Targeted Therapies in the Most Common Advanced Solid Tumors, Drug Resistance, and Counteracting Progressive Micrometastatic Disease: The Next Frontier of Research

Andrea Nicolini , Paola Ferrari , Roberto Silvestri , Dario A. Bini

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70373

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70373 DOI: 10.1002/mco2.70373
REVIEW

Targeted Therapies in the Most Common Advanced Solid Tumors, Drug Resistance, and Counteracting Progressive Micrometastatic Disease: The Next Frontier of Research

Author information +
History +
PDF

Abstract

The era of targeted therapies has significantly advanced our understanding of cancer growth and metastasis. Intrinsic or acquired drug resistance remains a major challenge, rendering clinically overt metastatic disease incurable in most patients. This review first examines key clinical trials and their primary outcomes involving targeted therapies in the most common advanced solid tumors, along with the main mechanisms underlying drug resistance. Recently, micrometastatic disease has emerged as a novel focus of investigation aimed at definitively curing advanced solid tumors. Accordingly, this review explores the biology of micrometastases, current challenges in their detection and monitoring, and the main strategies proposed to prevent their progression. The potential roles of nanotechnology and artificial intelligence-driven predictive models are also discussed. Furthermore, we highlight specific characteristics of micrometastatic disease that favor immune modulation, and we evaluate the effectiveness of an immunotherapy regimen that inhibits immune suppression. The lead time provided by serum tumor markers, used experimentally to better track the progression of otherwise undetectable micrometastatic disease, also forms the mechanistic basis for a novel protocol we propose to prevent relapse in high-risk cancer patients. This innovative protocol holds scientific relevance being supported by an appropriate mathematical model and ready for immediate application in clinical practice.

Keywords

solid tumors / drug resistance / micrometastatic disease / immune suppression / immune therapy / serum tumor markers

Cite this article

Download citation ▾
Andrea Nicolini, Paola Ferrari, Roberto Silvestri, Dario A. Bini. Targeted Therapies in the Most Common Advanced Solid Tumors, Drug Resistance, and Counteracting Progressive Micrometastatic Disease: The Next Frontier of Research. MedComm, 2025, 6(10): e70373 DOI:10.1002/mco2.70373

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. J. Slamon, B. Leyland-Jones, S. Shak, et al., “Use of Chemotherapy plus a Monoclonal Antibody Against HER2 for Metastatic Breast Cancer That Overexpresses HER2,” New England Journal of Medicine 344, no. 11 (2001): 783-792.

[2]

D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell 100, no. 1 (2000): 57-70.

[3]

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The next Generation,” Cell 144, no. 5 (2011): 646-674.

[4]

N. A. Brown and K. S. J. Elenitoba-Johnson, “Enabling Precision Oncology through Precision Diagnostics,” Annual Review of Pathology 15 (2020): 97-121.

[5]

E. Pérez-Herrero and A. Fernández-Medarde, “Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy,” European Journal of Pharmaceutics and Biopharmaceutics 93 (2015): 52-79.

[6]

M. R. Waarts, A. J. Stonestrom, Y. C. Park, and R. L. Levine, “Targeting Mutations in Cancer,” Journal of Clinical Investigation 132, no. 8 (2022): e154943.

[7]

T. Tang, X. Huang, G. Zhang, Z. Hong, X. Bai, and T. Liang, “Advantages of Targeting the Tumor Immune Microenvironment Over Blocking Immune Checkpoint in Cancer Immunotherapy,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 72.

[8]

S. R. Yang, A. M. Schultheis, H. Yu, D. Mandelker, M. Ladanyi, and R. Büttner, “Precision Medicine in Non-small Cell Lung Cancer: Current Applications and Future Directions,” Seminars in Cancer Biology 84 (2022): 184-198.

[9]

N. A. Pennell, M. E. Arcila, D. R. Grandara, and H. West, “Biomarker Testing for Patients With Advanced Non-small Cell Lung Cancer,” ASCO Educational Book 39 (2019): 531-542.

[10]

T. John, A. Taylor, H. Wang, C. Eichinger, C. Freeman, and M. J. Ahn, “Uncommon EGFR Mutations in Non-small-cell Lung Cancer: A Systematic Literature Review of Prevalence and Clinical Outcomes,” Cancer Epidemiology 76 (2022): 102080.

[11]

AstraZeneca Pharmaceuticals. Tagrisso (osimertinib): EMA summary of product characteristics. 2021, http://www.ema.europa.eu.

[12]

AstraZeneca Pharmaceuticals. Tagrisso (osimertinib): US Highlights of Prescribing Information. 2020, http://www.tagrisso.com/.

[13]

NCCN Guidelines. non-small cell lung cancer, version 7.2024. Accessed April 30, 2025, https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.

[14]

S. S. Ramalingam, J. Vansteenkiste, D. Planchard, et al., “Overall Survival With Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC,” New England Journal of Medicine 382, no. 1 (2020): 41-50.

[15]

D. Planchard, P. A. Jänne, Y. Cheng, et al., “Osimertinib With or Without Chemotherapy in EGFR-Mutated Advanced NSCLC,” New England Journal of Medicine 389, no. 21 (2023): 1935-1948.

[16]

J. C. Yang, M. Schuler, S. Popat, et al., “Afatinib for the Treatment of NSCLC Harboring Uncommon EGFR Mutations: A Database of 693 Cases,” Journal of Thoracic Oncology 15, no. 5 (2020): 803-815.

[17]

Y. Okuma, K. Kubota, M. Shimokawa, et al., “First-Line Osimertinib for Previously Untreated Patients with NSCLC and Uncommon EGFR Mutations: The UNICORN Phase 2 Nonrandomized Clinical Trial,” JAMA Oncology 10, no. 1 (2024): 43-51.

[18]

K. Park, E. B. Haura, N. B. Leighl, et al., “Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results from the CHRYSALIS Phase I Study,” Journal of Clinical Oncology 39, no. 30 (2021): 3391-3402.

[19]

C. Zhou, K. J. Tang, B. C. Cho, et al., “Amivantamab plus Chemotherapy in NSCLC With EGFR Exon 20 Insertions,” New England Journal of Medicine 389, no. 22 (2023): 2039-2051.

[20]

G. K. Dy, R. Govindan, V. Velcheti, et al., “Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients with Pretreated KRAS G12C-Mutated Non-Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100,” Journal of Clinical Oncology 41, no. 18 (2023): 3311-3317.

[21]

M. Soda, Y. L. Choi, M. Enomoto, et al., “Identification of the Transforming EML4-ALK Fusion Gene in Non-small-cell Lung Cancer,” Nature 448, no. 7153 (2007): 561-566.

[22]

Y. Sun, Y. Ren, Z. Fang, et al., “Lung Adenocarcinoma From East Asian Never-smokers Is a Disease Largely Defined by Targetable Oncogenic Mutant Kinases,” Journal of Clinical Oncology 28, no. 30 (2010): 4616-4620.

[23]

B. J. Solomon, T. Mok, D. W. Kim, et al., “First-line Crizotinib versus Chemotherapy in ALK-positive Lung Cancer,” New England Journal of Medicine 371, no. 23 (2014): 2167-2177.

[24]

Y. L. Wu, S. Lu, Y. Lu, et al., “Results of PROFILE 1029, a Phase III Comparison of First-Line Crizotinib versus Chemotherapy in East Asian Patients With ALK-Positive Advanced Non-Small Cell Lung Cancer,” Journal of Thoracic Oncology 13, no. 10 (2018): 1539-1548.

[25]

J. C. Soria, D. S. W. Tan, R. Chiari, et al., “First-line Ceritinib versus Platinum-based Chemotherapy in Advanced ALK-rearranged Non-small-cell Lung Cancer (ASCEND-4): A Randomised, Open-label, Phase 3 Study,” Lancet 389, no. 10072 (2017): 917-929.

[26]

S. Peters, D. R. Camidge, A. T. Shaw, et al., “Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer,” New England Journal of Medicine 377, no. 9 (2017): 829-838.

[27]

T. Mok, D. R. Camidge, S. M. Gadgeel, et al., “Updated Overall Survival and Final Progression-free Survival Data for Patients With Treatment-naive Advanced ALK-positive Non-small-cell Lung Cancer in the ALEX Study,” Annals of Oncology 31, no. 8 (2020): 1056-1064.

[28]

B. Stanzione, A. Del Conte, E. Bertoli, et al., “Therapeutical Options in ROS1-Rearranged Advanced Non Small Cell Lung Cancer,” International Journal of Molecular Sciences 24, no. 14 (2023): 11495.

[29]

R. Dziadziuszko, M. G. Krebs, F. De Braud, et al., “Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion-Positive Non-Small-Cell Lung Cancer,” Journal of Clinical Oncology 39, no. 11 (2021): 1253-1263.

[30]

A. Drilon, C. H. Chiu, Y. Fan, et al., “Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion-Positive NSCLC,” JTO Clinical and Research Reports 3, no. 6 (2022): 100332.

[31]

Y. Fan, A. Drilon, C. H. Chiu, et al., “Brief Report: Updated Efficacy and Safety Data from an Integrated Analysis of Entrectinib in Locally Advanced/Metastatic ROS1 Fusion-Positive Non-Small-Cell Lung Cancer,” Clinical Lung Cancer 25, no. 2 (2024): e81-e86. e4.

[32]

B. E. Johnson, C. S. Baik, J. Mazieres, et al., “Clinical Outcomes with Dabrafenib plus Trametinib in a Clinical Trial versus Real-World Standard of Care in Patients with BRAF-Mutated Advanced NSCLC,” JTO Clinical and Research Reports 3, no. 5 (2022): 100324.

[33]

J. Qu, Q. Shen, Y. Li, et al., “Clinical Characteristics, Co-Mutations, and Treatment Outcomes in Advanced Non-Small-Cell Lung Cancer Patients with the BRAF-V600E Mutation,” Frontiers in Oncology 12 (2022): 911303.

[34]

E. C. Nakajima, N. Drezner, X. Li, et al., “FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC,” Clinical Cancer Research 28, no. 8 (2022): 1482-1486.

[35]

D. Planchard, B. Besse, H. J. M. Groen, et al., “Phase 2 Study of Dabrafenib plus Trametinib in Patients with BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis,” Journal of Thoracic Oncology 17, no. 1 (2022): 103-115.

[36]

A. Drilon, T. W. Laetsch, S. Kummar, et al., “Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children,” New England Journal of Medicine 378, no. 8 (2018): 731-739.

[37]

D. S. Hong, S. G. DuBois, S. Kummar, et al., “Larotrectinib in Patients With TRK Fusion-positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials,” The Lancet Oncology 21, no. 4 (2020): 531-540.

[38]

A. Drilon, “TRK Inhibitors in TRK Fusion-positive Cancers,” Annals of Oncology 30, no. Suppl_8 (2019): viii23-viii30.

[39]

Bayer HealthCare Pharmaceuticals Inc. VITRAKVI prescribing information. 2021, https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210861s006lbl.pdf.

[40]

F. Liu, Y. Wei, H. Zhang, J. Jiang, P. Zhang, and Q. Chu, “NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance,” Frontiers in Oncology 12 (2022): 864666.

[41]

J. Wolf, T. Seto, J. Y. Han, et al., “Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer,” New England Journal of Medicine 383, no. 10 (2020): 944-957.

[42]

R. Hsu, D. J. Benjamin, and M. Nagasaka, “The Development and Role of Capmatinib in the Treatment of MET-Dysregulated Non-Small Cell Lung Cancer-A Narrative Review,” Cancers (Basel) 15, no. 14 (2023): 3561.

[43]

P. K. Paik, E. Felip, R. Veillon, et al., “Tepotinib in Non-Small-Cell Lung Cancer With MET Exon 14 Skipping Mutations,” New England Journal of Medicine 383, no. 10 (2020): 931-943.

[44]

A. Drilon, G. R. Oxnard, D. S. W. Tan, et al., “Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer,” New England Journal of Medicine 383, no. 9 (2020): 813-824.

[45]

A. Drilon, V. Subbiah, O. Gautschi, et al., “Selpercatinib in Patients with RET Fusion-Positive Non-Small-Cell Lung Cancer: Updated Safety and Efficacy from the Registrational LIBRETTO-001 Phase I/II Trial,” Journal of Clinical Oncology 41, no. 2 (2023): 385-394. Epub 2022 Sep 19. Erratum in: J Clin Oncol. 2023 Nov 1;41(31):4941.

[46]

D. Rocco, L. Sapio, L. Della Gravara, S. Naviglio, and C. Gridelli, “Treatment of Advanced Non-Small Cell Lung Cancer With RET Fusions: Reality and Hopes,” International Journal of Molecular Sciences 24, no. 3 (2023): 2433.

[47]

F. Griesinger, G. Curigliano, M. Thomas, et al., “Safety and Efficacy of pralsetinib in RET Fusion-positive Non-small-cell Lung Cancer Including as First-line Therapy: Update From the ARROW Trial,” Annals of Oncology 33, no. 11 (2022): 1168-1178.

[48]

B. T. Li, E. F. Smit, Y. Goto, et al., “Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer,” New England Journal of Medicine 386, no. 3 (2022): 241-251.

[49]

R. S. Herbst, P. Baas, D. W. Kim, et al., “Pembrolizumab versus docetaxel for Previously Treated, PD-L1-positive, Advanced Non-small-cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial,” Lancet 387, no. 10027 (2016): 1540-1550.

[50]

E. B. Garon, N. A. Rizvi, R. Hui, et al., “Pembrolizumab for the Treatment of Non-small-cell Lung Cancer,” New England Journal of Medicine 372, no. 21 (2015): 2018-2028.

[51]

M. Reck, D. Rodríguez-Abreu, A. G. Robinson, et al., “Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer,” New England Journal of Medicine 375, no. 19 (2016): 1823-1833.

[52]

J. Lortet-Tieulent, I. Soerjomataram, J. Ferlay, M. Rutherford, E. Weiderpass, and F. Bray, “International Trends in Lung Cancer Incidence by Histological Subtype: Adenocarcinoma Stabilizing in Men but Still Increasing in Women,” Lung Cancer 84, no. 1 (2014): 13-22.

[53]

M. A. Socinski, C. Obasaju, D. Gandara, et al., “Current and Emergent Therapy Options for Advanced Squamous Cell Lung Cancer,” Journal of Thoracic Oncology 13, no. 2 (2018): 165-183.

[54]

L. Paz-Ares, A. Luft, D. Vicente, et al., “Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer,” New England Journal of Medicine 379, no. 21 (2018): 2040-2051.

[55]

L. Bracci, G. Schiavoni, A. Sistigu, and F. Belardelli, “Immune-based Mechanisms of Cytotoxic Chemotherapy: Implications for the Design of Novel and Rationale-based Combined Treatments Against Cancer,” Cell Death and Differentiation 21, no. 1 (2014): 15-25.

[56]

Z. Wang, B. Till, and Q. Gao, “Chemotherapeutic Agent-mediated Elimination of Myeloid-derived Suppressor Cells,” Oncoimmunology 6, no. 7 (2017): e1331807.

[57]

M. Roselli, V. Cereda, M. G. di Bari, et al., “Effects of Conventional Therapeutic Interventions on the Number and Function of Regulatory T Cells,” Oncoimmunology 2, no. 10 (2013): e27025.

[58]

W. J. Lesterhuis, C. J. Punt, S. V. Hato, et al., “Platinum-based Drugs Disrupt STAT6-mediated Suppression of Immune Responses Against Cancer in Humans and Mice,” Journal of Clinical Investigation 121, no. 8 (2011): 3100-3108.

[59]

L. Gandhi, D. Rodríguez-Abreu, S. Gadgeel, et al., “Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer,” New England Journal of Medicine 378, no. 22 (2018): 2078-2092.

[60]

A. Sezer, S. Kilickap, M. Gümüş, et al., “Cemiplimab Monotherapy for First-line Treatment of Advanced Non-small-cell Lung Cancer With PD-L1 of at Least 50%: A Multicentre, Open-label, Global, Phase 3, Randomised, Controlled Trial,” Lancet 397, no. 10274 (2021): 592-604.

[61]

M. Gogishvili, T. Melkadze, T. Makharadze, et al., “Cemiplimab plus Chemotherapy versus Chemotherapy Alone in Non-small Cell Lung Cancer: A Randomized, Controlled, Double-blind Phase 3 Trial,” Nature Medicine 28, no. 11 (2022): 2374-2380.

[62]

Genentech, Inc. TECENTRIQ (atezolizumab) injection, for intravenous use (US prescribing information). (2021), https://www.gene.com/download/pdf/tecentriq_prescribing.pdf.

[63]

R. S. Herbst, G. Giaccone, F. de Marinis, et al., “Atezolizumab for First-Line Treatment of PD-L1-Selected Patients With NSCLC,” New England Journal of Medicine 383, no. 14 (2020): 1328-1339.

[64]

M. A. Socinski, R. M. Jotte, F. Cappuzzo, et al., “Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC,” New England Journal of Medicine 378, no. 24 (2018): 2288-2301.

[65]

L. Paz-Ares, T. E. Ciuleanu, M. Cobo, et al., “First-line nivolumab plus ipilimumab Combined With Two Cycles of Chemotherapy in Patients With Non-small-cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-label, Phase 3 Trial,” The Lancet Oncology 22, no. 2 (2021): 198-211.

[66]

Bristol Myers Squibb. YERVOY (ipilimumab) injection, for intravenous use (US prescribing information). (2020), https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125377s110lbl.pdf.

[67]

A. Nicolini and P. Ferrari, “Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way Beyond,” Cancers (Basel) 16, no. 2 (2024): 466.

[68]

J. Baselga, J. Cortés, S. B. Kim, et al., “Pertuzumab plus Trastuzumab plus Docetaxel for Metastatic Breast Cancer,” New England Journal of Medicine 366 (2012): 109-119.

[69]

S. M. Swain, D. Miles, S. B. Kim, et al., “Pertuzumab, Trastuzumab, and Docetaxel for HER2-positive Metastatic Breast Cancer (CLEOPATRA): End-of-study Results From a Double-blind, Randomised, Placebo-controlled, Phase 3 Study,” The Lancet Oncology 21 (2020): 519-530.

[70]

J. Cortes, D. W. Cescon, H. S. Rugo, et al., “Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-controlled, Double-blind, Phase 3 Clinical Trial,” Lancet 396 (2020): 1817-1828.

[71]

J. Cortes, H. S. Rugo, D. W. Cescon, et al., “Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer,” New England Journal of Medicine 387 (2022): 217-226.

[72]

P. Schmid, S. Adams, H. S. Rugo, et al., “Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer,” New England Journal of Medicine 379 (2018): 2108-2121.

[73]

L. Emens, S. Adams, C. Barrios, et al., “Firstline atezolizumab plus nab-paclitaxel for Unresectable, Locally Advanced, or Metastatic Triple-negative Breast Cancer: IMpassion130 Final Overall Survival Analysis,” Annals of Oncology 32 (2021): 983-993.

[74]

D. Miles, J. Gligorov, F. André, et al., “Primary Results From IMpassion131, a Double-blind, Placebo-controlled, Randomised Phase III Trial of First-line Paclitaxel With or Without Atezolizumab for Unresectable Locally Advanced/Metastatic Triple-negative Breast Cancer,” Annals of Oncology 32 (2021): 994-1004.

[75]

S. B. Kim, R. Dent, S. A. Im, et al., “Ipatasertib plus paclitaxel versus Placebo plus paclitaxel as First-line Therapy for Metastatic Triple-negative Breast Cancer (LOTUS): A Multicentre, Randomised, Double-blind, Placebo-controlled, Phase 2 Trial,” The Lancet Oncology 18 (2017): 1360-1372.

[76]

R. Dent, M. Oliveira, S. J. Isakoff, et al., “Final Results of the Double-blind Placebo-controlled Randomized Phase 2 LOTUS Trial of First-line ipatasertib plus paclitaxel for Inoperable Locally Advanced/Metastatic Triple-negative Breast Cancer,” Breast Cancer Research and Treatment 189 (2021): 377-386.

[77]

P. Schmid, J. Abraham, S. Chan, et al., “Capivasertib plus Paclitaxel versus Placebo plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial,” Journal of Clinical Oncology 38 (2020): 423-433.

[78]

M. Robson, S. A. Im, E. Senkus, et al., “Olaparib for Metastatic Breast Cancer in Patients With a Germline BRCA Mutation,” New England Journal of Medicine 377 (2017): 523-533.

[79]

E. Robson, N. Tung, P. Conte, et al., “OlympiAD Final Overall Survival and Tolerability Results: Olaparib versus Chemotherapy Treatment of Physician's Choice in Patients With a Germline BRCA Mutation and HER2-negative Metastatic Breast Cancer,” Annals of Oncology 30 (2019): 558-566.

[80]

J. K. Litton, H. S. Rugo, J. Ettl, et al., “Talazoparib in Patients With Advanced Breast Cancer and a Germline BRCA Mutation,” New England Journal of Medicine 379 (2018): 753-763.

[81]

J. K. Litton, S. A. Hurvitz, L. A. Mina, et al., “Talazoparib versus Chemotherapy in Patients With Germline BRCA1/2-mutated HER2-negative Advanced Breast Cancer: Final Overall Survival Results From the EMBRACA Trial,” Annals of Oncology 31 (2020): 1526-1535.

[82]

D. A. Yardley, S. Noguchi, K. I. Pritchard, et al., “Everolimus plus Exemestane in Postmenopausal Patients With HR+ Breast Cancer: BOLERO-2 Final Progression-free Survival Analysis,” Advances in Therapy 30 (2013): 870-884.

[83]

M. Piccart, G. N. Hortobagyi, M. Campone, et al., “Everolimus plus Exemestane for Hormone-receptor-positive, human Epidermal Growth Factor Receptor-2-negative Advanced Breast Cancer: Overall Survival Results From BOLERO-2,” Annals of Oncology 25 (2014): 2357-2362.

[84]

G. N. Hortobagyi, S. M. Stemmer, H. A. Burris, et al., “Updated Results From MONALEESA-2, a Phase III Trial of First-line Ribociclib plus Letrozole versus Placebo plus Letrozole in Hormone Receptor-positive, HER2-negative Advanced Breast Cancer,” Annals of Oncology 29 (2018): 1541-1547.

[85]

G. N. Hortobagyi, S. M. Stemmer, H. A. Burris, Y. S. Yap, G. S. Sonke, and L. Hart, “Overall Survival With Ribociclib plus Letrozole in Advanced Breast Cancer,” New England Journal of Medicine 386 (2022): 942-950.

[86]

S. Johnston, M. Martin, A. Di Leo, et al., “MONARCH 3 Final PFS: A Randomized Study of abemaciclib as Initial Therapy for Advanced Breast Cancer,” Npj Breast Cancer 5 (2019): 5.

[87]

H. S. Rugo, R. S. Finn, V. Diéras, et al., “Palbociclib plus Letrozole as First-line Therapy in Estrogen Receptor-positive/human Epidermal Growth Factor Receptor 2-negative Advanced Breast Cancer With Extended Follow-up,” Breast Cancer Research and Treatment 174 (2019): 719-729.

[88]

R. S. Finn, H. S. Rugo, V. C. Dieras, et al., “Overall Survival (OS) With First-line Palbociclib plus Letrozole (PAL+LET) versus Placebo plus Letrozole (PBO+LET) in Women With Estrogen Receptor-positive/human Epidermal Growth Factor Receptor 2-negative Advanced Breast Cancer (ER+/HER2- ABC): Analyses From PALOMA-2,” Journal of Clinical Oncology 40, no. Suppl. S17 (2022): abs/LBA1003.

[89]

H. Sung, J. Ferlay, R. L. Siegel, et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71, no. 3 (2021): 209-249.

[90]

C. S. Karapetis, S. Khambata-Ford, D. J. Jonker, et al., “K-ras Mutations and Benefit From cetuximab in Advanced Colorectal Cancer,” New England Journal of Medicine 359, no. 17 (2008): 1757-1765.

[91]

S. Siena, M. Di Bartolomeo, K. Raghav, et al., “Trastuzumab deruxtecan (DS-8201) in Patients With HER2-expressing Metastatic Colorectal Cancer (DESTINY-CRC01): A Multicentre, Open-label, Phase 2 Trial,” The Lancet Oncology 22, no. 6 (2021): 779-789.

[92]

F. Meric-Bernstam, H. Hurwitz, K. P. S. Raghav, et al., “Pertuzumab plus trastuzumab for HER2-amplified Metastatic Colorectal Cancer (MyPathway): An Updated Report From a Multicentre, Open-label, Phase 2a, Multiple Basket Study,” The Lancet Oncology 20, no. 4 (2019): 518-530.

[93]

Y. H. Xie, Y. X. Chen, and J. Y. Fang, “Comprehensive Review of Targeted Therapy for Colorectal Cancer,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 22.

[94]

S. Kopetz, A. Grothey, R. Yaeger, et al., “Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer,” New England Journal of Medicine 381, no. 17 (2019): 1632-1643.

[95]

D. T. Le, J. N. Uram, H. Wang, et al., “PD-1 Blockade in Tumors With Mismatch-Repair Deficiency,” New England Journal of Medicine 372, no. 26 (2015): 2509-2520.

[96]

M. J. Overman, R. McDermott, J. L. Leach, et al., “Nivolumab in Patients With Metastatic DNA Mismatch Repair-deficient or Microsatellite Instability-high Colorectal Cancer (CheckMate 142): An Open-label, Multicentre, Phase 2 Study,” The Lancet Oncology 18, no. 9 (2017): 1182-1191. Epub 2017 Jul 19. Erratum in: Lancet Oncol. 2017 Sep;18(9):510.

[97]

M. J. Overman, S. Lonardi, K. Y. M. Wong, et al., “Durable Clinical Benefit with Nivolumab plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer,” Journal of Clinical Oncology 36, no. 8 (2018): 773-779.

[98]

T. André, K. K. Shiu, T. W. Kim, et al., “Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer,” New England Journal of Medicine 383, no. 23 (2020): 2207-2218.

[99]

E. Van Cutsem, F. Rivera, S. Berry, et al., “Safety and Efficacy of First-line Bevacizumab With FOLFOX, XELOX, FOLFIRI and Fluoropyrimidines in Metastatic Colorectal Cancer: The BEAT Study,” Annals of Oncology 20, no. 11 (2009): 1842-1847.

[100]

F. Loupakis, C. Cremolini, G. Masi, et al., “Initial Therapy With FOLFOXIRI and bevacizumab for Metastatic Colorectal Cancer,” New England Journal of Medicine 371, no. 17 (2014): 1609-1618.

[101]

T. S. Maughan, R. A. Adams, C. G. Smith, et al., “Addition of cetuximab to Oxaliplatin-based First-line Combination Chemotherapy for Treatment of Advanced Colorectal Cancer: Results of the Randomised Phase 3 MRC COIN Trial,” Lancet 377, no. 9783 (2011): 2103-2114.

[102]

K. M. Tveit, T. Guren, B. Glimelius, et al., “Phase III Trial of cetuximab With Continuous or Intermittent Fluorouracil, Leucovorin, and Oxaliplatin (Nordic FLOX) versus FLOX Alone in First-line Treatment of Metastatic Colorectal Cancer: The NORDIC-VII Study,” Journal of Clinical Oncology 30, no. 15 (2012): 1755-1762.

[103]

V. Heinemann, L. F. von Weikersthal, T. Decker, et al., “FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as First-line Treatment for Patients With Metastatic Colorectal Cancer (FIRE-3): A Randomised, Open-label, Phase 3 Trial,” The Lancet Oncology 15, no. 10 (2014): 1065-1075.

[104]

J. Y. Douillard, S. Siena, J. Cassidy, et al., “phase III Trial of panitumumab With Infusional Fluorouracil, Leucovorin, and Oxaliplatin (FOLFOX4) versus FOLFOX4 Alone as First-line Treatment in Patients With Previously Untreated Metastatic Colorectal Cancer: The PRIME Study,” Journal of Clinical Oncology 28, no. 31 (2010): 4697-4705.

[105]

J. Watanabe, K. Muro, K. Shitara, et al., “Panitumumab vs Bevacizumab Added to Standard First-line Chemotherapy and Overall Survival among Patients with RAS Wild-type, Left-Sided Metastatic Colorectal Cancer: A Randomized Clinical Trial,” Jama 329, no. 15 (2023): 1271-1282. Erratum in: JAMA. 2023 Jun 27;329(24):2196.

[106]

A. P. Thrift, T. N. Wenker, and H. B. El-Serag, “Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention,” Nature reviews Clinical Oncology 20 (2023): 338-349, Accessed April 2024. 30, 2025. Available at, https://seer.cancer.gov/statfacts/html/stomach.html. National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program. Cancer stat facts: stomach cancer.

[107]

NCCN guidelines. Accessed April 30, 2025, https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf.

[108]

Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014; 513(7517): 202-209.

[109]

Y. J. Bang, E. Van Cutsem, A. Feyereislova, et al., “Trastuzumab in Combination With Chemotherapy versus Chemotherapy Alone for Treatment of HER2-positive Advanced Gastric or Gastro-oesophageal Junction Cancer (ToGA): A Phase 3, Open-label, Randomised Controlled Trial,” Lancet 376 (2010): 687-697.

[110]

Y. Y. Janjigian, A. Kawazoe, Y. Bai, et al., “Pembrolizumab plus Trastuzumab and Chemotherapy for HER2-positive Gastric or Gastro-oesophageal Junction Adenocarcinoma: Interim Analyses From the Phase 3 KEYNOTE-811 Randomised Placebo-controlled Trial,” Lancet 402 (2023): 2197-2208.

[111]

S. Y. Rha, D. Y. Oh, P. Yanez, et al., “Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for HER2-negative Advanced Gastric Cancer (KEYNOTE-859): A Multicentre, Randomised, Double-blind, Phase 3 Trial,” The Lancet Oncology 24 (2023): 1181-1195.

[112]

J. Tabernero, Y. J. Bang, E. Van Cutsem, et al., “KEYNOTE-859: A Phase III Study of pembrolizumab plus Chemotherapy in Gastric/Gastro-oesophageal Junction Adenocarcinoma,” Future Oncology 17, no. 22 (2021): 2847-2855.

[113]

J. Chao, C. S. Fuchs, K. Shitara, et al., “Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastrooesophageal Junction Cancer among Patients in the KEYNOTE059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials,” JAMA Oncology 7 (2021): 895-902.

[114]

Y. Y. Janjigian, K. Shitara, M. Moehler, et al., “First-line nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastrooesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-label, Phase 3 Trial,” Lancet 398 (2021): 27-40.

[115]

Y. Y. Janjigian, J. A. Ajani, M. Moehler, et al., “First-line Nivolumab plus Chemotherapy for Advanced Gastric, Gastroesophageal Junction, and Esophageal Adenocarcinoma: 3-year Follow-up of the Phase III CheckMate 649 Trial,” Journal of Clinical Oncology 42 (2024): 2012-2020.

[116]

K. Shitara, J. A. Ajani, M. Moehler, et al., “Nivolumab plus Chemotherapy or ipilimumab in Gastro-oesophageal Cancer,” Nature 603 (2022): 942-948.

[117]

M. Z. Qiu, D. Y. Oh, K. Kato, et al., “Tislelizumab plus Chemotherapy versus Placebo plus Chemotherapy as First Line Treatment for Advanced Gastric or Gastro-oesophageal Junction Adenocarcinoma: RATIONALE-305 Randomised, Double Blind, Phase 3 Trial,” Bmj 385 (2024): e078876.

[118]

K. Shitara, F. Lordick, Y. J. Bang, et al., “Zolbetuximab plus mFOLFOX6 in Patients With CLDN18.2-positive, HER2-negative, Untreated, Locally Advanced Unresectable or Metastatic Gastric or Gastro-oesophageal Junction Adenocarcinoma (SPOTLIGHT): A Multicentre, Randomised, Double-blind, Phase 3 Trial,” Lancet 401 (2023): 1655-1668.

[119]

M. A. Shah, K. Shitara, J. A. Ajani, et al., “Zolbetuximab plus CAPOX in CLDN18.2-positive Gastric or Gastroesophageal Junction Adenocarcinoma: The Randomized, Phase 3 GLOW Trial,” Nature Medicine 29 (2023): 2133-2141.

[120]

E. F. Giunta, L. Annaratone, E. Bollito, et al., “Molecular Characterization of Prostate Cancers in the Precision Medicine Era,” Cancers (Basel) 13, no. 19 (2021): 4771.

[121]

P. Cornford, J. Bellmunt, M. Bolla, et al., “EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer,” European Urology 71, no. 4 (2017): 630-642.

[122]

G. Wang, D. Zhao, D. J. Spring, and R. A. DePinho, “Genetics and Biology of Prostate Cancer,” Genes & Development 32, no. 17-18 (2018): 1105-1140.

[123]

J. L. Mohler, “Ten Years of Progress in Prostate Cancer,” Journal of the National Comprehensive Cancer Network: JNCCN 10, no. 2 (2012): 136-140.

[124]

G. Attard, C. S. Cooper, and J. S. de Bono, “Steroid Hormone Receptors in Prostate Cancer: A Hard Habit to Break?” Cancer Cell 16, no. 6 (2009): 458-462.

[125]

M. Y. Teo, D. E. Rathkopf, and P. Kantoff, “Treatment of Advanced Prostate Cancer,” Annual Review of Medicine 70 (2019): 479-499.

[126]

G. Aurilio, A. Cimadamore, M. Santoni, et al., “New Frontiers in Prostate Cancer Treatment: Are We Ready for Drug Combinations With Novel Agents?” Cells 9, no. 6 (2020): 1522.

[127]

E. Nevedomskaya, S. J. Baumgart, and B. Haendler, “Recent Advances in Prostate Cancer Treatment and Drug Discovery,” International Journal of Molecular Sciences 19, no. 5 (2018): 1359.

[128]

A. A. Shafi, A. E. Yen, and N. L. Weigel, “Androgen Receptors in Hormone-dependent and Castration-resistant Prostate Cancer,” Pharmacology & Therapeutics 140, no. 3 (2013): 223-238.

[129]

J. F. Caubet, T. D. Tosteson, E. W. Dong, et al., “Maximum Androgen Blockade in Advanced Prostate Cancer: A Meta-analysis of Published Randomized Controlled Trials Using Nonsteroidal Antiandrogens,” Urology 49, no. 1 (1997): 71-78.

[130]

I. F. Tannock, D. Osoba, M. R. Stockler, et al., “Chemotherapy With Mitoxantrone plus Prednisone or Prednisone Alone for Symptomatic Hormone-resistant Prostate Cancer: A Canadian Randomized Trial With Palliative End Points,” Journal of Clinical Oncology 14, no. 6 (1996): 1756-1764.

[131]

I. F. Tannock, R. de Wit, W. R. Berry, et al., “Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer,” TAX 327 Investigators 351, no. 15 (2004): 1502-1512.

[132]

D. P. Petrylak, C. M. Tangen, M. H. Hussain, et al., “Docetaxel and Estramustine Compared With Mitoxantrone and Prednisone for Advanced Refractory Prostate Cancer,” New England Journal of Medicine 351, no. 15 (2004): 1513-1520.

[133]

C. J. Sweeney, Y. H. Chen, M. Carducci, et al., “Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer,” New England Journal of Medicine 373, no. 8 (2015): 737-746.

[134]

J. S. de Bono, S. Oudard, M. Ozguroglu, et al., “Prednisone plus cabazitaxel or Mitoxantrone for Metastatic Castration-resistant Prostate Cancer Progressing After Docetaxel Treatment: A Randomised Open-label Trial,” Lancet 376, no. 9747 (2010): 1147-1154.

[135]

R. de Wit, J. de Bono, C. N. Sternberg, et al., “Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer,” New England Journal of Medicine 381, no. 26 (2019): 2506-2518.

[136]

C. Dai, S. M. Dehm, and N. Sharifi, “Targeting the Androgen Signaling Axis in Prostate Cancer,” Journal of Clinical Oncology 41, no. 26 (2023): 4267-4278.

[137]

J. S. de Bono, C. J. Logothetis, A. Molina, et al., “Abiraterone and Increased Survival in Metastatic Prostate Cancer,” New England Journal of Medicine 364, no. 21 (2011): 1995-2005.

[138]

C. J. Ryan, M. R. Smith, J. S. de Bono, et al., “Abiraterone in Metastatic Prostate Cancer Without Previous Chemotherapy,” New England Journal of Medicine 368, no. 2 (2013): 138-148.

[139]

C. J. Ryan, M. R. Smith, K. Fizazi, et al., “Abiraterone Acetate plus Prednisone versus Placebo plus Prednisone in Chemotherapy-naive Men With Metastatic Castration-resistant Prostate Cancer (COU-AA-302): Final Overall Survival Analysis of a Randomised, Double-blind, Placebo-controlled Phase 3 Study,” The Lancet Oncology 16, no. 2 (2015): 152-160.

[140]

K. Fizazi, N. Tran, L. Fein, et al., “Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer,” New England Journal of Medicine 377, no. 4 (2017): 352-360.

[141]

K. Fizazi, N. Tran, L. Fein, et al., “Abiraterone Acetate plus Prednisone in Patients With Newly Diagnosed High-risk Metastatic Castration-sensitive Prostate Cancer (LATITUDE): Final Overall Survival Analysis of a Randomised, Double-blind, Phase 3 Trial,” The Lancet Oncology 20, no. 5 (2019): 686-700.

[142]

M. R. Sydes, M. R. Spears, M. D. Mason, et al., “Adding abiraterone or docetaxel to Long-term Hormone Therapy for Prostate Cancer: Directly Randomised Data From the STAMPEDE Multi-arm, Multi-stage Platform Protocol,” Annals of Oncology 29, no. 5 (2018): 1235-1248.

[143]

H. I. Scher, K. Fizazi, F. Saad, et al., “Increased Survival With Enzalutamide in Prostate Cancer After Chemotherapy,” New England Journal of Medicine 367, no. 13 (2012): 1187-1197.

[144]

T. M. Beer, A. J. Armstrong, D. E. Rathkopf, et al., “Enzalutamide in Metastatic Prostate Cancer Before Chemotherapy,” New England Journal of Medicine 371, no. 5 (2014): 424-433.

[145]

A. J. Armstrong, R. Z. Szmulewitz, D. P. Petrylak, et al., “ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer,” Journal of Clinical Oncology 37, no. 32 (2019): 2974-2986.

[146]

I. D. Davis, A. J. Martin, M. R. Stockler, et al., “Enzalutamide With Standard First-Line Therapy in Metastatic Prostate Cancer,” New England Journal of Medicine 381, no. 2 (2019): 121-131.

[147]

A. J. Armstrong, A. A. Azad, T. Iguchi, et al., “Improved Survival with Enzalutamide in Patients with Metastatic Hormone-Sensitive Prostate Cancer,” Journal of Clinical Oncology 40, no. 15 (2022): 1616-1622.

[148]

C. J. Sweeney, A. J. Martin, M. R. Stockler, et al., “Testosterone Suppression plus Enzalutamide versus Testosterone Suppression plus Standard Antiandrogen Therapy for Metastatic Hormone-sensitive Prostate Cancer (ENZAMET): An International, Open-label, Randomised, Phase 3 Trial,” The Lancet Oncology 24, no. 4 (2023): 323-334.

[149]

V. Di Nunno, M. Santoni, V. Mollica, et al., “Systemic Treatment for Metastatic Hormone Sensitive Prostate Cancer: A Comprehensive Meta-Analysis Evaluating Efficacy and Safety in Specific Sub-Groups of Patients,” Clinical Drug Investigation 40, no. 3 (2020): 211-226.

[150]

E. N. Kinsey, T. Zhang, and A. J. Armstrong, “Metastatic Hormone-Sensitive Prostate Cancer: A Review of the Current Treatment Landscape,” Cancer Journal (Sudbury, Mass.) 26, no. 1 (2020): 64-75.

[151]

K. N. Chi, S. Sandhu, M. R. Smith, et al., “Niraparib plus Abiraterone Acetate With Prednisone in Patients With Metastatic Castration-resistant Prostate Cancer and Homologous Recombination Repair Gene Alterations: Second Interim Analysis of the Randomized Phase III MAGNITUDE Trial,” Annals of Oncology 34, no. 9 (2023): 772-782.

[152]

J. de Bono, J. Mateo, K. Fizazi, et al., “Olaparib for Metastatic Castration-Resistant Prostate Cancer,” New England Journal of Medicine 382, no. 22 (2020): 2091-2102.

[153]

N. W. Clarke, A. J. Armstrong, A. Thiery-Vuillemin, et al., “Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer,” NEJM Evidence 1, no. 9 (2022): EVIDoa2200043.

[154]

F. Saad, N. W. Clarke, M. Oya, et al., “Olaparib plus Abiraterone versus Placebo plus Abiraterone in Metastatic Castration-resistant Prostate Cancer (PROpel): Final Prespecified Overall Survival Results of a Randomised, Double-blind, Phase 3 Trial,” The Lancet Oncology 24, no. 10 (2023): 1094-1108. Epub 2023 Sep 12. Erratum in: Lancet Oncol. 2024 May;25(5):e180.

[155]

N. Matsubara, J. de Bono, D. Olmos, et al., “Olaparib Efficacy in Patients With Metastatic Castration-resistant Prostate Cancer and BRCA1, BRCA2, or ATM Alterations Identified by Testing Circulating Tumor DNA,” Clinical Cancer Research 29, no. 1 (2023): 92-99.

[156]

K. Fizazi, A. A. Azad, N. Matsubara, et al., “First-line Talazoparib With Enzalutamide in HRR-deficient Metastatic Castration-resistant Prostate Cancer: The Phase 3 TALAPRO-2 Trial,” Nature Medicine 30, no. 1 (2024): 257-264.

[157]

N. Matsubara, A. A. Azad, N. Agarwal, et al., “First-line Talazoparib plus Enzalutamide versus Placebo plus Enzalutamide for Metastatic Castration-resistant Prostate Cancer: Patient-reported Outcomes From the Randomised, Double-blind, Placebo-controlled, Phase 3 TALAPRO-2 Trial,” The Lancet Oncology 26, no. 4 (2025): 470-480.

[158]

E. S. Antonarakis, S. H. Park, J. C. Goh, et al., “Pembrolizumab plus Olaparib for Patients with Previously Treated and Biomarker-Unselected Metastatic Castration-Resistant Prostate Cancer: The Randomized, Open-Label, Phase III KEYLYNK-010 Trial,” Journal of Clinical Oncology 41, no. 22 (2023): 3839-3850.

[159]

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer Statistics, 2022,” CA: A Cancer Journal for Clinicians 72, no. 1 (2022): 7-33.

[160]

P. A. Konstantinopoulos, R. Ceccaldi, G. I. Shapiro, and A. D. D'Andrea, “Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer,” Cancer Discovery 5, no. 11 (2015): 1137-1154.

[161]

L. C. Peres, K. L. Cushing-Haugen, M. Köbel, et al., “Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage,” JNCI: Journal of the National Cancer Institute 111, no. 1 (2019): 60-68.

[162]

L. A. Torre, B. Trabert, C. E. DeSantis, et al., “Ovarian Cancer Statistics, 2018,” CA: A Cancer Journal for Clinicians 68, no. 4 (2018): 284-296.

[163]

S. L. Stewart, R. Harewood, M. Matz, et al., “Disparities in Ovarian Cancer Survival in the United States (2001-2009): Findings From the CONCORD-2 Study,” Cancer 123, no. Suppl 24 (2017): 5138-5159.

[164]

NCCN guidelines: ovarian cancer (version 3.2024), accessed April 30, 2025: https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf.

[165]

K. C. Kurnit, G. F. Fleming, and E. Lengyel, “Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment,” Obstetrics and Gynecology 137, no. 1 (2021): 108-121.

[166]

A. Elattar, A. Bryant, B. A. Winter-Roach, M. Hatem, and R. Naik, “Optimal Primary Surgical Treatment for Advanced Epithelial Ovarian Cancer,” Cochrane Database of Systematic Reviews (Online) 2011, no. 8 (2011): CD007565.

[167]

R. A. Burger, M. F. Brady, M. A. Bookman, et al., “Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer,” New England Journal of Medicine 365, no. 26 (2011): 2473-2483.

[168]

K. S. Tewari, R. A. Burger, D. Enserro, et al., “Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer,” Journal of Clinical Oncology 37, no. 26 (2019): 2317-2328.

[169]

A. M. Oza, A. D. Cook, J. Pfisterer, et al., “Standard Chemotherapy With or Without bevacizumab for Women With Newly Diagnosed Ovarian Cancer (ICON7): Overall Survival Results of a Phase 3 Randomised Trial,” The Lancet Oncology 16, no. 8 (2015): 928-936.

[170]

A. Floquet, I. Vergote, N. Colombo, et al., “Progression-free Survival by Local Investigator versus Independent central Review: Comparative Analysis of the AGO-OVAR16 Trial,” Gynecologic Oncology 136, no. 1 (2015): 37-42.

[171]

A. du Bois, G. Kristensen, I. Ray-Coquard, et al., “Standard First-line Chemotherapy With or Without nintedanib for Advanced Ovarian Cancer (AGO-OVAR 12): A Randomised, Double-blind, Placebo-controlled Phase 3 Trial,” The Lancet Oncology 17, no. 1 (2016): 78-89.

[172]

I. Vergote, A. du Bois, A. Floquet, et al., “Overall Survival Results of AGO-OVAR16: A Phase 3 Study of Maintenance Pazopanib versus Placebo in Women Who Have Not Progressed After First-line Chemotherapy for Advanced Ovarian Cancer,” Gynecologic Oncology 155, no. 2 (2019): 186-191.

[173]

I. Ray-Coquard, D. Cibula, M. R. Mirza, et al., “Final Results From GCIG/ENGOT/AGO-OVAR 12, a Randomised Placebo-controlled Phase III Trial of nintedanib Combined With Chemotherapy for Newly Diagnosed Advanced Ovarian Cancer,” International Journal of Cancer 146, no. 2 (2020): 439-448.

[174]

K. Moore, N. Colombo, G. Scambia, et al., “Maintenance Olaparib in Patients With Newly Diagnosed Advanced Ovarian Cancer,” New England Journal of Medicine 379, no. 26 (2018): 2495-2505.

[175]

S. Banerjee, K. N. Moore, N. Colombo, et al., “Maintenance olaparib for Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation (SOLO1/GOG 3004): 5-year Follow-up of a Randomised, Double-blind, Placebo-controlled, Phase 3 Trial,” The Lancet Oncology 22, no. 12 (2021): 1721-1731.

[176]

P. DiSilvestro, S. Banerjee, N. Colombo, et al., “Overall Survival with Maintenance Olaparib at a 7-Year Follow-Up in Patients with Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial,” Journal of Clinical Oncology 41, no. 3 (2023): 609-617.

[177]

A. González-Martín, B. Pothuri, I. Vergote, et al., “Progression-free Survival and Safety at 3.5years of Follow-up: Results From the Randomised Phase 3 PRIMA/ENGOT-OV26/GOG-3012 Trial of niraparib Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer,” European Journal of Cancer 189 (2023): 112908.

[178]

N. Li, J. Zhu, R. Yin, et al., “Treatment with Niraparib Maintenance Therapy in Patients with Newly Diagnosed Advanced Ovarian Cancer: A Phase 3 Randomized Clinical Trial,” JAMA Oncology 9, no. 9 (2023): 1230-1237.

[179]

B. J. Monk, C. Parkinson, M. C. Lim, et al., “A Randomized, Phase III Trial to Evaluate Rucaparib Monotherapy as Maintenance Treatment in Patients with Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45),” Journal of Clinical Oncology 40, no. 34 (2022): 3952-3964.

[180]

R. L. Coleman, G. F. Fleming, M. F. Brady, et al., “Veliparib With First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer,” New England Journal of Medicine 381, no. 25 (2019): 2403-2415.

[181]

E. M. Swisher, C. Aghajanian, D. M. O'Malley, et al., “Impact of Homologous Recombination Status and Responses With veliparib Combined With First-line Chemotherapy in Ovarian Cancer in the Phase 3 VELIA/GOG-3005 Study,” Gynecologic Oncology 164, no. 2 (2022): 245-253.

[182]

I. Ray-Coquard, P. Pautier, S. Pignata, et al., “Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer,” New England Journal of Medicine 381, no. 25 (2019): 2416-2428.

[183]

I. Ray-Coquard, A. Leary, S. Pignata, et al., “Olaparib plus bevacizumab First-line Maintenance in Ovarian Cancer: Final Overall Survival Results From the PAOLA-1/ENGOT-ov25 Trial,” Annals of Oncology 34, no. 8 (2023): 681-692.

[184]

D. Krause and D. L. Richardson, “Is There a Role for Secondary Debulking in Ovarian Cancer? A Review of the Current Literature,” Current Opinion in Obstetrics & Gynecology 35, no. 1 (2023): 1-5.

[185]

A. Tattersall, N. Ryan, A. J. Wiggans, E. Rogozińska, and J. Morrison, “Poly(ADP-ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer,” Cochrane Database of Systematic Reviews (Online) 2, no. 2 (2022): CD007929.

[186]

A. M. Oza, A. S. Lisyanskaya, A. A. Fedenko, et al., “Overall Survival Results From ARIEL4: A Phase III Study Assessing rucaparib vs Chemotherapy in Patients With Advanced, Relapsed Ovarian Carcinoma and a Deleterious BRCA1/2 Mutation,” Annals of Oncology 33, no. S7 (2022): abs/518O.

[187]

W. P. Tew, C. Lacchetti, and E. C. Kohn, “Poly(ADP-Ribose) Polymerase Inhibitors in the Management of Ovarian Cancer: ASCO Guideline Rapid Recommendation Update,” Journal of Clinical Oncology 40, no. 33 (2022): 3878-3881.

[188]

A. Fojo, T. C. Hamilton, R. C. Young, and R. F. Ozols, “Multidrug Resistance in Ovarian Cancer,” Cancer 60, no. 8 Suppl (1987): 2075-2080.

[189]

J. Baselga, M. Zambetti, A. Llombart-Cussac, et al., “Phase II Genomics Study of ixabepilone as Neoadjuvant Treatment for Breast Cancer,” Journal of Clinical Oncology 27, no. 4 (2009): 526-534.

[190]

T. Jiang, X. Chen, X. Ren, J. M. Yang, and Y. Cheng, “Emerging Role of Autophagy in Anti-tumor Immunity: Implications for the Modulation of Immunotherapy Resistance,” Drug Resistance Updates 56 (2021): 100752.

[191]

M. Chiappa, F. Guffanti, F. Bertoni, I. Colombo, and G. Damia, “Overcoming PARPi Resistance: Preclinical and Clinical Evidence in Ovarian Cancer,” Drug Resistance Updates 55 (2021): 100744.

[192]

C. Pecoraro, B. Faggion, B. Balboni, et al., “GSK3β as a Novel Promising Target to Overcome Chemoresistance in Pancreatic Cancer,” Drug Resistance Updates 58 (2021): 100779.

[193]

E. E. Bram, I. Ifergan, M. Grimberg, K. Lemke, A. Skladanowski, and Y. G. Assaraf, “C421 allele-specific ABCG2 Gene Amplification Confers Resistance to the Antitumor Triazoloacridone C-1305 in human Lung Cancer Cells,” Biochemical Pharmacology 74, no. 1 (2007): 41-53.

[194]

R. H. Getzenberg and D. S. Coffey, “Changing the Energy Habitat of the Cancer Cell in Order to Impact Therapeutic Resistance,” Molecular Pharmaceutics 8, no. 6 (2011): 2089-2093.

[195]

O. Pontiggia, R. Sampayo, D. Raffo, et al., “The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin Through β1 Integrin,” Breast Cancer Research and Treatment 133, no. 2 (2012): 459-471.

[196]

J. W. Wojtkowiak, D. Verduzco, K. J. Schramm, and R. J. Gillies, “Drug Resistance and Cellular Adaptation to Tumor Acidic pH Microenvironment,” Molecular Pharmaceutics 8, no. 6 (2011): 2032-2038.

[197]

M. Kaehler and I. Cascorbi, “Germline Variants in Cancer Therapy,” Cancer Drug Resist 2, no. 1 (2019): 18-30.

[198]

C. He, Z. Duan, P. Li, Q. Xu, and Y. Yuan, “Role of ERCC5 Promoter Polymorphisms in Response to Platinum-based Chemotherapy in Patients With Advanced Non-small-cell Lung Cancer,” Anti-Cancer Drugs 24, no. 3 (2013): 300-305.

[199]

T. Zou, J. Y. Liu, Q. Qin, et al., “Role of rs873601 Polymorphisms in Prognosis of Lung Cancer Patients Treated With Platinum-Based Chemotherapy,” Biomedicines 11, no. 12 (2023): 3133.

[200]

M. Zhong, W. Xu, P. Tian, et al., “An Inherited Allele Confers Prostate Cancer Progression and Drug Resistance via RFX6/HOXA10-Orchestrated TGFβ Signaling,” Advanced Science (Weinh) 11, no. 32 (2024): e2401492.

[201]

M. Askari, E. Mirzaei, L. Navapour, et al., “Integrative Bioinformatics Analysis: Unraveling Variant Signatures and Single-Nucleotide Polymorphism Markers Associated With 5-FU-Based Chemotherapy Resistance in Colorectal Cancer Patients,” Journal of Gastrointestinal Cancer 55, no. 4 (2024): 1607-1619.

[202]

A. Daniyal, I. Santoso, N. H. P. Gunawan, M. I. Barliana, and R. Abdulah, “Genetic Influences in Breast Cancer Drug Resistance,” Breast Cancer (Dove Med Press) 13 (2021): 59-85.

[203]

J. J. G. Marin, M. A. Serrano, E. Herraez, et al., “Impact of Genetic Variants in the Solute Carrier (SLC) Genes Encoding Drug Uptake Transporters on the Response to Anticancer Chemotherapy,” Cancer Drug Resist 7 (2024): 27.

[204]

X. Xu, Y. Zhang, Y. Lu, et al., “CD58 Alterations Govern Antitumor Immune Responses by Inducing PDL1 and IDO in Diffuse Large B-Cell Lymphoma,” Cancer Research 84, no. 13 (2024): 2123-2140.

[205]

D. F. Chamorro, A. F. Cardona, J. Rodríguez, et al., “Genomic Landscape of Primary Resistance to Osimertinib among Hispanic Patients With EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC): Results of an Observational Longitudinal Cohort Study,” Target Oncol 18, no. 3 (2023): 425-440.

[206]

N. Tanaka and H. Ebi, “Mechanisms of Resistance to KRAS Inhibitors: Cancer Cells' Strategic Use of Normal Cellular Mechanisms to Adapt,” Cancer Science 116, no. 3 (2025): 600-612.

[207]

K. Maruyama, Y. Shimizu, Y. Nomura, et al., “Mechanisms of KRAS Inhibitor Resistance in KRAS-mutant Colorectal Cancer Harboring Her2 Amplification and Aberrant KRAS Localization,” npj Precision Oncology 9, no. 1 (2025): 4.

[208]

Y. Ma, L. Wang, L. R. Neitzel, et al., “The MAPK Pathway Regulates Intrinsic Resistance to BET Inhibitors in Colorectal Cancer,” Clinical Cancer Research 23, no. 8 (20175): 2027-2037.

[209]

Y. Wang, H. Zhang, and X. Chen, “Drug Resistance and Combating Drug Resistance in Cancer,” Cancer Drug Resist 2, no. 2 (2019): 141-160.

[210]

J. Chmielecki, J. E. Gray, Y. Cheng, et al., “Candidate Mechanisms of Acquired Resistance to First-line Osimertinib in EGFR-mutated Advanced Non-small Cell Lung Cancer,” Nature Communications 14, no. 1 (2023): 1070.

[211]

A. Bayle, L. Belcaid, L. J. Palmieri, et al., “Circulating Tumor DNA Landscape and Prognostic Impact of Acquired Resistance to Targeted Therapies in Cancer Patients: A National Center for Precision Medicine (PRISM) Study,” Molecular Cancer 22, no. 1 (2023): 176.

[212]

E. V. Egeland, K. Seip, E. Skourti, et al., “The SRC-family Serves as a Therapeutic Target in Triple Negative Breast Cancer With Acquired Resistance to Chemotherapy,” British Journal of Cancer 131, no. 10 (2024): 1656-1667.

[213]

A. Ruiz-Saenz, C. E. Atreya, C. Wang, et al., “A Reversible SRC-relayed COX2 Inflammatory Program Drives Resistance to BRAF and EGFR Inhibition in BRAFV600E Colorectal Tumors,” Nat Cancer 4, no. 2 (2023): 240-256.

[214]

J. Wang, H. Wang, W. Zhou, et al., “MOGAT3-mediated DAG Accumulation Drives Acquired Resistance to Anti-BRAF/Anti-EGFR Therapy in BRAFV600E-mutant Metastatic Colorectal Cancer,” Journal of Clinical Investigation 134, no. 24 (2024): e182217.

[215]

V. Salemme, G. Centonze, L. Avalle, et al., “The Role of Tumor Microenvironment in Drug Resistance: Emerging Technologies to Unravel Breast Cancer Heterogeneity,” Frontiers in Oncology 13 (2023): 1170264.

[216]

M. Kundu, R. Butti, V. K. Panda, et al., “Modulation of the Tumor Microenvironment and Mechanism of Immunotherapy-based Drug Resistance in Breast Cancer,” Molecular cancer 23, no. 1 (2024): 92.

[217]

C. Robles-Oteíza, K. Hastings, J. Choi, et al., “Hypoxia Is Linked to Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer,” Journal of Experimental Medicine 222, no. 1 (2025): e20231106.

[218]

R. Gambari, E. Brognara, D. A. Spandidos, and E. Fabbri, “Targeting oncomiRNAs and Mimicking Tumor Suppressor miRNAs: Νew Trends in the Development of miRNA Therapeutic Strategies in Oncology (Review),” International Journal of Oncology 49, no. 1 (2016): 5-32.

[219]

F. Borel, R. Han, A. Visser, et al., “Adenosine Triphosphate-binding Cassette Transporter Genes Up-regulation in Untreated Hepatocellular Carcinoma Is Mediated by Cellular microRNAs,” Hepatology 55, no. 3 (2012): 821-832.

[220]

Y. Li, Y. Liu, J. Ren, et al., “MiR-1268a Regulates ABCC1 Expression to Mediate Temozolomide Resistance in Glioblastoma,” Journal of Neuro-Oncology 138, no. 3 (2018): 499-508.

[221]

K. K. To, Z. Zhan, T. Litman, and S. E. Bates, “Regulation of ABCG2 Expression at the 3' untranslated Region of Its mRNA Through Modulation of Transcript Stability and Protein Translation by a Putative microRNA in the S1 Colon Cancer Cell Line,” Molecular and Cellular Biology 28, no. 17 (2008): 5147-5161.

[222]

H. Zhu, H. Wu, X. Liu, et al., “Role of MicroRNA miR-27a and miR-451 in the Regulation of MDR1/P-glycoprotein Expression in human Cancer Cells,” Biochemical Pharmacology 76, no. 5 (2008): 582-588.

[223]

B. Jiang, Y. Li, X. Qu, et al., “Long Noncoding RNA Cancer Susceptibility Candidate 9 Promotes Doxorubicin Resistant Breast Cancer by Binding to Enhancer of Zeste Homolog 2,” International Journal of Molecular Medicine 42, no. 5 (2018): 2801-2810.

[224]

M. Su, Y. Xiao, J. Ma, et al., “Circular RNAs in Cancer: Emerging Functions in Hallmarks, Stemness, Resistance and Roles as Potential Biomarkers,” Molecular Cancer 18, no. 1 (2019): 90.

[225]

L. Mashouri, H. Yousefi, A. R. Aref, A. M. Ahadi, F. Molaei, and S. K. Alahari, “Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance,” Molecular Cancer 18, no. 1 (2019): 75.

[226]

Z. Herceg and T. Ushijima, “Introduction: Epigenetics and Cancer,” Advances in Genetics 70 (2010): 1-23.

[227]

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, “Most Mammalian mRNAs Are Conserved Targets of microRNAs,” Genome Research 19, no. 1 (2009): 92-105.

[228]

M. D. Jansson and A. H. Lund, “MicroRNA and Cancer,” Molecular Oncology 6, no. 6 (2012): 590-610.

[229]

Z. Herceg and T. Vaissière, “Epigenetic Mechanisms and Cancer: An Interface Between the Environment and the Genome,” Epigenetics 6, no. 7 (2011): 804-819.

[230]

M. Mikubo, Y. Inoue, G. Liu, and M. S. Tsao, “Mechanism of Drug Tolerant Persister Cancer Cells: The Landscape and Clinical Implication for Therapy,” Journal of Thoracic Oncology 16, no. 11 (2021): 1798-1809.

[231]

A. Nicolini, G. Rossi, P. Ferrari, and A. Carpi, “Minimal Residual Disease in Advanced or Metastatic Solid Cancers: The G0-G1 state and Immunotherapy Are Key to Unwinding Cancer Complexity,” Seminars in Cancer Biology 79 (2022): 68-82.

[232]

A. S. Yadav, P. R. Pandey, R. Butti, et al., “The Biology and Therapeutic Implications of Tumor Dormancy and Reactivation,” Frontiers in Oncology 8 (2018): 72.

[233]

R. L. Anderson, T. Balasas, J. Callaghan, et al., “A Framework for the Development of Effective Anti-metastatic Agents,” Nature Reviews Clinical Oncology 16, no. 3 (2019): 185-204.

[234]

G. Hochman, E. Shacham-Shmueli, S. P. Raskin, S. Rosenbaum, and S. Bunimovich-Mendrazitsky, “Metastasis Initiation Precedes Detection of Primary Cancer-Analysis of Metastasis Growth in Vivo in a Colorectal Cancer Test Case,” Front Physiol 11 (2020): 533101.

[235]

I. H. Gelman, “The Genomic Regulation of Metastatic Dormancy,” Cancer and Metastasis Reviews 42, no. 1 (2023): 255-276.

[236]

G. Ramamoorthi, K. Kodumudi, C. Gallen, et al., “Disseminated Cancer Cells in Breast Cancer: Mechanism of Dissemination and Dormancy and Emerging Insights on Therapeutic Opportunities,” Seminars in Cancer Biology 78 (2022): 78-89.

[237]

Z. Diamantopoulou, F. Castro-Giner, F. D. Schwab, et al., “The Metastatic Spread of Breast Cancer Accelerates During Sleep,” Nature 607, no. 7917 (2022): 156-162.

[238]

S. Bakhshandeh, C. Werner, P. Fratzl, and A. Cipitria, “Microenvironment-mediated Cancer Dormancy: Insights From Metastability Theory,” PNAS 119, no. 1 (2022): e2111046118.

[239]

H. Y. Min and H. Y. Lee, “Cellular Dormancy in Cancer: Mechanisms and Potential Targeting Strategies,” Cancer research and treatment: official journal of Korean Cancer Association 55, no. 3 (2023): 720-736.

[240]

H. A. Amissah, S. E. Combs, and M. Shevtsov, “Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins,” Cells 13, no. 13 (2024): 1087.

[241]

P. Hermanek, R. V. Hutter, L. H. Sobin, and C. Wittekind, “International Union Against Cancer. Classification of Isolated Tumor Cells and Micrometastasis,” Cancer 86, no. 12 (1999): 2668-2673.

[242]

F. L. Green and D. L. Page, Fleming ID AJCC Cancer Staging Manual. 6th ed. (Chicago, IL: American Joint Commission on Cancer, 2002).

[243]

L. Dostálek, K. Benešová, J. Klát, et al., “Stratification of Lymph Node Metastases as Macrometastases, Micrometastases, or Isolated Tumor Cells Has no Clinical Implication in Patients With Cervical Cancer: Subgroup Analysis of the SCCAN Project,” Gynecologic Oncology 168 (2023): 151-156.

[244]

L. Hanin and M. Zaider, “Effects of Surgery and Chemotherapy on Metastatic Progression of Prostate Cancer: Evidence From the Natural History of the Disease Reconstructed Through Mathematical Modeling,” Cancers (Basel) 3, no. 3 (2011): 3632-3660.

[245]

E. Szczurek, T. Krüger, B. Klink, and N. Beerenwinkel, “A Mathematical Model of the Metastatic Bottleneck Predicts Patient Outcome and Response to Cancer Treatment,” Plos Computational Biology 16, no. 10 (2020): e1008056.

[246]

A. Nicolini, A. Carpi, P. Ferrari, et al., “An Individual Reference Limit of the Serum CEA-TPA-CA 15-3 Tumor Marker Panel in the Surveillance of Asymptomatic Women Following Surgery for Primary Breast Cancer,” Cancer Management and Research 10 (2018): 6879-6886.

[247]

L. Salminen, N. Nadeem, S. Jain, et al., “A Longitudinal Analysis of CA125 Glycoforms in the Monitoring and Follow up of High Grade Serous Ovarian Cancer,” Gynecologic Oncology 156, no. 3 (2020): 689-694.

[248]

T. I. Goonewardene, M. R. Hall, and G. J. Rustin, “Management of Asymptomatic Patients on Follow-up for Ovarian Cancer With Rising CA-125 Concentrations,” The Lancet Oncology 8, no. 9 (2007): 813-821.

[249]

E. Anastasi, G. G. Marchei, V. Viggiani, G. Gennarini, L. Frati, and M. G. Reale, “HE4: A New Potential Early Biomarker for the Recurrence of Ovarian Cancer,” Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 31, no. 2 (2010): 113-119.

[250]

K. Matsumoto, N. Niwa, S. Hattori, et al., “Establishment of the Optimal Follow-up Schedule After Radical Prostatectomy,” Urologic Oncology 36, no. 7 (2018): 341. e9-e14.

[251]

A. Nicolini, P. Ferrari, M. J. Duffy, et al., “Intensive Risk-adjusted Follow-up With the CEA, TPA, CA19.9, and CA72.4 Tumor Marker Panel and Abdominal Ultrasonography to Diagnose Operable Colorectal Cancer Recurrences: Effect on Survival,” Archives of Surgery 145, no. 12 (2010): 1177-1183.

[252]

C. Hall, L. Clarke, A. Pal, et al., “A Review of the Role of Carcinoembryonic Antigen in Clinical Practice,” Ann Coloproctol 35, no. 6 (2019): 294-305.

[253]

A. J. Medford, B. Moy, L. M. Spring, S. A. Hurvitz, N. C. Turner, and A. Bardia, “Molecular Residual Disease in Breast Cancer: Detection and Therapeutic Interception,” Clinical Cancer Research 29, no. 22 (2023): 4540-4548.

[254]

K. Chen, F. Yang, H. Shen, et al., “Individualized Tumor-informed Circulating Tumor DNA Analysis for Postoperative Monitoring of Non-small Cell Lung Cancer,” Cancer Cell 41, no. 10 (2023): 1749-1762. e6.

[255]

A. J. Widman, M. Shah, A. Frydendahl, et al., “Ultrasensitive Plasma-based Monitoring of Tumor Burden Using Machine-learning-guided Signal Enrichment,” Nature Medicine 30, no. 6 (2024): 1655-1666.

[256]

M. Coakley, G. Villacampa, P. Sritharan, et al., “Comparison of Circulating Tumor DNA Assays for Molecular Residual Disease Detection in Early-Stage Triple-Negative Breast Cancer,” Clinical Cancer Research 30, no. 4 (2024): 895-903.

[257]

C. Abbosh, A. M. Frankell, T. Harrison, et al., “Tracking Early Lung Cancer Metastatic Dissemination in TRACERx Using ctDNA,” Nature 616, no. 7957 (2023): 553-562.

[258]

J. Agudo, J. A. Aguirre-Ghiso, M. Bhatia, L. A. Chodosh, A. L. Correia, and C. A. Klein, “Targeting Cancer Cell Dormancy,” Nature Reviews Cancer 24, no. 2 (2024): 97-104.

[259]

A. Nicolini, P. Ferrari, and A. Carpi, “Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy,” Biomedicines 10, no. 10 (2022): 2511.

[260]

N. Linde, G. Fluegen, and J. A. Aguirre-Ghiso, “The Relationship between Dormant Cancer Cells and Their Microenvironment,” Advances in Cancer Research 132 (2016): 45-71.

[261]

D. R. Caswell and C. Swanton, “The Role of Tumour Heterogeneity and Clonal Cooperativity in Metastasis, Immune Evasion and Clinical Outcome,” BMC Medicine [Electronic Resource] 15, no. 1 (2017): 133.

[262]

T. G. Phan and P. I. Croucher, “The Dormant Cancer Cell Life Cycle,” Nature Reviews Cancer 20, no. 7 (2020): 398-411.

[263]

J. Li, E. Jiang, X. Wang, A. J. Shangguan, L. Zhang, and Z. Yu, “Dormant Cells: The Original Cause of Tumor Recurrence and Metastasis,” Cell Biochemistry and Biophysics 72, no. 2 (2015): 317-320.

[264]

H. F. Aqbi, M. Wallace, S. Sappal, K. K. Payne, and M. H. Manjili, “IFN-γ Orchestrates Tumor Elimination, Tumor Dormancy, Tumor Escape, and Progression,” Journal of Leukocyte Biology (2018),

[265]

C. M. Koebel, W. Vermi, J. B. Swann, et al., “Adaptive Immunity Maintains Occult Cancer in an Equilibrium state,” Nature 450, no. 7171 (2007): 903-907.

[266]

Y. Du, Y. Cai, Y. Lv, et al., “Single-cell RNA Sequencing Unveils the Communications Between Malignant T and Myeloid Cells Contributing to Tumor Growth and Immunosuppression in Cutaneous T-cell Lymphoma,” Cancer Letters 551 (2022): 215972.

[267]

E. Koncina, M. Nurmik, V. I. Pozdeev, et al., “IL1R1+ cancer-associated Fibroblasts Drive Tumor Development and Immunosuppression in Colorectal cancer,” Nature Communications 14, no. 1 (2023): 4251.

[268]

K. J. Hiam-Galvez, B. M. Allen, and M. H. Spitzer, “Systemic Immunity in Cancer,” Nature Reviews Cancer 21, no. 6 (2021): 345-359.

[269]

F. G. Dall'Olio, A. Marabelle, C. Caramella, et al., “Tumour Burden and Efficacy of Immune-checkpoint Inhibitors,” Nature reviews Clinical oncology 19, no. 2 (2022): 75-90.

[270]

A. Nicolini, P. Ferrari, G. Rossi, and A. Carpi, “Tumour Growth and Immune Evasion as Targets for a New Strategy in Advanced Cancer,” Endocrine-Related Cancer 25, no. 11 (2018): R577-R604.

[271]

A. Recasens and L. Munoz, “Targeting Cancer Cell Dormancy,” Trends in Pharmacological Sciences 40, no. 2 (2019): 128-141.

[272]

W. Liu, A. H. Kovacs, and J. Hou, “Cancer Cells in Sleep Mode: Wake Them to Eliminate or Keep Them Asleep Forever?” Cells 13, no. 23 (2024): 2022.

[273]

J. C. Marshall, J. W. Collins, J. Nakayama, et al., “Effect of Inhibition of the Lysophosphatidic Acid Receptor 1 on Metastasis and Metastatic Dormancy in Breast Cancer,” JNCI: Journal of the National Cancer Institute 104, no. 17 (2012): 1306-1319.

[274]

R. W. Johnson, E. C. Finger, M. M. Olcina, et al., “Induction of LIFR Confers a Dormancy Phenotype in Breast Cancer Cells Disseminated to the Bone Marrow,” Nature Cell Biology 18, no. 10 (2016): 1078-1089.

[275]

M. E. Clements, L. Holtslander, C. Edwards, et al., “HDAC Inhibitors Induce LIFR Expression and Promote a Dormancy Phenotype in Breast Cancer,” Oncogene 40, no. 34 (2021): 5314-5326.

[276]

S. Landreville, O. A. Agapova, K. A. Matatall, et al., “Histone Deacetylase Inhibitors Induce Growth Arrest and Differentiation in Uveal Melanoma,” Clinical Cancer Research 18, no. 2 (2012): 408-416.

[277]

S. Sharma, X. Pei, F. Xing, et al., “Regucalcin Promotes Dormancy of Prostate Cancer,” Oncogene 40, no. 5 (2021): 1012-1026.

[278]

S. Ju, F. Wang, Y. Wang, and S. Ju, “CSN8 is a Key Regulator in Hypoxia-induced Epithelial-mesenchymal Transition and Dormancy of Colorectal Cancer Cells,” Molecular cancer 19, no. 1 (2020): 168.

[279]

M. A. Gimbrone, L. SB, R. S. Cotran, and J. Folkman, “Tumor Dormancy in Vivo by Prevention of Neovascularization,” Journal of Experimental Medicine 136, no. 2 (1972): 261-276.

[280]

D. Hanahan and J. Folkman, “Patterns and Emerging Mechanisms of the Angiogenic Switch During Tumorigenesis,” Cell 86, no. 3 (1996): 353-364.

[281]

M. S. O'Reilly, L. Holmgren, C. Chen, and J. Folkman, “Angiostatin Induces and Sustains Dormancy of human Primary Tumors in Mice,” Nature Medicine 2, no. 6 (1996): 689-692.

[282]

A. Albini, F. Tosetti, V. W. Li, D. M. Noonan, and W. W. Li, “Cancer Prevention by Targeting Angiogenesis,” Nature reviews Clinical Oncology 9, no. 9 (2012): 498-509.

[283]

Y. Tang, M. T. Wang, Y. Chen, et al., “Downregulation of Vascular Endothelial Growth Factor and Induction of Tumor Dormancy by 15-lipoxygenase-2 in Prostate Cancer,” International Journal of Cancer 124, no. 7 (2009): 1545-1551.

[284]

L. Holmgren, M. S. O'Reilly, and J. Folkman, “Dormancy of Micrometastases: Balanced Proliferation and Apoptosis in the Presence of Angiogenesis Suppression,” Nature Medicine 1, no. 2 (1995): 149-153.

[285]

M. Pajic, S. Blatter, C. Guyader, et al., “Selected Alkylating Agents Can Overcome Drug Tolerance of G0-Like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice,” Clinical Cancer Research 23, no. 22 (2017): 7020-7033.

[286]

J. Cho, H. Y. Min, H. J. Lee, et al., “RGS2-mediated Translational Control Mediates Cancer Cell Dormancy and Tumor Relapse,” Journal of Clinical Investigation 131, no. 1 (2021): e136779.

[287]

V. Calvo, W. Zheng, A. Adam-Artigues, et al., “A PERK-Specific Inhibitor Blocks Metastatic Progression by Limiting Integrated Stress Response-Dependent Survival of Quiescent Cancer Cells,” Clinical Cancer Research 29, no. 24 (2023): 5155-5172.

[288]

Y. Bu and J. A. Diehl, “PERK Integrates Oncogenic Signaling and Cell Survival during Cancer Development,” Journal of Cellular Physiology 231, no. 10 (2016): 2088-2096.

[289]

A. Z. Dudek, J. O'Shaughnessy, and S. A. Piha-Paul, “A Multicenter, Open-label, Phase 1a Study of HC-5404 in Patients With Advanced Solid Tumors,” Journal of Clinical Oncology 42, no. 16_suppl (2024): e15118.

[290]

N. Rajbhandari, W. C. Lin, B. L. Wehde, A. A. Triplett, and K. U. Wagner, “Autocrine IGF1 Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of Oncogenic Drivers,” Cell Reports 18, no. 9 (2017): 2243-2255.

[291]

K. Santos-de-Frutos and N. Djouder, “When Dormancy Fuels Tumour Relapse,” Communications Biology 4, no. 1 (2021): 747.

[292]

H. Takahashi, K. Yumoto, K. Yasuhara, et al., “Anticancer Polymers Designed for Killing Dormant Prostate Cancer Cells,” Scientific Reports 9, no. 1 (2019): 1096. Erratum in: Sci Rep. 2019 Nov 25;9(1):17455.

[293]

W. Becker, “A Wake-up Call to Quiescent Cancer Cells—potential Use of DYRK1B Inhibitors in Cancer Therapy,” Febs Journal 285, no. 7 (2018): 1203-1211.

[294]

M. S. Sosa, F. Parikh, A. G. Maia, et al., “NR2F1 controls Tumour Cell Dormancy via SOX9- and RARβ-driven Quiescence Programmes,” Nature Communications 6 (2015): 6170.

[295]

B. D. Khalil, R. Sanchez, T. Rahman, et al., “An NR2F1-specific Agonist Suppresses Metastasis by Inducing Cancer Cell Dormancy,” Journal of Experimental Medicine 219, no. 1 (2022): e20210836.

[296]

Y. Qiu, V. Krishnan, F. A. Pereira, S. Y. Tsai, and M. J. Tsai, “Chicken Ovalbumin Upstream Promoter-transcription Factors and Their Regulation,” Journal of Steroid Biochemistry and Molecular Biology 56, no. 1-6 Spec No (1996): 81-85.

[297]

L. H. El Touny, A. Vieira, A. Mendoza, C. Khanna, M. J. Hoenerhoff, and J. E. Green, “Combined SFK/MEK Inhibition Prevents Metastatic Outgrowth of Dormant Tumor Cells,” Journal of Clinical Investigation 124, no. 1 (2014): 156-168.

[298]

J. Cho, H. J. Lee, S. J. Hwang, et al., “The Interplay Between Slow-Cycling, Chemoresistant Cancer Cells and Fibroblasts Creates a Proinflammatory Niche for Tumor Progression,” Cancer Research 80, no. 11 (2020): 2257-2272.

[299]

J. A. Aguirre-Ghiso, “Translating the Science of Cancer Dormancy to the Clinic,” Cancer Research 81, no. 18 (2021): 4673-4675.

[300]

I. E. Elkholi, A. Lalonde, M. Park, and J. F. Côté, “Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s),” Cancer Research 82, no. 24 (2022): 4497-4510.

[301]

L. J. Bayne, I. Nivar, and B. Goodspeed, “Detection and Targeting of Minimal Residual Disease in Breast Cancer to Reduce Recurrence: The PENN-SURMOUNT and CLEVER Trials,” Cancer Research 78, no. 4 (2018): OT2-07-09.

[302]

A. DeMichele, A. S. Clark, L. Bayne, et al., “A Phase II Trial Targeting Disseminated Dormant Tumor Cells With Hydroxychloroquine, Everolimus or the Combination to Prevent Recurrent Breast Cancer (“CLEVER”),” Annals of Oncology 34 (2023): S281.

[303]

S. K. Rehman, J. Haynes, E. Collignon, et al., “Colorectal Cancer Cells Enter a Diapause-Like DTP State to Survive Chemotherapy,” Cell 184, no. 1 (2021): 226-242. e21.

[304]

Y. Liu, J. Lv, X. Liang, et al., “Fibrin Stiffness Mediates Dormancy of Tumor-Repopulating Cells via a Cdc42-Driven Tet2 Epigenetic Program,” Cancer Research 78, no. 14 (2018): 3926-3937.

[305]

Y. Qiu, S. Qiu, L. Deng, et al., “Biomaterial 3D Collagen I Gel Culture Model: A Novel Approach to Investigate Tumorigenesis and Dormancy of Bladder Cancer Cells Induced by Tumor Microenvironment,” Biomaterials 256 (2020): 120217.

[306]

D. W. Zhu, Y. X. Yuan, J. K. Qiao, et al., “Enhanced Anticancer Activity of a Protein Phosphatase 2A Inhibitor on Chemotherapy and Radiation in Head and Neck Squamous Cell Carcinoma,” Cancer Letters 356, no. 2 Pt B (2015): 773-780.

[307]

J. Lu, J. S. Kovach, F. Johnson, et al., “Inhibition of Serine/Threonine Phosphatase PP2A Enhances Cancer Chemotherapy by Blocking DNA Damage Induced Defense Mechanisms,” PNAS 106, no. 28 (2009): 11697-11702.

[308]

Y. Jiang, W. Huang, X. Sun, et al., “DTX-P7, a Peptide-drug Conjugate, Is Highly Effective for Non-small Cell Lung Cancer,” Journal of hematology & oncology 15 (2022): 73.

[309]

D. K. Singh, S. Carcamo, E. F. Farias, et al., “5-Azacytidine- and Retinoic-acid-induced Reprogramming of DCCs Into Dormancy Suppresses Metastasis via Restored TGF-β-SMAD4 Signaling,” Cell reports 42, no. 6 (2023): 112560.

[310]

H. Shimizu, S. Takeishi, H. Nakatsumi, and K. I. Nakayama, “Prevention of Cancer Dormancy by Fbxw7 Ablation Eradicates Disseminated Tumor Cells,” JCI Insight 4, no. 4 (2019): e125138.

[311]

A. R. Nobre, E. Dalla, J. Yang, et al., “ZFP281 drives a Mesenchymal-Like Dormancy Program in Early Disseminated Breast Cancer Cells That Prevents Metastatic Outgrowth in the Lung,” Nat Cancer 3, no. 10 (2022): 1165-1180.

[312]

P. Aouad, Y. Zhang, F. De Martino, et al., “Epithelial-mesenchymal Plasticity Determines Estrogen Receptor Positive Breast Cancer Dormancy and Epithelial Reconversion Drives Recurrence,” Nature Communications 13, no. 1 (2022): 4975.

[313]

P. Bragado, Y. Estrada, F. Parikh, et al., “TGF-β2 Dictates Disseminated Tumour Cell Fate in Target Organs Through TGF-β-RIII and p38α/β Signalling,” Nature Cell Biology 15, no. 11 (2013): 1351-1361.

[314]

L. E. Barney, C. L. Hall, A. D. Schwartz, et al., “Tumor Cell-organized Fibronectin Maintenance of a Dormant Breast Cancer Population,” Science Advances 6, no. 11 (2020): eaaz4157.

[315]

A. R. Nobre, E. Risson, D. K. Singh, et al., “Bone Marrow NG2+/Nestin+ Mesenchymal Stem Cells Drive DTC Dormancy via TGFβ2,” Nature Cancer 2, no. 3 (2021): 327-339.

[316]

K. Yumoto, M. R. Eber, J. Wang, et al., “Axl Is Required for TGF-β2-induced Dormancy of Prostate Cancer Cells in the Bone Marrow,” Scientific Reports 6 (2016): 36520.

[317]

A. Kobayashi, H. Okuda, F. Xing, et al., “Bone Morphogenetic Protein 7 in Dormancy and Metastasis of Prostate Cancer Stem-Like Cells in Bone,” Journal of Experimental Medicine 208, no. 13 (2011): 2641-2655.

[318]

J. T. Buijs, C. A. Rentsch, G. van der Horst, et al., “BMP7, a Putative Regulator of Epithelial Homeostasis in the human Prostate, Is a Potent Inhibitor of Prostate Cancer Bone Metastasis in Vivo,” American Journal of Pathology 171, no. 3 (2007): 1047-1057.

[319]

J. D. Farrar, K. H. Katz, J. Windsor, et al., “Cancer Dormancy. VII. A Regulatory Role for CD8+ T Cells and IFN-gamma in Establishing and Maintaining the Tumor-dormant state,” Journal of Immunology 162, no. 5 (1999): 2842-2849.

[320]

A. L. Correia, J. C. Guimaraes, P. Auf der Maur, et al., “Hepatic Stellate Cells Suppress NK Cell-sustained Breast Cancer Dormancy,” Nature 594, no. 7864 (2021): 566-571.

[321]

P. Tallón de Lara, H. Castañón, M. Vermeer, et al., “CD39+PD-1+CD8+ T Cells Mediate Metastatic Dormancy in Breast Cancer,” Nature Communications 12, no. 1 (2021): 769.

[322]

J. A. Aguirre Ghiso, “Inhibition of FAK Signaling Activated by Urokinase Receptor Induces Dormancy in human Carcinoma Cells in Vivo,” Oncogene 21, no. 16 (2002): 2513-2524.

[323]

J. A. Aguirre-Ghiso, D. Liu, A. Mignatti, K. Kovalski, and L. Ossowski, “Urokinase Receptor and Fibronectin Regulate the ERK(MAPK) to p38(MAPK) Activity Ratios That Determine Carcinoma Cell Proliferation or Dormancy in Vivo,” Molecular Biology of the Cell 12, no. 4 (2001): 863-879.

[324]

D. Barkan, H. Kleinman, J. L. Simmons, et al., “Inhibition of Metastatic Outgrowth From Single Dormant Tumor Cells by Targeting the Cytoskeleton,” Cancer Research 68, no. 15 (2008): 6241-6250.

[325]

D. Barkan, L. H. El Touny, A. M. Michalowski, et al., “Metastatic Growth From Dormant Cells Induced by a Col-I-enriched Fibrotic Environment,” Cancer Research 70, no. 14 (2010): 5706-5716.

[326]

T. Bui, Y. Gu, F. Ancot, V. Sanguin-Gendreau, D. Zuo, and W. J. Muller, “Emergence of β1 Integrin-deficient Breast Tumours From Dormancy Involves both Inactivation of p53 and Generation of a Permissive Tumour Microenvironment,” Oncogene 41, no. 4 (2022): 527-537.

[327]

J. A. Aguirre Ghiso, K. Kovalski, and L. Ossowski, “Tumor Dormancy Induced by Downregulation of Urokinase Receptor in human Carcinoma Involves Integrin and MAPK Signaling,” Journal of Cell Biology 147, no. 1 (1999): 89-104.

[328]

R. Liu, S. Su, J. Xing, et al., “Tumor Removal Limits Prostate Cancer Cell Dissemination in Bone and Osteoblasts Induce Cancer Cell Dormancy Through Focal Adhesion Kinase,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 264.

[329]

G. Fluegen, A. Avivar-Valderas, Y. Wang, et al., “Phenotypic Heterogeneity of Disseminated Tumour Cells Is Preset by Primary Tumour Hypoxic Microenvironments,” Nature Cell Biology 19, no. 2 (2017): 120-132.

[330]

H. Endo, J. Okami, H. Okuyama, Y. Nishizawa, F. Imamura, and M. Inoue, “The Induction of MIG6 Under Hypoxic Conditions Is Critical for Dormancy in Primary Cultured Lung Cancer Cells With Activating EGFR Mutations,” Oncogene 36, no. 20 (2017): 2824-2834.

[331]

G. Z. Qiu, M. Z. Jin, J. X. Dai, W. Sun, J. H. Feng, and W. L. Jin, “Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies,” Trends in Pharmacological Sciences 38, no. 8 (2017): 669-686.

[332]

K. Hoppe-Seyler, F. Bossler, C. Lohrey, et al., “Induction of Dormancy in Hypoxic human Papillomavirus-positive Cancer Cells,” PNAS 114, no. 6 (2017): E990-E998.

[333]

J. Barrios and R. Wieder, “Dual FGF-2 and Intergrin alpha5beta1 Signaling Mediate GRAF-induced RhoA Inactivation in a Model of Breast Cancer Dormancy,” Cancer Microenvironment: official journal of the International Cancer Microenvironment Society 2, no. 1 (2009): 33-47.

[334]

T. Shibue, F. Reinhardt, and R. A. Weinberg, “Syndecan-Mediated Ligation of ECM Proteins Triggers Proliferative Arrest of Disseminated Tumor Cells,” Cancer Research 79, no. 23 (2019): 5944-5957.

[335]

X. Lu, E. Mu, Y. Wei, et al., “VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging α4β1-positive Osteoclast Progenitors,” Cancer Cell 20, no. 6 (2011): 701-714.

[336]

H. Gao, G. Chakraborty, A. P. Lee-Lim, et al., “The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites,” Cell 150, no. 4 (2012): 764-779.

[337]

R. Ganesan, S. S. Bhasin, M. Bakhtiary, et al., “Taxane Chemotherapy Induces Stromal Injury That Leads to Breast Cancer Dormancy Escape,” Plos Biology 21, no. 9 (2023): e3002275.

[338]

P. Carlson, A. Dasgupta, C. A. Grzelak, et al., “Targeting the Perivascular Niche Sensitizes Disseminated Tumour Cells to Chemotherapy,” Nature Cell Biology 21, no. 2 (2019): 238-250.

[339]

I. Sagiv-Barfi, D. K. Czerwinski, S. Levy, et al., “Eradication of Spontaneous Malignancy by Local Immunotherapy,” Science Translational Medicine 10, no. 426 (2018): eaan4488.

[340]

S. Malladi, D. G. Macalinao, X. Jin, et al., “Metastatic Latency and Immune Evasion Through Autocrine Inhibition of WNT,” Cell 165, no. 1 (2016): 45-60.

[341]

A. Pommier, N. Anaparthy, N. Memos, et al., “Unresolved Endoplasmic Reticulum Stress Engenders Immune-resistant, Latent Pancreatic Cancer Metastases,” Science 360, no. 6394 (2018): eaao4908.

[342]

E. T. Goddard, M. H. Linde, S. Srivastava, et al., “Immune Evasion of Dormant Disseminated Tumor Cells Is Due to Their Scarcity and Can be Overcome by T Cell Immunotherapies,” Cancer Cell 42, no. 1 (2024): 119-134. e12.

[343]

P. Baldominos, A. Barbera-Mourelle, O. Barreiro, et al., “Quiescent Cancer Cells Resist T Cell Attack by Forming an Immunosuppressive Niche,” Cell 185, no. 10 (2022): 1694-1708. e19.

[344]

A. Akinleye and Z. Rasool, “Immune Checkpoint Inhibitors of PD-L1 as Cancer Therapeutics,” Journal of hematology & oncology 12, no. 1 (2019): 92.

[345]

P. Darvin, S. M. Toor, V. Sasidharan Nair, and E. Elkord, “Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers,” Experimental & Molecular Medicine 50, no. 12 (2018): 1-11.

[346]

S. Lian, R. Xie, Y. Ye, et al., “Dual Blockage of both PD-L1 and CD47 Enhances Immunotherapy Against Circulating Tumor Cells,” Scientific Reports 9, no. 1 (2019): 4532.

[347]

A. Nicolini, P. Ferrari, R. Morganti, and A. Carpi, “Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports,” International Journal of Molecular Sciences 20, no. 23 (2019): 5986.

[348]

D. Luo, K. A. Carter, and J. F. Lovell, “Nanomedical Engineering: Shaping Future Nanomedicines,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, no. 2 (2015): 169-188.

[349]

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer, “Engineering Precision Nanoparticles for Drug Delivery,” Nature Reviews Drug Discovery 20, no. 2 (2021): 101-124.

[350]

N. K. Al-Nemrawi, M. M. AbuAlSamen, and K. H. Alzoubi, “Awareness About Nanotechnology and Its Applications in Drug Industry Among Pharmacy Students,” Currents in Pharmacy Teaching and Learning 12, no. 3 (2020): 274-280.

[351]

R. X. Zhang, J. Li, T. Zhang, et al., “Importance of Integrating Nanotechnology With Pharmacology and Physiology for Innovative Drug Delivery and Therapy—an Illustration With Firsthand Examples,” Acta Pharmacologica Sinica 39, no. 5 (2018): 825-844.

[352]

A. Zottel, A. Videtič Paska, and I. Jovčevska, “Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy,” Materials (Basel) 12, no. 10 (2019): 1588.

[353]

A. M. Cryer and A. J. Thorley, “Nanotechnology in the Diagnosis and Treatment of Lung Cancer,” Pharmacology & Therapeutics 198 (2019): 189-205.

[354]

A. D. Khalid, N. Ur-Rehman, G. H. Tariq, et al., “Functional Bioinspired Nanocomposites for Anticancer Activity With Generation of Reactive Oxygen Species,” Chemosphere 310 (2023): 136885.

[355]

B. R. Kingston, A. M. Syed, J. Ngai, S. Sindhwani, and W. C. W. Chan, “Assessing Micrometastases as a Target for Nanoparticles Using 3D Microscopy and Machine Learning,” PNAS 116, no. 30 (2019): 14937-14946.

[356]

D. van den Brand, V. Mertens, L. Massuger, and R. Brock, “siRNA in Ovarian Cancer—Delivery Strategies and Targets for Therapy,” Journal of Controlled Release 283 (2018): 45-58.

[357]

R. M. de Kruijff, A. van der Meer, C. A. A. Windmeijer, et al., “The Therapeutic Potential of Polymersomes Loaded With 225Ac Evaluated in 2D and 3D in Vitro Glioma Models,” European Journal of Pharmaceutics and Biopharmaceutics 127 (2018): 85-91.

[358]

H. Wang, “A Review of Nanotechnology in microRNA Detection and Drug Delivery,” Cells 13, no. 15 (2024): 1277.

[359]

Y. Suhail, M. P. Cain, K. Vanaja, et al., “Systems Biology of Cancer Metastasis,” Cell Systems 9, no. 2 (2019): 109-127.

[360]

A. L. Barabási and Z. N. Oltvai, “Network Biology: Understanding the Cell's Functional Organization,” Nature Reviews Genetics 5, no. 2 (2004): 101-113.

[361]

T. Ideker and R. Nussinov, “Network Approaches and Applications in Biology,” Plos Computational Biology 13, no. 10 (2017): e1005771.

[362]

M. Vidal, M. E. Cusick, and A. L. Barabási, “Interactome Networks and human Disease,” Cell 144, no. 6 (2011): 986-998.

[363]

Y. You, X. Lai, Y. Pan, et al., “Artificial Intelligence in Cancer Target Identification and Drug Discovery,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 156.

[364]

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. 2nd ed. (Wiley-Interscience, 2000).

[365]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (The MIT Press, 2016).

[366]

A. Sharma, A. Lysenko, S. Jia, K. A. Boroevich, and T. Tsunoda, “Advances in AI and Machine Learning for Predictive Medicine,” Journal of Human Genetics 69, no. 10 (2024): 487-497.

[367]

Y. Wu and L. Xie, “AI-driven Multi-omics Integration for Multi-scale Predictive Modeling of Genotype-environment-phenotype Relationships,” Computational and Structural Biotechnology Journal 27 (2025): 265-277.

[368]

J. Sim, D. Kim, B. Kim, J. Choi, and J. Lee, “Recent Advances in AI-driven Protein-ligand Interaction Predictions,” Current Opinion in Structural Biology 92 (2025): 103020.

[369]

L. Hanin and S. Bunimovich-Mendrazitsky, “Reconstruction of the Natural History of Metastatic Cancer and Assessment of the Effects of Surgery: Gompertzian Growth of the Primary Tumor,” Mathematical Biosciences 247 (2014): 47-58.

[370]

V. T. DeVita, R. C. Young, and G. P. Canellos, “Combination versus Single Agent Chemotherapy: A Review of the Basis for Selection of Drug Treatment of Cancer,” Cancer 35, no. 1 (1975): 98-110.

[371]

H. R. Withers and S. P. Lee, “Modeling Growth Kinetics and Statistical Distribution of Oligometastases,” Seminars in Radiation Oncology 16, no. 2 (2006): 111-119.

[372]

L. Manganaro, S. Michienzi, V. Vinci, et al., “Serum HE4 Levels Combined With CE CT Imaging Improve the Management of Monitoring Women Affected by Epithelial Ovarian Cancer,” Oncology Reports 30, no. 5 (2013): 2481-2487.

[373]

G. Rosati, G. Ambrosini, S. Barni, et al., “A Randomized Trial of Intensive versus Minimal Surveillance of Patients With Resected Dukes B2-C Colorectal Carcinoma,” Annals of Oncology 27, no. 2 (2016): 274-280.

[374]

N. Pietra, L. Sarli, R. Costi, C. Ouchemi, M. Grattarola, and A. Peracchia, “Role of Follow-up in Management of Local Recurrences of Colorectal Cancer: A Prospective, Randomized Study,” Diseases of the Colon and Rectum 41, no. 9 (1998): 1127-1133.

[375]

J. T. Mäkelä, S. O. Laitinen, and M. I. Kairaluoma, “Five-year Follow-up After Radical Surgery for Colorectal Cancer. Results of a Prospective Randomized Trial,” Archives of Surgery 130, no. 10 (1995): 1062-1067.

[376]

A. Mahdy, R. Patil, and S. Parajuli, “Biochemical Recurrence in Prostate Cancer and Temporal Association to Bone Metastasis,” American Journal of Case Reports 20 (2019): 1521-1525.

[377]

J. S. Spratt and T. L. Spratt, “Rates of Growth of Pulmonary Metastases and Host Survival,” Annals of Surgery 159, no. 2 (1964): 161-171.

[378]

Y. Tomimaru, S. Noura, M. Ohue, et al., “Metastatic Tumor Doubling Time Is an Independent Predictor of Intrapulmonary Recurrence After Pulmonary Resection of Solitary Pulmonary Metastasis From Colorectal Cancer,” Digestive Surgery 25, no. 3 (2008): 220-225.

[379]

R. Chojniak and R. N. Younes, “Pulmonary Metastases Tumor Doubling Time: Assessment by Computed Tomography,” American Journal of Clinical Oncology 26, no. 4 (2003): 374-377.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/