PACLseq: A Standalone Diagnostic Method for Ph-Like Acute Lymphoblastic Leukemia Using Nanopore Sequencing
Hang Zhang , Huan Yu , Yanmei Chen , Kai Jiang , Beibei Huo , Jialin Li , Ting Liu , Dan Xie
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70360
PACLseq: A Standalone Diagnostic Method for Ph-Like Acute Lymphoblastic Leukemia Using Nanopore Sequencing
Timely and accurate detection of Philadelphia chromosome–like acute lymphoblastic leukemia (Ph-like ALL)-related fusion gene is essential for treatment decisions. However, due to the complexity of possible gene fusion combinations of Ph-like ALL, current diagnostic workflows face critical limitations: prolonged turnaround (7–14 days), high costs, and deficiency in degraded specimens. In this study, we introduce Partial Anchored Capture and Long-Read Sequencing (PACLseq), a nanopore-sequencing-technology-based approach. We designed a detection panel associated with Ph-like ALL, specifically ABL2, CSF1R, PDGFRB, JAK2, ABL1, EPOR, and CRLF2 as target genes. Validated on 47 clinical samples, PACLseq achieved 93.3% sensitivity and 100% specificity in 26 degraded RNA samples (RIN > 3). Crucially, PACLseq maintained detection accuracy in nine low-RIN samples (RIN ≤ 3) with fragmented transcripts. The method requires only 10 ng of RNA input, delivers results in 3 days (vs. 7–14 days for conventional methods), and reduces costs by 50%. By offering rapid and accurate fusion detection, PACLseq has the potential to significantly improve diagnostic efficiency, facilitate timely treatment decisions, and enhance patient outcomes in the management of Ph-like ALL.
gene fusion / long-read sequencing / Philadelphia chromosome–like acute lymphoblastic leukemia / Target transcriptome sequencing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |