Guanine Nucleotide Exchange Factors and Small GTPases: Their Regulation and Functions, Diseases, and Therapeutic Targets

Zexing Lin , Chujun Ni , Haiyang Jiang , Huan Yang , Liting Deng , Peizhao Liu , Xuanheng Li , Yilong Yu , Weijie Li , Runnan Wang , Bo Liao , Jiaqi Kang , Juanhan Liu , Xiuwen Wu , Jianan Ren , Yun Zhao

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70362

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70362 DOI: 10.1002/mco2.70362
REVIEW

Guanine Nucleotide Exchange Factors and Small GTPases: Their Regulation and Functions, Diseases, and Therapeutic Targets

Author information +
History +
PDF

Abstract

Guanine nucleotide exchange factors (GEFs) and their small GTPase substrates constitute a fundamental regulatory system that governs diverse cellular processes, including cytoskeletal dynamics, membrane trafficking, and transcriptional regulation. Since their discovery, GEFs have been recognized as molecular switches that activate small GTPases by catalyzing GDP-to-GTP exchange, thereby playing pivotal roles in cellular signaling and homeostasis. Despite extensive research, key gaps remain in understanding the spatiotemporal regulation of GEF isoforms, their functional redundancy in disease, and the development of isoform-specific drugs. This review examines the regulatory mechanisms and physiological roles of GEFs, highlighting their growing potential as therapeutic targets. We explore the phylogenetic classification of GEFs into major families (Ras, Rho, Rab, and ArfGEFs) and their regulatory networks, which encompass subcellular localization, posttranslational modifications, and scaffolding interactions. Special emphasis is placed on GEF–H1, a microtubule-regulated RhoGEF, and its roles in cytoskeletal remodeling, cancer metastasis, and immune responses. We also examine GEF dysregulation in diseases like cancer, neurodegeneration, and cardiovascular disorders, and assess current therapies, such as small-molecule inhibitors and emerging PROTAC technology. This review connects GEF biology with clinical applications by combining basic research with translational insights, providing guidance for precision medicine and novel therapeutic strategies targeting GEF-related diseases.

Keywords

cancer metastasis / guanine nucleotide exchange factors / GEF / microtubule dynamics / neurodegenerative diseases / Rho signaling / small GTPases

Cite this article

Download citation ▾
Zexing Lin, Chujun Ni, Haiyang Jiang, Huan Yang, Liting Deng, Peizhao Liu, Xuanheng Li, Yilong Yu, Weijie Li, Runnan Wang, Bo Liao, Jiaqi Kang, Juanhan Liu, Xiuwen Wu, Jianan Ren, Yun Zhao. Guanine Nucleotide Exchange Factors and Small GTPases: Their Regulation and Functions, Diseases, and Therapeutic Targets. MedComm, 2025, 6(10): e70362 DOI:10.1002/mco2.70362

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. L. Bos, H. Rehmann, and A. Wittinghofer, “GEFs and GAPs: Critical Elements in the Control of Small G Proteins,” Cell 129, no. 5 (2007): 865-877.

[2]

K. L. Rossman, C. J. Der, and J. Sondek, “GEF Means Go: Turning on RHO GTPases With Guanine Nucleotide-exchange Factors,” Nature Reviews Molecular Cell Biology 6, no. 2 (2005): 167-180.

[3]

P. Madaule and R. Axel, “A Novel Ras-related Gene family,” Cell 41, no. 1 (1985): 31-40.

[4]

D. R. Cook, K. L. Rossman, and C. J. Der, “Rho Guanine Nucleotide Exchange Factors: Regulators of Rho GTPase Activity in Development and Disease,” Oncogene 33, no. 31 (2014): 4021-4035.

[5]

S. F. Bannoura, H. Y. Khan, M. H. Uddin, R. M. Mohammad, B. C. Pasche, and A. S. Azmi, “Targeting Guanine Nucleotide Exchange Factors for Novel Cancer Drug Discovery,” Expert Opinion on Drug Discovery 19, no. 8 (2024): 949-959.

[6]

J. Robles-Valero, L. Fernández-Nevado, L. F. Lorenzo-Martín, et al., “Cancer-associated Mutations in VAV1 Trigger Variegated Signaling Outputs and T-cell Lymphomagenesis,” The EMBO Journal 40, no. 22 (2021): e108125.

[7]

F. C. Baltanás, N. Zarich, J. M. Rojas-Cabañeros, and E. Santos, “SOS GEFs in Health and Disease,” Biochimica Et Biophysica Acta Reviews on Cancer 1874, no. 2 (2020): 188445.

[8]

N. J. Fu, Y. W. Sheng, Z. Fan, et al., “Synthetic Lethality of SHP2 and XIAP Suppresses Proliferation and Metastasis in KRAS-mutant Nonsmall Cell Lung Cancer,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 12 (2025): e2411642.

[9]

A. Cuevas-Navarro, M. Wagner, R. Van, M. Swain, S. Mo, and J. Columbus, “RAS-dependent RAF-MAPK Hyperactivation by Pathogenic RIT1 Is a Therapeutic Target in Noonan Syndrome-associated Cardiac Hypertrophy,” Science Advances 9, no. 28 (2023): eadf4766.

[10]

A. Tomar and D. D. Schlaepfer, “Focal Adhesion Kinase: Switching Between GAPs and GEFs in the Regulation of Cell Motility,” Current Opinion in Cell Biology 21, no. 5 (2009): 676-683.

[11]

M. Kukimoto-Niino, K. Ihara, K. Murayama, and M. Shirouzu, “Structural Insights Into the Small GTPase Specificity of the DOCK Guanine Nucleotide Exchange Factors,” Current Opinion in Structural Biology 71 (2021): 249-258.

[12]

J. M. Bellanger, C. Astier, C. Sardet, Y. Ohta, T. P. Stossel, and A. Debant, “The Rac1- and RhoG-specific GEF Domain of Trio Targets Filamin to Remodel Cytoskeletal Actin,” Nature Cell Biology 2, no. 12 (2000): 888-892.

[13]

L. Yang, N. Li, D. Yang, et al., “CCL2 regulation of MST1-mTOR-STAT1 Signaling Axis Controls BCR Signaling and B-cell Differentiation,” Cell Death and Differentiation 28, no. 9 (2021): 2616-2633.

[14]

X. R. Bustelo, “Vav family Exchange Factors: An Integrated Regulatory and Functional View,” Small GTPases 5, no. 2 (2014): 9.

[15]

E. P. Lamber, A. C. Siedenburg, and F. A. Barr, “Rab Regulation by GEFs and GAPs During Membrane Traffic,” Current Opinion in Cell Biology 59 (2019): 34-39.

[16]

M. Chaineau, M. S. Ioannou, and P. S. McPherson, “Rab35: GEFs, GAPs and Effectors,” Traffic (Copenhagen, Denmark) 14, no. 11 (2013): 1109-1117.

[17]

K. Walton, A. Leier, and E. Sztul, “Regulating the Regulators: Role of Phosphorylation in Modulating the Function of the GBF1/BIG family of Sec7 ARF-GEFs,” FEBS Letters 594, no. 14 (2020): 2213-2226.

[18]

A. Nawrotek, M. Zeghouf, and J. Cherfils, “Allosteric Regulation of Arf GTPases and Their GEFs at the Membrane Interface,” Small GTPases 7, no. 4 (2016): 283-296.

[19]

S. Richter, N. Geldner, J. Schrader, et al., “Functional Diversification of Closely Related ARF-GEFs in Protein Secretion and Recycling,” Nature 448, no. 7152 (2007): 488-492.

[20]

S. Brumm, M. K. Singh, M. E. Nielsen, et al., “Coordinated Activation of ARF1 GTPases by ARF-GEF GNOM Dimers Is Essential for Vesicle Trafficking in Arabidopsis,” The Plant Cell 32, no. 8 (2020): 2491-2507.

[21]

J. M. Casolari, C. R. Brown, S. Komili, J. West, H. Hieronymus, and P. A. Silver, “Genome-wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization,” Cell 117, no. 4 (2004): 427-439.

[22]

Y. M. Chook and G. Blobel, “Structure of the Nuclear Transport Complex Karyopherin-beta2-Ran X GppNHp,” Nature 399, no. 6733 (1999): 230-237.

[23]

S. Paul, A. Audhya, and Q. Cui, “Molecular Mechanism of GTP Binding- and Dimerization-induced Enhancement of Sar1-mediated Membrane Remodeling,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 8 (2023): e2212513120.

[24]

J. Birkenfeld, P. Nalbant, S. H. Yoon, and G. M. Bokoch, “Cellular Functions of GEF-H1, a Microtubule-regulated Rho-GEF: Is Altered GEF-H1 Activity a Crucial Determinant of Disease Pathogenesis?,” Trends in Cell Biology 18, no. 5 (2008): 210-219.

[25]

I. K. Cheng, B. C. Tsang, K. P. Lai, et al., “GEF-H1 Over-expression in Hepatocellular Carcinoma Promotes Cell Motility via Activation of RhoA Signalling,” The Journal of Pathology 228, no. 4 (2012): 575-585.

[26]

W. Pan, K. Nagpal, A. Suárez-Fueyo, et al., “The Regulatory Subunit PPP2R2A of PP2A Enhances Th1 and Th17 Differentiation Through Activation of the GEF-H1/RhoA/ROCK Signaling Pathway,” Journal of Immunology (Baltimore, Md: 1950) 206, no. 8 (2021): 1719-1728.

[27]

J. Cherfils and P. Chardin, “GEFs: Structural Basis for Their Activation of Small GTP-binding Proteins,” Trends in Biochemical Sciences 24, no. 8 (1999): 306-311.

[28]

A. Nishikimi, M. Kukimoto-Niino, S. Yokoyama, and Y. Fukui, “Immune Regulatory Functions of DOCK family Proteins in Health and Disease,” Experimental Cell Research 319, no. 15 (2013): 2343-2349.

[29]

M. E. Cahill, Z. Xie, M. Day, et al., “Kalirin Regulates Cortical Spine Morphogenesis and Disease-related Behavioral Phenotypes,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 31 (2009): 13058-13063.

[30]

J. A. Glaven, I. Whitehead, S. Bagrodia, R. Kay, and R. A. Cerione, “The Dbl-related Protein, Lfc, Localizes to Microtubules and Mediates the Activation of Rac Signaling Pathways in Cells,” The Journal of Biological Chemistry 274, no. 4 (1999): 2279-2285.

[31]

Y. Ren, R. Li, Y. Zheng, and H. Busch, “Cloning and Characterization of GEF-H1, a Microtubule-associated Guanine Nucleotide Exchange Factor for Rac and Rho GTPases,” The Journal of Biological Chemistry 273, no. 52 (1998): 34954-34960.

[32]

I. Whitehead, H. Kirk, C. Tognon, G. Trigo-Gonzalez, and R. Kay, “Expression Cloning of lfc, a Novel Oncogene With Structural Similarities to Guanine Nucleotide Exchange Factors and to the Regulatory Region of Protein Kinase C,” The Journal of Biological Chemistry 270, no. 31 (1995): 18388-18395.

[33]

A. Eva and S. A. Aaronson, “Isolation of a New human Oncogene From a Diffuse B-cell Lymphoma,” Nature 316, no. 6025 (1985): 273-275.

[34]

S. M. Soisson, A. S. Nimnual, M. Uy, D. Bar-Sagi, and J. Kuriyan, “Crystal Structure of the Dbl and Pleckstrin Homology Domains From the human Son of Sevenless Protein,” Cell 95, no. 2 (1998): 259-268.

[35]

J. A. Glaven, I. P. Whitehead, T. Nomanbhoy, R. Kay, and R. A. Cerione, “Lfc and Lsc Oncoproteins Represent Two New Guanine Nucleotide Exchange Factors for the Rho GTP-binding Protein,” The Journal of Biological Chemistry 271, no. 44 (1996): 27374-27381.

[36]

F. Colón-González and M. G. Kazanietz, “C1 domains Exposed: From Diacylglycerol Binding to Protein-protein Interactions,” Biochimica Et Biophysica Acta 1761, no. 8 (2006): 827-837.

[37]

R. J. Haslam, H. B. Koide, and B. A. Hemmings, “Pleckstrin Domain Homology,” Nature 363, no. 6427 (1993): 309-310.

[38]

E. Yamamoto, J. Domański, F. B. Naughton, et al., “Multiple Lipid Binding Sites Determine the Affinity of PH Domains for Phosphoinositide-containing Membranes,” Science Advances 6, no. 8 (2020): eaay5736.

[39]

P. Burkhard, J. Stetefeld, and S. V. Strelkov, “Coiled Coils: A Highly Versatile Protein Folding Motif,” Trends in Cell Biology 11, no. 2 (2001): 82-88.

[40]

A. N. Lupas and M. Gruber, “The Structure of Alpha-helical Coiled Coils,” Advances in Protein Chemistry 70 (2005): 37-78.

[41]

J. Birkenfeld, P. Nalbant, B. P. Bohl, O. Pertz, K. M. Hahn, and G. M. Bokoch, “GEF-H1 Modulates Localized RhoA Activation During Cytokinesis Under the Control of Mitotic Kinases,” Developmental Cell 12, no. 5 (2007): 699-712.

[42]

Y. Yamahashi, Y. Saito, N. Murata-Kamiya, and M. Hatakeyama, “Polarity-regulating Kinase Partitioning-defective 1b (PAR1b) Phosphorylates Guanine Nucleotide Exchange Factor H1 (GEF-H1) to Regulate RhoA-dependent Actin Cytoskeletal Reorganization,” The Journal of Biological Chemistry 286, no. 52 (2011): 44576-44584.

[43]

F. T. Zenke, M. Krendel, C. DerMardirossian, C. C. King, B. P. Bohl, and G. M. Bokoch, “p21-activated Kinase 1 Phosphorylates and Regulates 14-3-3 Binding to GEF-H1, a Microtubule-localized Rho Exchange Factor,” The Journal of Biological Chemistry 279, no. 18 (2004): 18392-18400.

[44]

Y. C. Chang, P. Nalbant, J. Birkenfeld, Z. F. Chang, and G. M. Bokoch, “GEF-H1 Couples Nocodazole-induced Microtubule Disassembly to Cell Contractility via RhoA,” Molecular Biology of the Cell 19, no. 5 (2008): 2147-2153.

[45]

M. J. Sandí, C. B. Marshall, M. Balan, et al., “MARK3-mediated Phosphorylation of ARHGEF2 Couples Microtubules to the Actin Cytoskeleton to Establish Cell Polarity,” Science Signaling 10, no. 503 (2017): eaan3286.

[46]

G. P. Coló, A. Seiwert, and R. B. Haga, “Lfc Subcellular Localization and Activity Is Controlled by Αv-class Integrin,” Journal of Cell Science 136, no. 9 (2023): jcs260740.

[47]

H. Rehmann, A. Wittinghofer, and J. L. Bos, “Capturing Cyclic Nucleotides in Action: Snapshots From Crystallographic Studies,” Nature Reviews Molecular Cell Biology 8, no. 1 (2007): 63-73.

[48]

R. Kristelly, G. Gao, and J. J. Tesmer, “Structural Determinants of RhoA Binding and Nucleotide Exchange in Leukemia-associated Rho Guanine-nucleotide Exchange Factor,” The Journal of Biological Chemistry 279, no. 45 (2004): 47352-47362.

[49]

J. T. Snyder, D. K. Worthylake, K. L. Rossman, et al., “Structural Basis for the Selective Activation of Rho GTPases by Dbl Exchange Factors,” Nature Structural Biology 9, no. 6 (2002): 468-475.

[50]

S. M. Margarit, H. Sondermann, B. E. Hall, et al., “Structural Evidence for Feedback Activation by Ras.GTP of the Ras-specific Nucleotide Exchange Factor SOS,” Cell 112, no. 5 (2003): 685-695.

[51]

P. A. Boriack-Sjodin, S. M. Margarit, D. Bar-Sagi, and J. Kuriyan, “The Structural Basis of the Activation of Ras by Sos,” Nature 394, no. 6691 (1998): 337-343.

[52]

J. Cherfils, J. Ménétrey, M. Mathieu, G. Le Bras, S. Robineau, and S. Béraud-Dufour, “Structure of the Sec7 Domain of the Arf Exchange Factor ARNO,” Nature 392, no. 6671 (1998): 101-105.

[53]

E. Mossessova, J. M. Gulbis, and J. Goldberg, “Structure of the Guanine Nucleotide Exchange Factor Sec7 Domain of human Arno and Analysis of the Interaction With ARF GTPase,” Cell 92, no. 3 (1998): 415-423.

[54]

B. Antonny, S. Beraud-Dufour, P. Chardin, and M. Chabre, “N-terminal Hydrophobic Residues of the G-protein ADP-ribosylation Factor-1 Insert Into Membrane Phospholipids Upon GDP to GTP Exchange,” Biochemistry 36, no. 15 (1997): 4675-4684.

[55]

P. Chardin, S. Paris, B. Antonny, et al., “A human Exchange Factor for ARF Contains Sec7- and Pleckstrin-homology Domains,” Nature 384, no. 6608 (1996): 481-484.

[56]

T. Rudack, F. Xia, J. Schlitter, C. Kötting, and K. Gerwert, “Ras and GTPase-activating Protein (GAP) Drive GTP Into a Precatalytic state as Revealed by Combining FTIR and Biomolecular Simulations,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 38 (2012): 15295-15300.

[57]

C. Klebe, H. Prinz, A. Wittinghofer, and R. S. Goody, “The Kinetic Mechanism of Ran-nucleotide Exchange Catalyzed by RCC1,” Biochemistry 34, no. 39 (1995): 12543-12552.

[58]

E. Kratzer, Y. Tian, N. Sarich, et al., “Oxidative Stress Contributes to Lung Injury and Barrier Dysfunction via Microtubule Destabilization,” American Journal of Respiratory Cell and Molecular Biology 47, no. 5 (2012): 688-697.

[59]

D. Kamps, J. Koch, V. O. Juma, et al., “Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network,” Cell Reports 33, no. 9 (2020): 108467.

[60]

M. Krendel, F. T. Zenke, and G. M. Bokoch, “Nucleotide Exchange Factor GEF-H1 Mediates Cross-talk Between Microtubules and the Actin Cytoskeleton,” Nature Cell Biology 4, no. 4 (2002): 294-301.

[61]

Y. Yamazaki, M. Sumikura, K. Hidaka, et al., “Anti-microtubule ‘Plinabulin’ chemical Probe KPU-244-B3 Labeled both Alpha- and Beta-tubulin,” Bioorganic & Medicinal Chemistry 18, no. 9 (2010): 3169-3174.

[62]

P. Nalbant, L. Hodgson, V. Kraynov, A. Toutchkine, and K. M. Hahn, “Activation of Endogenous Cdc42 Visualized in Living Cells,” Science (New York, NY) 305, no. 5690 (2004): 1615-1619.

[63]

D. Meiri, C. B. Marshall, M. A. Greeve, et al., “Mechanistic Insight Into the Microtubule and Actin Cytoskeleton Coupling Through Dynein-dependent RhoGEF Inhibition,” Molecular Cell 45, no. 5 (2012): 642-655.

[64]

A. E. Prota, K. Bargsten, J. F. Diaz, et al., “A New Tubulin-binding Site and Pharmacophore for Microtubule-destabilizing Anticancer Drugs,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 38 (2014): 13817-13821.

[65]

M. A. Jordan and L. Wilson, “Microtubules as a Target for Anticancer Drugs,” Nature Reviews Cancer 4, no. 4 (2004): 253-265.

[66]

D. Meiri, C. B. Marshall, D. Mokady, et al., “Mechanistic Insight Into GPCR-mediated Activation of the Microtubule-associated RhoA Exchange Factor GEF-H1,” Nature Communications 5 (2014): 4857.

[67]

T. Douanne, S. Chapelier, R. Rottapel, J. Gavard, and N. Bidère, “The LUBAC Participates in Lysophosphatidic Acid-induced NF-κB Activation,” Cellular Immunology 353 (2020): 104133.

[68]

D. Meiri, M. A. Greeve, A. Brunet, et al., “Modulation of Rho Guanine Exchange Factor Lfc Activity by Protein Kinase A-mediated Phosphorylation,” Molecular and Cellular Biology 29, no. 21 (2009): 5963-5973.

[69]

E. Nogales, M. Whittaker, R. A. Milligan, and K. H. Downing, “High-resolution Model of the Microtubule,” Cell 96, no. 1 (1999): 79-88.

[70]

R. B. Ravelli, B. Gigant, P. A. Curmi, et al., “Insight Into Tubulin Regulation From a Complex With Colchicine and a Stathmin-Like Domain,” Nature 428, no. 6979 (2004): 198-202.

[71]

M. A. Lemmon, “Membrane Recognition by Phospholipid-binding Domains,” Nature Reviews Molecular Cell Biology 9, no. 2 (2008): 99-111.

[72]

Y. Yoshimura and H. Miki, “Dynamic Regulation of GEF-H1 Localization at Microtubules by Par1b/MARK2,” Biochemical and Biophysical Research Communications 408, no. 2 (2011): 322-328.

[73]

M. Gabay, M. E. Pinter, F. A. Wright, et al., “Ric-8 Proteins Are Molecular Chaperones That Direct Nascent G Protein α Subunit Membrane Association,” Science Signaling 4, no. 200 (2011): ra79.

[74]

K. M. Yamada and M. Sixt, “Mechanisms of 3D Cell Migration,” Nature Reviews Molecular Cell Biology 20, no. 12 (2019): 738-752.

[75]

M. A. Lemmon, K. M. Ferguson, and C. S. Abrams, “Pleckstrin Homology Domains and the Cytoskeleton,” FEBS Letters 513, no. 1 (2002): 71-76.

[76]

M. Krauss, M. Kinuta, M. R. Wenk, P. De Camilli, K. Takei, and V. Haucke, “ARF6 stimulates Clathrin/AP-2 Recruitment to Synaptic Membranes by Activating Phosphatidylinositol Phosphate Kinase Type Igamma,” The Journal of Cell Biology 162, no. 1 (2003): 113-124.

[77]

J. E. Casanova, “Regulation of Arf Activation: The Sec7 family of Guanine Nucleotide Exchange Factors,” Traffic (Copenhagen, Denmark) 8, no. 11 (2007): 1476-1485.

[78]

L. C. Santy, S. R. Frank, J. C. Hatfield, and J. E. Casanova, “Regulation of ARNO Nucleotide Exchange by a PH Domain Electrostatic Switch,” Current Biology: CB 9, no. 20 (1999): 1173-1176.

[79]

H. Horiuchi, R. Lippé, H. M. McBride, et al., “A Novel Rab5 GDP/GTP Exchange Factor Complexed to Rabaptin-5 Links Nucleotide Exchange to Effector Recruitment and Function,” Cell 90, no. 6 (1997): 1149-1159.

[80]

P. M. Müller, J. Rademacher, R. D. Bagshaw, et al., “Systems Analysis of RhoGEF and RhoGAP Regulatory Proteins Reveals Spatially Organized RAC1 Signalling From Integrin Adhesions,” Nature Cell Biology 22, no. 4 (2020): 498-511.

[81]

B. Nicholson, G. K. Lloyd, B. R. Miller, et al., “NPI-2358 Is a Tubulin-depolymerizing Agent: In-vitro Evidence for Activity as a Tumor Vascular-disrupting Agent,” Anti-Cancer Drugs 17, no. 1 (2006): 25-31.

[82]

B. A. Weaver, “How Taxol/paclitaxel Kills Cancer Cells,” Molecular Biology of the Cell 25, no. 18 (2014): 2677-2681.

[83]

J. A. Smith, L. Wilson, O. Azarenko, et al., “Eribulin Binds at Microtubule Ends to a Single Site on Tubulin to Suppress Dynamic Instability,” Biochemistry 49, no. 6 (2010): 1331-1337.

[84]

K. E. Arnst, S. Banerjee, H. Chen, et al., “Current Advances of Tubulin Inhibitors as Dual Acting Small Molecules for Cancer Therapy,” Medicinal Research Reviews 39, no. 4 (2019): 1398-1426.

[85]

Q. Zhang, J. C. Davis, I. T. Lamborn, et al., “Combined Immunodeficiency Associated With DOCK8 Mutations,” The New England Journal of Medicine 361, no. 21 (2009): 2046-2055.

[86]

B. Aghazadeh, W. E. Lowry, X. Y. Huang, and M. K. Rosen, “Structural Basis for Relief of Autoinhibition of the Dbl Homology Domain of Proto-oncogene Vav by Tyrosine Phosphorylation,” Cell 102, no. 5 (2000): 625-633.

[87]

D. Frescas and M. Pagano, “Deregulated Proteolysis by the F-box Proteins SKP2 and Beta-TrCP: Tipping the Scales of Cancer,” Nature Reviews Cancer 8, no. 6 (2008): 438-449.

[88]

J. Jin, T. Shirogane, L. Xu, et al., “SCFbeta-TRCP Links Chk1 Signaling to Degradation of the Cdc25A Protein Phosphatase,” Genes & Development 17, no. 24 (2003): 3062-3074.

[89]

N. Mailand, A. V. Podtelejnikov, A. Groth, M. Mann, J. Bartek, and J. Lukas, “Regulation of G(2)/M Events by Cdc25A Through Phosphorylation-dependent Modulation of Its Stability,” The EMBO Journal 21, no. 21 (2002): 5911-5920.

[90]

T. Johansen and T. Lamark, “Selective Autophagy Mediated by Autophagic Adapter Proteins,” Autophagy 7, no. 3 (2011): 279-296.

[91]

H. Sondermann, S. M. Soisson, S. Boykevisch, S. S. Yang, D. Bar-Sagi, and J. Kuriyan, “Structural Analysis of Autoinhibition in the Ras Activator Son of sevenless,” Cell 119, no. 3 (2004): 393-405.

[92]

L. Liu, L. Zhao, Y. Zhang, Q. Zhang, and Y. Ding, “Proteomic Analysis of Tiam1-mediated Metastasis in Colorectal Cancer,” Cell Biology International 31, no. 8 (2007): 805-814.

[93]

J. B. Kelley, S. Datta, C. J. Snow, et al., “The Defective Nuclear Lamina in Hutchinson-gilford progeria Syndrome Disrupts the Nucleocytoplasmic Ran Gradient and Inhibits Nuclear Localization of Ubc9,” Molecular and Cellular Biology 31, no. 16 (2011): 3378-3395.

[94]

A. Rose and I. Meier, “A Domain Unique to Plant RanGAP Is Responsible for Its Targeting to the Plant Nuclear Rim,” Proceedings of the National Academy of Sciences of the United States of America 98, no. 26 (2001): 15377-15382.

[95]

H. J. Yang, H. Asakawa, F. A. Li, T. Haraguchi, H. M. Shih, and Y. Hiraoka, “A Nuclear Pore Complex-associated Regulation of SUMOylation in Meiosis,” Genes to Cells: Devoted to Molecular & Cellular Mechanisms 28, no. 3 (2023): 188-201.

[96]

A. A. Sahasrabuddhe, X. Chen, K. Ma, et al., “The FBXO45-GEF-H1 Axis Controls Germinal Center Formation and B-cell Lymphomagenesis,” Cancer Discovery 15, no. 4 (2025): 838-861.

[97]

N. Dephoure, C. Zhou, J. Villén, et al., “A Quantitative Atlas of Mitotic Phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 31 (2008): 10762-10767.

[98]

X. Tian, Y. Tian, G. Gawlak, N. Sarich, T. Wu, and A. A. Birukova, “Control of Vascular Permeability by Atrial Natriuretic Peptide via a GEF-H1-dependent Mechanism,” The Journal of Biological Chemistry 289, no. 8 (2014): 5168-5183.

[99]

X. Han, S. Jiang, Y. Gu, et al., “HUNK Inhibits Epithelial-mesenchymal Transition of CRC via Direct Phosphorylation of GEF-H1 and Activating RhoA/LIMK-1/CFL-1,” Cell Death & Disease 14, no. 5 (2023): 327.

[100]

S. H. Fujishiro, S. Tanimura, S. Mure, Y. Kashimoto, K. Watanabe, and M. Kohno, “ERK1/2 phosphorylate GEF-H1 to Enhance Its Guanine Nucleotide Exchange Activity Toward RhoA,” Biochemical and Biophysical Research Communications 368, no. 1 (2008): 162-167.

[101]

E. Kakiashvili, P. Speight, F. Waheed, et al., “GEF-H1 Mediates Tumor Necrosis Factor-alpha-induced Rho Activation and Myosin Phosphorylation: Role in the Regulation of Tubular Paracellular Permeability,” The Journal of Biological Chemistry 284, no. 17 (2009): 11454-11466.

[102]

Y. Jiu, J. Peränen, N. Schaible, et al., “Vimentin Intermediate filaments Control Actin Stress fiber Assembly Through GEF-H1 and RhoA,” Journal of Cell Science 130, no. 5 (2017): 892-902.

[103]

L. He, R. Liu, H. Yue, et al., “Actin-granule Formation Is an Additional Step in Cardiac Myofibroblast Differentiation,” Annals of Translational Medicine 9, no. 2 (2021): 165.

[104]

S. Comer, Z. Nagy, A. Bolado, et al., “The RhoA Regulators Myo9b and GEF-H1 Are Targets of Cyclic Nucleotide-dependent Kinases in Platelets,” Journal of Thrombosis and Haemostasis: JTH 18, no. 11 (2020): 3002-3012.

[105]

A. von Thun, C. Preisinger, O. Rath, et al., “Extracellular Signal-regulated Kinase Regulates RhoA Activation and Tumor Cell Plasticity by Inhibiting Guanine Exchange Factor H1 Activity,” Molecular and Cellular Biology 33, no. 22 (2013): 4526-4537.

[106]

M. G. Callow, S. Zozulya, M. L. Gishizky, B. Jallal, and T. Smeal, “PAK4 mediates Morphological Changes Through the Regulation of GEF-H1,” Journal of Cell Science 118, no. Pt 9 (2005): 1861-1872.

[107]

T. Takano, M. Wu, S. Nakamuta, et al., “Discovery of Long-range Inhibitory Signaling to Ensure Single Axon Formation,” Nature Communications 8, no. 1 (2017): 33.

[108]

L. L. Baltussen, P. D. Negraes, M. Silvestre, et al., “Chemical Genetic Identification of CDKL5 Substrates Reveals Its Role in Neuronal Microtubule Dynamics,” The EMBO Journal 37, no. 24 (2018): e99763.

[109]

M. L. Azoitei, J. Noh, D. J. Marston, et al., “Spatiotemporal Dynamics of GEF-H1 Activation Controlled by Microtubule- and Src-mediated Pathways,” The Journal of Cell Biology 218, no. 9 (2019): 3077-3097.

[110]

D. L. Ly, F. Waheed, M. Lodyga, et al., “Hyperosmotic Stress Regulates the Distribution and Stability of Myocardin-related Transcription Factor, a Key Modulator of the Cytoskeleton,” American Journal of Physiology Cell Physiology 304, no. 2 (2013): C115-C127.

[111]

M. K. Martz, E. Grabocka, N. Beeharry, T. J. Yen, and P. B. Wedegaertner, “Leukemia-associated RhoGEF (LARG) Is a Novel RhoGEF in Cytokinesis and Required for the Proper Completion of Abscission,” Molecular Biology of the Cell 24, no. 18 (2013): 2785-2794.

[112]

H. Jiang, P. Liu, J. Kang, et al., “Precise Orchestration of Gasdermins' Pore-Forming Function by Posttranslational Modifications in Health and Disease,” International Journal of Biological Sciences 19, no. 15 (2023): 4931-4947.

[113]

A. B. Jaffe and A. Hall, “Rho GTPases: Biochemistry and Biology,” Annual Review of Cell and Developmental Biology 21 (2005): 247-269.

[114]

C. D. Lawson and A. J. Ridley, “Rho GTPase Signaling Complexes in Cell Migration and Invasion,” The Journal of Cell Biology 217, no. 2 (2018): 447-457.

[115]

S. J. Heasman and A. J. Ridley, “Mammalian Rho GTPases: New Insights Into Their Functions From in Vivo Studies,” Nature Reviews Molecular Cell Biology 9, no. 9 (2008): 690-701.

[116]

S. Etienne-Manneville and A. Hall, “Rho GTPases in Cell Biology,” Nature 420, no. 6916 (2002): 629-635.

[117]

P. Karki, Y. Ke, Y. Tian, et al., “Staphylococcus aureus-induced Endothelial Permeability and Inflammation Are Mediated by Microtubule Destabilization,” The Journal of Biological Chemistry 294, no. 10 (2019): 3369-3384.

[118]

S. Seetharaman, B. Vianay, V. Roca, et al., “Microtubules Tune Mechanosensitive Cell Responses,” Nature Materials 21, no. 3 (2022): 366-377.

[119]

A. F. Citalán-Madrid, H. Vargas-Robles, A. García-Ponce, et al., “Cortactin Deficiency Causes Increased RhoA/ROCK1-dependent Actomyosin Contractility, Intestinal Epithelial Barrier Dysfunction, and Disproportionately Severe DSS-induced Colitis,” Mucosal Immunology 10, no. 5 (2017): 1237-1247.

[120]

A. J. Ridley, M. A. Schwartz, K. Burridge, et al., “Cell Migration: Integrating Signals From front to Back,” Science (New York, NY) 302, no. 5651 (2003): 1704-1709.

[121]

A. Hayashi, R. Hiatari, T. Tsuji, K. Ohashi, and K. Mizuno, “p63RhoGEF-mediated Formation of a Single Polarized Lamellipodium Is Required for Chemotactic Migration in Breast Carcinoma Cells,” FEBS Letters 587, no. 6 (2013): 698-705.

[122]

K. I. Swenson-Fields, J. C. Sandquist, J. Rossol-Allison, et al., “MLK3 limits Activated Galphaq Signaling to Rho by Binding to p63RhoGEF,” Molecular Cell 32, no. 1 (2008): 43-56.

[123]

T. M. Kitzing, A. S. Sahadevan, D. T. Brandt, et al., “Positive Feedback Between Dia1, LARG, and RhoA Regulates Cell Morphology and Invasion,” Genes & Development 21, no. 12 (2007): 1478-1483.

[124]

G. X. Shi, W. S. Yang, L. Jin, M. L. Matter, and J. W. Ramos, “RSK2 drives Cell Motility by Serine Phosphorylation of LARG and Activation of Rho GTPases,” Proceedings of the National Academy of Sciences of the United States of America 115, no. 2 (2018): E190-E199.

[125]

D. J. Marston, M. Vilela, J. Huh, et al., “Multiplexed GTPase and GEF Biosensor Imaging Enables Network Connectivity Analysis,” Nature Chemical Biology 16, no. 8 (2020): 826-833.

[126]

A. D. Verin, A. Birukova, P. Wang, et al., “Microtubule Disassembly Increases Endothelial Cell Barrier Dysfunction: Role of MLC Phosphorylation,” American Journal of Physiology Lung Cellular and Molecular Physiology 281, no. 3 (2001): L565-L574.

[127]

H. Yu, J. He, G. Su, et al., “Fluid Shear Stress Activates YAP to Promote Epithelial-mesenchymal Transition in Hepatocellular Carcinoma,” Molecular Oncology 15, no. 11 (2021): 3164-3183.

[128]

J. Pineau, L. Pinon, O. Mesdjian, J. Fattaccioli, A. M. Lennon Duménil, and P. Pierobon, “Microtubules Restrict F-actin Polymerization to the Immune Synapse via GEF-H1 to Maintain Polarity in Lymphocytes,” Elife 11 (2022): e78330.

[129]

S. Nanda, A. Calderon, A. Sachan, et al., “Rho GTPase Activity Crosstalk Mediated by Arhgef11 and Arhgef12 Coordinates Cell Protrusion-retraction Cycles,” Nature Communications 14, no. 1 (2023): 8356.

[130]

S. H. Lee, J. C. Hou, A. Hamidzadeh, et al., “A Molecular Clock Controls Periodically Driven Cell Migration in Confined Spaces,” Cell Systems 13, no. 7 (2022): 514-529. e10.

[131]

N. Maeda, L. S. Taylor, M. Nassar-Guifarro, et al., “Genomic and Cellular Context-dependent Expression of the human ELMO1 Gene Transcript Variants,” Gene 954 (2025): 149438.

[132]

S. Etienne-Manneville and A. Hall, “Cell Polarity: Par6, aPKC and Cytoskeletal Crosstalk,” Current Opinion in Cell Biology 15, no. 1 (2003): 67-72.

[133]

S. E. Siegrist and C. Q. Doe, “Microtubule-induced Cortical Cell Polarity,” Genes & Development 21, no. 5 (2007): 483-496.

[134]

H. Ito, T. Tsunoda, M. Riku, et al., “Indispensable Role of STIL in the Regulation of Cancer Cell Motility Through the Lamellipodial Accumulation of ARHGEF7-PAK1 Complex,” Oncogene 39, no. 9 (2020): 1931-1943.

[135]

M. Cooke, G. Kreider-Letterman, M. J. Baker, et al., “FARP1, ARHGEF39, and TIAM2 Are Essential Receptor Tyrosine Kinase Effectors for Rac1-dependent Cell Motility in human Lung Adenocarcinoma,” Cell Reports 37, no. 5 (2021): 109905.

[136]

K. Smart, A. H. Kramer, S. Smart, L. Hodgson, and D. J. Sharp, “Fidgetin-Like 2 Depletion Enhances Cell Migration by Regulating GEF-H1, RhoA, and FAK,” Biophysical Journal 122, no. 18 (2023): 3600-3610.

[137]

Y. B. Zheng, J. H. Gong, and Y. S. Zhen, “Focal Adhesion Kinase Is Activated by Microtubule-depolymerizing Agents and Regulates Membrane Blebbing in human Endothelial Cells,” Journal of Cellular and Molecular Medicine 24, no. 13 (2020): 7228-7238.

[138]

S. Nakamura, M. Kitazawa, Y. Miyagawa, et al., “RhoA G17E/Vav1 Signaling Induces Cancer Invasion via Matrix Metalloproteinase-9 in Gastric Cancer,” Technology in Cancer Research & Treatment 22 (2023): 15330338221146024.

[139]

Z. Bao, L. Zhang, L. Li, et al., “Nε-Carboxymethyl-Lysine Negatively Regulates Foam Cell Migration via the Vav1/Rac1 Pathway,” Journal of Immunology Research 2020 (2020): 1906204.

[140]

D. C. P. Wong, C. Q. Pan, Er SY, et al., “The Scaffold RhoGAP Protein ARHGAP8/BPGAP1 Synchronizes Rac and Rho Signaling to Facilitate Cell Migration,” Molecular Biology of the Cell 34, no. 3 (2023): ar13.

[141]

Y. H. Chen, J. Y. Hsu, C. T. Chu, et al., “Loss of Cell-cell Adhesion Triggers Cell Migration Through Rac1-dependent ROS Generation,” Life Science Alliance 6, no. 2 (2023): e202201529.

[142]

K. Hornigold, M. J. Baker, P. A. Machin, et al., “The Rac-GEF Tiam1 Controls Integrin-dependent Neutrophil Responses,” Frontiers in Immunology 14 (2023): 1223653.

[143]

N. Fine, E. Gracey, I. Dimitriou, J. La Rose, M. Glogauer, and R. Rottapel, “GEF-H1 Is Required for Colchicine Inhibition of Neutrophil Rolling and Recruitment in Mouse Models of Gout,” Journal of Immunology (Baltimore, Md: 1950) 205, no. 12 (2020): 3300-3310.

[144]

I. García-Jiménez, R. D. Cervantes-Villagrana, J. E. Del-Río-Robles, et al., “Gβγ Mediates Activation of Rho Guanine Nucleotide Exchange Factor ARHGEF17 That Promotes Metastatic Lung Cancer Progression,” The Journal of Biological Chemistry 298, no. 1 (2022): 101440.

[145]

Q. Hu, J. Lai, H. Chen, et al., “Reducing GEF-H1 Expression Inhibits Renal Cyst Formation, Inflammation, and Fibrosis via RhoA Signaling in Nephronophthisis,” International Journal of Molecular Sciences 24, no. 4 (2023): 3504.

[146]

R. Pathak, V. D. Delorme-Walker, M. C. Howell, A. N. Anselmo, M. A. White, and G. M. Bokoch, “The Microtubule-associated Rho Activating Factor GEF-H1 Interacts With Exocyst Complex to Regulate Vesicle Traffic,” Developmental Cell 23, no. 2 (2012): 397-411.

[147]

L. P. Njei, N. Sampaio Moura, A. Schledwitz, K. Griffiths, K. Cheng, and J. P. Raufman, “Guanine Nucleotide Exchange Factors and Colon Neoplasia,” Frontiers in Cell and Developmental Biology 12 (2024): 1489321.

[148]

D. Wang, Y. Wang, X. Di, et al., “Cortical Tension Drug Screen Links Mitotic Spindle Integrity to Rho Pathway,” Current Biology: CB 33, no. 20 (2023): 4458-4469. e4.

[149]

Y. Homma, S. Hiragi, and M. Fukuda, “Rab family of Small GTPases: An Updated View on Their Regulation and Functions,” The FEBS Journal 288, no. 1 (2021): 36-55.

[150]

A. Galindo and S. Munro, “The TRAPP Complexes: Oligomeric Exchange Factors That Activate the Small GTPases Rab1 and Rab11,” FEBS Letters 597, no. 6 (2023): 734-749.

[151]

L. L. Thomas and J. C. Fromme, “GTPase Cross Talk Regulates TRAPPII Activation of Rab11 Homologues During Vesicle Biogenesis,” The Journal of Cell Biology 215, no. 4 (2016): 499-513.

[152]

M. Jaskolowski, A. Jomaa, M. Gamerdinger, et al., “Molecular Basis of the TRAP Complex Function in ER Protein Biogenesis,” Nature Structural & Molecular Biology 30, no. 6 (2023): 770-777.

[153]

A. Galindo, V. J. Planelles-Herrero, G. Degliesposti, and S. Munro, “Cryo-EM Structure of Metazoan TRAPPIII, the Multi-subunit Complex That Activates the GTPase Rab1,” The EMBO Journal 40, no. 12 (2021): e107608.

[154]

S. R. Bagde and J. C. Fromme, “Structure of a TRAPPII-Rab11 Activation Intermediate Reveals GTPase Substrate Selection Mechanisms,” Science Advances 8, no. 19 (2022): eabn7446.

[155]

A. Galindo, “Unveiling the TRAPP: The Role of Plant TRAPPII in Adaptive Growth Decisions,” The Journal of Cell Biology 223, no. 5 (2024): e202404039.

[156]

Z. Zhang, M. Bai, G. O. Barbosa, et al., “Broadly Conserved Roles of TMEM131 family Proteins in Intracellular Collagen Assembly and Secretory Cargo Trafficking,” Science Advances 6, no. 7 (2020): eaay7667.

[157]

M. J. Kuehn, D. J. Ogg, J. Kihlberg, et al., “Structural Basis of Pilus Subunit Recognition by the PapD Chaperone,” Science (New York, NY) 262, no. 5137 (1993): 1234-1241.

[158]

J. Y. Sung, G. E. Lim, J. Goo, et al., “TMEM39A and TMEM131 Facilitate Bulk Transport of ECM Proteins Through Large COPII Vesicle Formation,” Journal of Genetics and Genomics = Yi Chuan Xue Bao 52, no. 2 (2025): 189-203.

[159]

A. Gerondopoulos, L. Langemeyer, J. R. Liang, A. Linford, and F. A. Barr, “BLOC-3 Mutated in Hermansky-Pudlak Syndrome Is a Rab32/38 Guanine Nucleotide Exchange Factor,” Current Biology: CB 22, no. 22 (2012): 2135-2139.

[160]

M. K. Dennis, C. Delevoye, A. Acosta-Ruiz, et al., “BLOC-1 and BLOC-3 Regulate VAMP7 Cycling to and From Melanosomes via Distinct Tubular Transport Carriers,” The Journal of Cell Biology 214, no. 3 (2016): 293-308.

[161]

Y. Ohishi, R. Kinoshita, S. Marubashi, M. Ishida, and M. Fukuda, “The BLOC-3 Subunit HPS4 Is Required for Activation of Rab32/38 GTPases in Melanogenesis, but Its Rab9 Activity Is Dispensable for Melanogenesis,” The Journal of Biological Chemistry 294, no. 17 (2019): 6912-6922.

[162]

S. Marubashi, H. Shimada, M. Fukuda, and N. Ohbayashi, “RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes,” The Journal of Biological Chemistry 291, no. 3 (2016): 1427-1440.

[163]

S. Mahanty, K. Ravichandran, P. Chitirala, J. Prabha, R. A. Jani, and S. R. Setty, “Rab9A is Required for Delivery of Cargo From Recycling Endosomes to Melanosomes,” Pigment Cell & Melanoma Research 29, no. 1 (2016): 43-59.

[164]

M. Huizing, M. C. V. Malicdan, J. A. Wang, et al., “Hermansky-Pudlak Syndrome: Mutation Update,” Human Mutation 41, no. 3 (2020): 543-580.

[165]

S. Spanò, “Mechanisms of Salmonella Typhi Host Restriction,” Advances in Experimental Medicine and Biology 915 (2016): 283-294.

[166]

S. Spanò, X. Gao, S. Hannemann, M. Lara-Tejero, and J. E. Galán, “A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway With a GAP,” Cell Host & Microbe 19, no. 2 (2016): 216-226.

[167]

V. Solano-Collado, A. Rofe, and S. Spanò, “Rab32 restriction of Intracellular Bacterial Pathogens,” Small GTPases 9, no. 3 (2018): 216-223.

[168]

D. Ortiz, M. Medkova, C. Walch-Solimena, and P. Novick, “Ypt32 recruits the Sec4p Guanine Nucleotide Exchange Factor, Sec2p, to Secretory Vesicles; Evidence for a Rab Cascade in Yeast,” The Journal of Cell Biology 157, no. 6 (2002): 1005-1015.

[169]

A. H. Hutagalung and P. J. Novick, “Role of Rab GTPases in Membrane Traffic and Cell Physiology,” Physiological Reviews 91, no. 1 (2011): 119-149.

[170]

J. Zheng, T. Deng, E. Jiang, et al., “Genetic Variations of Bovine PCOS-related DENND1A Gene Identified in GWAS Significantly Affect Female Reproductive Traits,” Gene 802 (2021): 145867.

[171]

X. Wu, M. J. Bradley, Y. Cai, et al., “Insights Regarding Guanine Nucleotide Exchange From the Structure of a DENN-domain Protein Complexed With Its Rab GTPase Substrate,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 46 (2011): 18672-18677.

[172]

J. B. Sáenz, W. J. Sun, J. W. Chang, et al., “Golgicide A Reveals Essential Roles for GBF1 in Golgi Assembly and Function,” Nature Chemical Biology 5, no. 3 (2009): 157-165.

[173]

J. Cherfils and P. Melançon, “On the Action of Brefeldin A on Sec7-stimulated Membrane-recruitment and GDP/GTP Exchange of Arf Proteins,” Biochemical Society Transactions 33, no. Pt 4 (2005): 635-638.

[174]

S. Richter, L. M. Müller, Y. D. Stierhof, et al., “Polarized Cell Growth in Arabidopsis Requires Endosomal Recycling Mediated by GBF1-related ARF Exchange Factors,” Nature Cell Biology 14, no. 1 (2011): 80-86.

[175]

N. Geldner, N. Anders, H. Wolters, et al., “The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-dependent Plant Growth,” Cell 112, no. 2 (2003): 219-230.

[176]

U. Kania, T. Nodzyński, Q. Lu, et al., “The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes With Subcellular Trafficking in Eukaryotes,” The Plant Cell 30, no. 10 (2018): 2553-2572.

[177]

M. L. Salgado-Lucio, D. Ramírez-Ramírez, C. Y. Jorge-Cruz, A. L. Roa-Espitia, and E. O. Hernández-González, “FAK Regulates Actin Polymerization During Sperm Capacitation via the ERK2/GEF-H1/RhoA Signaling Pathway,” Journal of Cell Science 133, no. 8 (2020): jcs239186.

[178]

C. Arnette, K. Frye, and I. Kaverina, “Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking,” PLoS ONE 11, no. 2 (2016): e0148996.

[179]

S. A. Eisler, F. Curado, G. Link, et al., “A Rho Signaling Network Links Microtubules to PKD Controlled Carrier Transport to Focal Adhesions,” Elife 7 (2018): e35907.

[180]

S. Zhu, C. Zhao, Y. Wu, et al., “Identification of a Vav2-dependent Mechanism for GDNF/Ret Control of Mesolimbic DAT Trafficking,” Nature Neuroscience 18, no. 8 (2015): 1084-1093.

[181]

S. Kumar, C. C. Pan, N. Shah, et al., “Activation of Mitofusin2 by Smad2-RIN1 Complex During Mitochondrial Fusion,” Molecular Cell 62, no. 4 (2016): 520-531.

[182]

W. Huang, S. Zhao, C. Zhang, et al., “Identification of “Regulation of RhoA Activity Panel” as a Prognostic and Predictive Biomarker for Gastric Cancer,” Aging 13, no. 1 (2020): 714-734.

[183]

L. Bai, B. K. Jain, Q. You, et al., “Structural Basis of the P4B ATPase Lipid Flippase Activity,” Nature Communications 12, no. 1 (2021): 5963.

[184]

J. P. Andersen, A. L. Vestergaard, S. A. Mikkelsen, L. S. Mogensen, M. Chalat, and R. S. Molday, “P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas,” Frontiers in Physiology 7 (2016): 275.

[185]

I. Pazos, M. Puig-Tintó, L. Betancur, et al., “The P4-ATPase Drs2 Interacts With and Stabilizes the Multisubunit Tethering Complex TRAPPIII in Yeast,” EMBO Reports 24, no. 5 (2023): e56134.

[186]

X. Ren, M. Peng, P. Xing, et al., “Blockade of the Immunosuppressive KIR2DL5/PVR Pathway Elicits Potent human NK Cell-mediated Antitumor Immunity,” The Journal of Clinical Investigation 132, no. 22 (2022): e163620.

[187]

Y. Wei, X. Ren, P. M. Galbo, S. Moerdler, H. Wang, and R. A. Sica, “KIR3DL3-HHLA2 is a human Immunosuppressive Pathway and a Therapeutic Target,” Science Immunology 6, no. 61 (2021): eabf9792.

[188]

M. F. Neurath and L. J. Berg, “VAV1 as a Putative Therapeutic Target in Autoimmune and Chronic Inflammatory Diseases,” Trends in Immunology 45, no. 8 (2024): 580-596.

[189]

R. Marrocco, I. Bernard, E. Joulia, et al., “Positive Regulation of Vav1 by Themis Controls CD4 T Cell Pathogenicity in a Mouse Model of central Nervous System Inflammation,” Cellular and Molecular Life Sciences: CMLS 81, no. 1 (2024): 161.

[190]

K. Kunimura, S. Akiyoshi, T. Uruno, et al., “DOCK2 regulates MRGPRX2/B2-mediated Mast Cell Degranulation and Drug-induced Anaphylaxis,” The Journal of Allergy and Clinical Immunology 151, no. 6 (2023): 1585-1594. e9.

[191]

X. Ma, X. Tan, B. Yu, et al., “DOCK2 regulates Antifungal Immunity by Regulating RAC GTPase Activity,” Cellular & Molecular Immunology 19, no. 5 (2022): 602-618.

[192]

H. Wilkie, M. Das, T. Pelovitz, et al., “Regulatory T-cell Dysfunction and Cutaneous Exposure to Staphylococcus aureus Underlie Eczema in DOCK8 Deficiency,” The Journal of Allergy and Clinical Immunology 154, no. 1 (2024): 143-156.

[193]

M. Fusaro and L. Dupré, “Mechanisms Underlying Skin Inflammation of DOCK8 Deficiency,” The Journal of Allergy and Clinical Immunology 154, no. 1 (2024): 88-90.

[194]

A. F. Freeman, C. E. Gonzalez, B. Yates, et al., “Hematopoietic Cell Transplantation for DOCK8 Deficiency: Results From a Prospective Clinical Trial,” The Journal of Allergy and Clinical Immunology 155, no. 1 (2025): 176-187.

[195]

S. Gupta, K. Duszyc, S. Verma, et al., “Enhanced RhoA Signalling Stabilizes E-cadherin in Migrating Epithelial Monolayers,” Journal of Cell Science 134, no. 17 (2021): jcs258767.

[196]

K. Kunimura, S. Miki, M. Takashima, and J. I. Suzuki, “S-1-propenylcysteine Improves TNF-α-induced Vascular Endothelial Barrier Dysfunction by Suppressing the GEF-H1/RhoA/Rac Pathway,” Cell Communication and Signaling: CCS 19, no. 1 (2021): 17.

[197]

L. Li, Q. Ru, Y. Lu, et al., “Tiam1 coordinates Synaptic Structural and Functional Plasticity Underpinning the Pathophysiology of Neuropathic Pain,” Neuron 111, no. 13 (2023): 2038-2050. e6.

[198]

Y. Zhang, H. Zhang, S. Zhao, et al., “S-Nitrosylation of Septin2 Exacerbates Aortic Aneurysm and Dissection by Coupling the TIAM1-RAC1 Axis in Macrophages,” Circulation 149, no. 24 (2024): 1903-1920.

[199]

Z. Luo, C. Lin, C. Yu, et al., “Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia,” Cancer Research 85, no. 1 (2025): 101-117.

[200]

M. Marasco and S. Misale, “The Far Side of Resistance to RAS Inhibitors,” Cancer Discovery 14, no. 11 (2024): 2018-2020.

[201]

X. Zhang, Y. Tang, J. Wang, et al., “Heat Stress Enhances the Expression of METTL3 to Mediate N6-methyladenosine Modification of SOS2 and NLRP3 Inflammasome Activation in Boar Sertoli Cells,” Journal of Hazardous Materials 488 (2025): 137432.

[202]

Y. Salaymeh, M. Farago, S. Sebban, B. Shalom, E. Pikarsky, and S. Katzav, “Vav1 and Mutant K-Ras Synergize in the Early Development of Pancreatic Ductal Adenocarcinoma in Mice,” Life Science Alliance 3, no. 5 (2020): e202000661.

[203]

M. E. Fernandez-Zapico, N. C. Gonzalez-Paz, E. Weiss, et al., “Ectopic Expression of VAV1 Reveals an Unexpected Role in Pancreatic Cancer Tumorigenesis,” Cancer Cell 7, no. 1 (2005): 39-49.

[204]

B. Shalom, M. Farago, Y. Salaymeh, S. Sebban, E. Pikarsky, and S. Katzav, “Vav1 Promotes B-Cell Lymphoma Development,” Cells 11, no. 6 (2022): 949.

[205]

J. Robles-Valero, L. Fernández-Nevado, M. Cuadrado, et al., “Characterization of the Spectrum of Trivalent VAV1-mutation-driven Tumours Using a Gene-edited Mouse Model,” Molecular Oncology 16, no. 19 (2022): 3533-3553.

[206]

M. Fujisawa, M. Sakata-Yanagimoto, S. Nishizawa, D. Komori, P. Gershon, and M. Kiryu, “Activation of RHOA-VAV1 Signaling in Angioimmunoblastic T-cell Lymphoma,” Leukemia 32, no. 3 (2018): 694-702.

[207]

S. Tamburri, E. Lavarone, D. Fernández-Pérez, E. Conway, M. Zanotti, and D. Manganaro, “Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-Mediated Transcriptional Repression,” Molecular Cell 77, no. 4 (2020): 840-856. e5.

[208]

R. E. Lawrence, S. A. Fromm, Y. Fu, et al., “Structural Mechanism of a Rag GTPase Activation Checkpoint by the Lysosomal Folliculin Complex,” Science (New York, NY) 366, no. 6468 (2019): 971-977.

[209]

A. Pichler, P. Knipscheer, H. Saitoh, T. K. Sixma, and F. Melchior, “The RanBP2 SUMO E3 Ligase Is neither HECT- nor RING-type,” Nature Structural & Molecular Biology 11, no. 10 (2004): 984-991.

[210]

J. Wu, X. Li, C. Wu, Y. Wang, and J. Zhang, “Current Advances and Development Strategies of Targeting Son of sevenless 1 (SOS1) in Drug Discovery,” European Journal of Medicinal Chemistry 268 (2024): 116282.

[211]

C. Mills, S. A. Hemkemeyer, Z. Alimajstorovic, et al., “Therapeutic Validation of GEF-H1 Using a De Novo Designed Inhibitor in Models of Retinal Disease,” Cells 11, no. 11 (2022): 1733.

[212]

S. Barbosa, S. Greville-Heygate, M. Bonnet, et al., “Opposite Modulation of RAC1 by Mutations in TRIO Is Associated With Distinct, Domain-Specific Neurodevelopmental Disorders,” American Journal of Human Genetics 106, no. 3 (2020): 338-355.

[213]

C. Guilluy, J. Brégeon, G. Toumaniantz, et al., “The Rho Exchange Factor Arhgef1 Mediates the Effects of Angiotensin II on Vascular Tone and Blood Pressure,” Nature Medicine 16, no. 2 (2010): 183-190.

[214]

A. A. Sahasrabuddhe, X. Chen, K. Ma, et al., “The FBXO45-GEF-H1 Axis Controls Germinal Center Formation and B-cell Lymphomagenesis,” Cancer Discovery 15, no. 4 (2025): 838-861.

[215]

Y. Zhang, M. V. Recouvreux, M. Jung, et al., “Macropinocytosis in Cancer-Associated Fibroblasts Is Dependent on CaMKK2/ARHGEF2 Signaling and Functions to Support Tumor and Stromal Cell Fitness,” Cancer Discovery 11, no. 7 (2021): 1808-1825.

[216]

E. Sahai and C. J. Marshall, “RHO-GTPases and Cancer,” Nature Reviews Cancer 2, no. 2 (2002): 133-142.

[217]

H. Chen, F. Gao, M. He, et al., “Long-Read RNA Sequencing Identifies Alternative Splice Variants in Hepatocellular Carcinoma and Tumor-Specific Isoforms,” Hepatology (Baltimore, Md) 70, no. 3 (2019): 1011-1025.

[218]

M. Brecht, A. C. Steenvoorden, J. G. Collard, et al., “Activation of Gef-h1, a Guanine Nucleotide Exchange Factor for RhoA, by DNA Transfection,” International Journal of Cancer 113, no. 4 (2005): 533-540.

[219]

H. Yang, H. Zhang, Y. Yang, et al., “Hypoxia Induced Exosomal circRNA Promotes Metastasis of Colorectal Cancer via Targeting GEF-H1/RhoA Axis,” Theranostics 10, no. 18 (2020): 8211-8226.

[220]

G. Lu, S. Tian, Y. Sun, et al., “NEK9, a Novel Effector of IL-6/STAT3, Regulates Metastasis of Gastric Cancer by Targeting ARHGEF2 Phosphorylation,” Theranostics 11, no. 5 (2021): 2460-2474.

[221]

L. Fu, X. Wang, Y. Yang, et al., “Septin11 promotes Hepatocellular Carcinoma Cell Motility by Activating RhoA to Regulate Cytoskeleton and Cell Adhesion,” Cell Death & Disease 14, no. 4 (2023): 280.

[222]

L. D. Osborne, G. Z. Li, T. How, E. T. O'Brien, G. C. Blobe, and R. Superfine, “TGF-β Regulates LARG and GEF-H1 During EMT to Affect Stiffening Response to Force and Cell Invasion,” Molecular Biology of the Cell 25, no. 22 (2014): 3528-3540.

[223]

A. Tsapara, P. Luthert, J. Greenwood, C. S. Hill, K. Matter, and M. S. Balda, “The RhoA Activator GEF-H1/Lfc Is a Transforming Growth Factor-beta Target Gene and Effector That Regulates Alpha-smooth Muscle Actin Expression and Cell Migration,” Molecular Biology of the Cell 21, no. 6 (2010): 860-870.

[224]

M. Biondini, G. Duclos, N. Meyer-Schaller, P. Silberzan, J. Camonis, and M. C. Parrini, “RalB Regulates Contractility-driven Cancer Dissemination Upon TGFβ Stimulation via the RhoGEF GEF-H1,” Scientific Reports 5 (2015): 11759.

[225]

E. Batlle and J. Massagué, “Transforming Growth Factor-β Signaling in Immunity and Cancer,” Immunity 50, no. 4 (2019): 924-940.

[226]

J. Massagué, “TGFβ Signalling in Context,” Nature Reviews Molecular Cell Biology 13, no. 10 (2012): 616-630.

[227]

C. Cui, R. Merritt, L. Fu, and Z. Pan, “Targeting Calcium Signaling in Cancer Therapy,” Acta Pharmaceutica Sinica B 7, no. 1 (2017): 3-17.

[228]

S. Wang, S. Gao, Y. Zeng, et al., “N6-Methyladenosine Reader YTHDF1 Promotes ARHGEF2 Translation and RhoA Signaling in Colorectal Cancer,” Gastroenterology 162, no. 4 (2022): 1183-1196.

[229]

Y. C. Liao, J. W. Ruan, I. Lua, et al., “Overexpressed hPTTG1 Promotes Breast Cancer Cell Invasion and Metastasis by Regulating GEF-H1/RhoA Signalling,” Oncogene 31, no. 25 (2012): 3086-3097.

[230]

W. S. Lieb, C. Lungu, R. Tamas, et al., “The GEF-H1/PKD3 Signaling Pathway Promotes the Maintenance of Triple-negative Breast Cancer Stem Cells,” International Journal of Cancer 146, no. 12 (2020): 3423-3434.

[231]

N. B. M. Rafiq, Y. Nishimura, S. V. Plotnikov, et al., “A Mechano-signalling Network Linking Microtubules, Myosin IIA filaments and Integrin-based Adhesions,” Nature Materials 18, no. 6 (2019): 638-649.

[232]

Y. Shiba and P. A. Randazzo, “GEFH1 binds ASAP1 and Regulates Podosome Formation,” Biochemical and Biophysical Research Communications 406, no. 4 (2011): 574-579.

[233]

A. Singh, A. Tijore, F. Margadant, et al., “Enhanced Tumor Cell Killing by Ultrasound After Microtubule Depolymerization,” Bioengineering & Translational Medicine 6, no. 3 (2021): e10233.

[234]

J. Zuber, O. I. Tchernitsa, B. Hinzmann, et al., “A Genome-wide Survey of RAS Transformation Targets,” Nature Genetics 24, no. 2 (2000): 144-152.

[235]

O. A. Kent, M. J. Sandi, and R. Rottapel, “Co-dependency Between KRAS Addiction and ARHGEF2 Promotes an Adaptive Escape From MAPK Pathway Inhibition,” Small GTPases 10, no. 6 (2019): 441-448.

[236]

J. Feng, H. Lu, W. Ma, et al., “Genome-wide CRISPR Screen Identifies Synthetic Lethality Between DOCK1 Inhibition and Metformin in Liver Cancer,” Protein & Cell 13, no. 11 (2022): 825-841.

[237]

M. G. Ferrari, A. A. Ganaie, A. Shabenah, et al., “Identifying and Treating ROBO1(-ve) /DOCK1(+ve) Prostate Cancer: An Aggressive Cancer Subtype Prevalent in African American Patients,” The Prostate 80, no. 13 (2020): 1045-1057.

[238]

M. D. Onken, K. J. Blumer, and J. A. Cooper, “Uveal Melanoma Cells Use Ameboid and Mesenchymal Mechanisms of Cell Motility Crossing the Endothelium,” Molecular Biology of the Cell 32, no. 5 (2021): 413-421.

[239]

J. Ramharter, D. Kessler, P. Ettmayer, et al., “One Atom Makes all the Difference: Getting a Foot in the Door Between SOS1 and KRAS,” Journal of Medicinal Chemistry 64, no. 10 (2021): 6569-6580.

[240]

C. Zhou, Z. Fan, Z. Zhou, et al., “Discovery of the First-in-Class Agonist-Based SOS1 PROTACs Effective in Human Cancer Cells Harboring Various KRAS Mutations,” Journal of Medicinal Chemistry 65, no. 5 (2022): 3923-3942.

[241]

M. H. Hofmann, M. Gmachl, J. Ramharter, et al., “BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers Through Combined MEK Inhibition,” Cancer Discovery 11, no. 1 (2021): 142-157.

[242]

F. C. Baltanás, R. García-Navas, P. Rodríguez-Ramos, et al., “Critical Requirement of SOS1 for Tumor Development and Microenvironment Modulation in KRAS(G12D)-driven Lung Adenocarcinoma,” Nature Communications 14, no. 1 (2023): 5856.

[243]

Q. Z. Ni, B. Zhu, Y. Ji, et al., “PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 10, no. 2 (2023): e2202448.

[244]

X. Wang, D. Yu, H. Wang, et al., “Rab3 and Synaptotagmin Proteins in the Regulation of Vesicle Fusion and Neurotransmitter Release,” Life Sciences 309 (2022): 120995.

[245]

Z. You, Z. Yang, S. Cao, S. Deng, and Y. Chen, “The Novel KLF4/BIG1 Regulates LPS-mediated Neuro-inflammation and Migration in BV2 Cells via PI3K/Akt/NF-kB Signaling Pathway,” Neuroscience 488 (2022): 102-111.

[246]

S. Petshow, A. Coblentz, A. M. Hamilton, et al., “Activity-dependent Regulation of Cdc42 by Ephexin5 Drives Synapse Growth and Stabilization,” Science Advances 11, no. 13 (2025): eadp5782.

[247]

T. R. Stankiewicz, C. Pena, R. J. Bouchard, and D. A. Linseman, “Dysregulation of Rac or Rho Elicits Death of Motor Neurons and Activation of these GTPases Is Altered in the G93A Mutant hSOD1 Mouse Model of Amyotrophic Lateral Sclerosis,” Neurobiology of Disease 136 (2020): 104743.

[248]

Q. Liu, B. Huang, N. G. L. Guiberson, et al., “CalDAG-GEFI Acts as a Guanine Nucleotide Exchange Factor for LRRK2 to Regulate LRRK2 Function and Neurodegeneration,” Science Advances 10, no. 47 (2024): eadn5417.

[249]

R. Kumar, M. Khan, V. Francis, et al., “DENND6A links Arl8b to a Rab34/RILP/Dynein Complex, Regulating Lysosomal Positioning and Autophagy,” Nature Communications 15, no. 1 (2024): 919.

[250]

M. Matboli, A. H. Hasanin, S. Hamady, et al., “Anti-inflammatory Effect of Trans-anethol in a Rat Model of Myocardial Ischemia-reperfusion Injury,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 150 (2022): 113070.

[251]

J. P. Miramontes-González, R. Usategui-Martín, J. Martín-Vallejo, M. Ziegler, L. L. de Isla, and D. O. Connor, “VAV3 rs7528153 and VAV3-AS1 rs1185222 Polymorphisms Are Associated With an Increased Risk of Developing Hypertension,” European Journal of Internal Medicine 80 (2020): 60-65.

[252]

A. S. Persichetti and D. D. Dilks, “Distinct Representations of Spatial and Categorical Relationships Across human Scene-selective Cortex,” Proceedings of the National Academy of Sciences of the United States of America 116, no. 42 (2019): 21312-21317.

[253]

V. Sauzeau, M. A. Sevilla, M. J. Montero, and X. R. Bustelo, “The Rho/Rac Exchange Factor Vav2 Controls Nitric Oxide-dependent Responses in Mouse Vascular Smooth Muscle Cells,” The Journal of Clinical Investigation 120, no. 1 (2010): 315-330.

[254]

W. C. Chiu, J. M. Juang, S. N. Chang, et al., “Angiotensin II Regulates the LARG/RhoA/MYPT1 Axis in Rat Vascular Smooth Muscle in Vitro,” Acta Pharmacologica Sinica 33, no. 12 (2012): 1502-1510.

[255]

W. C. Chiu, J. M. Juang, S. N. Chang, et al., “Differential Baseline Expression and Angiotensin II-stimulation of Leukemia-associated RhoGEF in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats,” International Journal of Nanomedicine 7 (2012): 5929-5939.

[256]

C. Signorelli, A. Odone, N. Florindo, M. Fabi, and M. Vanelli, “A New Journal Section on Health System's Research: Purpose and Rationale,” Acta bio-medica: Atenei Parmensis 88, no. 3 (2017): 247-248.

[257]

J. Huang, Q. Qu, Y. Dai, D. Ren, J. Qian, and J. Ge, “Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy,” Hypertension (Dallas, Tex: 1979) 80, no. 2 (2023): 403-415.

[258]

A. J. Reddiex, S. L. Allen, and S. F. Chenoweth, “A Genomic Reference Panel for Drosophila Serrata,” G3 (Bethesda, Md) 8, no. 4 (2018): 1335-1346.

[259]

J. Benito-Sipos, C. Ulvklo, H. Gabilondo, et al., “Seven Up Acts as a Temporal Factor During Two Different Stages of Neuroblast 5-6 Development,” Development (Cambridge, England) 138, no. 24 (2011): 5311-5320.

[260]

E. K. Mahlandt, S. Palacios Martínez, J. J. G. Arts, S. Tol, J. D. van Buul, and J. Goedhart, “Opto-RhoGEFs, an Optimized Optogenetic Toolbox to Reversibly Control Rho GTPase Activity on a Global to Subcellular Scale, Enabling Precise Control Over Vascular Endothelial Barrier Strength,” Elife 12 (2023): RP84364.

[261]

W. He, S. Yu, J. Li, et al., “From Inflammation to Remodelling: A Novel BASP1(+) Monocyte Subset as a Catalyst for Acute Aortic Dissection,” Journal of Advanced Research (2025).

[262]

C. E. MacKay, Y. Shaifta, V. V. Snetkov, A. A. Francois, J. P. T. Ward, and G. A. Knock, “ROS-dependent Activation of RhoA/Rho-kinase in Pulmonary Artery: Role of Src-family Kinases and ARHGEF1,” Free Radical Biology & Medicine 110 (2017): 316-331.

[263]

A. Janaszak-Jasiecka, A. Płoska, J. M. Wierońska, L. W. Dobrucki, and L. Kalinowski, “Endothelial Dysfunction due to eNOS Uncoupling: Molecular Mechanisms as Potential Therapeutic Targets,” Cellular & Molecular Biology Letters 28, no. 1 (2023): 21.

[264]

S. U. Morton, A. Shimamura, P. E. Newburger, et al., “Association of Damaging Variants in Genes with Increased Cancer Risk among Patients with Congenital Heart Disease,” JAMA Cardiology 6, no. 4 (2021): 457-462.

[265]

G. Pereira and E. Schiebel, “Kin4 kinase Delays Mitotic Exit in Response to Spindle Alignment Defects,” Molecular Cell 19, no. 2 (2005): 209-221.

[266]

N. Scarmeas, L. S. Honig, H. Choi, et al., “Seizures in Alzheimer Disease: Who, When, and How Common?,” Archives of Neurology 66, no. 8 (2009): 992-997.

[267]

I. Bernard, A. Sacquin, S. Kassem, et al., “A Natural Variant of the Signaling Molecule Vav1 Enhances Susceptibility to Myasthenia Gravis and Influences the T Cell Receptor Repertoire,” Frontiers in Immunology 9 (2018): 2399.

[268]

R. C. Nayak, K. H. Chang, A. K. Singh, et al., “Nuclear Vav3 Is Required for Polycomb Repression Complex-1 Activity in B-cell Lymphoblastic Leukemogenesis,” Nature Communications 13, no. 1 (2022): 3056.

[269]

K. Kunimura, T. Uruno, and Y. Fukui, “DOCK family Proteins: Key Players in Immune Surveillance Mechanisms,” International Immunology 32, no. 1 (2020): 5-15.

[270]

C. McGrath, O. Lam, and N. Lang, “An Evidence-based Review of Patient-reported Outcome Measures in Dental Implant Research Among Dentate Subjects,” Journal of Clinical Periodontology 39, no. Suppl 12 (2012): 193-201.

[271]

P. Thompson, I. Logan, C. Tomson, N. Sheerin, and T. Ellam, “Obesity, Sex, Race, and Early Onset Hypertension: Implications for a Refined Investigation Strategy,” Hypertension (Dallas, Tex: 1979) 76, no. 3 (2020): 859-865.

[272]

B. Zhang, S. Chen, X. Yin, et al., “Metabolic Fitness of IgA(+) Plasma Cells in the Gut Requires DOCK8,” Mucosal Immunology 17, no. 3 (2024): 431-449.

[273]

I. Thia and M. Saluja, “An Update on Management of Renal Colic,” Australian Journal of General Practice 50, no. 7 (2021): 445-449.

[274]

E. G. Romanowski, K. M. Brothers, R. C. Calvario, et al., “Predatory Bacteria Prevent the Proliferation of Intraocular Serratia marcescens and Fluoroquinolone-resistant Pseudomonas aeruginosa,” Microbiology (Reading, England) 170, no. 2 (2024): 001433.

[275]

N. Firon, M. Nepi, and E. Pacini, “Water Status and Associated Processes Mark Critical Stages in Pollen Development and Functioning,” Annals of Botany 109, no. 7 (2012): 1201-1214.

[276]

C. I. Prodan, A. S. Vincent, and G. L. Dale, “Coated-platelet Levels Are Persistently Elevated in Patients With Mild Traumatic Brain Injury,” The Journal of Head Trauma Rehabilitation 29, no. 6 (2014): 522-526.

[277]

V. Patel, K. Balakrishnan, M. J. Keating, W. G. Wierda, and V. Gandhi, “Expression of Executioner Procaspases and Their Activation by a Procaspase-activating Compound in Chronic Lymphocytic Leukemia Cells,” Blood 125, no. 7 (2015): 1126-1136.

[278]

N. Sato, K. Suzuki, A. Yagami, et al., “Antigen Analysis of Patients With Gastrointestinal Symptoms Resulting From Immediate Allergic Reactions to Mushrooms,” Allergology International: Official Journal of the Japanese Society of Allergology 70, no. 3 (2021): 382-385.

[279]

A. L. Hansen, G. J. Buchan, M. Rühl, et al., “Nitro-fatty Acids Are Formed in Response to Virus Infection and Are Potent Inhibitors of STING Palmitoylation and Signaling,” Proceedings of the National Academy of Sciences of the United States of America 115, no. 33 (2018): E7768-E7775.

[280]

Z. Sun, R. Wei, C. Pan, et al., “Successfully Treated With siltuximab and Prednisone in a 7-year-old Girl With DOCK8-deficiency Presenting as Recurrent Wart-Like Lesions: A Case Report,” Frontiers in Immunology 15 (2024): 1414573.

[281]

O. Teymournejad and Y. Rikihisa, “Ehrlichia Chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation,” MBio 11, no. 2 (2020): e00267.

[282]

C. Desole, S. Gallo, A. Vitacolonna, et al., “Engineering, Characterization, and Biological Evaluation of an Antibody Targeting the HGF Receptor,” Frontiers in Immunology 12 (2021): 775151.

[283]

C. Zheng, X. Wu, R. Zeng, et al., “Computational Prediction of Hot Spots and Binding Site of Inhibitor NSC23766 on Rac1 Binding with Tiam1,” Frontiers in Chemistry 8 (2020): 625437.

[284]

A. Herlemann, P. Keller, M. Schott, et al., “Inhibition of Smooth Muscle Contraction and ARF6 Activity by the Inhibitor for Cytohesin GEFs, secinH3, in the human Prostate,” American Journal of Physiology Renal Physiology 314, no. 1 (2018): F47-F57.

[285]

D. Cohen, L. M. Hondelink, N. Solleveld-Westerink, et al., “Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing,” Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 15, no. 6 (2020): 1000-1014.

[286]

J. E. Jung, V. Karoor, M. G. Sandbaken, et al., “Utilization of Selenocysteyl-tRNA[Ser]Sec and Seryl-tRNA[Ser]Sec in Protein Synthesis,” The Journal of Biological Chemistry 269, no. 47 (1994): 29739-29745.

[287]

A. Contini, N. Ferri, R. Bucci, et al., “Peptide Modulators of Rac1/Tiam1 Protein-protein Interaction: An Alternative Approach for Cardiovascular Diseases,” Biopolymers (2017).

[288]

X. Shang, F. Marchioni, C. R. Evelyn, et al., “Small-molecule Inhibitors Targeting G-protein-coupled Rho Guanine Nucleotide Exchange Factors,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 8 (2013): 3155-3160.

[289]

K. Begovich, A. Schoolmeesters, N. Rajapakse, et al., “Cereblon-based Bifunctional Degrader of SOS1, BTX-6654, Targets Multiple KRAS Mutations and Inhibits Tumor Growth,” Molecular Cancer Therapeutics 23, no. 4 (2024): 407-420.

[290]

M. R. Janes, J. Zhang, L. S. Li, et al., “Targeting KRAS Mutant Cancers With a Covalent G12C-Specific Inhibitor,” Cell 172, no. 3 (2018): 578-589. e17.

[291]

T. Chen, X. Tang, Z. Wang, et al., “Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising Therapeutic Treatment for KRAS-mutant Cancers,” European Journal of Medicinal Chemistry 261 (2023): 115828.

[292]

T. E. Riehl, D. Alvarado, X. Ee, et al., “Lactobacillus Rhamnosus GG Protects the Intestinal Epithelium From Radiation Injury Through Release of Lipoteichoic Acid, Macrophage Activation and the Migration of Mesenchymal Stem Cells,” Gut 68, no. 6 (2019): 1003-1013.

[293]

N. Sudhakar, L. Yan, F. Qiryaqos, et al., “The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading,” Molecular Cancer Therapeutics 23, no. 10 (2024): 1418-1430.

[294]

Z. Li, Y. Yu, Y. Bu, C. Liu, E. Liu, and J. Jin, “Targeting Macrophagic RasGRP1 With Catechin Hydrate Ameliorates Sepsis-induced Multiorgan Dysfunction,” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 130 (2024): 155733.

[295]

M. Neuspiel, R. Zunino, S. Gangaraju, P. Rippstein, and H. McBride, “Activated Mitofusin 2 Signals Mitochondrial Fusion, Interferes With Bax Activation, and Reduces Susceptibility to Radical Induced Depolarization,” The Journal of Biological Chemistry 280, no. 26 (2005): 25060-25070.

[296]

M. Tang-Christensen, N. Vrang, S. Ortmann, M. Bidlingmaier, T. L. Horvath, and M. Tschöp, “Central Administration of Ghrelin and agouti-related Protein (83-132) Increases Food Intake and Decreases Spontaneous Locomotor Activity in Rats,” Endocrinology 145, no. 10 (2004): 4645-4652.

[297]

J. Yang, I. Anishchenko, H. Park, Z. Peng, S. Ovchinnikov, and D. Baker, “Improved Protein Structure Prediction Using Predicted Interresidue Orientations,” Proceedings of the National Academy of Sciences of the United States of America 117, no. 3 (2020): 1496-1503.

[298]

C. D. Lawson, K. Hornigold, D. Pan, et al., “Small-molecule Inhibitors of P-Rex Guanine-nucleotide Exchange Factors,” Small GTPases 13, no. 1 (2022): 307-326.

[299]

S. Benabdi, F. Peurois, A. Nawrotek, et al., “Family-wide Analysis of the Inhibition of Arf Guanine Nucleotide Exchange Factors With Small Molecules: Evidence of Unique Inhibitory Profiles,” Biochemistry 56, no. 38 (2017): 5125-5133.

[300]

J. A. Kim, S. Im, J. Lim, et al., “The Guanine Nucleotide Exchange Factor DOCK5 Negatively Regulates Osteoblast Differentiation and BMP2-induced Bone Regeneration via the MKK3/6 and p38 Signaling Pathways,” Experimental & Molecular Medicine 57, no. 1 (2025): 86-103.

[301]

N. Mohtar, T. Parumasivam, A. M. Gazzali, et al., “Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment,” Cancers 13, no. 14 (2021): 3539.

[302]

P. Pype, K. Pype, A. Rowlands, R. George, and I. Devisch, “COVID-19 and Touch in Medical Encounters,” Patient Education and Counseling 104, no. 3 (2021): 464-466.

[303]

S. Hegde, A. Gasilina, M. Wunderlich, et al., “Inhibition of the RacGEF VAV3 by the Small Molecule IODVA1 Impedes RAC Signaling and Overcomes Resistance to Tyrosine Kinase Inhibition in Acute Lymphoblastic Leukemia,” Leukemia 36, no. 3 (2022): 637-647.

[304]

C. R. Smith, D. Chen, J. G. Christensen, et al., “Discovery of Five SOS2 Fragment Hits With Binding Modes Determined by SOS2 X-Ray Cocrystallography,” Journal of Medicinal Chemistry 67, no. 1 (2024): 774-781.

[305]

F. Al-Mohanna, S. Saleh, R. S. Parhar, and K. Collison, “IL-12-dependent Nuclear Factor-kappaB Activation Leads to De Novo Synthesis and Release of IL-8 and TNF-alpha in human Neutrophils,” Journal of Leukocyte Biology 72, no. 5 (2002): 995-1002.

[306]

R. Goldberg, Y. Zohar, G. Wildbaum, Y. Geron, G. Maor, and N. Karin, “Suppression of Ongoing Experimental Autoimmune Encephalomyelitis by Neutralizing the Function of the p28 Subunit of IL-27,” Journal of Immunology (Baltimore, Md: 1950) 173, no. 10 (2004): 6465-6471.

[307]

A. A. Boucard, A. A. Chubykin, D. Comoletti, P. Taylor, and T. C. Südhof, “A Splice Code for Trans-synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to Alpha- and Beta-neurexins,” Neuron 48, no. 2 (2005): 229-236.

[308]

S. C. Shih, K. E. Sloper-Mould, and L. Hicke, “Monoubiquitin Carries a Novel Internalization Signal That Is Appended to Activated Receptors,” The EMBO Journal 19, no. 2 (2000): 187-198.

[309]

P. De Sepulveda, S. Ilangumaran, and R. Rottapel, “Suppressor of Cytokine Signaling-1 Inhibits VAV Function Through Protein Degradation,” The Journal of Biological Chemistry 275, no. 19 (2000): 14005-14008.

[310]

C. Charvet, A. J. Canonigo, D. D. Billadeau, and A. Altman, “Membrane Localization and Function of Vav3 in T Cells Depend on Its Association With the Adapter SLP-76,” The Journal of Biological Chemistry 280, no. 15 (2005): 15289-15299.

[311]

D. F. Ceccarelli, I. M. Blasutig, M. Goudreault, et al., “Non-canonical Interaction of Phosphoinositides With Pleckstrin Homology Domains of Tiam1 and ArhGAP9,” The Journal of Biological Chemistry 282, no. 18 (2007): 13864-13874.

[312]

K. Robbe, A. Otto-Bruc, P. Chardin, and B. Antonny, “Dissociation of GDP Dissociation Inhibitor and Membrane Translocation Are Required for Efficient Activation of Rac by the Dbl Homology-pleckstrin Homology Region of Tiam,” The Journal of Biological Chemistry 278, no. 7 (2003): 4756-4762.

[313]

S. K. Ravala, S. R. Adame-Garcia, S. Li, et al., “Structural and Dynamic Changes in P-Rex1 Upon Activation by PIP(3) and Inhibition by IP(4),” Elife 12 (2024): RP92822.

[314]

H. Ebi, C. Costa, A. C. Faber, et al., “PI3K Regulates MEK/ERK Signaling in Breast Cancer via the Rac-GEF, P-Rex1,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 52 (2013): 21124-21129.

[315]

H. He, R. Chen, Z. Wang, et al., “Design of Orally-bioavailable Tetra-cyclic Phthalazine SOS1 Inhibitors With High Selectivity Against EGFR,” Bioorganic Chemistry 136 (2023): 106536.

[316]

J. Gureasko, O. Kuchment, D. L. Makino, H. Sondermann, D. Bar-Sagi, and J. Kuriyan, “Role of the Histone Domain in the Autoinhibition and Activation of the Ras Activator Son of Sevenless,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 8 (2010): 3430-3435.

[317]

Z. Chen, L. Guo, S. R. Sprang, and P. C. Sternweis, “Modulation of a GEF Switch: Autoinhibition of the Intrinsic Guanine Nucleotide Exchange Activity of p115-RhoGEF,” Protein Science: a Publication of the Protein Society 20, no. 1 (2011): 107-117.

[318]

E. Gheyouche, M. Bagueneau, G. Loirand, B. Offmann, and S. Téletchéa, “Structural Design and Analysis of the RHOA-ARHGEF1 Binding Mode: Challenges and Applications for Protein-Protein Interface Prediction,” Frontiers in Molecular Biosciences 8 (2021): 643728.

[319]

M. Zheng, T. Cierpicki, K. Momotani, et al., “On the Mechanism of Autoinhibition of the RhoA-specific Nucleotide Exchange Factor PDZRhoGEF,” BMC Structural Biology 9 (2009): 36.

[320]

M. Mahankali, H. J. Peng, K. M. Henkels, M. C. Dinauer, and J. Gomez-Cambronero, “Phospholipase D2 (PLD2) Is a Guanine Nucleotide Exchange Factor (GEF) for the GTPase Rac2,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 49 (2011): 19617-19622.

[321]

I. Maffucci, X. Hu, V. Fumagalli, and A. Contini, “An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings,” Frontiers in Chemistry 6 (2018): 43.

[322]

K. Wang, Z. Zhou, X. Ma, et al., “Design, Synthesis, and Bioevaluation of SOS1 PROTACs Derived From Pyrido[2,3-d]Pyrimidin-7-one-based SOS1 Inhibitor,” Bioorganic & Medicinal Chemistry Letters 107 (2024): 129780.

[323]

H. Li, M. Chai, Y. Chen, et al., “Discovery of LHF418 as a New Potent SOS1 PROTAC Degrader,” Bioorganic & Medicinal Chemistry 103 (2024): 117661.

[324]

J. Zhang, E. Snelders, B. J. Zwaan, et al., “A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence,” MBio 8, no. 3 (2017): e00791.

[325]

Y. Xie, L. Gao, C. Xu, et al., “ARHGEF12 regulates Erythropoiesis and Is Involved in Erythroid Regeneration After Chemotherapy in Acute Lymphoblastic Leukemia Patients,” Haematologica 105, no. 4 (2020): 925-936.

[326]

D. R. Gulbranson, E. M. Davis, B. A. Demmitt, et al., “RABIF/MSS4 Is a Rab-stabilizing Holdase Chaperone Required for GLUT4 Exocytosis,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 39 (2017): E8224-E8233.

[327]

G. N. Li, X. J. Zhao, Z. Wang, et al., “Elaiophylin Triggers Paraptosis and Preferentially Kills Ovarian Cancer Drug-resistant Cells by Inducing MAPK Hyperactivation,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 317.

[328]

Y. Shang, S. Fu, Q. Hao, H. Ying, J. Wang, and T. Shen, “Multiple Medicinal Chemistry Strategies of Targeting KRAS: State-of-the Art and Future Directions,” Bioorganic Chemistry 144 (2024): 107092.

[329]

G. Hamilton, M. T. Eggerstorfer, and S. Stickler, “Development of PROTACS Degrading KRAS and SOS1,” Oncology Research 32, no. 8 (2024): 1257-1264.

[330]

J. Carnevale, E. Shifrut, N. Kale, et al., “RASA2 ablation in T Cells Boosts Antigen Sensitivity and Long-term Function,” Nature 609, no. 7925 (2022): 174-182.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/