in Dopamine D(2) Receptor Biased Signaling and Implications for Schizophrenia Therapy,” Biological Psychiatry 81, no. 1 (2017): 78-85.

[28]

M. Békés, D. R. Langley, and C. M. Crews, “PROTAC Targeted Protein Degraders: The Past Is Prologue,” Nature Reviews Drug Discovery 21, no. 3 (2022): 181-200.

[29]

M. Congreve, C. de Graaf, N. A. Swain, and C. G. Tate, “Impact of GPCR Structures on Drug Discovery,” Cell 181, no. 1 (2020): 81-91.

[30]

C. J. Hutchings, M. Koglin, W. C. Olson, and F. H. Marshall, “Opportunities for Therapeutic Antibodies Directed at G-protein-coupled Receptors,” Nature Reviews Drug Discovery 16, no. 9 (2017): 787-810.

[31]

C. J. Hutchings, “Mini-review: Antibody Therapeutics Targeting G Protein-coupled Receptors and Ion Channels,” Antibody Therapeutics 3, no. 4 (2020): 257-264.

[32]

C. J. Hutchings, “A Review of Antibody-based Therapeutics Targeting G Protein-coupled Receptors: An Update,” Expert Opinion on Biological Therapy 20, no. 8 (2020): 925-935.

[33]

M. Takahashi, “Nucleic Acid Aptamers Emerging as Modulators of G-Protein-Coupled Receptors: Challenge to Difficult Cell Surface Proteins,” Cells 11, no. 11 (2022).

[34]

E. Y. Yang and K. Shah, “Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics,” Frontiers in Oncology 10 (2020): 1182.

[35]

G. L. Szwabowski, D. L. Baker, and A. L. Parrill, “Application of Computational Methods for Class A GPCR Ligand Discovery,” Journal of Molecular Graphics & Modelling 121 (2023): 108434.

[36]

H. Unal and S. S. Karnik, “Domain Coupling in GPCRs: The Engine for Induced Conformational Changes,” Trends in Pharmacological Sciences 33, no. 2 (2012): 79-88.

[37]

J. Duan, P. Xu, H. Zhang, et al., “Mechanism of Hormone and Allosteric Agonist Mediated Activation of Follicle Stimulating Hormone Receptor,” Nature Communications 14, no. 1 (2023): 519.

[38]

J. Duan, P. Xu, X. Cheng, et al., “Structures of Full-length Glycoprotein Hormone Receptor Signalling Complexes,” Nature 598, no. 7882 (2021): 688-692.

[39]

B. Faust, C. B. Billesbølle, C. M. Suomivuori, et al., “Autoantibody Mimicry of Hormone Action at the Thyrotropin Receptor,” Nature 609, no. 7928 (2022): 846-853.

[40]

C. B. Billesbølle, C. A. de March, W. J. C. van der Velden, et al., “Structural Basis of Odorant Recognition by a human Odorant Receptor,” Nature 615, no. 7953 (2023): 742-749.

[41]

A. L. Martin, M. A. Steurer, and R. S. Aronstam, “Constitutive Activity Among Orphan Class-A G Protein Coupled Receptors,” PLoS ONE 10, no. 9 (2015): e0138463.

[42]

X. Lin, B. Chen, Y. Wu, et al., “Cryo-EM Structures of Orphan GPR21 Signaling Complexes,” Nature Communications 14, no. 1 (2023): 216.

[43]

F. Ye, T. S. Wong, G. Chen, et al., “Cryo-EM Structure of G-protein-coupled Receptor GPR17 in Complex With Inhibitory G Protein,” MedComm 3, no. 4 (2022): e159.

[44]

Q. Zhang, N. E. Madden, A. S. T. Wong, B. K. C. Chow, and L. T. O. Lee, “The Role of Endocrine G Protein-Coupled Receptors in Ovarian Cancer Progression,” Frontiers in Endocrinology 8 (2017): 66.

[45]

A. Banerjee and S. Ray, “Molecular Interactions and Mutational Impact Upon Rhodopsin (G90→D90) for Hindering Dark Adaptation of Eye: A Comparative Structural Level Outlook for Signaling Mechanism in Night Blindness,” Mutation Research 814 (2019): 7-14.

[46]

B. P. Cary, X. Zhang, J. Cao, et al., “New Insights Into the Structure and Function of Class B1 GPCRs,” Endocrine Reviews 44, no. 3 (2023): 492-517.

[47]

Z. Cong, L. N. Chen, H. Ma, et al., “Molecular Insights Into Ago-allosteric Modulation of the human Glucagon-Like Peptide-1 Receptor,” Nature Communications 12, no. 1 (2021): 3763.

[48]

D. Wootten, J. Simms, L. J. Miller, A. Christopoulos, and P. M. Sexton, “Polar Transmembrane Interactions Drive Formation of Ligand-specific and Signal Pathway-biased family B G Protein-coupled Receptor Conformations,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 13 (2013): 5211-5216.

[49]

Z. Cong, Y. L. Liang, Q. Zhou, et al., “Structural Perspective of Class B1 GPCR Signaling,” Trends in Pharmacological Sciences 3, no. 4 (2022): 321-334.

[50]

Y. Zhang, B. Sun, and D. Feng, “Cryo-EM Structure of the Activated GLP-1 Receptor in Complex With a G Protein,” Nature 546, no. 7657 (2017): 248-253.

[51]

W. Sun, L. N. Chen, and Q. Zhou, “A Unique Hormonal Recognition Feature of the human Glucagon-Like Peptide-2 Receptor,” Cell Research 30, no. 12 (2020): 1098-1108.

[52]

Y. L. Liang, M. Khoshouei, and G. Deganutti, “Cryo-EM Structure of the Active, G(s)-protein Complexed, human CGRP Receptor,” Nature 561, no. 7724 (2018): 492-497.

[53]

T. Langenhan, X. Piao, and K. R. Monk, “Adhesion G Protein-coupled Receptors in Nervous System Development and Disease,” Nature Reviews Neuroscience 17, no. 9 (2016): 550-561.

[54]

A. Ellaithy, J. Gonzalez-Maeso, D. A. Logothetis, and J. Levitz, “Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function,” Trends in Biochemical Sciences 45, no. 12 (2020): 1049-1064.

[55]

I. Lei, S. Tian, W. Gao, et al., “Acetyl-CoA Production by Specific Metabolites Promotes Cardiac Repair After Myocardial Infarction via Histone Acetylation,” Elife 10, (2021):.

[56]

G. Vezzoli, A. Terranegra, F. Rainone, et al., “Calcium-sensing Receptor and Calcium Kidney Stones,” Journal of Translational Medicine 9 (2011): 201.

[57]

C. Shen, C. Mao, C. Xu, et al., “Structural Basis of GABA(B) Receptor-G(i) Protein Coupling,” Nature 594, no. 7864 (2021): 594-598.

[58]

J. Park, Z. Fu, A. Frangaj, et al., “Structure of human GABA(B) Receptor in an Inactive state,” Nature 584, no. 7820 (2020): 304-309.

[59]

D. Felice, J. F. Cryan, and O. F. O'Leary, “GABA(B) Receptors: Anxiety and Mood Disorders,” Current Topics in Behavioral Neurosciences 52 (2022): 241-265.

[60]

R. Ahmad and J. E. Dalziel, “G Protein-Coupled Receptors in Taste Physiology and Pharmacology,” Frontiers in Pharmacology 11 (2020): 587664.

[61]

K. S. Abd-Elrahman, S. Sarasija, and S. S. G. Ferguson, “The Role of Neuroglial Metabotropic Glutamate Receptors in Alzheimer's Disease,” Current Neuropharmacology 21, no. 2 (2023): 273-283.

[62]

X. Zhang, S. Dong, and F. Xu, “Structural and Druggability Landscape of Frizzled G Protein-Coupled Receptors,” Trends in Biochemical Sciences 43, no. 12 (2018): 1033-1046.

[63]

A. Gurney, F. Axelrod, C. J. Bond, et al., “Wnt Pathway Inhibition via the Targeting of Frizzled Receptors Results in Decreased Growth and Tumorigenicity of human Tumors,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 29 (2012): 11717-11722.

[64]

J. N. Anastas and R. T. Moon, “WNT Signalling Pathways as Therapeutic Targets in Cancer,” Nature Reviews Cancer 13, no. 1 (2013): 11-26.

[65]

R. Nusse and H. Clevers, “Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities,” Cell 169, no. 6 (2017): 985-999.

[66]

K. Ueno, S. Hazama, S. Mitomori, et al., “Down-regulation of Frizzled-7 Expression Decreases Survival, Invasion and Metastatic Capabilities of Colon Cancer Cells,” British Journal of Cancer 101, no. 8 (2009): 1374-1381.

[67]

Y. Wang, G. Zhao, S. Condello, et al., “Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis,” Cancer Research 81, no. 2 (2021): 384-399.

[68]

A. Turku, H. Schihada, P. Kozielewicz, C. F. Bowin, and G. Schulte, “Residue 6.43 Defines Receptor Function in Class F GPCRs,” Nature Communications 12, no. 1 (2021): 3919.

[69]

J. Briscoe and P. P. Thérond, “The Mechanisms of Hedgehog Signalling and Its Roles in Development and Disease,” Nature Reviews Molecular Cell Biology 14, no. 7 (2013): 416-429.

[70]

P. Kozielewicz, A. Turku, and G. Schulte, “Molecular Pharmacology of Class F Receptor Activation,” Molecular Pharmacology 97, no. 2 (2020): 62-71.

[71]

Z. Shao, W. Yan, K. Chapman, et al., “Structure of an Allosteric Modulator Bound to the CB1 Cannabinoid Receptor,” Nature Chemical Biology 15, no. 12 (2019): 1199-1205.

[72]

H. Jiang, D. Galtes, J. Wang, and H. A. Rockman, “G Protein-coupled Receptor Signaling: Transducers and Effectors,” American Journal of Physiology Cell Physiology 323, no. 3 (2022): C731-c748.

[73]

D. G. Tilley, “G Protein-dependent and G Protein-independent Signaling Pathways and Their Impact on Cardiac Function,” Circulation Research 109, no. 2 (2011): 217-230.

[74]

H. Cheng, W. J. Lederer, and M. B. Cannell, “Calcium Sparks: Elementary Events Underlying Excitation-contraction Coupling in Heart Muscle,” Science (New York, NY) 262, no. 5134 (1993): 740-744.

[75]

H. Nakayama, I. Bodi, M. Maillet, et al., “The IP3 Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli,” Circulation Research 107, no. 5 (2010): 659-666.

[76]

X. Wu, T. Zhang, J. Bossuyt, et al., “Local InsP3-dependent Perinuclear Ca2+ Signaling in Cardiac Myocyte Excitation-transcription Coupling,” The Journal of Clinical Investigation 116, no. 3 (2006): 675-682.

[77]

J. C. Braz, K. Gregory, A. Pathak, et al., “PKC-alpha Regulates Cardiac Contractility and Propensity Toward Heart Failure,” Nature Medicine 10, no. 3 (2004): 248-254.

[78]

H. A. Rockman, W. J. Koch, and R. J. Lefkowitz, “Seven-transmembrane-spanning Receptors and Heart Function,” Nature 415, no. 6868 (2002): 206-212.

[79]

H. Zhong and R. R. Neubig, “Regulator of G Protein Signaling Proteins: Novel Multifunctional Drug Targets,” The Journal of Pharmacology and Experimental Therapeutics 297, no. 3 (2001): 837-845.

[80]

L. K. Yang, Z. S. Hou, and Y. X. Tao, “Biased Signaling in Naturally Occurring Mutations of G Protein-coupled Receptors Associated With Diverse human Diseases,” Biochimica Et Biophysica Acta Molecular Basis of Disease 1867, no. 1 (2021): 165973.

[81]

M. P. Borah, D. Trakroo, N. Soni, P. Kumari, and M. Baidya, “Exploring Bias in GPCR Signaling and Its Implication in Drug Development: A One-Sided Affair,” Biochemistry 64, no. 1 (2025): 1-14.

[82]

V. V. Gurevich and E. V. Gurevich, “Biased GPCR Signaling: Possible Mechanisms and Inherent Limitations,” Pharmacology & Therapeutics 211 (2020): 107540.

[83]

R. J. Lefkowitz, K. Rajagopal, and E. J. Whalen, “New Roles for Beta-arrestins in Cell Signaling: Not Just for Seven-transmembrane Receptors,” Molecular Cell 24, no. 5 (2006): 643-652.

[84]

P. Y. Jean-Charles, S. Kaur, and S. K. Shenoy, “G Protein-Coupled Receptor Signaling through β-Arrestin-Dependent Mechanisms,” Journal of Cardiovascular Pharmacology 70, no. 3 (2017): 142-158.

[85]

J. J. Liu, R. Horst, V. Katritch, R. C. Stevens, and K. Wüthrich, “Biased Signaling Pathways in β2-adrenergic Receptor Characterized by 19F-NMR,” Science (New York, NY) 335, no. 6072 (2012): 1106-1110.

[86]

A. Y. Woo, K. Jozwiak, L. Toll, et al., “Tyrosine 308 Is Necessary for Ligand-directed Gs Protein-biased Signaling of β2-adrenoceptor,” The Journal of Biological Chemistry 289, no. 28 (2014): 19351-19363.

[87]

P. Wang, Y. Wu, X. Ge, L. Ma, and G. Pei, “Subcellular Localization of Beta-arrestins Is Determined by Their Intact N Domain and the Nuclear Export Signal at the C Terminus,” The Journal of Biological Chemistry 278, no. 13 (2003): 11648-11653.

[88]

A. K. Shukla, G. H. Westfield, K. Xiao, et al., “Visualization of Arrestin Recruitment by a G-protein-coupled Receptor,” Nature 512, no. 7513 (2014): 218-222.

[89]

J. Maharana, F. K. Sano, P. Sarma, et al., “Molecular Insights Into atypical Modes of β-arrestin Interaction With Seven Transmembrane Receptors,” Science (New York, NY) 383, no. 6678 (2024): 101-108.

[90]

A. Bagnato and L. Rosanò, “New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis,” Frontiers in Pharmacology 10 (2019): 114.

[91]

Q. Song, Q. Ji, and Q. Li, “The Role and Mechanism of Βarrestins in Cancer Invasion and Metastasis (Review),” International Journal of Molecular Medicine 41, no. 2 (2018): 631-639.

[92]

M. Zoudilova, P. Kumar, L. Ge, P. Wang, G. M. Bokoch, and K. A. DeFea, “β-Arrestin-dependent Regulation of the Cofilin Pathway Downstream of Protease-activated Receptor-2*,” Journal of Biological Chemistry 282 (2007): 20634-20646..

[93]

J. Min and K. Defea, “β-arrestin-dependent Actin Reorganization: Bringing the Right Players Together at the Leading Edge,” Molecular Pharmacology 80, no. 5 (2011): 760-768.

[94]

X. Ma, L. Espana-Serrano, W.-J. Kim, H. Thayele Purayil, Z. Nie, and Y. Daaka, “βArrestin1 Regulates the Guanine Nucleotide Exchange Factor RasGRF2 Expression and the Small GTPase Rac-mediated Formation of Membrane Protrusion and Cell Motility *,” Journal of Biological Chemistry 289, no. 19 (2014): 13638-13650.

[95]

J. Kang, Y. Shi, B. Xiang, et al., “A Nuclear Function of β-Arrestin1 in GPCR Signaling: Regulation of Histone Acetylation and Gene Transcription,” Cell 123, no. 5 (2005): 833-847.

[96]

Y. Shi, Y. Feng, J. Kang, et al., “Critical Regulation of CD4+ T Cell Survival and Autoimmunity by Beta-arrestin 1,” Nature Immunology 8, no. 8 (2007): 817-824.

[97]

Y. Yang, Y. Guo, S. Tan, et al., “Β-Arrestin1 Enhances Hepatocellular Carcinogenesis Through Inflammation-mediated Akt Signalling,” Nature Communications 6 (2015): 7369.

[98]

B. Czogalla, A. Partenheimer, and U. Jeschke, “β-arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation,” Frontiers in Endocrinology 11 (2020): 554733.

[99]

S. Y. Bostanabad, S. Noyan, B. G. Dedeoglu, and H. Gurdal, “Overexpression of β-Arrestins Inhibits Proliferation and Motility in Triple Negative Breast Cancer Cells,” Scientific Reports 11, no. 1 (2021): 1539.

[100]

X. Duan, Z. Kong, Y. Liu, et al., “β-Arrestin2 Contributes to Cell Viability and Proliferation via the Down-Regulation of FOXO1 in Castration-Resistant Prostate Cancer,” Journal of Cellular Physiology 230, no. 10 (2015): 2371-2381.

[101]

V. Lakshmikanthan, L. Zou, J. I. Kim, et al., “Identification of betaArrestin2 as a Corepressor of Androgen Receptor Signaling in Prostate Cancer,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 23 (2009): 9379-9384.

[102]

Y. Sun, Z. Cheng, L. Ma, and G. Pei, “β-Arrestin2 Is Critically Involved in CXCR4-mediated Chemotaxis, and This Is Mediated by Its Enhancement of p38 MAPK Activation*,” Journal of Biological Chemistry 277, no. 51 (2002): 49212-49219.

[103]

L. Ge, S. K. Shenoy, R. J. Lefkowitz, and K. DeFea, “Constitutive Protease-activated Receptor-2-mediated Migration of MDA MB-231 Breast Cancer Cells Requires both Beta-arrestin-1 and -2,” The Journal of Biological Chemistry 279, no. 53 (2004): 55419-55424.

[104]

S. Gol, R. N. Pena, M. F. Rothschild, M. Tor, and J. Estany, “A Polymorphism in the Fatty Acid Desaturase-2 Gene Is Associated With the Arachidonic Acid Metabolism in Pigs,” Scientific Reports 8, no. 1 (2018): 14336.

[105]

R. T. Dorsam and J. S. Gutkind, “G-protein-coupled Receptors and Cancer,” Nature Reviews Cancer 7, no. 2 (2007): 79-94.

[106]

T. van Biesen, L. M. Luttrell, B. E. Hawes, and R. J. Lefkowitz, “Mitogenic Signaling via G Protein-coupled Receptors,” Endocrine Reviews 17, no. 6 (1996): 698-714.

[107]

N. Prevarskaya, R. Skryma, and Y. Shuba, “Calcium in Tumour Metastasis: New Roles for Known Actors,” Nature Reviews Cancer 11, no. 8 (2011): 609-618.

[108]

E. M. Griner and M. G. Kazanietz, “Protein Kinase C and Other Diacylglycerol Effectors in Cancer,” Nature Reviews Cancer 7, no. 4 (2007): 281-294.

[109]

E. Rozengurt, “Mitogenic Signaling Pathways Induced by G Protein-coupled Receptors,” Journal of Cellular Physiology 213, no. 3 (2007): 589-602.

[110]

G. Kalinec, A. J. Nazarali, S. Hermouet, N. Xu, and J. S. Gutkind, “Mutated Alpha Subunit of the Gq Protein Induces Malignant Transformation in NIH 3T3 Cells,” Molecular and Cellular Biology 12, no. 10 (1992): 4687-4693.

[111]

P. Arora, B. D. Cuevas, A. Russo, G. L. Johnson, and J. Trejo, “Persistent Transactivation of EGFR and ErbB2/HER2 by Protease-activated Receptor-1 Promotes Breast Carcinoma Cell Invasion,” Oncogene 27, no. 32 (2008): 4434-4445.

[112]

P. Arora, T. K. Ricks, and J. Trejo, “Protease-activated Receptor Signalling, Endocytic Sorting and Dysregulation in Cancer,” Journal of Cell Science 120, no. 6 (2007): 921-928.

[113]

H. Clevers, “Wnt/Beta-catenin Signaling in Development and Disease,” Cell 127, no. 3 (2006): 469-480.

[114]

S. L. Lai, A. J. Chien, and R. T. Moon, “Wnt/Fz Signaling and the Cytoskeleton: Potential Roles in Tumorigenesis,” Cell Research 19, no. 5 (2009): 532-545.

[115]

M. Gugger, R. White, S. Song, et al., “GPR87 is an Overexpressed G-protein Coupled Receptor in Squamous Cell Carcinoma of the Lung,” Disease Markers 24, no. 1 (2008): 41-50.

[116]

B. Lustig and J. Behrens, “The Wnt Signaling Pathway and Its Role in Tumor Development,” Journal of Cancer Research and Clinical Oncology 129, no. 4 (2003): 199-221.

[117]

G. G. Schwartz, “Prostate Cancer, Serum Parathyroid Hormone, and the Progression of Skeletal Metastases,” Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, Cosponsored By the American Society of Preventive Oncology 17, no. 3 (2008): 478-483.

[118]

A. Gschwind, S. Hart, O. M. Fischer, and A. Ullrich, “TACE Cleavage of Proamphiregulin Regulates GPCR-induced Proliferation and Motility of Cancer Cells,” The EMBO Journal 22, no. 10 (2003): 2411-2421.

[119]

A. Greenhough, H. J. Smartt, A. E. Moore, et al., “The COX-2/PGE2 Pathway: Key Roles in the Hallmarks of Cancer and Adaptation to the Tumour Microenvironment,” Carcinogenesis 30, no. 3 (2009): 377-386.

[120]

J. J. Contos, I. Ishii, and J. Chun, “Lysophosphatidic Acid Receptors,” Molecular Pharmacology 58, no. 6 (2000): 1188-1196.

[121]

F. Sanchez-Vega, M. Mina, J. Armenia, et al., “Oncogenic Signaling Pathways in the Cancer Genome Atlas,” Cell 173, no. 2 (2018): 321-337.e310.

[122]

M. Sudol, P. Bork, A. Einbond, et al., “Characterization of the Mammalian YAP (Yes-associated protein) Gene and Its Role in Defining a Novel Protein Module, the WW Domain,” The Journal of Biological Chemistry 270, no. 24 (1995): 14733-14741.

[123]

X. Feng, M. S. Degese, R. Iglesias-Bartolome, et al., “Hippo-independent Activation of YAP by the GNAQ Uveal Melanoma Oncogene Through a Trio-regulated Rho GTPase Signaling Circuitry,” Cancer Cell 25, no. 6 (2014): 831-845.

[124]

V. Baud and M. Karin, “Is NF-kappaB a Good Target for Cancer Therapy? Hopes and Pitfalls,” Nature Reviews Drug Discovery 8, no. 1 (2009): 33-40.

[125]

C. D. Van Raamsdonk, V. Bezrookove, G. Green, et al., “Frequent Somatic Mutations of GNAQ in Uveal Melanoma and Blue Naevi,” Nature 457, no. 7229 (2009): 599-602.

[126]

C. D. Van Raamsdonk, K. G. Griewank, and M. B. Crosby, “Mutations in GNA11 in Uveal Melanoma,” The New England Journal of Medicine 363, no. 23 (2010): 2191-2199.

[127]

U. M. Ayturk, J. A. Couto, and S. Hann, “Somatic Activating Mutations in GNAQ and GNA11 Are Associated With Congenital Hemangioma,” American Journal of Human Genetics 98, no. 4 (2016): 789-795.

[128]

A. M. Comi, “Sturge-Weber Syndrome,” Handbook of Clinical Neurology 132 (2015): 157-168.

[129]

A. G. Robertson, J. Shih, C. Yau, et al., “Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma,” Cancer Cell 32, no. 2 (2017): 204-220.e215.

[130]

P. Johansson, L. G. Aoude, K. Wadt, et al., “Deep Sequencing of Uveal Melanoma Identifies a Recurrent Mutation in PLCB4,” Oncotarget 7, no. 4 (2016): 4624-4631.

[131]

A. R. Moore, E. Ceraudo, J. J. Sher, et al., “Recurrent Activating Mutations of G-protein-coupled Receptor CYSLTR2 in Uveal Melanoma,” Nature Genetics 48, no. 6 (2016): 675-680.

[132]

J. P. Vaqué, R. T. Dorsam, X. Feng, et al., “A Genome-wide RNAi Screen Reveals a Trio-regulated Rho GTPase Circuitry Transducing Mitogenic Signals Initiated by G Protein-coupled Receptors,” Molecular Cell 49, no. 1 (2013): 94-108.

[133]

D. Pan, “The Hippo Signaling Pathway in Development and Cancer,” Developmental Cell 19, no. 4 (2010): 491-505.

[134]

X. Feng, S. Degese Maria, and R. Iglesias-Bartolome, “Hippo-Independent Activation of YAP by the GNAQ Uveal Melanoma Oncogene Through a Trio-Regulated Rho GTPase Signaling Circuitry,” Cancer Cell 25, no. 6 (2014): 831-845.

[135]

F. X. Yu, J. Luo, and J. S. Mo, “Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP,” Cancer Cell 25, no. 6 (2014): 822-830.

[136]

H. V. Küsters-Vandevelde, I. A. van Engen-van Grunsven, B. Küsters, et al., “Improved Discrimination of Melanotic Schwannoma From Melanocytic Lesions by Combined Morphological and GNAQ Mutational Analysis,” Acta Neuropathologica 120, no. 6 (2010): 755-764.

[137]

R. S. Misra, G. Shi, M. E. Moreno-Garcia, et al., “G Alpha Q-containing G Proteins Regulate B Cell Selection and Survival and Are Required to Prevent B Cell-dependent Autoimmunity,” The Journal of Experimental Medicine 207, no. 8 (2010): 1775-1789.

[138]

Y. He, X. Yuan, Y. Li, et al., “Loss of Gαq Impairs Regulatory B-cell Function,” Arthritis Research & Therapy 20, no. 1 (2018): 186.

[139]

D. Wang, Y. Zhang, Y. He, Y. Li, F. E. Lund, and G. Shi, “The Deficiency of Gαq Leads to Enhanced T-cell Survival,” Immunology and Cell Biology 92, no. 9 (2014): 781-790.

[140]

Z. Li, X. Zhang, W. Xue, et al., “Recurrent GNAQ Mutation Encoding T96S in Natural Killer/T Cell Lymphoma,” Nature Communications 10, no. 1 (2019): 4209.

[141]

V. Wu, H. Yeerna, N. Nohata, et al., “Illuminating the Onco-GPCRome: Novel G Protein-coupled Receptor-driven Oncocrine Networks and Targets for Cancer Immunotherapy,” The Journal of Biological Chemistry 294, no. 29 (2019): 11062-11086.

[142]

C. A. Landis, S. B. Masters, A. Spada, A. M. Pace, H. R. Bourne, and L. Vallar, “GTPase Inhibiting Mutations Activate the Alpha Chain of Gs and Stimulate Adenylyl Cyclase in human Pituitary Tumours,” Nature 340, no. 6236 (1989): 692-696.

[143]

D. Cassel and T. Pfeuffer, “Mechanism of Cholera Toxin Action: Covalent Modification of the Guanyl Nucleotide-binding Protein of the Adenylate Cyclase System,” Proceedings of the National Academy of Sciences of the United States of America 75, no. 6 (1978): 2669-2673.

[144]

D. M. Gill and R. Meren, “ADP-ribosylation of Membrane Proteins Catalyzed by Cholera Toxin: Basis of the Activation of Adenylate Cyclase,” Proceedings of the National Academy of Sciences of the United States of America 75, no. 7 (1978): 3050-3054.

[145]

R. K. Sunahara, J. J. Tesmer, A. G. Gilman, and S. R. Sprang, “Crystal Structure of the Adenylyl Cyclase Activator Gsalpha,” Science (New York, NY) 278, no. 5345 (1997): 1943-1947.

[146]

M. O'Hayre, J. Vázquez-Prado, I. Kufareva, et al., “The Emerging Mutational Landscape of G Proteins and G-protein-coupled Receptors in Cancer,” Nature Reviews Cancer 13, no. 6 (2013): 412-424.

[147]

Q. Hu and K. M. Shokat, “Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP,” Cell 173, no. 5 (2018): 1254-1264.e1211.

[148]

L. Vallar, A. Spada, and G. Giannattasio, “Altered Gs and Adenylate Cyclase Activity in human GH-secreting Pituitary Adenomas,” Nature 330, no. 6148 (1987): 566-568.

[149]

R. T. Drews, R. A. Gravel, and R. Collu, “Identification of G Protein Alpha Subunit Mutations in human Growth Hormone (GH)- and GH/Prolactin-secreting Pituitary Tumors by Single-strand Conformation Polymorphism (SSCP) Analysis,” Molecular and Cellular Endocrinology 87, no. 1-3 (1992): 125-129.

[150]

F. Raimondi, A. Inoue, F. M. N. Kadji, et al., “Rare, Functional, Somatic Variants in Gene Families Linked to Cancer Genes: GPCR Signaling as a Paradigm,” Oncogene 38, no. 38 (2019): 6491-6506.

[151]

J. Gao, B. A. Aksoy, U. Dogrusoz, et al., “Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal,” Science Signaling 6, no. 269 (2013): pl1.

[152]

E. Cerami, J. Gao, U. Dogrusoz, et al., “The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data,” Cancer Discovery 2, no. 5 (2012): 401-404.

[153]

M. D. Castellone, H. Teramoto, B. O. Williams, K. M. Druey, and J. S. Gutkind, “Prostaglandin E2 Promotes Colon Cancer Cell Growth Through a Gs-axin-beta-catenin Signaling Axis,” Science (New York, NY) 310, no. 5753 (2005): 1504-1510.

[154]

R. Nomura, T. Saito, H. Mitomi, et al., “GNAS Mutation as an Alternative Mechanism of Activation of the Wnt/β-catenin Signaling Pathway in Gastric Adenocarcinoma of the Fundic Gland Type,” Human Pathology (2014): 45.

[155]

L. D. Wood, D. W. Parsons, S. Jones, et al., “The Genomic Landscapes of Human Breast and Colorectal Cancers,” Science (New York, NY) 318, no. 5853 (2007): 1108-1113.

[156]

G. Nishikawa, S. Sekine, R. Ogawa, et al., “Frequent GNAS Mutations in Low-grade Appendiceal Mucinous Neoplasms,” British Journal of Cancer 108, no. 4 (2013): 951-958.

[157]

T. Furukawa, Y. Kuboki, E. Tanji, et al., “Whole-exome Sequencing Uncovers Frequent GNAS Mutations in Intraductal Papillary Mucinous Neoplasms of the Pancreas,” Scientific Reports 1 (2011): 161.

[158]

S. Takano, M. Fukasawa, S. Maekawa, et al., “Deep Sequencing of Cancer-related Genes Revealed GNAS Mutations to be Associated With Intraductal Papillary Mucinous Neoplasms and Its Main Pancreatic Duct Dilation,” PLoS ONE 9, no. 6 (2014): e98718.

[159]

H. Alakus, M. L. Babicky, P. Ghosh, et al., “Genome-wide Mutational Landscape of Mucinous Carcinomatosis Peritonei of Appendiceal Origin,” Genome Medicine 6, no. 5 (2014): 43.

[160]

R. Rao, R. Salloum, M. Xin, and Q. R. Lu, “The G Protein Gαs Acts as a Tumor Suppressor in Sonic Hedgehog Signaling-driven Tumorigenesis,” Cell Cycle (Georgetown, Tex) 15, no. 10 (2016): 1325-1330.

[161]

G. S. Cowley, B. A. Weir, F. Vazquez, et al., “Parallel Genome-scale Loss of Function Screens in 216 Cancer Cell Lines for the Identification of Context-specific Genetic Dependencies,” Scientific Data 1 (2014): 140035.

[162]

R. Taussig, J. A. Iñiguez-Lluhi, and A. G. Gilman, “Inhibition of Adenylyl Cyclase by Gi alpha,” Science (New York, NY) 261, no. 5118 (1993): 218-221.

[163]

G. M. Bokoch, T. Katada, J. K. Northup, M. Ui, and A. G. Gilman, “Purification and Properties of the Inhibitory Guanine Nucleotide-binding Regulatory Component of Adenylate Cyclase,” The Journal of Biological Chemistry 259, no. 6 (1984): 3560-3567.

[164]

T. Katada and M. Ui, “Direct Modification of the Membrane Adenylate Cyclase System by Islet-activating Protein due to ADP-ribosylation of a Membrane Protein,” Proceedings of the National Academy of Sciences of the United States of America 79, no. 10 (1982): 3129-3133.

[165]

J. Codina, J. Hildebrandt, R. Iyengar, L. Birnbaumer, R. D. Sekura, and C. R. Manclark, “Pertussis Toxin Substrate, the Putative Ni Component of Adenylyl Cyclases, Is an Alpha Beta Heterodimer Regulated by Guanine Nucleotide and Magnesium,” Proceedings of the National Academy of Sciences of the United States of America 80, no. 14 (1983): 4276-4280.

[166]

N. Dhanasekaran, S. T. Tsim, J. M. Dermott, and D. Onesime, “Regulation of Cell Proliferation by G Proteins,” Oncogene 17, no. 11 Reviews (1998): 1383-1394.

[167]

A. M. Pace, Y. H. Wong, and H. R. Bourne, “A Mutant Alpha Subunit of Gi2 Induces Neoplastic Transformation of Rat-1 Cells,” Proceedings of the National Academy of Sciences of the United States of America 88, no. 16 (1991): 7031-7035.

[168]

M. Garcia-Marcos, P. Ghosh, and M. G. Farquhar, “Molecular Basis of a Novel Oncogenic Mutation in GNAO1,” Oncogene 30, no. 23 (2011): 2691-2696.

[169]

J. Lyons, C. A. Landis, G. Harsh, et al., “Two G Protein Oncogenes in human Endocrine Tumors,” Science (New York, NY) 249, no. 4969 (1990): 655-659.

[170]

H. Demir, I. Donner, L. Kivipelto, et al., “Mutation Analysis of Inhibitory Guanine Nucleotide Binding Protein Alpha (GNAI) Loci in Young and Familial Pituitary Adenomas,” PLoS ONE 9, no. 10 (2014): e109897.

[171]

J. Juneja and P. J. Casey, “Role of G12 Proteins in Oncogenesis and Metastasis,” British Journal of Pharmacology 158, no. 1 (2009): 32-40.

[172]

K. Spicher, F. Kalkbrenner, A. Zobel, et al., “G12 and G13 Alpha-subunits Are Immunochemically Detectable in Most Membranes of Various Mammalian Cells and Tissues,” Biochemical and Biophysical Research Communications 198, no. 3 (1994): 906-914.

[173]

N. Xu, T. Voyno-Yasenetskaya, and J. S. Gutkind, “Potent Transforming Activity of the G13 Alpha Subunit Defines a Novel family of Oncogenes,” Biochemical and Biophysical Research Communications 201, no. 2 (1994): 603-609.

[174]

M. V. Vara Prasad, S. K. Shore, and N. Dhanasekaran, “Activated Mutant of G Alpha 13 Induces Egr-1, c-fos, and Transformation in NIH 3T3 Cells,” Oncogene 9, no. 8 (1994): 2425-2429.

[175]

P. Kelly, B. J. Moeller, J. Juneja, et al., “The G12 family of Heterotrimeric G Proteins Promotes Breast Cancer Invasion and Metastasis,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 21 (2006): 8173-8178.

[176]

C. P. Gan, V. Patel, C. M. Mikelis, et al., “Heterotrimeric G-protein Alpha-12 (Gα12) Subunit Promotes Oral Cancer Metastasis,” Oncotarget 5, no. 20 (2014): 9626-9640.

[177]

M. J. Marinissen and J. S. Gutkind, “G-protein-coupled Receptors and Signaling Networks: Emerging Paradigms,” Trends in Pharmacological Sciences 22, no. 7 (2001): 368-376.

[178]

M. J. Hart, X. Jiang, T. Kozasa, et al., “Direct Stimulation of the Guanine Nucleotide Exchange Activity of p115 RhoGEF by Galpha13,” Science (New York, NY) 280, no. 5372 (1998): 2112-2114.

[179]

S. Fukuhara, H. Chikumi, and J. S. Gutkind, “Leukemia-associated Rho Guanine Nucleotide Exchange Factor (LARG) Links Heterotrimeric G Proteins of the G(12) family to Rho,” FEBS Letters 485, no. 2-3 (2000): 183-188.

[180]

T. Kozasa, X. Jiang, M. J. Hart, et al., “p115 RhoGEF, a GTPase Activating Protein for Gα12and Gα13,” Science (New York, NY) 280, no. 5372 (1998): 2109-2111.

[181]

C. M. Mikelis, T. R. Palmby, M. Simaan, et al., “PDZ-RhoGEF and LARG Are Essential for Embryonic Development and Provide a Link Between Thrombin and LPA Receptors and Rho Activation,” The Journal of Biological Chemistry 288, no. 17 (2013): 12232-12243.

[182]

C. Fromm, O. A. Coso, S. Montaner, N. Xu, and J. S. Gutkind, “The Small GTP-binding Protein Rho Links G Protein-coupled Receptors and Galpha12 to the Serum Response Element and to Cellular Transformation,” Proceedings of the National Academy of Sciences of the United States of America 94, no. 19 (1997): 10098-10103.

[183]

V. Radhika and N. Dhanasekaran, “Transforming G Proteins,” Oncogene 20, no. 13 (2001): 1607-1614.

[184]

S. A. K. Rasheed, L. V. Subramanyan, W. K. Lim, U. K. Udayappan, M. Wang, and P. J. Casey, “The Emerging Roles of Gα12/13 Proteins on the Hallmarks of Cancer in Solid Tumors,” Oncogene 41, no. 2 (2022): 147-158.

[185]

Z. G. Goldsmith and D. N. Dhanasekaran, “G Protein Regulation of MAPK Networks,” Oncogene 26, no. 22 (2007): 3122-3142.

[186]

P. Kelly, L. N. Stemmle, J. F. Madden, T. A. Fields, Y. Daaka, and P. J. Casey, “A Role for the G12 family of Heterotrimeric G Proteins in Prostate Cancer Invasion,” The Journal of Biological Chemistry 281, no. 36 (2006): 26483-26490.

[187]

R. A. Bartolomé, N. Wright, I. Molina-Ortiz, F. J. Sánchez-Luque, and J. Teixidó, “Activated G(alpha)13 Impairs Cell Invasiveness Through p190RhoGAP-mediated Inhibition of RhoA Activity,” Cancer Research 68, no. 20 (2008): 8221-8230.

[188]

D. Bian, C. Mahanivong, J. Yu, et al., “The G12/13-RhoA Signaling Pathway Contributes to Efficient Lysophosphatidic Acid-stimulated Cell Migration,” Oncogene 25, no. 15 (2006): 2234-2244.

[189]

Y. Xu, J. Rong, S. Duan, et al., “High Expression of GNA13 Is Associated With Poor Prognosis in Hepatocellular Carcinoma,” Scientific Reports 6 (2016): 35948.

[190]

Y. Daaka, “G Proteins in Cancer: The Prostate Cancer Paradigm,” Science's STKE: Signal Transduction Knowledge Environment 2004, no. 216 (2004): re2.

[191]

S. A. K. Rasheed, H. S. Leong, M. Lakshmanan, et al., “GNA13 expression Promotes Drug Resistance and Tumor-initiating Phenotypes in Squamous Cell Cancers,” Oncogene 37, no. 10 (2018): 1340-1353.

[192]

J. X. Zhang, M. Yun, Y. Xu, et al., “GNA13 as a Prognostic Factor and Mediator of Gastric Cancer Progression,” Oncotarget 7, no. 4 (2016): 4414-4427.

[193]

M. C. Smith, K. E. Luker, J. R. Garbow, et al., “CXCR4 regulates Growth of both Primary and Metastatic Breast Cancer,” Cancer Research 64, no. 23 (2004): 8604-8612.

[194]

H. Yagi, W. Tan, P. Dillenburg-Pilla, et al., “A Synthetic Biology Approach Reveals a CXCR4-G13-Rho Signaling Axis Driving Transendothelial Migration of Metastatic Breast Cancer Cells,” Science Signaling 4, no. 191 (2011): ra60.

[195]

M. O'Hayre, A. Inoue, and I. Kufareva, “Inactivating Mutations in GNA13 and RHOA in Burkitt's Lymphoma and Diffuse Large B-cell Lymphoma: A Tumor Suppressor Function for the Gα13/RhoA Axis in B Cells,” Oncogene 35, no. 29 (2016): 3771-3780.

[196]

C. Love, Z. Sun, D. Jima, et al., “The Genetic Landscape of Mutations in Burkitt Lymphoma,” Nature Genetics 44, no. 12 (2012): 1321-1325.

[197]

J. R. Muppidi, R. Schmitz, J. A. Green, et al., “Loss of Signalling via Gα13 in Germinal Centre B-cell-derived Lymphoma,” Nature 516, no. 7530 (2014): 254-258.

[198]

J. A. Healy, A. Nugent, R. E. Rempel, et al., “GNA13 loss in Germinal Center B Cells Leads to Impaired Apoptosis and Promotes Lymphoma in Vivo,” Blood 127, no. 22 (2016): 2723-2731.

[199]

J. H. Hurst and S. B. Hooks, “Regulator of G-protein Signaling (RGS) Proteins in Cancer Biology,” Biochemical Pharmacology 78, no. 10 (2009): 1289-1297.

[200]

V. DiGiacomo, M. Maziarz, A. Luebbers, J. M. Norris, P. Laksono, and M. Garcia-Marcos, “Probing the Mutational Landscape of Regulators of G Protein Signaling Proteins in Cancer,” Science Signaling no. 617 (2020): 13.

[201]

N. Sethakorn and N. O. Dulin, “RGS Expression in Cancer: Oncomining the Cancer Microarray Data,” Journal of Receptor and Signal Transduction Research 33, no. 3 (2013): 166-171.

[202]

O. Zimmermannova, E. Doktorova, J. Stuchly, et al., “An Activating Mutation of GNB1 Is Associated With Resistance to Tyrosine Kinase Inhibitors in ETV6-ABL1-positive Leukemia,” Oncogene 36, no. 43 (2017): 5985-5994.

[203]

M. A. Barber, S. Donald, S. Thelen, K. E. Anderson, M. Thelen, and H. C. E. Welch, “Membrane Translocation of P-Rex1 Is Mediated by G Protein Βγ Subunits and Phosphoinositide 3-Kinase*,” Journal of Biological Chemistry 282, no. 41 (2007): 29967-29976.

[204]

H. C. Welch, W. J. Coadwell, C. D. Ellson, et al., “P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated Guanine-nucleotide Exchange Factor for Rac,” Cell 108, no. 6 (2002): 809-821.

[205]

B. D. Khalil, C. Hsueh, Y. Cao, et al., “GPCR Signaling Mediates Tumor Metastasis via PI3Kβ,” Cancer Research 76, no. 10 (2016): 2944-2953.

[206]

H. A. Dbouk, O. Vadas, A. Shymanets, et al., “G Protein-coupled Receptor-mediated Activation of p110β by Gβγ Is Required for Cellular Transformation and Invasiveness,” Science Signaling 5, no. 253 (2012): ra89.

[207]

X. Tang, Z. Sun, C. Runne, et al., “A Critical Role of Gbetagamma in Tumorigenesis and Metastasis of Breast Cancer,” The Journal of Biological Chemistry 286, no. 15 (2011): 13244-13254.

[208]

J. Vázquez-Prado, I. Bracho-Valdés, R. D. Cervantes-Villagrana, and G. Reyes-Cruz, “Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment,” Molecular Pharmacology 90, no. 5 (2016): 573-586.

[209]

A. L. Bookout, A. E. Finney, R. Guo, K. Peppel, W. J. Koch, and Y. Daaka, “Targeting Gbetagamma Signaling to Inhibit Prostate Tumor Formation and Growth,” The Journal of Biological Chemistry 278, no. 39 (2003): 37569-37573.

[210]

M. S. Sosa, C. Lopez-Haber, C. Yang, et al., “Identification of the Rac-GEF P-Rex1 as an Essential Mediator of ErbB Signaling in Breast Cancer,” Molecular Cell 40, no. 6 (2010): 877-892.

[211]

V. Korinek, N. Barker, P. J. Morin, et al., “Constitutive Transcriptional Activation by a Beta-catenin-Tcf Complex in APC-/- colon Carcinoma,” Science (New York, NY) 275, no. 5307 (1997): 1784-1787.

[212]

T. Valenta, G. Hausmann, and K. Basler, “The Many Faces and Functions of β-catenin,” The EMBO Journal 31, no. 12 (2012): 2714-2736.

[213]

R. van Amerongen, “Alternative Wnt Pathways and Receptors,” Cold Spring Harbor Perspectives in Biology 4 (2012).

[214]

A. Rasola, M. Fassetta, F. De Bacco, et al., “A Positive Feedback Loop Between Hepatocyte Growth Factor Receptor and Beta-catenin Sustains Colorectal Cancer Cell Invasive Growth,” Oncogene 26, no. 7 (2007): 1078-1087.

[215]

L. Yang, C. Lin, and Z. R. Liu, “P68 RNA Helicase Mediates PDGF-induced Epithelial Mesenchymal Transition by Displacing Axin From Beta-catenin,” Cell 127, no. 1 (2006): 139-155.

[216]

G. M. Birdsey, A. V. Shah, and N. Dufton, “The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth Through Wnt/β-catenin Signaling,” Developmental Cell 32, no. 1 (2015): 82-96.

[217]

V. L. Katanaev, R. Ponzielli, M. Sémériva, and A. Tomlinson, “Trimeric G Protein-dependent Frizzled Signaling in Drosophila,” Cell 120, no. 1 (2005): 111-122.

[218]

T. Liu, A. J. DeCostanzo, X. Liu, et al., “G Protein Signaling From Activated Rat Frizzled-1 to the β-Catenin-Lef-Tcf Pathway,” Science (New York, NY) 292, no. 5522 (2001): 1718-1722.

[219]

D. C. Slusarski, V. G. Corces, and R. T. Moon, “Interaction of Wnt and a Frizzled Homologue Triggers G-protein-linked Phosphatidylinositol Signalling,” Nature 390, no. 6658 (1997): 410-413.

[220]

M. Chen and X. He, “APC Deficiency Leads to β-Catenin Stabilization and Signaling Independent of LRP5/6,” Developmental Cell 49, no. 6 (2019): 825-826.

[221]

J. B. Regard, N. Cherman, D. Palmer, et al., “Wnt/β-catenin Signaling Is Differentially Regulated by Gα Proteins and Contributes to Fibrous Dysplasia,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 50 (2011): 20101-20106.

[222]

E. Miller, J. Yang, M. DeRan, et al., “Identification of Serum-derived Sphingosine-1-phosphate as a Small Molecule Regulator of YAP,” Chemistry & Biology 19, no. 8 (2012): 955-962.

[223]

F. X. Yu, B. Zhao, N. Panupinthu, et al., “Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling,” Cell 187, no. 6 (2024): 1563-1564.

[224]

H. Li, Q. Li, K. Dang, et al., “YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression,” Cell Reports 29, no. 10 (2019): 3200-3211.e3204.

[225]

A. Ramos and F. D. Camargo, “The Hippo Signaling Pathway and Stem Cell Biology,” Trends in Cell Biology 22, no. 7 (2012): 339-346.

[226]

M. Kim, M. Kim, S. Lee, et al., “Lim DS: CAMP/PKA Signalling Reinforces the LATS-YAP Pathway to Fully Suppress YAP in Response to Actin Cytoskeletal Changes,” The EMBO Journal 32, no. 11 (2013): 1543-1555.

[227]

R. Iglesias-Bartolome, D. Torres, R. Marone, et al., “Inactivation of a Gαs-PKA Tumor Suppressor Pathway in Skin Stem Cells Initiates Basal-cell Carcinogenesis,” Nature Cell Biology 17 (2015): 793-803.

[228]

R. Gong, A. W. Hong, S. W. Plouffe, et al., “Opposing Roles of Conventional and Novel PKC Isoforms in Hippo-YAP Pathway Regulation,” Cell Research 25, no. 8 (2015): 985-988.

[229]

F. X. Yu, B. Zhao, N. Panupinthu, et al., “Regulation of the Hippo-YAP Pathway by G-protein-coupled Receptor Signaling,” Cell 150, no. 4 (2012): 780-791.

[230]

Z. Meng, T. Moroishi, V. Mottier-Pavie, et al., “MAP4K family Kinases Act in Parallel to MST1/2 to Activate LATS1/2 in the Hippo Pathway,” Nature Communications 6, no. 1 (2015): 8357.

[231]

F. X. Yu, B. Zhao, and K. L. Guan, “Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer,” Cell 163, no. 4 (2015): 811-828.

[232]

H. W. Park, Y. C. Kim, B. Yu, et al., “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162, no. 4 (2015): 780-794.

[233]

F. Hao, Q. Xu, Y. Zhao, et al., “Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells,” Molecular Cancer Research: MCR 15, no. 7 (2017): 929-941.

[234]

R. Feng, J. Gong, L. Wu, et al., “MAPK and Hippo Signaling Pathways Crosstalk via the RAF-1/MST-2 Interaction in Malignant Melanoma,” Oncology Reports 38, no. 2 (2017): 1199-1205.

[235]

J. Rosenbluh, D. Nijhawan, A. G. Cox, et al., “Β-Catenin-driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis,” Cell 151, no. 7 (2012): 1457-1473.

[236]

C. Dethlefsen, L. S. Hansen, C. Lillelund, et al., “Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development,” Cancer Research 77, no. 18 (2017): 4894-4904.

[237]

Y. Bao, K. Nakagawa, Z. Yang, et al., “A Cell-based Assay to Screen Stimulators of the Hippo Pathway Reveals the Inhibitory Effect of Dobutamine on the YAP-dependent Gene Transcription,” Journal of Biochemistry 150, no. 2 (2011): 199-208.

[238]

H. W. Park and K.-L. Guan, “Regulation of the Hippo Pathway and Implications for Anticancer Drug Development,” Trends in Pharmacological Sciences 34, no. 10 (2013): 581-589.

[239]

A. Nieto Gutierrez and P. H. McDonald, “GPCRs: Emerging Anti-cancer Drug Targets,” Cellular Signalling 41 (2018): 65-74.

[240]

M. D. Onken, C. M. Makepeace, K. M. Kaltenbronn, et al., “Targeting Nucleotide Exchange to Inhibit Constitutively Active G Protein α Subunits in Cancer Cells,” Science Signaling 11, no. 546 (2018).

[241]

S. Annala, X. Feng, N. Shridhar, et al., “Direct Targeting of Gα≪Sub≫Q≪/Sub≫ and Gα≪Sub≫11≪/Sub≫ Oncoproteins in Cancer Cells,” Science Signaling 12 (2019): eaau5948.

[242]

X. Chen, Q. Wu, P. Depeille, et al., “RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma,” Cancer Cell 31, no. 5 (2017): 685-696.e686.

[243]

D. C. Borcherding, W. Tong, E. R. Hugo, et al., “Expression and Therapeutic Targeting of Dopamine Receptor-1 (D1R) in Breast Cancer,” Oncogene 35, no. 24 (2016): 3103-3113.

[244]

R. Sever and J. S. Brugge, “Signal Transduction in Cancer,” Cold Spring Harbor Perspectives in Medicine 5, no. 4 (2015).

[245]

I. N. Sari, L. T. H. Phi, N. Jun, Y. T. Wijaya, S. Lee, and H. Y. Kwon, “Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells,” Cells 7, no. 11 (2018).

[246]

X. Liu, C. Ding, W. Tan, and A. Zhang, “Medulloblastoma: Molecular Understanding, Treatment Evolution, and New Developments,” Pharmacology & Therapeutics 210 (2020): 107516.

[247]

M. Didiasova, L. Schaefer, and M. Wygrecka, “Targeting GLI Transcription Factors in Cancer,” Molecules (Basel, Switzerland) 23, no. 5 (2018).

[248]

L. Lospinoso Severini, D. Quaglio, and I. Basili, “A Smo/Gli Multitarget Hedgehog Pathway Inhibitor Impairs Tumor Growth,” Cancers 11, no. 10 (2019).

[249]

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The next Generation,” Cell 144, no. 5 (2011): 646-674.

[250]

M. Zhang and S. Qiu, “Activation of GPR120 Promotes the Metastasis of Breast Cancer Through the PI3K/Akt/NF-κB Signaling Pathway,” Anti-Cancer Drugs 30, no. 3 (2019): 260-270.

[251]

L.-Q. Zhang, S.-Q. Yang, X.-D. Qu, X.-J. Chen, H.-S. Lu, and Y. Wang, “GRP137 promotes Cell Proliferation and Metastasis Through Regulation of the PI3K/AKT Pathway in human Ovarian Cancer,” Tumori Journal 104, no. 5 (2018): 330-337.

[252]

M. J. Smit, G. Schlecht-Louf, M. Neves, et al., “The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting,” Annual Review of Pharmacology and Toxicology 61 (2021): 541-563.

[253]

J. L. Jewell, V. Fu, A. W. Hong, et al., “GPCR Signaling Inhibits mTORC1 via PKA Phosphorylation of Raptor,” Elife 8, (2019):.

[254]

G. Mu, Q. Ding, H. Li, et al., “Gastrin Stimulates Pancreatic Cancer Cell Directional Migration by Activating the Gα12/13-RhoA-ROCK Signaling Pathway,” Experimental & Molecular Medicine 50, no. 5 (2018): 1-14.

[255]

A. A. Gad and N. Balenga, “The Emerging Role of Adhesion GPCRs in Cancer,” ACS Pharmacology & Translational Science 3, no. 1 (2020): 29-42.

[256]

A. F. Chambers, A. C. Groom, and I. C. MacDonald, “Dissemination and Growth of Cancer Cells in Metastatic Sites,” Nature Reviews Cancer 2, no. 8 (2002): 563-572.

[257]

A. Müller, B. Homey, H. Soto, et al., “Involvement of Chemokine Receptors in Breast Cancer Metastasis,” Nature 410, no. 6824 (2001): 50-56.

[258]

F. Balkwill, “Cancer and the Chemokine Network,” Nature Reviews Cancer 4, no. 7 (2004): 540-550.

[259]

A. Zlotnik, A. M. Burkhardt, and B. Homey, “Homeostatic Chemokine Receptors and Organ-specific Metastasis,” Nature Reviews Immunology 11, no. 9 (2011): 597-606.

[260]

X. Tang, R. Jin, G. Qu, et al., “GPR116, an Adhesion G-protein-coupled Receptor, Promotes Breast Cancer Metastasis via the Gαq-p63RhoGEF-Rho GTPase Pathway,” Cancer Research 73, no. 20 (2013): 6206-6218.

[261]

J. K. Nag, H. Malka, P. Appasamy, S. Sedley, and R. Bar-Shavit, “GPCR Partners as Cancer Driver Genes: Association With PH-Signal Proteins in a Distinctive Signaling Network,” International Journal of Molecular Sciences 22, no. 16 (2021).

[262]

B. B. Moore, D. A. Arenberg, C. L. Addison, M. P. Keane, P. J. Polverini, and R. M. Strieter, “CXC Chemokines Mechanism of Action in Regulating Tumor Angiogenesis,” Angiogenesis 2, no. 2 (1998): 123-134.

[263]

D. E. Richard, V. Vouret-Craviari, and J. Pouysségur, “Angiogenesis and G-protein-coupled Receptors: Signals That Bridge the Gap,” Oncogene 20, no. 13 (2001): 1556-1562.

[264]

D. Wang and R. N. Dubois, “Prostaglandins and Cancer,” Gut 55, no. 1 (2006): 115-122.

[265]

M. A. Iñiguez, A. Rodrı́guez, O. V. Volpert, M. Fresno, and J. M. Redondo, “Cyclooxygenase-2: A Therapeutic Target in Angiogenesis,” Trends in Molecular Medicine 9, no. 2 (2003): 73-78.

[266]

D. Zeng, M. Li, R. Zhou, et al., “Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures,” Cancer Immunology Research 7, no. 5 (2019): 737-750.

[267]

A. Rojas, P. Araya, I. Gonzalez, and E. Morales, “Gastric Tumor Microenvironment,” Advances in Experimental Medicine and Biology 1226 (2020): 23-35.

[268]

D. F. Quail and J. A. Joyce, “Microenvironmental Regulation of Tumor Progression and Metastasis,” Nature Medicine 19, no. 11 (2013): 1423-1437.

[269]

K. J. Chiu, H. C. Chiou, C. H. Huang, et al., “Natural Compounds Targeting Cancer-Associated Fibroblasts Against Digestive System Tumor Progression: Therapeutic Insights,” Biomedicines 10, no. 3 (2022).

[270]

A. Peltier, R. D. Seban, I. Buvat, F. C. Bidard, and F. Mechta-Grigoriou, “Fibroblast Heterogeneity in Solid Tumors: From Single Cell Analysis to Whole-body Imaging,” Seminars in Cancer Biology 86, no. Pt 3 (2022): 262-272.

[271]

N. Nagarsheth, M. S. Wicha, and W. Zou, “Chemokines in the Cancer Microenvironment and Their Relevance in Cancer Immunotherapy,” Nature Reviews Immunology 17, no. 9 (2017): 559-572.

[272]

A. V. Gorbachev and R. L. Fairchild, “Regulation of Chemokine Expression in the Tumor Microenvironment,” Critical Reviews in Immunology 34, no. 2 (2014): 103-120.

[273]

H. Shen, X. Gu, X. Li, et al., “C5aR1 shapes a Non-inflammatory Tumor Microenvironment and Mediates Immune Evasion in Gastric Cancer,” Biomolecules & Biomedicine 23, no. 3 (2023): 392-404.

[274]

F. Chen, S. Yin, L. Niu, et al., “Expression of the Chemokine Receptor CXCR3 Correlates With Dendritic Cell Recruitment and Prognosis in Gastric Cancer,” Genetic Testing and Molecular Biomarkers 22, no. 1 (2018): 35-42.

[275]

T. A. Sebrell, M. Hashimi, B. Sidar, et al., “A Novel Gastric Spheroid Co-culture Model Reveals Chemokine-Dependent Recruitment of Human Dendritic Cells to the Gastric Epithelium,” Cellular and Molecular Gastroenterology and Hepatology 8, no. 1 (2019): 157-171.e153.

[276]

N. R. Maimela, S. Liu, and Y. Zhang, “Fates of CD8+ T Cells in Tumor Microenvironment,” Computational and Structural Biotechnology Journal 17 (2019): 1-13.

[277]

C. Y. Slaney, M. H. Kershaw, and P. K. Darcy, “Trafficking of T Cells Into Tumors,” Cancer Research 74, no. 24 (2014): 7168-7174.

[278]

S. Ishigami, S. Natsugoe, K. Tokuda, et al., “Clinical Impact of Intratumoral Natural Killer Cell and Dendritic Cell Infiltration in Gastric Cancer,” Cancer Letters 159, no. 1 (2000): 103-108.

[279]

T. Bald, M. F. Krummel, M. J. Smyth, and K. C. Barry, “The NK Cell-cancer Cycle: Advances and New Challenges in NK Cell-based Immunotherapies,” Nature Immunology 21, no. 8 (2020): 835-847.

[280]

A. Bikfalvi and C. Billottet, “The CC and CXC Chemokines: Major Regulators of Tumor Progression and the Tumor Microenvironment,” American Journal of Physiology Cell Physiology 318, no. 3 (2020): C542-c554.

[281]

Y. Mizukami, K. Kono, Y. Kawaguchi, et al., “CCL17 and CCL22 Chemokines Within Tumor Microenvironment Are Related to Accumulation of Foxp3+ Regulatory T Cells in Gastric Cancer,” International Journal of Cancer 122, no. 10 (2008): 2286-2293.

[282]

X. Liu, Z. Zhang, and G. Zhao, “Recent Advances in the Study of Regulatory T Cells in Gastric Cancer,” International Immunopharmacology 73 (2019): 560-567.

[283]

L. Parisi, E. Gini, D. Baci, et al., “Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?,” Journal of Immunology Research 2018 (2018): 8917804.

[284]

P. Ruytinx, P. Proost, J. Van Damme, and S. Struyf, “Chemokine-Induced Macrophage Polarization in Inflammatory Conditions,” Frontiers in Immunology 9 (2018): 1930.

[285]

K. Echizen, O. Hirose, Y. Maeda, and M. Oshima, “Inflammation in Gastric Cancer: Interplay of the COX-2/Prostaglandin E2 and Toll-Like Receptor/MyD88 Pathways,” Cancer Science 107, no. 4 (2016): 391-397.

[286]

H. Oshima and M. Oshima, “The Role of PGE2-associated Inflammatory Responses in Gastric Cancer Development,” Seminars in Immunopathology 35, no. 2 (2013): 139-150.

[287]

F. Labrie, A. Bélanger, V. Luu-The, et al., “Gonadotropin-releasing Hormone Agonists in the Treatment of Prostate Cancer,” Endocrine Reviews 26, no. 3 (2005): 361-379.

[288]

T. Meyer, M. E. Caplin, D. H. Palmer, et al., “A Phase Ib/IIa Trial to Evaluate the CCK2 Receptor Antagonist Z-360 in Combination With Gemcitabine in Patients With Advanced Pancreatic Cancer,” European Journal of Cancer (Oxford, England: 1990) 46, no. 3 (2010): 526-533.

[289]

J. Fischgräbe, M. Götte, K. Michels, L. Kiesel, and P. Wülfing, “Targeting Endothelin A Receptor Enhances Anti-proliferative and Anti-invasive Effects of the HER2 Antibody Trastuzumab in HER2-overexpressing Breast Cancer Cells,” International Journal of Cancer 127, no. 3 (2010): 696-706.

[290]

X. Liu, J. Yu, S. Song, X. Yue, and Q. Li, “Protease-activated Receptor-1 (PAR-1): A Promising Molecular Target for Cancer,” Oncotarget 8, no. 63 (2017): 107334-107345.

[291]

S. M. DeWire, D. S. Yamashita, D. H. Rominger, et al., “A G Protein-biased Ligand at the μ-opioid Receptor Is Potently Analgesic With Reduced Gastrointestinal and respiratory Dysfunction Compared With Morphine,” The Journal of Pharmacology and Experimental Therapeutics 344, no. 3 (2013): 708-717.

[292]

J. Li, X. Chen, A. Lu, and C. Liang, “Targeted Protein Degradation in Cancers: Orthodox PROTACs and Beyond,” Innovation (Cambridge (Mass)) 4, no. 3 (2023): 100413.

[293]

V. R. Saca, T. Huber, and T. P. Sakmar, “G Protein-coupled Receptor-targeted Proteolysis-targeting Chimeras in Cancer Therapeutics,” Molecular Pharmacology 107, no. 2 (2025): 100013.

[294]

T. Ishida, T. Joh, N. Uike, et al., “Defucosylated Anti-CCR4 Monoclonal Antibody (KW-0761) for Relapsed Adult T-cell Leukemia-lymphoma: A Multicenter Phase II Study,” Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 30, no. 8 (2012): 837-842.

[295]

S. Garg, M. Vij, N. Edward, and B. Vij, “Erenumab: A Novel Calcitonin Gene-related Peptide Receptor Antagonist Developed Specifically for Migraine Prevention,” Journal of Anaesthesiology, Clinical Pharmacology 36, no. 1 (2020): 104-109.

[296]

W. Kang, C. Ding, D. Zheng, et al., “Nanobody Conjugates for Targeted Cancer Therapy and Imaging,” Technology in Cancer Research & Treatment 20 (2021): 15330338211010117.

[297]

A. Manglik, B. K. Kobilka, and J. Steyaert, “Nanobodies to Study G Protein-Coupled Receptor Structure and Function,” Annual Review of Pharmacology and Toxicology 57 (2017): 19-37.

[298]

L. Liu, B. Tu, Y. Sun, et al., “Nanobody-based Drug Delivery Systems for Cancer Therapy,” Journal of Controlled Release: Official Journal of the Controlled Release Society 381 (2025): 113562.

[299]

T. W. M. De Groof, V. Mashayekhi, T. S. Fan, et al., “Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells,” Molecular Pharmaceutics 16, no. 7 (2019): 3145-3156.

[300]

C. Bao, Q. Gao, L.-L. Li, et al., “The Application of Nanobody in CAR-T Therapy,” Biomolecules 11, no. 2 (2021): 238.

[301]

J. Zhang, H. Feng, S. Xu, and P. Feng, “Hijacking GPCRs by Viral Pathogens and Tumor,” Biochemical Pharmacology 114 (2016): 69-81.

[302]

J. R. van Senten, T. S. Fan, M. Siderius, and M. J. Smit, “Viral G Protein-coupled Receptors as Modulators of Cancer Hallmarks,” Pharmacological Research 156 (2020): 104804.

[303]

L. Schalop and J. Allen, GPCRs, Desirable Therapeutic Targets in Oncology (Drug Discovery and Development, 2017).

[304]

J. S. Lorente, A. V. Sokolov, G. Ferguson, H. B. Schiöth, A. S. Hauser, and D. E. Gloriam, “GPCR Drug Discovery: New Agents, Targets and Indications,” Nature Reviews Drug Discovery (2025).

[305]

S. Usman, M. Khawer, S. Rafique, Z. Naz, and K. Saleem, “The Current Status of Anti-GPCR Drugs Against Different Cancers,” Journal of Pharmaceutical Analysis 10, no. 6 (2020): 517-521.

[306]

C. McBrien and D. J. O'Connell, “The Use of Biologics for Targeting GPCRs in Metastatic Cancers,” Biotechniques 14, no. 1 (2025): 7.

[307]

C. V. Perez Almeria, I. M. Setiawan, M. Siderius, and M. J. Smit, “G Protein-coupled Receptors as Promising Targets in Cancer,” Current Opinion in Endocrine and Metabolic Research 16 (2021): 119-127.

[308]

S. J. Lin, Z. R. Wu, L. Cao, et al., “Pituitary Tumor Suppression by Combination of Cabergoline and Chloroquine,” The Journal of Clinical Endocrinology & Metabolism 102, no. 10 (2017): 3692-3703.

[309]

M. E. Caplin, M. Pavel, J. B. Ćwikła, et al., “Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors,” The New England Journal of Medicine 371, no. 3 (2014): 224-233.

[310]

H. Van Poppel, B. Tombal, J. J. de la Rosette, B.-E. Persson, J.-K. Jensen, and T. Kold Olesen, “Degarelix: A Novel Gonadotropin-Releasing Hormone (GnRH) Receptor Blocker—Results From a 1-yr, Multicentre, Randomised, Phase 2 Dosage-Finding Study in the Treatment of Prostate Cancer,” European Urology 54, no. 4 (2008): 805-815.

[311]

E. De Clercq, “Mozobil® (Plerixafor, AMD3100), 10 Years After Its Approval by the US Food and Drug Administration,” Antiviral Chemistry & Chemotherapy 27 (2019): 2040206619829382.

[312]

K. W. Lor, P. J. Helmons, H. Belew, J. R. Lane, and E. D. Ball, “Plerixafor as First- and Second-line Strategies for Autologous Stem Cell Mobilization in Patients With non-Hodgkin's Lymphoma or Multiple Myeloma,” Pharmacotherapy 32, no. 7 (2012): 596-603.

[313]

C. Fellner, “Vismodegib (erivedge) for Advanced Basal Cell Carcinoma,” P & T: A Peer-Reviewed Journal for Formulary Management 37, no. 12 (2012): 670-682.

[314]

E. F. O'Donnell, D. C. Koch, W. H. Bisson, H. S. Jang, and S. K. Kolluri, “The Aryl Hydrocarbon Receptor Mediates Raloxifene-induced Apoptosis in Estrogen Receptor-negative Hepatoma and Breast Cancer Cells,” Cell Death & Disease 5, no. 1 (2014): e1038.

[315]

J. Strosberg, G. El-Haddad, E. Wolin, et al., “Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors,” The New England Journal of Medicine 376, no. 2 (2017): 125-135.

[316]

J. de Lartigue, “Mogamulizumab for the Treatment of Adult T-cell Leukemia/Lymphoma,” Drugs of Today (Barcelona, Spain: 1998) 48, no. 10 (2012): 655-660.

[317]

L. Klotz, L. Boccon-Gibod, N. D. Shore, et al., “The Efficacy and Safety of degarelix: A 12-month, Comparative, Randomized, Open-label, Parallel-group Phase III Study in Patients With Prostate Cancer,” BJU International 102, no. 11 (2008): 1531-1538.

[318]

E. D. Pulte, K. J. Norsworthy, Y. Wang, et al., “FDA Approval Summary: Gilteritinib for Relapsed or Refractory Acute Myeloid Leukemia With a FLT3 Mutation,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 27, no. 13 (2021): 3515-3521.

[319]

S. Das, T. Al-Toubah, G. El-Haddad, and J. Strosberg, “(177)Lu-DOTATATE for the Treatment of Gastroenteropancreatic Neuroendocrine Tumors,” Expert Review of Gastroenterology & Hepatology 13, no. 11 (2019): 1023-1031.

[320]

R. W. Walters, A. K. Shukla, J. J. Kovacs, et al., “beta-Arrestin1 Mediates Nicotinic Acid-induced Flushing, but Not Its Antilipolytic Effect, in Mice,” The Journal of Clinical Investigation 119, no. 5 (2009): 1312-1321.

[321]

V. S. Kamanna, S. H. Ganji, and M. L. Kashyap, “The Mechanism and Mitigation of Niacin-induced Flushing,” International Journal of Clinical Practice 63, no. 9 (2009): 1369-1377.

[322]

S. M. DeWire and J. D. Violin, “Biased Ligands for Better Cardiovascular Drugs: Dissecting G-protein-coupled Receptor Pharmacology,” Circulation Research 109, no. 2 (2011): 205-216.

[323]

B. Lauring, A. K. Taggart, J. R. Tata, et al., “Niacin Lipid Efficacy Is Independent of both the Niacin Receptor GPR109A and Free Fatty Acid Suppression,” Science Translational Medicine 4, no. 148 (2012): 148ra115.

[324]

L. M. Bohn, R. J. Lefkowitz, R. R. Gainetdinov, K. Peppel, M. G. Caron, and F. T. Lin, “Enhanced Morphine Analgesia in Mice Lacking Beta-arrestin 2,” Science (New York, NY) 286, no. 5449 (1999): 2495-2498.

[325]

L. M. Bohn, R. R. Gainetdinov, F. T. Lin, R. J. Lefkowitz, and M. G. Caron, “Mu-opioid Receptor Desensitization by Beta-arrestin-2 Determines Morphine Tolerance but Not Dependence,” Nature 408, no. 6813 (2000): 720-723.

[326]

L. M. Bohn, L. A. Dykstra, R. J. Lefkowitz, M. G. Caron, and L. S. Barak, “Relative Opioid Efficacy Is Determined by the Complements of the G Protein-coupled Receptor Desensitization Machinery,” Molecular Pharmacology 66, no. 1 (2004): 106-112.

[327]

K. M. Raehal and L. M. Bohn, “The Role of Beta-arrestin2 in the Severity of Antinociceptive Tolerance and Physical Dependence Induced by Different Opioid Pain Therapeutics,” Neuropharmacology 60, no. 1 (2011): 58-65.

[328]

K. M. Raehal, J. K. Walker, and L. M. Bohn, “Morphine Side Effects in Beta-arrestin 2 Knockout Mice,” The Journal of Pharmacology and Experimental Therapeutics 314, no. 3 (2005): 1195-1201.

[329]

L. M. Bohn and K. M. Raehal, “Opioid Receptor Signaling: Relevance for Gastrointestinal Therapy,” Current Opinion in Pharmacology 6, no. 6 (2006): 559-563.

[330]

C. E. Groer, K. Tidgewell, R. A. Moyer, et al., “An Opioid Agonist That Does Not Induce Mu-opioid Receptor-arrestin Interactions or Receptor Internalization,” Molecular Pharmacology 71, no. 2 (2007): 549-557.

[331]

K. Lamb, K. Tidgewell, D. S. Simpson, L. M. Bohn, and T. E. Prisinzano, “Antinociceptive Effects of Herkinorin, a MOP Receptor Agonist Derived From Salvinorin A in the Formalin Test in Rats: New Concepts in Mu Opioid Receptor Pharmacology: From a Symposium on New Concepts in Mu-opioid Pharmacology,” Drug and Alcohol Dependence 121, no. 3 (2012): 181-188.

[332]

M. D. Hollenberg and S. J. Compton, “International Union of Pharmacology. XXVIII. Proteinase-activated Receptors,” Pharmacological Reviews 54, no. 2 (2002): 203-217.

[333]

A. Boire, L. Covic, A. Agarwal, S. Jacques, S. Sherifi, and A. Kuliopulos, “PAR1 is a Matrix Metalloprotease-1 Receptor That Promotes Invasion and Tumorigenesis of Breast Cancer Cells,” Cell 120, no. 3 (2005): 303-313.

[334]

L. Kamath, A. Meydani, F. Foss, and A. Kuliopulos, “Signaling From Protease-activated Receptor-1 Inhibits Migration and Invasion of Breast Cancer Cells,” Cancer Research 61, no. 15 (2001): 5933-5940.

[335]

E. Yang, A. Boire, A. Agarwal, et al., “Blockade of PAR1 Signaling With Cell-penetrating Pepducins Inhibits Akt Survival Pathways in Breast Cancer Cells and Suppresses Tumor Survival and Metastasis,” Cancer Research 69, no. 15 (2009): 6223-6231.

[336]

S. Even-Ram, B. Uziely, P. Cohen, et al., “Thrombin Receptor Overexpression in Malignant and Physiological Invasion Processes,” Nature Medicine 4, no. 8 (1998): 909-914.

[337]

S. C. Even-Ram, M. Maoz, E. Pokroy, et al., “Tumor Cell Invasion Is Promoted by Activation of Protease Activated Receptor-1 in Cooperation With the Alpha Vbeta 5 Integrin,” The Journal of Biological Chemistry 276, no. 14 (2001): 10952-10962.

[338]

C. B. Martin, G. M. Mahon, M. B. Klinger, et al., “The Thrombin Receptor, PAR-1, Causes Transformation by Activation of Rho-mediated Signaling Pathways,” Oncogene 20, no. 16 (2001): 1953-1963.

[339]

Y. J. Yin, Z. Salah, M. Maoz, et al., “Oncogenic Transformation Induces Tumor Angiogenesis: A Role for PAR1 Activation,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 17, no. 2 (2003): 163-174.

[340]

E. Yang, J. Cisowski, N. Nguyen, et al., “Dysregulated Protease Activated Receptor 1 (PAR1) Promotes Metastatic Phenotype in Breast Cancer Through HMGA2,” Oncogene 35, no. 12 (2016): 1529-1540.

[341]

P. Ghio, S. Cappia, G. Selvaggi, et al., “Prognostic Role of Protease-activated Receptors 1 and 4 in Resected Stage IB Non-small-cell Lung Cancer,” Clinical Lung Cancer 7, no. 6 (2006): 395-400.

[342]

M. H. Cohen, J. Gootenberg, P. Keegan, and R. Pazdur, “FDA Drug Approval Summary: Bevacizumab (Avastin) plus Carboplatin and Paclitaxel as First-line Treatment of Advanced/Metastatic Recurrent Nonsquamous Non-small Cell Lung Cancer,” The Oncologist 12, no. 6 (2007): 713-718.

[343]

J. Cisowski, K. O'Callaghan, A. Kuliopulos, et al., “Targeting Protease-activated Receptor-1 With Cell-penetrating Pepducins in Lung Cancer,” The American Journal of Pathology 179, no. 1 (2011): 513-523.

[344]

C. J. Foley and A. Kuliopulos, “Mouse Matrix Metalloprotease-1a (Mmp1a) Gives New Insight Into MMP Function,” Journal of Cellular Physiology 229, no. 12 (2014): 1875-1880.

[345]

A. Agarwal, L. Covic, L. M. Sevigny, et al., “Targeting a Metalloprotease-PAR1 Signaling System With Cell-penetrating Pepducins Inhibits Angiogenesis, Ascites, and Progression of Ovarian Cancer,” Molecular Cancer Therapeutics 7, no. 9 (2008): 2746-2757.

[346]

A. J. Boland, A. A. O'Kane, R. Buick, D. B. Longley, and C. J. Scott, “Antibody Therapy in Pancreatic Cancer: MAb-ye We're Onto Something?,” Biochimica Et Biophysica Acta (BBA)—Reviews on Cancer 1876, no. 1 (2021): 188557.

[347]

B. E. Booker, A. D. Steg, S. Kovac, C. N. Landen, and H. M. Amm, “The Use of Hedgehog Antagonists in Cancer Therapy: A Comparison of Clinical Outcomes and Gene Expression Analyses,” Cancer Biology & Therapy 21, no. 10 (2020): 873-883.

[348]

S. Hehlgans, P. Booms, Ö. Güllülü, et al., “Radiation Sensitization of Basal Cell and Head and Neck Squamous Cell Carcinoma by the Hedgehog Pathway Inhibitor Vismodegib,” International Journal of Molecular Sciences 19, no. 9 (2018): 2485.

[349]

M. Ogura, T. Ishida, K. Hatake, et al., “Multicenter Phase II Study of mogamulizumab (KW-0761), a Defucosylated Anti-cc Chemokine Receptor 4 Antibody, in Patients With Relapsed Peripheral T-cell Lymphoma and Cutaneous T-cell Lymphoma,” Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 32, no. 11 (2014): 1157-1163.

[350]

K. Miller, J. W. Moul, M. Gleave, et al., “Phase III, Randomized, Placebo-controlled Study of Once-daily Oral Zibotentan (ZD4054) in Patients With Non-metastatic Castration-resistant Prostate Cancer,” Prostate Cancer and Prostatic Diseases 16, no. 2 (2013): 187-192.

[351]

I. R. Younis, D. J. George, T. J. McManus, et al., “Clinical Pharmacology of an Atrasentan and Docetaxel Regimen in Men With Hormone-refractory Prostate Cancer,” Cancer Chemotherapy and Pharmacology 73, no. 5 (2014): 991-997.

[352]

S. B. Kaye, L. Fehrenbacher, R. Holloway, et al., “A Phase II, Randomized, Placebo-controlled Study of vismodegib as Maintenance Therapy in Patients With Ovarian Cancer in Second or Third Complete Remission,” Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 18, no. 23 (2012): 6509-6518.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/