Dehydrocostus Lactone Effectively Alleviates Inflammatory Diseases by Covalently and Irreversibly Targeting NLRP3
Qi Lv , Yishu Zhang , Juan Wang , Weijiang Lin , Ying Xie , Hongqiong Yang , Xunkai Yin , Zhenzhen Zhu , Yifan Cui , Yang Hu , Li Zeng , Yinan Zhang , Xubing Chen , Jian Liu , Lihong Hu
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70367
Dehydrocostus Lactone Effectively Alleviates Inflammatory Diseases by Covalently and Irreversibly Targeting NLRP3
The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor. DCL effectively inhibited caspase-1 cleavage and release of IL-1β in mouse and human macrophages at an extremely low concentration of 10 nM, comparable to MCC950. Mechanistically, our study assigned DCL a novel role in disrupting NLRP3 inflammasome assembly and ASC oligomerization. Excluding the influence on potassium/chloride ion efflux, calcium ion influx, and production of mitochondrial ROS, DCL formed a covalent bond with cysteine 280 in NACHT domain of NLRP3, thereby inhibiting the interaction between NLRP3 and NEK7. Furthermore, DCL exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including dextran sulfate sodium-induced colitis, 2,4,6-trinitrobenzenesulfonic acid-induced Crohn's disease, LPS-induced septic shock, and monosodium urate-induced peritonitis. Our findings identify NLRP3 as the direct target of DCL, positioning DCL as a promising lead compound for treatment of NLRP3 inflammasome-related diseases.
covalent irreversible / cysteine 280 / dehydrocostus lactone / NLRP3 inflammasome / NLRP3-driven diseases
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |