Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy

Jinfang Ma , Mao Li , Lingxiao Yang , Qingxing Xie , Rongping Fan , Xi Lu , Xing Huang , Nanwei Tong , Zhenyu Duan

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70359

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70359 DOI: 10.1002/mco2.70359
REVIEW

Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy

Author information +
History +
PDF

Abstract

The pancreatic islets of Langerhans, which are composed of α, β, δ, ε, and PP cells, orchestrate systemic glucose homeostasis through tightly regulated hormone secretion. Although the precise mechanisms involving β cells in the onset and progression of diabetes have been elucidated and insulin replacement therapy remains the primary treatment modality, the regulatory processes, functions, and specific roles of other pancreatic islet hormones in diabetes continue to be the subject of ongoing investigation. At present, a comprehensive review of the secretion and regulation of pancreatic islet cell hormones as well as the related mechanisms of diabetes is lacking. This review synthesizes current knowledge on the secretion mechanisms of insulin, glucagon, somatostatin, ghrelin, and pancreatic polypeptides, emphasizing their functional crosstalk in diabetes. Emerging advances include CRISPR-based β-cell regeneration, bioengineered islet transplantation, and bioelectronic interventions aimed at restoring pancreatic function. Future research directions highlight artificial intelligence-guided prediction of hormone dynamics, therapeutics targeting the gut microbiome–islet axis, and tissue-engineered artificial islets. By integrating mechanistic insights, physiological roles, and translational innovations, this review outlines precision strategies for targeting islet hormone networks, offering a roadmap toward restoring metabolic equilibrium in diabetes.

Keywords

diabetes / hormonal crosstalk / hormone secretion / pancreatic islet / therapeutic innovation

Cite this article

Download citation ▾
Jinfang Ma, Mao Li, Lingxiao Yang, Qingxing Xie, Rongping Fan, Xi Lu, Xing Huang, Nanwei Tong, Zhenyu Duan. Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy. MedComm, 2025, 6(9): e70359 DOI:10.1002/mco2.70359

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Da Silva Xavier, “The Cells of the Islets of Langerhans,” Journal of Clinical Medicine 7, no. 3 (2018).

[2]

N. Sakata, G. Yoshimatsu, and S. Kodama, “Development and Characteristics of Pancreatic Epsilon Cells,” International Journal of Molecular Sciences 20, no. 8 (2019).

[3]

T. G. Hill and D. J. Hill, “The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans During Health and Diabetes,” International Journal of Molecular Sciences 25, no. 7 (2024).

[4]

R. N. Kulkarni, “The Islet Beta-cell,” International Journal of Biochemistry & Cell Biology 36, no. 3 (2004): 365-371.

[5]

P. Yesil and E. Lammert, “Islet Dynamics: A Glimpse at Beta Cell Proliferation,” Histology and Histopathology 23, no. 7 (2008): 883-895.

[6]

T. Moede, I. B. Leibiger, and P. O. Berggren, “Alpha Cell Regulation of Beta Cell Function,” Diabetologia 63, no. 10 (2020): 2064-2075.

[7]

Y. D. Pettway, D. C. Saunders, and M. Brissova, “The human α Cell in Health and Disease,” Journal of Endocrinology 258, no. 1 (2023).

[8]

R. Gao, S. Acreman, J. Ma, et al., “α-cell Electrophysiology and the Regulation of Glucagon Secretion,” Journal of Endocrinology 258, no. 2 (2023).

[9]

R. Gao, T. Yang, and .Z. Q. δ-Cells, “The Neighborhood Watch in the Islet Community,” Biology 10, no. 2 (2021).

[10]

O. Cabrera, D. M. Berman, N. S. Kenyon, et al., “The Unique Cytoarchitecture of human Pancreatic Islets Has Implications for Islet Cell Function,” PNAS 103, no. 7 (2006): 2334-2339.

[11]

L. Norton, C. Shannon, A. Gastaldelli, et al., “Insulin: The Master Regulator of Glucose Metabolism,” Metabolism 129 (2022): 155142.

[12]

V. L. Tokarz, P. E. MacDonald, and A. Klip, “The Cell Biology of Systemic Insulin Function,” Journal of Cell Biology 217, no. 7 (2018): 2273-2289.

[13]

G. Jiang and B. B. Zhang, “Glucagon and Regulation of Glucose Metabolism,” American Journal of Physiology. Endocrinology and Metabolism 284, no. 4 (2003): E671-678.

[14]

N. J. Wewer Albrechtsen, J. J. Holst, A. D. Cherrington, et al., “100 years of Glucagon and 100 More,” Diabetologia 66, no. 8 (2023): 1378-1394.

[15]

P. Rorsman and M. O. Huising, “The Somatostatin-secreting Pancreatic δ-cell in Health and Disease,” Nature reviews Endocrinology 14, no. 7 (2018): 404-414.

[16]

K. Dezaki and T. Yada, “Status of Ghrelin as an Islet Hormone and Paracrine/Autocrine Regulator of Insulin Secretion,” Peptides 148 (2022): 170681.

[17]

M. F. Brereton, E. Vergari, Q. Zhang, et al., “Alpha-, Delta- and PP-cells: Are They the Architectural Cornerstones of Islet Structure and Co-ordination?,” The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 63, no. 8 (2015): 575-591.

[18]

J. J. Holst, W. Holland, J. Gromada, et al., “Insulin and Glucagon: Partners for Life,” Endocrinology 158, no. 4 (2017): 696-701.

[19]

Y. Jia, Y. Liu, L. Feng, et al., “Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes,” Front Endocrinol (Lausanne) 13 (2022): 928016.

[20]

B. Göke, “Islet Cell Function: Alpha and Beta Cells-partners towards Normoglycaemia,” International Journal of Clinical Practice Supplement, no. 159 (2008): 2-7.

[21]

J. Reed, S. C. Bain, and V. Kanamarlapudi, “The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets,” Diabetes Metab Syndr Obes 17 (2024): 2419-2456.

[22]

D. P. Schuster and V. Duvuuri, “Diabetes Mellitus,” Clinics in Podiatric Medicine and Surgery 19, no. 1 (2002): 79-107.

[23]

Y. C. Zhou, J. M. Liu, Z. P. Zhao, et al., “The National and Provincial Prevalence and Non-fatal Burdens of Diabetes in China From 2005 to 2023 With Projections of Prevalence to 2050,” Mil Med Res 12, no. 1 (2025): 28.

[24]

L. A. DiMeglio, C. Evans-Molina, and R. A. Oram, “Type 1 Diabetes,” Lancet 391, no. 10138 (2018): 2449-2462.

[25]

U. Galicia-Garcia, A. Benito-Vicente, and S. Jebari, “Pathophysiology of Type 2 Diabetes Mellitus,” International Journal of Molecular Sciences 21, no. 17 (2020).

[26]

S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes,” Nature 444, no. 7121 (2006): 840-846.

[27]

F. Asadi and S. Dhanvantari, “Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia,” Front Endocrinol (Lausanne) 12 (2021): 726368.

[28]

U. Vijayashankar, R. Ramashetty, M. Rajeshekara, et al., “Leptin and Ghrelin Dynamics: Unraveling Their Influence on Food Intake, Energy Balance, and the Pathophysiology of Type 2 Diabetes Mellitus,” J Diabetes Metab Disord 23, no. 1 (2024): 427-440.

[29]

R. A. Lafferty, P. R. Flatt, and N. Irwin, “NPYR Modulation: Potential for the next Major Advance in Obesity and Type 2 Diabetes Management?,” Peptides 179 (2024): 171256.

[30]

J. C. Henquin, “Regulation of Insulin Secretion: A Matter of Phase Control and Amplitude Modulation,” Diabetologia 52, no. 5 (2009): 739-751.

[31]

F. M. Ashcroft, D. E. Harrison, and S. J. Ashcroft, “Glucose Induces Closure of Single Potassium Channels in Isolated Rat Pancreatic Beta-cells,” Nature 312, no. 5993 (1984): 446-448.

[32]

C. M. Driggers, Y. Y. Kuo, P. Zhu, et al., “Structure of an Open K(ATP) Channel Reveals Tandem PIP(2) Binding Sites Mediating the Kir6.2 and SUR1 Regulatory Interface,” Nature Communications 15, no. 1 (2024): 2502.

[33]

N. W. York, Z. Yan, A. B. Osipovich, et al., “Loss of β-Cell KATP Reduces Ca2+ Sensitivity of Insulin Secretion and Trpm5 Expression,” Diabetes 74, no. 3 (2025): 376-383.

[34]

J. J. Tu, C. Ye, X. Y. Teng, et al., “Osmosensor TMEM63B Facilitates Insulin Secretion in Pancreatic β-cells,” Sci China Life Sci 68, no. 6 (2025): 1714-1726.

[35]

P. Ježek, B. Holendová, M. Jabůrek, et al., “Contribution of Mitochondria to Insulin Secretion by Various Secretagogues,” Antioxid Redox Signaling 36, no. 13-15 (2022): 920-952.

[36]

S. Jitrapakdee, A. Wutthisathapornchai, J. C. Wallace, et al., “Regulation of Insulin Secretion: Role of Mitochondrial Signalling,” Diabetologia 53, no. 6 (2010): 1019-1032.

[37]

M. B. Hoppa, S. Collins, R. Ramracheya, et al., “Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca(2+) Channels From Secretory Granules,” Cell metabolism 13, no. 4 (2011): 487.

[38]

R. G. Kibbey, R. L. Pongratz, A. J. Romanelli, et al., “Mitochondrial GTP Regulates Glucose-stimulated Insulin Secretion,” Cell metabolism 5, no. 4 (2007): 253-264.

[39]

E. Georgiadou, E. Haythorne, M. T. Dickerson, et al., “The Pore-forming Subunit MCU of the Mitochondrial Ca(2+) Uniporter Is Required for Normal Glucose-stimulated Insulin Secretion in Vitro and in Vivo in Mice,” Diabetologia 63, no. 7 (2020): 1368-1381.

[40]

E. Georgiadou and G. A. Rutter, “Control by Ca(2+) of Mitochondrial Structure and Function in Pancreatic β-cells,” Cell Calcium 91 (2020): 102282.

[41]

A. I. Tarasov, F. Semplici, D. Li, et al., “Frequency-dependent Mitochondrial Ca(2+) Accumulation Regulates ATP Synthesis in Pancreatic β Cells,” Pflugers Archiv: European journal of physiology 465, no. 4 (2013): 543-554.

[42]

A. I. Tarasov, F. Semplici, M. A. Ravier, et al., “The Mitochondrial Ca2+ Uniporter MCU Is Essential for Glucose-induced ATP Increases in Pancreatic β-cells,” PLoS ONE 7, no. 7 (2012): e39722.

[43]

J. W. Joseph, M. V. Jensen, O. Ilkayeva, et al., “The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion,” Journal of Biological Chemistry 281, no. 47 (2006): 35624-35632.

[44]

L. Plecitá-Hlavatá, H. Engstová, B. Holendová, et al., “Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells due to Decreasing Mitochondrial Matrix NADH/NAD(+) Ratio,” Antioxid Redox Signaling 33, no. 12 (2020): 789-815.

[45]

D. Speidel, A. Salehi, S. Obermueller, et al., “CAPS1 and CAPS2 Regulate Stability and Recruitment of Insulin Granules in Mouse Pancreatic Beta Cells,” Cell metabolism 7, no. 1 (2008): 57-67.

[46]

V. Yu, F. Yong, A. Marta, et al., “Differential CpG Methylation at Nnat in the Early Establishment of Beta Cell Heterogeneity,” Diabetologia 67, no. 6 (2024): 1079-1094.

[47]

X. Peng, H. Ren, L. Yang, et al., “Readily Releasable β Cells With Tight Ca(2+)-exocytosis Coupling Dictate Biphasic Glucose-stimulated Insulin Secretion,” Nat Metab 6, no. 2 (2024): 238-253.

[48]

M. Jabůrek, E. Klöppel, P. Průchová, et al., “Mitochondria to Plasma Membrane Redox Signaling Is Essential for Fatty Acid β-oxidation-driven Insulin Secretion,” Redox Biology 75 (2024): 103283.

[49]

A. R. Carpinelli, M. C. Picinato, E. Stevanato, et al., “Insulin Secretion Induced by Palmitate-a Process Fully Dependent on Glucose Concentration,” Diabetes & Metabolism 28, no. 6 Pt 2 (2002): 3S37-3S44. discussion 33S108-112.

[50]

S. Hauke, K. Keutler, P. Phapale, et al., “Endogenous Fatty Acids Are Essential Signaling Factors of Pancreatic β-Cells and Insulin Secretion,” Diabetes 67, no. 10 (2018): 1986-1998.

[51]

A. S. Husted, M. Trauelsen, O. Rudenko, et al., “GPCR-Mediated Signaling of Metabolites,” Cell metabolism 25, no. 4 (2017): 777-796.

[52]

S. Tunaru, R. Bonnavion, I. Brandenburger, et al., “20-HETE Promotes Glucose-stimulated Insulin Secretion in an Autocrine Manner Through FFAR1,” Nature Communications 9, no. 1 (2018): 177.

[53]

P. A. Gerber and G. A. Rutter, “The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus,” Antioxid Redox Signaling 26, no. 10 (2017): 501-518.

[54]

Y. Karusheva, K. Strassburger, D. F. Markgraf, et al., “Branched-Chain Amino Acids Associate Negatively with Postprandial Insulin Secretion in Recent-Onset Diabetes,” J Endocr Soc 5, no. 6 (2021): bvab067.

[55]

Y. Karusheva, T. Koessler, K. Strassburger, et al., “Short-term Dietary Reduction of Branched-chain Amino Acids Reduces Meal-induced Insulin Secretion and Modifies Microbiome Composition in Type 2 Diabetes: A Randomized Controlled Crossover Trial,” American Journal of Clinical Nutrition 110, no. 5 (2019): 1098-1107.

[56]

Q. Cheng, V. D. Beltran, S. M. Chan, et al., “System-L Amino Acid Transporters Play a Key Role in Pancreatic β-cell Signalling and Function,” Journal of Molecular Endocrinology 56, no. 3 (2016): 175-187.

[57]

K. Bokvist, H. L. Olsen, M. Hoy, et al., “Characterisation of Sulphonylurea and ATP-regulated K+ Channels in Rat Pancreatic A-cells,” Pflugers Archiv: European journal of physiology 438, no. 4 (1999): 428-436.

[58]

J. S. McTaggart, R. H. Clark, and F. M. Ashcroft, “The Role of the KATP Channel in Glucose Homeostasis in Health and Disease: More Than Meets the Islet,” The Journal of Physiology 588, no. Pt 17 (2010): 3201-3209.

[59]

Q. Zhang, R. Ramracheya, C. Lahmann, et al., “Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes,” Cell Metabolism 18, no. 6 (2013): 871-882.

[60]

H. Heimberg, A. De Vos, D. Pipeleers, et al., “Differences in Glucose Transporter Gene Expression Between Rat Pancreatic α- and β-Cells Are Correlated to Differences in Glucose Transport but Not in Glucose Utilization,” Journal of Biological Chemistry 270, no. 15 (1995): 8971-8975.

[61]

T. Suga, O. Kikuchi, M. Kobayashi, et al., “SGLT1 in Pancreatic α Cells Regulates Glucagon Secretion in Mice, Possibly Explaining the Distinct Effects of SGLT2 Inhibitors on Plasma Glucagon Levels,” Mol Metab 19 (2019): 1-12.

[62]

P. E. MacDonald, Y. z. De Marinis, R. Fau-Ramracheya, et al., “A K ATP Channel-dependent Pathway Within Alpha Cells Regulates Glucagon Release From both Rodent and human Islets of Langerhans,” Plos Biology 5, no. 6 (2007): e143. (1545-7885 (Electronic)).

[63]

Q. Zhang, M. V. Chibalina, M. Bengtsson, et al., “Na+ Current Properties in Islet α- and β-cells Reflect Cell-specific Scn3a and Scn9a Expression,” The Journal of Physiology 592, no. 21 (2014): 4677-4696.

[64]

S. Göpel, Q. Zhang, L. Eliasson, et al., “Capacitance Measurements of Exocytosis in Mouse Pancreatic α-, β- and δ-cells Within Intact Islets of Langerhans,” The Journal of Physiology 556, no. 3 (2004): 711-726.

[65]

Y. Z. De Marinis, A. Salehi, C. E. Ward, et al., “GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-type Ca2+ Channel-dependent Exocytosis,” Cell metabolism 11, no. 6 (2010): 543-553.

[66]

M. R. DiGruccio, A. M. Mawla, C. J. Donaldson, et al., “Comprehensive Alpha, Beta and Delta Cell Transcriptomes Reveal That ghrelin Selectively Activates Delta Cells and Promotes Somatostatin Release From Pancreatic Islets,” Molecular Metabolism 5, no. 7 (2016): 449-458.

[67]

A. F. Spigelman, X. Dai, and P. E. MacDonald, “Voltage-Dependent K(+) channels Are Positive Regulators of Alpha Cell Action Potential Generation and Glucagon Secretion in Mice and Humans,” Diabetologia 53, no. 9 (2010): 1917-1926.

[68]

P. K. Dadi, B. Luo, N. C. Vierra, et al., “TASK-1 Potassium Channels Limit Pancreatic α-Cell Calcium Influx and Glucagon Secretion,” Molecular Endocrinology 29, no. 5 (2015): 777-787.

[69]

Y. J. Liu, E. Vieira, and E. Gylfe, “A Store-operated Mechanism Determines the Activity of the Electrically Excitable Glucagon-secreting Pancreatic α-cell,” Cell Calcium 35, no. 4 (2004): 357-365.

[70]

A. Edlund, M. G. Pedersen, A. Lindqvist, et al., “CFTR Is Involved in the Regulation of Glucagon Secretion in human and Rodent Alpha Cells,” Sci Rep-Uk 7 (2017): 2045-2322. (Electronic).

[71]

C. Bonner, J. Kerr-Conte, V. Gmyr, et al., “Inhibition of the Glucose Transporter SGLT2 With Dapagliflozin in Pancreatic Alpha Cells Triggers Glucagon Secretion,” Nature Medicine 21, no. 5 (2015): 512-517.

[72]

R. Yan-Do, E. Duong, J. E. Manning Fox, et al., “A Glycine-Insulin Autocrine Feedback Loop Enhances Insulin Secretion from Human β-Cells and Is Impaired in Type 2 Diabetes,” Diabetes 65, no. 8 (2016): 2311-2321.

[73]

K. E. Zaborska, P. K. Dadi, M. T. Dickerson, et al., “Lactate Activation of α-cell K(ATP) Channels Inhibits Glucagon Secretion by Hyperpolarizing the Membrane Potential and Reducing Ca(2+) Entry,” Mol Metab 42 (2020): 101056.

[74]

C. Li, C. Liu, I. Nissim, et al., “Regulation of Glucagon Secretion in Normal and Diabetic human Islets by γ-hydroxybutyrate and Glycine,” Journal of Biological Chemistry 288, no. 6 (2013): 3938-3951.

[75]

D. Kawamori, A. J. Kurpad, J. Hu, et al., “Insulin Signaling in α Cells Modulates Glucagon Secretion in Vivo,” Cell Metabolism 9, no. 4 (2009): 350-361.

[76]

K. Kaneko, T. Shirotani, E. Araki, et al., “Insulin Inhibits Glucagon Secretion by the Activation of PI3-kinase in In-R1-G9 Cells,” Diabetes Research and Clinical Practice 44, no. 2 (1999): 83-92.

[77]

S. F. S. Xu, D. B. Andersen, J. M. G. Izarzugaza, et al., “In the Rat Pancreas, Somatostatin Tonically Inhibits Glucagon Secretion and Is Required for Glucose-induced Inhibition of Glucagon Secretion,” Acta Physiol 229, no. 3 (2020).

[78]

A. D. Elliott, A. Ustione, and D. W. Piston, “Somatostatin and Insulin Mediate Glucose-inhibited Glucagon Secretion in the Pancreatic α-cell by Lowering cAMP,” American Journal of Physiology. Endocrinology and Metabolism 308, no. 2 (2015): E130-143.

[79]

J. Taneera, Z. Jin, Y. Jin, et al., “γ-Aminobutyric Acid (GABA) Signalling in human Pancreatic Islets Is Altered in Type 2 Diabetes,” Diabetologia 55, no. 7 (2012): 1985-1994.

[80]

J. Almaça, J. Molina, D. Menegaz, et al., “Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion From Alpha Cells,” Cell Reports 17, no. 12 (2016): 3281-3291.

[81]

C. N. Boyle, Y. Zheng, and T. A. Lutz, “Mediators of Amylin Action in Metabolic Control,” Journal of Clinical Medicine 11, no. 8 (2022): 2207.

[82]

A. Young, “Inhibition of Glucagon Secretion,” Advances in Pharmacology 52 (2005): 151-171.

[83]

X. Ma, Y. Zhang, J. Gromada, et al., “Glucagon Stimulates Exocytosis in Mouse and Rat Pancreatic Alpha-cells by Binding to Glucagon Receptors,” Molecular Endocrinology 19, no. 1 (2005): 198-212.

[84]

O. Cabrera, M. C. Jacques-Silva, S. Speier, et al., “Glutamate Is a Positive Autocrine Signal for Glucagon Release,” Cell Metabolism 7, no. 6 (2008): 545-554.

[85]

Z. Freyberg and G. K. Gittes, “Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia,” Diabetes 72, no. 1 (2023): 3-15.

[86]

A. Hamilton, Q. Zhang, A. Salehi, et al., “Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization from Acidic Stores in Pancreatic α-Cells,” Diabetes 67, no. 6 (2018): 1128-1139.

[87]

B. Ahrén, “Autonomic Regulation of Islet Hormone Secretion-implications for Health and Disease,” Diabetologia 43, no. 4 (2000): 393-410.

[88]

A. Hamilton, Q. Zhang, R. Gao, et al., “Nicotinic Signaling Stimulates Glucagon Secretion in Mouse and Human Pancreatic α-Cells,” Diabetes 74, no. 1 (2025): 53-64.

[89]

A. Ito, N. Ichiyanagi, Y. Ikeda, et al., “Adhesion Molecule CADM1 Contributes to Gap Junctional Communication Among Pancreatic Islet α-cells and Prevents Their Excessive Secretion of Glucagon,” Islets 4, no. 1 (2012): 49-55.

[90]

C. Miranda, M. Begum, E. Vergari, et al., “Gap Junction Coupling and Islet Delta-cell Function in Health and Disease,” Peptides 147 (2022): 170704.

[91]

R. Arrojo e Drigo, S. Jacob, C. F. García-Prieto, et al., “Structural Basis for Delta Cell Paracrine Regulation in Pancreatic Islets,” Nature Communications 10, no. 1 (2019): 4218.

[92]

S. O. Göpel, T. Kanno, S. Fau-Barg, et al., “Patch-clamp Characterisation of Somatostatin-secreting -cells in Intact Mouse Pancreatic Islets,” Nature Communications. (0022-3751 (Print)).

[93]

Q. Zhang, M. Bengtsson, C. Partridge, et al., “R-type Ca(2+)-channel-evoked CICR Regulates Glucose-induced Somatostatin Secretion,” Nature Cell Biology 9, no. 4 (2007): 453-460.

[94]

E. Vergari, G. Denwood, A. Salehi, et al., “Somatostatin Secretion by Na(+)-dependent Ca(2+)-induced Ca(2+) Release in Pancreatic Delta-cells,” Nat Metab 2, no. 1 (2020): 32-40.

[95]

F. C. Brunicardi, R. Kleinman, S. Moldovan, et al., “Immunoneutralization of Somatostatin, Insulin, and Glucagon Causes Alterations in Islet Cell Secretion in the Isolated Perfused human Pancreas,” Pancreas 23, no. 3 (2001): 302-308.

[96]

E. Vergari, J. G. Knudsen, R. Ramracheya, et al., “Insulin Inhibits Glucagon Release by SGLT2-induced Stimulation of Somatostatin Secretion,” Nature Communications 10, no. 1 (2019): 139.

[97]

T. van der Meulen, C. J. Donaldson, E. Cáceres, et al., “Urocortin3 mediates Somatostatin-dependent Negative Feedback Control of Insulin Secretion,” Nature Medicine 21, no. 7 (2015): 769-776.

[98]

M. Braun, R. Ramracheya, M. Bengtsson, et al., “Gamma-aminobutyric Acid (GABA) Is an Autocrine Excitatory Transmitter in human Pancreatic Beta-cells,” Diabetes 59, no. 7 (2010): 1694-1701.

[99]

B. Hellman, A. Salehi, E. Gylfe, et al., “Glucose Generates Coincident Insulin and Somatostatin Pulses and Antisynchronous Glucagon Pulses From human Pancreatic Islets,” Endocrinology 150, no. 12 (2009): 5334-5340.

[100]

B. Svendsen and J. J. Holst, “Paracrine Regulation of Somatostatin Secretion by Insulin and Glucagon in Mouse Pancreatic Islets,” Diabetologia 64, no. 1 (2020): 142-151.

[101]

A. Muroyama, S. Uehara, S. Yatsushiro, et al., “A Novel Variant of Ionotropic Glutamate Receptor Regulates Somatostatin Secretion From Delta-cells of Islets of Langerhans,” Diabetes 53, no. 7 (2004): 1743-1753.

[102]

J. Molina, R. Rodriguez-Diaz, A. Fachado, et al., “Control of Insulin Secretion by Cholinergic Signaling in the human Pancreatic Islet,” Diabetes 63, no. 8 (2014): 2714-2726.

[103]

A. E. Adriaenssens, B. Svendsen, B. Y. H. Lam, et al., “Transcriptomic Profiling of Pancreatic Alpha, Beta and Delta Cell Populations Identifies Delta Cells as a Principal Target for ghrelin in Mouse Islets,” Diabetologia 59, no. 10 (2016): 2156-2165.

[104]

A. Ørgaard and J. J. Holst, “The Role of Somatostatin in GLP-1-induced Inhibition of Glucagon Secretion in Mice,” Diabetologia 60, no. 9 (2017): 1731-1739.

[105]

W. K. Samson, J. V. Zhang, O. Avsian-Kretchmer, et al., “Neuronostatin Encoded by the Somatostatin Gene Regulates Neuronal, Cardiovascular, and Metabolic Functions,” Journal of Biological Chemistry 283, no. 46 (2008): 31949-31959.

[106]

M. M. Elrick, W. K. Samson, J. A. Corbett, et al., “Neuronostatin Acts via GPR107 to Increase cAMP-independent PKA Phosphorylation and Proglucagon mRNA Accumulation in Pancreatic α-cells,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 310, no. 2 (2016): R143-155.

[107]

F. Broglio, E. Arvat, A. Benso, et al., “Endocrine Activities of Cortistatin-14 and Its Interaction With GHRH and Ghrelin in Humans,” Journal of Clinical Endocrinology and Metabolism 87, no. 8 (2002): 3783-3790.

[108]

M. D. Gahete, M. Durán-Prado, R. M. Luque, et al., “Are Somatostatin and Cortistatin Two Siblings in Regulating Endocrine Secretions? In Vitro Work Ahead,” Molecular and Cellular Endocrinology 286, no. 1-2 (2008): 128-134.

[109]

N. Wierup, H. Svensson, H. Mulder, et al., “The Ghrelin Cell: A Novel Developmentally Regulated Islet Cell in the human Pancreas,” Regulatory Peptides 107, no. 1-3 (2002): 63-69.

[110]

M. Kojima, H. Hosoda, Y. Date, et al., “Ghrelin Is a Growth-hormone-releasing Acylated Peptide From Stomach,” Nature 402, no. 6762 (1999): 656-660.

[111]

C. L. Prado, A. E. Pugh-Bernard, L. Elghazi, et al., “Ghrelin Cells Replace Insulin-producing Beta Cells in Two Mouse Models of Pancreas Development,” PNAS 101, no. 9 (2004): 2924-2929.

[112]

J. Wang, L. Elghazi, S. E. Parker, et al., “The Concerted Activities of Pax4 and Nkx2.2 Are Essential to Initiate Pancreatic Beta-cell Differentiation,” Developmental Biology 266, no. 1 (2004): 178-189.

[113]

A. Swisa, D. Avrahami, N. Eden, et al., “PAX6 maintains β Cell Identity by Repressing Genes of Alternative Islet Cell Types,” Journal of Clinical Investigation 127, no. 1 (2017): 230-243.

[114]

P. Collombat, A. Mansouri, J. Hecksher-Sorensen, et al., “Opposing Actions of Arx and Pax4 in Endocrine Pancreas Development,” Genes & development 17, no. 20 (2003): 2591-2603.

[115]

R. Granata, A. Baragli, F. Settanni, et al., “Unraveling the Role of the Ghrelin Gene Peptides in the Endocrine Pancreas,” Journal of Molecular Endocrinology 45, no. 3 (2010): 107-118.

[116]

J. A. Gutierrez, P. J. Solenberg, D. R. Perkins, et al., “Ghrelin Octanoylation Mediated by an Orphan Lipid Transferase,” PNAS 105, no. 17 (2008): 6320-6325.

[117]

J. Yang, M. S. Brown, G. Liang, et al., “Identification of the Acyltransferase That Octanoylates Ghrelin, an Appetite-stimulating Peptide Hormone,” Cell 132, no. 3 (2008): 387-396.

[118]

K. Dezaki, M. Kakei, and T. Yada, “Ghrelin Uses Galphai2 and Activates Voltage-dependent K+ Channels to Attenuate Glucose-induced Ca2+ Signaling and Insulin Release in Islet Beta-cells: Novel Signal Transduction of ghrelin,” Diabetes 56, no. 9 (2007): 2319-2327.

[119]

A. E. Adriaenssens, B. Svendsen, B. Y. Lam, et al., “Transcriptomic Profiling of Pancreatic Alpha, Beta and Delta Cell Populations Identifies Delta Cells as a Principal Target for ghrelin in Mouse Islets,” Diabetologia 59, no. 10 (2016): 2156-2165.

[120]

C. Gauna, P. J. Delhanty, and M. O. van Aken, “Unacylated Ghrelin Is Active on the INS-1E Rat Insulinoma Cell Line Independently of the Growth Hormone Secretagogue Receptor Type 1a and the Corticotropin Releasing Factor 2 Receptor,” Molecular and Cellular Endocrinology 251, no. 1-2 (2006): 103-111.

[121]

P. J. Delhanty, Y. Sun, J. A. Visser, et al., “Unacylated Ghrelin Rapidly Modulates Lipogenic and Insulin Signaling Pathway Gene Expression in Metabolically Active Tissues of GHSR Deleted Mice,” PLoS ONE 5, no. 7 (2010): e11749.

[122]

R. Granata, M. Volante, F. Settanni, et al., “Unacylated Ghrelin and Obestatin Increase Islet Cell Mass and Prevent Diabetes in Streptozotocin-treated Newborn Rats,” Journal of Molecular Endocrinology 45, no. 1 (2010): 9-17.

[123]

R. Granata, F. Settanni, M. Julien, et al., “Des-acyl Ghrelin Fragments and Analogues Promote Survival of Pancreatic β-cells and human Pancreatic Islets and Prevent Diabetes in Streptozotocin-treated Rats,” Journal of Medicinal Chemistry 55, no. 6 (2012): 2585-2596.

[124]

W. Gepts and J. de Mey, “[Pancreatic polypeptide (author's transl)],” Diabete & Metabolisme 4, no. 4 (1978): 275-283.

[125]

X. Pedragosa-Badia, J. Stichel, and A. G. Beck-Sickinger, “Neuropeptide Y Receptors: How to Get Subtype Selectivity,” Front Endocrinol (Lausanne) 4 (2013): 5.

[126]

N. A. Løvgren, J. Poulsen, and T. W. Schwartz, “Impaired Pancreatic Innervation After Selective Gastric Vagotomy. Reduction of the Pancreatic Polypeptide Response to Food and Insulin Hypoglycemia,” Scandinavian Journal of Gastroenterology 16, no. 6 (1981): 811-816.

[127]

T. W. Schwartz, J. J. Holst, J. Fahrenkrug, et al., “Vagal, Cholinergic Regulation of Pancreatic Polypeptide Secretion,” Journal of Clinical Investigation 61, no. 3 (1978): 781-789.

[128]

W. Kim, J. L. Fiori, Y. K. Shin, et al., “Pancreatic Polypeptide Inhibits Somatostatin Secretion,” Febs Letters 588, no. 17 (2014): 3233-3239.

[129]

F. Aragón, M. Karaca, A. Novials, et al., “Pancreatic Polypeptide Regulates Glucagon Release Through PPYR1 Receptors Expressed in Mouse and human Alpha-cells,” Biochimica Et Biophysica Acta 1850, no. 2 (2015): 343-351.

[130]

D. Khan, S. Vasu, R. C. Moffett, et al., “Influence of Neuropeptide Y and Pancreatic Polypeptide on Islet Function and Beta-cell Survival,” Biochim Biophys Acta Gen Subj 1861, no. 4 (2017): 749-758.

[131]

X. Wang, M. C. Zielinski, R. Misawa, et al., “Quantitative Analysis of Pancreatic Polypeptide Cell Distribution in the human Pancreas,” PLoS ONE 8, no. 1 (2013): e55501.

[132]

S. S. Qader, R. Håkanson, J. F. Rehfeld, et al., “Proghrelin-derived Peptides Influence the Secretion of Insulin, Glucagon, Pancreatic Polypeptide and Somatostatin: A Study on Isolated Islets From Mouse and Rat Pancreas,” Regulatory Peptides 146, no. 1-3 (2008): 230-237.

[133]

D. Gupta, G. K. C. Dowsett, B. K. Mani, et al., “High Coexpression of the Ghrelin and LEAP2 Receptor GHSR with Pancreatic Polypeptide in Mouse and Human Islets,” Endocrinology 162, no. 10 (2021).

[134]

M. O. Huising, “Paracrine Regulation of Insulin Secretion,” Diabetologia 63, no. 10 (2020): 2057-2063.

[135]

B. Svendsen, O. Larsen, M. B. N. Gabe, et al., “Insulin Secretion Depends on Intra-islet Glucagon Signaling,” Cell reports 25, no. 5 (2018): 1127-1134. e1122.

[136]

T. Wei, X. Cui, Y. Jiang, et al., “Glucagon Acting at the GLP-1 Receptor Contributes to β-Cell Regeneration Induced by Glucagon Receptor Antagonism in Diabetic Mice,” Diabetes 72, no. 5 (2023): 599-610.

[137]

M. E. Capozzi, B. Svendsen, S. E. Encisco, et al., “β Cell Tone Is Defined by Proglucagon Peptides Through cAMP Signaling,” JCI Insight 4, no. 5 (2019).

[138]

L. J. B. Briant, T. M. Reinbothe, I. Spiliotis, et al., “δ-cells and β-cells Are Electrically Coupled and Regulate α-cell Activity via Somatostatin,” The Journal of Physiology 596, no. 2 (2018): 197-215.

[139]

B. K. Lai, H. Chae, A. Gómez-Ruiz, et al., “Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of K(ATP) Channel Blockers,” Diabetes 67, no. 11 (2018): 2239-2253.

[140]

N. Soltani, H. Qiu, M. Aleksic, et al., “GABA Exerts Protective and Regenerative Effects on Islet Beta Cells and Reverses Diabetes,” PNAS 108, no. 28 (2011): 11692-11697.

[141]

A. Wendt, B. Birnir, K. Buschard, et al., “Glucose Inhibition of Glucagon Secretion From Rat Alpha-cells Is Mediated by GABA Released From Neighboring Beta-cells,” Diabetes 53, no. 4 (2004): 1038-1045.

[142]

P. Rorsman, P.-O. Berggren, K. Bokvist, et al., “Glucose-inhibition of Glucagon Secretion Involves Activation of GABAA-receptor Chloride Channels,” Nature 341, no. 6239 (1989): 233-236.

[143]

A. L. Feng, Y. Y. Xiang, L. Gui, et al., “Paracrine GABA and Insulin Regulate Pancreatic Alpha Cell Proliferation in a Mouse Model of Type 1 Diabetes,” Diabetologia 60, no. 6 (2017): 1033-1042.

[144]

N. Ben-Othman, A. Vieira, M. Courtney, et al., “Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-Like Cell Neogenesis,” Cell 168, no. 1-2 (2017): 73-85. e11.

[145]

J. Li, T. Casteels, T. Frogne, et al., “Artemisinins Target GABA(A) Receptor Signaling and Impair α Cell Identity,” Cell 168, no. 1-2 (2017): 86-100. e115.

[146]

A. M. Ackermann, N. G. Moss, and K. H. Kaestner, “GABA and Artesunate Do Not Induce Pancreatic α-to-β Cell Transdifferentiation in Vivo,” Cell metabolism 28, no. 5 (2018): 787-792. e783.

[147]

D. Łaszczych, A. Czernicka, and K. Łaszczych, “Targeting GABA Signaling in Type 1 Diabetes and Its Complications- an Update on the state of the Art,” Pharmacol Rep 77, no. 2 (2025): 409-424.

[148]

Z. Wang, L. Fan, Y. Ni, et al., “Combined Therapy of GABA and Sitagliptin Prevents High-fat Diet Impairment of Beta-cell Function,” Molecular and Cellular Endocrinology 559 (2023): 111755.

[149]

D. Sarnobat, R. Charlotte Moffett, and P. R. Flatt, “GABA and Insulin but Not Nicotinamide Augment α- to β-cell Transdifferentiation in Insulin-deficient Diabetic Mice,” Biochemical Pharmacology 199 (2022): 115019.

[150]

D. W. Hagan, S. M. Ferreira, G. J. Santos, et al., “The Role of GABA in Islet Function,” Front Endocrinol (Lausanne) 13 (2022): 972115.

[151]

N. L. Farnsworth and R. K. Benninger, “New Insights Into the Role of Connexins in Pancreatic Islet Function and Diabetes,” Febs Letters 588, no. 8 (2014): 1278-1287.

[152]

V. Serre-Beinier, D. Bosco, L. Zulianello, et al., “Cx36 makes Channels Coupling human Pancreatic Beta-cells, and Correlates With Insulin Expression,” Human Molecular Genetics 18, no. 3 (2009): 428-439.

[153]

S. J. Le Marchand and D. W. Piston, “Glucose Suppression of Glucagon Secretion: Metabolic and Calcium Responses From Alpha-cells in Intact Mouse Pancreatic Islets,” Journal of Biological Chemistry 285, no. 19 (2010): 14389-14398.

[154]

N. L. Farnsworth, A. Hemmati, M. Pozzoli, et al., “Fluorescence Recovery After Photobleaching Reveals Regulation and Distribution of connexin36 Gap Junction Coupling Within Mouse Islets of Langerhans,” The Journal of Physiology 592, no. 20 (2014): 4431-4446.

[155]

R. K. Benninger, M. Zhang, W. S. Head, et al., “Gap Junction Coupling and Calcium Waves in the Pancreatic Islet,” Biophysical Journal 95, no. 11 (2008): 5048-5061.

[156]

M. A. Ravier, M. Güldenagel, A. Charollais, et al., “Loss of connexin36 Channels Alters Beta-cell Coupling, Islet Synchronization of Glucose-induced Ca2+ and Insulin Oscillations, and Basal Insulin Release,” Diabetes 54, no. 6 (2005): 1798-1807.

[157]

A. Calabrese, M. Zhang, V. Serre-Beinier, et al., “Connexin 36 Controls Synchronization of Ca2+ Oscillations and Insulin Secretion in MIN6 Cells,” Diabetes 52, no. 2 (2003): 417-424.

[158]

J. R. St Clair, M. J. Westacott, J. Miranda, et al., “Restoring Connexin-36 Function in Diabetogenic Environments Precludes Mouse and human Islet Dysfunction,” The Journal of Physiology 601, no. 18 (2023): 4053-4072.

[159]

M. C. Petersen, D. F. Vatner, and G. I. Shulman, “Regulation of Hepatic Glucose Metabolism in Health and Disease,” Nature reviews Endocrinology 13, no. 10 (2017): 572-587.

[160]

E. E. Lin, E. Scott-Solomon, and R. Kuruvilla, “Peripheral Innervation in the Regulation of Glucose Homeostasis,” Trends in Neuroscience (Tins) 44, no. 3 (2021): 189-202.

[161]

H. S. Han, G. Kang, J. S. Kim, et al., “Regulation of Glucose Metabolism From a Liver-centric Perspective,” Experimental & Molecular Medicine 48, no. 3 (2016): e218.

[162]

J. E. Campbell and D. J. Drucker, “Islet α Cells and Glucagon-critical Regulators of Energy Homeostasis,” Nature reviews Endocrinology 11, no. 6 (2015): 329-338.

[163]

T. Tao, P. Deng, Y. Wang, et al., “Microengineered Multi-Organoid System From hiPSCs to Recapitulate Human Liver-Islet Axis in Normal and Type 2 Diabetes,” Adv Sci (Weinh) 9, no. 5 (2022): e2103495.

[164]

A. Kharitonenkov, T. L. Shiyanova, A. Koester, et al., “FGF-21 as a Novel Metabolic Regulator,” Journal of Clinical Investigation 115, no. 6 (2005): 1627-1635.

[165]

E. D. Berglund, C. Y. Li, H. A. Bina, et al., “Fibroblast Growth Factor 21 Controls Glycemia via Regulation of Hepatic Glucose Flux and Insulin Sensitivity,” Endocrinology 150, no. 9 (2009): 4084-4093.

[166]

J. Xu, S. Stanislaus, N. Chinookoswong, et al., “Acute Glucose-lowering and Insulin-sensitizing Action of FGF21 in Insulin-resistant Mouse Models-association With Liver and Adipose Tissue Effects,” American Journal of Physiology. Endocrinology and Metabolism 297, no. 5 (2009): E1105-1114.

[167]

B. A. Omar, B. Andersen, J. Hald, et al., “Fibroblast Growth Factor 21 (FGF21) and Glucagon-Like Peptide 1 Contribute to Diabetes Resistance in Glucagon Receptor-deficient Mice,” Diabetes 63, no. 1 (2014): 101-110.

[168]

X. Cui, J. Feng, T. Wei, et al., “Pancreatic Alpha Cell Glucagon-liver FGF21 Axis Regulates Beta Cell Regeneration in a Mouse Model of Type 2 Diabetes,” Diabetologia 66, no. 3 (2023): 535-550.

[169]

K. Ding, Z. Zhang, Z. Han, et al., “Liver ALKBH5 Regulates Glucose and Lipid Homeostasis Independently Through GCGR and mTORC1 Signaling,” Science 387, no. 6737 (2025): eadp4120.

[170]

L. I. Hudish, J. E. Reusch, and L. Sussel, “Cell Dysfunction During Progression of Metabolic Syndrome to Type 2 Diabetes,” Journal of Clinical Investigation 129, no. 10 (2019): 4001-4008.

[171]

Q. Chen, Y. Gao, F. Li, et al., “The Role of Gut-islet Axis in Pancreatic Islet Function and Glucose Homeostasis,” Diabetes, Obesity & Metabolism 27, no. 4 (2025): 1676-1692.

[172]

A. Mayorga-Ramos, C. Barba-Ostria, D. Simancas-Racines, et al., “Protective Role of Butyrate in Obesity and Diabetes: New Insights,” Frontiers in Nutrition 9 (2022): 1067647.

[173]

L. Zhao, F. Zhang, X. Ding, et al., “Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes,” Science 359, no. 6380 (2018): 1151-1156.

[174]

J. C. McNelis, Y. S. Lee, R. Mayoral, et al., “GPR43 Potentiates β-Cell Function in Obesity,” Diabetes 64, no. 9 (2015): 3203-3217.

[175]

M. Chittezhath, C. M. M. Wai, V. S. Y. Tay, et al., “TLR4 signals Through Islet Macrophages to Alter Cytokine Secretion During Diabetes,” Journal of Endocrinology 247, no. 1 (2020): 87.

[176]

Y. Ji, S. Sun, N. Shrestha, et al., “Toll-Like Receptors TLR2 and TLR4 Block the Replication of Pancreatic β Cells in Diet-induced Obesity,” Nature Immunology 20, no. 6 (2019): 677-686.

[177]

Z. Xu, S. Wen, M. Dong, et al., “Targeting central Pathway of Glucose-Dependent Insulinotropic Polypeptide, Glucagon and Glucagon-Like Peptide-1 for Metabolic Regulation in Obesity and Type 2 Diabetes,” Diabetes, Obesity & Metabolism 27, no. 4 (2025): 1660-1675.

[178]

S. Subramanian, F. Khan, and I. B. Hirsch, “New Advances in Type 1 Diabetes,” Bmj 384 (2024): e075681.

[179]

U. E. Knebel, S. Peleg, C. Dai, et al., “Disrupted RNA Editing in Beta Cells Mimics Early-stage Type 1 Diabetes,” Cell metabolism 36, no. 1 (2024): 48-61. e46.

[180]

E. M. Davis and D. A. Sandoval, “Glucagon-Like Peptide-1: Actions and Influence on Pancreatic Hormone Function,” Compr Physiol 10, no. 2 (2020): 577-595.

[181]

J. P. Krieger, “Intestinal Glucagon-Like Peptide-1 Effects on Food Intake: Physiological Relevance and Emerging Mechanisms,” Peptides 131 (2020): 170342.

[182]

M. H. Dodamani, J. Hatwal, and A. Batta, “Role of Intestinal Glucagon-Like Peptide-1 in Impaired Counter-regulatory Responses to Hypoglycemia,” World J Diabetes 15, no. 12 (2024): 2394-2398.

[183]

F. X. Jin, Y. Wang, M. N. Li, et al., “Intestinal Glucagon-Like Peptide-1: A New Player Associated With Impaired Counterregulatory Responses to Hypoglycaemia in Type 1 Diabetic Mice,” World J Diabetes 15, no. 8 (2024): 1764-1777.

[184]

S. C. Parker, M. L. Stitzel, D. L. Taylor, et al., “Chromatin Stretch Enhancer States Drive Cell-specific Gene Regulation and Harbor human Disease Risk Variants,” PNAS 110, no. 44 (2013): 17921-17926.

[185]

A. Mahajan, M. J. Go, W. Zhang, et al., “Genome-wide Trans-ancestry Meta-analysis Provides Insight Into the Genetic Architecture of Type 2 Diabetes Susceptibility,” Nature Genetics 46, no. 3 (2014): 234-244.

[186]

C. Fuchsberger, J. Flannick, T. M. Teslovich, et al., “The Genetic Architecture of Type 2 Diabetes,” Nature 536, no. 7614 (2016): 41-47.

[187]

K. J. Gaulton, T. Ferreira, Y. Lee, et al., “Genetic Fine Mapping and Genomic Annotation Defines Causal Mechanisms at Type 2 Diabetes Susceptibility Loci,” Nature Genetics 47, no. 12 (2015): 1415-1425.

[188]

N. Lawlor, S. Khetan, D. Ucar, et al., “Genomics of Islet (Dys)Function and Type 2 Diabetes,” Trends in Genetics 33, no. 4 (2017): 244-255.

[189]

J. Fadista, P. Vikman, E. O. Laakso, et al., “Global Genomic and Transcriptomic Analysis of human Pancreatic Islets Reveals Novel Genes Influencing Glucose Metabolism,” PNAS 111, no. 38 (2014): 13924-13929.

[190]

T. Dayeh, P. Volkov, S. Salö, et al., “Genome-wide DNA Methylation Analysis of human Pancreatic Islets From Type 2 Diabetic and Non-diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion,” PLos Genet 10, no. 3 (2014): e1004160.

[191]

M. Baron, A. Veres, S. L. Wolock, et al., “A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure,” Cell Systems 3, no. 4 (2016): 346-360. e344.

[192]

M. J. Muraro, G. Dharmadhikari, D. Grün, et al., “A Single-Cell Transcriptome Atlas of the Human Pancreas,” Cell Systems 3, no. 4 (2016): 385-394. e383.

[193]

Å. Segerstolpe, A. Palasantza, P. Eliasson, et al., “Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes,” Cell Metabolism 24, no. 4 (2016): 593-607.

[194]

C. Dorrell, J. Schug, P. S. Canaday, et al., “Human Islets Contain Four Distinct Subtypes of β Cells,” Nature Communications 7 (2016): 11756.

[195]

R. Rodriguez-Diaz, R. Dando, M. C. Jacques-Silva, et al., “Alpha Cells Secrete Acetylcholine as a Non-neuronal Paracrine Signal Priming Beta Cell Function in Humans,” Nature Medicine 17, no. 7 (2011): 888-892.

[196]

A. C. Hauge-Evans, A. J. King, D. Carmignac, et al., “Somatostatin Secreted by Islet Delta-cells Fulfills Multiple Roles as a Paracrine Regulator of Islet Function,” Diabetes 58, no. 2 (2009): 403-411.

[197]

J. A. Ehses, A. Perren, E. Eppler, et al., “Increased Number of Islet-associated Macrophages in Type 2 Diabetes,” Diabetes 56, no. 9 (2007): 2356-2370.

[198]

M. Y. Donath, D. M. Schumann, M. Faulenbach, et al., “Islet Inflammation in Type 2 Diabetes: From Metabolic Stress to Therapy,” Diabetes Care 31, no. 2 (2008): S161-164.

[199]

C. M. Larsen, M. Faulenbach, A. Vaag, et al., “Interleukin-1-receptor Antagonist in Type 2 Diabetes Mellitus,” New England Journal of Medicine 356, no. 15 (2007): 1517-1526.

[200]

C. Lin, S. Hu, X. Cai, et al., “The Opportunities and Challenges of the Disease-modifying Immunotherapy for Type 1 Diabetes: A Systematic Review and Meta-analysis,” Pharmacological Research 203 (2024): 107157.

[201]

D. L. Eizirik and T. Mandrup-Poulsen, “A Choice of Death-the Signal-transduction of Immune-mediated Beta-cell Apoptosis,” Diabetologia 44, no. 12 (2001): 2115-2133.

[202]

T. Gurlo, S. Ryazantsev, C. J. Huang, et al., “Evidence for Proteotoxicity in Beta Cells in Type 2 Diabetes: Toxic Islet Amyloid Polypeptide Oligomers Form Intracellularly in the Secretory Pathway,” American Journal of Pathology 176, no. 2 (2010): 861-869.

[203]

S. L. Masters, A. Dunne, S. L. Subramanian, et al., “Activation of the NLRP3 Inflammasome by Islet Amyloid Polypeptide Provides a Mechanism for Enhanced IL-1β in Type 2 Diabetes,” Nature Immunology 11, no. 10 (2010): 897-904.

[204]

A. A. Alkhateeb, L. A. Mancl, K. J. Ramos, et al., “The Association Between Cystic Fibrosis-related Diabetes and Periodontitis in Adults: A Pilot Cross-sectional Study,” PLoS ONE 19, no. 6 (2024): e0305975.

[205]

N. Lek and C. L. Acerini, “Cystic Fibrosis Related Diabetes Mellitus-diagnostic and Management Challenges,” Curr Diabetes Rev 6, no. 1 (2010): 9-16.

[206]

D. V. Kurkin, D. A. Bakulin, A. I. Robertus, et al., “Evolution of Insulin Therapy: Past, Present, Future],” Probl Endokrinol (Mosk) 69, no. 6 (2024): 86-101.

[207]

I. B. Hirsch, R. Juneja, J. M. Beals, et al., “The Evolution of Insulin and How It Informs Therapy and Treatment Choices,” Endocrine Reviews 41, no. 5 (2020): 733-755.

[208]

T. Heise, H. Linnebjerg, D. Coutant, et al., “Ultra Rapid Lispro Lowers Postprandial Glucose and More Closely Matches Normal Physiological Glucose Response Compared to Other Rapid Insulin Analogues: A Phase 1 Randomized, Crossover Study,” Diabetes, Obesity & Metabolism 22, no. 10 (2020): 1789-1798.

[209]

A. de la Peña, M. Seger, D. Soon, et al., “Bioequivalence and Comparative Pharmacodynamics of Insulin Lispro 200 U/mL Relative to Insulin Lispro (Humalog®) 100 U/mL,” Clin Pharmacol Drug Dev 5, no. 1 (2016): 69-75.

[210]

R. Pal, M. Banerjee, and S. K. Bhadada, “Glycaemic Efficacy and Safety of Mealtime Faster-acting Insulin Aspart Administered by Injection as Compared to Insulin Aspart in People With Diabetes Mellitus: A Meta-analysis of Randomized Controlled Trials,” Diabetic Medicine 38, no. 3 (2021): e14515.

[211]

A. Nicolucci, A. Ceriello, P. Di Bartolo, et al., “Rapid-Acting Insulin Analogues versus Regular Human Insulin: A Meta-Analysis of Effects on Glycemic Control in Patients With Diabetes,” Diabetes Ther 11, no. 3 (2020): 573-584.

[212]

T. Danne, M. Matsuhisa, C. Sussebach, et al., “Lower Risk of Severe Hypoglycaemia With Insulin Glargine 300 U/mL versus Glargine 100 U/mL in Participants With Type 1 Diabetes: A Meta-analysis of 6-month Phase 3 Clinical Trials,” Diabetes, Obesity & Metabolism 22, no. 10 (2020): 1880-1885.

[213]

S. V. Hordern, “Insulin Detemir: A Review,” Drugs of Today (Barcelona, Spain: 1998) 42, no. 8 (2006): 505-517.

[214]

J. Vora, B. Cariou, M. Evans, et al., “Clinical Use of Insulin Degludec,” Diabetes Research and Clinical Practice 109, no. 1 (2015): 19-31.

[215]

T. B. Kjeldsen, F. Hubálek, C. U. Hjørringgaard, et al., “Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans,” Journal of Medicinal Chemistry 64, no. 13 (2021): 8942-8950.

[216]

S. Raja, A. Raja, A. Ali, et al., “Once-weekly Basal Insulin Fc versus Daily Insulin Degludec for Glycemic Control in Diabetes: A Systematic Review, Meta-analysis, and Meta-regression,” J Diabetes Metab Disord 24, no. 1 (2025): 86.

[217]

R. R. Mohanty and S. Das, “Inhaled Insulin-Current Direction of Insulin Research,” J Clin Diagn Res 11, no. 4 (2017): Oe01-oe02.

[218]

J. B. McGill, D. Weiss, M. Grant, et al., “Understanding Inhaled Technosphere Insulin: Results of an Early Randomized Trial in Type 1 Diabetes Mellitus,” J Diabetes 13, no. 2 (2021): 164-172.

[219]

E. R. Seaquist, L. Blonde, J. B. McGill, et al., “Hypoglycaemia Is Reduced With Use of Inhaled Technosphere(®) Insulin Relative to Insulin Aspart in Type 1 Diabetes Mellitus,” Diabetic Medicine 37, no. 5 (2020): 752-759.

[220]

G. Kaur, M. R. Arora, and M. N. V. Kumar, “Oral Drug Delivery Technologies-A Decade of Developments,” Journal of Pharmacology and Experimental Therapeutics 370, no. 3 (2019): 529-543.

[221]

R. Eldor, J. Neutel, K. Homer, et al., “Efficacy and Safety of 28-day Treatment With Oral Insulin (ORMD-0801) in Patients With Type 2 Diabetes: A Randomized, Placebo-controlled Trial,” Diabetes, Obesity & Metabolism 23, no. 11 (2021): 2529-2538.

[222]

A. Abramson, E. Caffarel-Salvador, M. Khang, et al., “An Ingestible Self-orienting System for Oral Delivery of Macromolecules,” Science 363, no. 6427 (2019): 611-615.

[223]

S. Morariu, “Advances in the Design of Phenylboronic Acid-Based Glucose-Sensitive Hydrogels,” Polymers (Basel) 15, no. 3 (2023).

[224]

D. Shiino, Y. Murata, K. Kataoka, et al., “Preparation and Characterization of a Glucose-responsive Insulin-releasing Polymer Device,” Biomaterials 15, no. 2 (1994): 121-128.

[225]

C. Wang, B. Lin, H. Zhu, et al., “Recent Advances in Phenylboronic Acid-Based Gels With Potential for Self-Regulated Drug Delivery,” Molecules (Basel, Switzerland) 24, no. 6 (2019).

[226]

J. Wang, Z. Wang, J. Yu, et al., “Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation,” Advanced Materials 32, no. 13 (2020): e1902004.

[227]

T. Hoeg-Jensen, “Review: Glucose-sensitive Insulin,” Mol Metab 46 (2021): 101107.

[228]

J. B. McGill, I. B. Hirsch, C. G. Parkin, et al., “The Current and Future Role of Insulin Therapy in the Management of Type 2 Diabetes: A Narrative Review,” Diabetes Ther 15, no. 5 (2024): 1085-1098.

[229]

L. Collins and R. A. Costello (2025). Copyright © 2025, StatPearls Publishing LLC.

[230]

M. A. Nauck, D. R. Quast, J. Wefers, et al., “GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes-state-of-the-art,” (2021): 101102.

[231]

A. M. Jastreboff, L. J. Aronne, N. N. Ahmad, et al., “Tirzepatide Once Weekly for the Treatment of Obesity,” New England Journal of Medicine 387, no. 3 (2022): 205-216.

[232]

J. P. Frías, M. J. Davies, J. Rosenstock, et al., “Tirzepatide versus Semaglutide Once Weekly in Patients With Type 2 Diabetes,” New England Journal of Medicine 385, no. 6 (2021): 503-515.

[233]

V. P. Chavda, J. Ajabiya, D. Teli, et al., “Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review,” Molecules (Basel, Switzerland) 27, no. 13 (2022).

[234]

M. Schiavon, R. Visentin, B. Göbel, et al., “Improved Postprandial Glucose Metabolism in Type 2 Diabetes by the Dual Glucagon-Like Peptide-1/Glucagon Receptor Agonist SAR425899 in Comparison With Liraglutide,” Diabetes, Obesity & Metabolism 23, no. 8 (2021): 1795-1805.

[235]

N. Nachawi, P. P. Rao, and V. Makin, “The Role of GLP-1 Receptor Agonists in Managing Type 2 Diabetes,” Cleveland Clinic Journal of Medicine 89, no. 8 (2022): 457-464.

[236]

T. Weiss, L. Yang, R. D. Carr, et al., “Real-world Weight Change, Adherence, and Discontinuation Among Patients With Type 2 Diabetes Initiating Glucagon-Like Peptide-1 Receptor Agonists in the UK,” BMJ Open Diabetes Res Care 10, no. 1 (2022): e002517.

[237]

J. Rosenstock, A. Nino, J. Soffer, et al., “Impact of a Weekly Glucagon-Like Peptide 1 Receptor Agonist, Albiglutide, on Glycemic Control and on Reducing Prandial Insulin Use in Type 2 Diabetes Inadequately Controlled on Multiple Insulin Therapy: A Randomized Trial,” Diabetes Care 43, no. 10 (2020): 2509-2518.

[238]

N. Alfaris, S. Waldrop, V. Johnson, et al., “GLP-1 Single, Dual, and Triple Receptor Agonists for Treating Type 2 Diabetes and Obesity: A Narrative Review,” EClinicalMedicine 75 (2024): 102782.

[239]

Z. Z. Htike, F. Zaccardi, D. Papamargaritis, et al., “Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: A Systematic Review and Mixed-treatment Comparison Analysis,” Diabetes, Obesity & Metabolism 19, no. 4 (2017): 524-536.

[240]

D. Polidori, A. Mari, and E. Ferrannini, “Canagliflozin, a Sodium Glucose co-transporter 2 Inhibitor, Improves Model-based Indices of Beta Cell Function in Patients With Type 2 Diabetes,” Diabetologia 57, no. 5 (2014): 891-901.

[241]

A. Merovci, A. Mari, C. Solis-Herrera, et al., “Dapagliflozin Lowers Plasma Glucose Concentration and Improves β-cell Function,” Journal of Clinical Endocrinology and Metabolism 100, no. 5 (2015): 1927-1932.

[242]

S. Mudaliar, R. R. Henry, G. Boden, et al., “Changes in Insulin Sensitivity and Insulin Secretion With the Sodium Glucose Cotransporter 2 Inhibitor dapagliflozin,” Diabetes Technology & Therapeutics 16, no. 3 (2014): 137-144.

[243]

A. J. Scheen, “Cardiovascular Outcome Studies in Type 2 Diabetes: Comparison Between SGLT2 Inhibitors and GLP-1 Receptor Agonists,” Diabetes Research and Clinical Practice 143 (2018): 88-100.

[244]

A. J. Scheen, “SGLT2 inhibition: Efficacy and Safety in Type 2 Diabetes Treatment,” Expert Opinion on Drug Safety 14, no. 12 (2015): 1879-1904.

[245]

H. Elrick, T. A. Witten, and Y. Arai, “Glucagon Treatment of Insulin Reactions,” New England Journal of Medicine 258, no. 10 (1958): 476-480.

[246]

R. Voelker, “Nasal Glucagon Approved for Severe Hypoglycemia,” Jama 322, no. 9 (2019): 807.

[247]

L. H. Nguyen and J. R. White, “Nasal Glucagon: A Promising New Way to Treat Severe Hypoglycemia,” Clin Diabetes 37, no. 3 (2019): 292-293.

[248]

M. Kleinert, S. Sachs, K. M. Habegger, et al., “Glucagon Regulation of Energy Expenditure,” International Journal of Molecular Sciences 20, no. 21 (2019).

[249]

S. Sokary and H. Bawadi, “The Promise of Tirzepatide: A Narrative Review of Metabolic Benefits,” Prim Care Diabetes 19, no. 10027 (2025).

[250]

T. D. Müller, B. Finan, C. Clemmensen, et al., “The New Biology and Pharmacology of Glucagon,” Physiological Reviews 97, no. 2 (2017): 721-766.

[251]

M. Bossart, M. Wagner, R. Elvert, et al., “Effects on Weight Loss and Glycemic Control With SAR441255, a Potent Unimolecular Peptide GLP-1/GIP/GCG Receptor Triagonist,” Cell metabolism 34, no. 1 (2022): 59-74. e10.

[252]

A. Wendt and L. Eliasson, “Pancreatic α-cells-The Unsung Heroes in Islet Function,” Seminars in cell & developmental biology 103 (2020): 41-50.

[253]

W. D. Kim, Y. H. Lee, M. H. Kim, et al., “Human Monoclonal Antibodies Against Glucagon Receptor Improve Glucose Homeostasis by Suppression of Hepatic Glucose Output in Diet-induced Obese Mice,” PLoS ONE 7, no. 12 (2012): e50954.

[254]

H. Yan, W. Gu, J. Yang, et al., “Fully human Monoclonal Antibodies Antagonizing the Glucagon Receptor Improve Glucose Homeostasis in Mice and Monkeys,” Journal of Pharmacology and Experimental Therapeutics 329, no. 1 (2009): 102-111.

[255]

A. J. Scheen, N. Paquot, and P. J. Lefèbvre, “Investigational Glucagon Receptor Antagonists in Phase I and II Clinical Trials for Diabetes,” Expert Opinion on Investigational Drugs 26, no. 12 (2017): 1373-1389.

[256]

J. Pettus, S. C. Boeder, M. P. Christiansen, et al., “Glucagon Receptor Antagonist volagidemab in Type 1 Diabetes: A 12-week, Randomized, Double-blind, Phase 2 Trial,” Nature Medicine 28, no. 10 (2022): 2092-2099.

[257]

J. H. Pettus, D. D'Alessio, and J. P. Frias, “Efficacy and Safety of the Glucagon Receptor Antagonist RVT-1502 in Type 2 Diabetes Uncontrolled on Metformin Monotherapy: A 12-Week Dose-Ranging Study,” Diabetes Care 43, no. 1 (2020): 161-168.

[258]

A. Bergman, B. Tan, V. R. Somayaji, et al., “A 4-week Study Assessing the Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of the Glucagon Receptor Antagonist PF-06291874 Administered as Monotherapy in Subjects With Type 2 Diabetes Mellitus,” Diabetes Research and Clinical Practice 126 (2017): 95-104.

[259]

C. M. Kazda, Y. Ding, R. P. Kelly, et al., “Evaluation of Efficacy and Safety of the Glucagon Receptor Antagonist LY2409021 in Patients with Type 2 Diabetes: 12- and 24-Week Phase 2 Studies,” Diabetes Care 39, no. 7 (2016): 1241-1249.

[260]

J. Bora, A. Dey, A. R. Lyngdoh, et al., “A Critical Review on Therapeutic Approaches of CRISPR-Cas9 in Diabetes Mellitus,” Naunyn-Schmiedebergs Archives of Pharmacology 396, no. 12 (2023): 3459-3481.

[261]

E. Y. Cho, J. Y. Ryu, H. A. R. Lee, et al., “Lecithin Nano-liposomal Particle as a CRISPR/Cas9 Complex Delivery System for Treating Type 2 Diabetes,” J Nanobiotechnology 17, no. 1 (2019): 19.

[262]

V. K. Arivarasan, D. Diwakar, N. Kamarudheen, et al., “Current Approaches in CRISPR-Cas Systems for Diabetes,” Progress in Molecular Biology and Translational Science 210 (2025): 95-125.

[263]

M. H. Lee, J. L. Thomas, C. Y. Lin, et al., “Nanoparticle-mediated CRISPR/dCas9a Activation of Multiple Transcription Factors to Engineer Insulin-producing Cells,” J Mater Chem B 11, no. 9 (2023): 1866-1870.

[264]

D. S. Karpov, A. O. Sosnovtseva, S. V. Pylina, et al., “Challenges of CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes: How Not to Engineer a ″Trojan Horse,” International Journal of Molecular Sciences 24, no. 24 (2023).

[265]

M. Ranjbar, F. Amiri, M. Nourigorji, et al., “B2M Gene Knockout in HEK293T Cells by Non-viral Delivery of CRISPR-Cas9 System for the Generation of Universal Cells,” Egyptian Journal of Medical Human Genetics 23, no. 1 (2022): 62.

[266]

N. Thongsin, S. Suwanpitak, and M. Wattanapanitch, “CRISPR-Cas9-mediated Disruption of B2M and CIITA Genes Eliminates HLA Class I and II Expression in human Induced Pluripotent Stem Cells (MUSIi001-A-2),” Stem Cell Res 71 (2023): 103138.

[267]

D. Gerace, Q. Zhou, J. H. Kenty, et al., “Engineering human Stem Cell-derived Islets to Evade Immune Rejection and Promote Localized Immune Tolerance,” Cell Rep Med 4, no. 1 (2023): 100879.

[268]

M. Kosicki, K. Tomberg, and A. Bradley, “Repair of Double-strand Breaks Induced by CRISPR-Cas9 Leads to Large Deletions and Complex Rearrangements,” Nature Biotechnology 36, no. 8 (2018): 765-771.

[269]

C. T. Charlesworth, P. S. Deshpande, D. P. Dever, et al., “Identification of Preexisting Adaptive Immunity to Cas9 Proteins in Humans,” Nature Medicine 25, no. 2 (2019): 249-254.

[270]

P. Roy, S. Saha, and J. Chakraborty, “Looking Into the Possibilities of Cure of the Type 2 Diabetes Mellitus by Nanoparticle-based RNAi and CRISPR-Cas9 System: A Review,” Journal of Drug Delivery Science and Technology 66 (2021): 102830.

[271]

G. Orlando, P. Gianello, M. Salvatori, et al., “Cell Replacement Strategies Aimed at Reconstitution of the β-cell Compartment in Type 1 Diabetes,” Diabetes 63, no. 5 (2014): 1433-1444.

[272]

K. Lee and R. Bottino, “Islet Transplantation: Microencapsulation, Nanoencapsulation, and Hypoimmune Engineering,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 17, no. 3 (2025): e70016.

[273]

P. Soon-Shiong, “Treatment of Type I Diabetes Using Encapsulated Islets,” Advanced Drug Delivery Reviews 35, no. 2-3 (1999): 259-270.

[274]

B. E. Tuch, G. W. Keogh, L. J. Williams, et al., “Safety and Viability of Microencapsulated human Islets Transplanted Into Diabetic Humans,” Diabetes Care 32, no. 10 (2009): 1887-1889.

[275]

G. Basta, P. Montanucci, G. Luca, et al., “Long-term Metabolic and Immunological Follow-up of Nonimmunosuppressed Patients With Type 1 Diabetes Treated With Microencapsulated Islet Allografts: Four Cases,” Diabetes Care 34, no. 11 (2011): 2406-2409.

[276]

S. Vériter, J. Mergen, R. M. Goebbels, et al., “In Vivo Selection of Biocompatible Alginates for Islet Encapsulation and Subcutaneous Transplantation,” Tissue Engineering Part A 16, no. 5 (2010): 1503-1513.

[277]

D. Dufrane, M. Steenberghe, R. M. Goebbels, et al., “The Influence of Implantation Site on the Biocompatibility and Survival of Alginate Encapsulated Pig Islets in Rats,” Biomaterials 27, no. 17 (2006): 3201-3208.

[278]

P. de Vos and A. F. Hamel, “Tatarkiewicz K. Considerations for Successful Transplantation of Encapsulated Pancreatic Islets,” Diabetologia 45, no. 2 (2002): 159-173.

[279]

A. King, S. Sandler, and A. Andersson, “The Effect of Host Factors and Capsule Composition on the Cellular Overgrowth on Implanted Alginate Capsules,” Journal of Biomedial Materials Research 57, no. 3 (2001): 374-383.

[280]

S. Vériter, P. Gianello, Y. Igarashi, et al., “Improvement of Subcutaneous Bioartificial Pancreas Vascularization and Function by Coencapsulation of Pig Islets and Mesenchymal Stem Cells in Primates,” Cell Transplantation 23, no. 11 (2014): 1349-1364.

[281]

J. J. Song and H. C. Ott, “Organ Engineering Based on Decellularized Matrix Scaffolds,” Trends in Molecular Medicine 17, no. 8 (2011): 424-432.

[282]

L. M. Weber, K. N. Hayda, and K. S. Anseth, “Cell-matrix Interactions Improve Beta-cell Survival and Insulin Secretion in Three-dimensional Culture,” Tissue Engineering Part A 14, no. 12 (2008): 1959-1968.

[283]

H. Shimizu, K. Ohashi, R. Utoh, et al., “Bioengineering of a Functional Sheet of Islet Cells for the Treatment of Diabetes Mellitus,” Biomaterials 30, no. 30 (2009): 5943-5949.

[284]

R. Montesano, P. Mouron, M. Amherdt, et al., “Collagen Matrix Promotes Reorganization of Pancreatic Endocrine Cell Monolayers Into Islet-Like Organoids,” Journal of Cell Biology 97, no. 3 (1983): 935-939.

[285]

R. N. Wang and L. Rosenberg, “Maintenance of Beta-cell Function and Survival Following Islet Isolation Requires Re-establishment of the Islet-matrix Relationship,” Journal of Endocrinology 163, no. 2 (1999): 181-190.

[286]

H. Wang, S. Li, Q. Dai, et al., “Culture on a Native Bone Marrow-derived Extracellular Matrix Restores the Pancreatic Islet Basement Membrane, Preserves Islet Function, and Attenuates Islet Immunogenicity,” Faseb Journal 34, no. 6 (2020): 8044-8056.

[287]

C. A. Crisera, T. S. Maldonado, A. S. Kadison, et al., “Transforming Growth Factor-beta 1 in the Developing Mouse Pancreas: A Potential Regulator of Exocrine Differentiation,” Differentiation 65, no. 5 (2000): 255-259.

[288]

B. Han, S. Qi, B. Hu, et al., “TGF-beta i Promotes Islet Beta-cell Function and Regeneration,” Journal of Immunology 186, no. 10 (2011): 5833-5844.

[289]

P. M. Crapo, C. J. Medberry, J. E. Reing, et al., “Biologic Scaffolds Composed of central Nervous System Extracellular Matrix,” Biomaterials 33, no. 13 (2012): 3539-3547.

[290]

D. Gautam, S. J. Han, F. F. Hamdan, et al., “A Critical Role for Beta Cell M3 Muscarinic Acetylcholine Receptors in Regulating Insulin Release and Blood Glucose Homeostasis in Vivo,” Cell metabolism 3, no. 6 (2006): 449-461.

[291]

E. E. Meyers, A. Kronemberger, V. Lira, et al., “Contrasting Effects of Afferent and Efferent Vagal Nerve Stimulation on Insulin Secretion and Blood Glucose Regulation,” Physiological Reports 4, no. 4 (2016): e12718.

[292]

E. W. Dirr, Y. Patel, R. D. Johnson, et al., “The Effects of Targeted Vagus Nerve Stimulation on Glucose Homeostasis in STZ-induced Diabetic Rodents,” Frontiers in neuroscience 17 (2023): 1179276.

[293]

E. Fratini, E. Pasquali, M. L. Grilli, et al., “Intraneural Device for Electrostimulation of Vagus Nerve in Rats: A Feasibility Study for Modulating Glucose Tolerance,” Neuromodulation, ahead of print, November 29, 2024, https://doi.org/10.1016/j.neurom.2024.10.004.

[294]

K. Zhang, Y. Qi, W. Wang, et al., “Future Horizons in Diabetes: Integrating AI and Personalized Care,” Front Endocrinol (Lausanne) 16 (2025): 1583227.

[295]

F. Huang, J. Dong, J. Kong, et al., “Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Impaired Glucose Tolerance: A Pilot Randomized Study,” BMC Complementary and Alternative Medicine [Electronic Resource] 14 (2014): 203.

[296]

N. Zou, Q. Zhou, Y. Zhang, et al., “Transcutaneous Auricular Vagus Nerve Stimulation as a Novel Therapy Connecting the central and Peripheral Systems: A Review,” Int J Surg 110, no. 8 (2024): 4993-5006.

[297]

O. E. Olaniru, U. Kadolsky, S. Kannambath, et al., “Single-cell Transcriptomic and Spatial Landscapes of the Developing human Pancreas,” Cell metabolism 35, no. 1 (2023): 184-199. e185.

[298]

K. Hrovatin, A. Bastidas-Ponce, M. Bakhti, et al., “Delineating Mouse β-cell Identity During Lifetime and in Diabetes With a Single Cell Atlas,” Nat Metab 5, no. 9 (2023): 1615-1637.

[299]

A. Rubio-Navarro, N. Gómez-Banoy, L. Stoll, et al., “A Beta Cell Subset With Enhanced Insulin Secretion and Glucose Metabolism Is Reduced in Type 2 Diabetes,” Nature Cell Biology 25, no. 4 (2023): 565-578.

[300]

G. Wang, J. Chiou, C. Zeng, et al., “Integrating Genetics With Single-cell Multiomic Measurements Across Disease States Identifies Mechanisms of Beta Cell Dysfunction in Type 2 Diabetes,” Nature Genetics 55, no. 6 (2023): 984-994.

[301]

M. C. Vantyghem, E. J. P. de Koning, F. Pattou, et al., “Advances in β-cell Replacement Therapy for the Treatment of Type 1 Diabetes,” Lancet 394, no. 10205 (2019): 1274-1285.

[302]

A. Grattoni, G. Korbutt, A. A. Tomei, et al., “Harnessing Cellular Therapeutics for Type 1 Diabetes Mellitus: Progress, Challenges, and the Road Ahead,” Nature reviews Endocrinology 21, no. 1 (2025): 14-30.

[303]

H. Wang, T. Fu, Y. Du, et al., “Scientific Discovery in the Age of Artificial Intelligence,” Nature 620, no. 7972 (2023): 47-60.

[304]

H. Liu, “Global Cooperation Is Crucial for DeepSeek and Broader AI Research,” Nature 639, no. 8055 (2025): 577.

[305]

E. A. M. van Dis, J. Bollen, W. Zuidema, et al., “ChatGPT: Five Priorities for Research,” Nature 614, no. 7947 (2023): 224-226.

[306]

M. J. Robertson, J. G. Meyerowitz, O. Panova, et al., “Plasticity in Ligand Recognition at Somatostatin Receptors,” Nature structural & molecular biology 29, no. 3 (2022): 210-217.

[307]

Y. Heo, E. Yoon, Y. E. Jeon, et al., “Cryo-EM Structure of the human Somatostatin Receptor 2 Complex With Its Agonist Somatostatin Delineates the Ligand-binding Specificity,” Elife 11 (2022).

[308]

L. N. Chen, W. W. Wang, Y. J. Dong, et al., “Structures of the Endogenous Peptide- and Selective Non-peptide Agonist-bound SSTR2 Signaling Complexes,” Cell Research 32, no. 8 (2022): 785-788.

[309]

Q. Bo, F. Yang, Y. Li, et al., “Structural Insights Into the Activation of Somatostatin Receptor 2 by Cyclic SST Analogues,” Cell Discovery 8, no. 1 (2022): 47.

[310]

W. Zhao, S. Han, N. Qiu, et al., “Structural Insights Into Ligand Recognition and Selectivity of Somatostatin Receptors,” Cell Research 32, no. 8 (2022): 761-772.

[311]

B. Zhang, L. Xue, and Z. B. Wu, “Structure and Function of Somatostatin and Its Receptors in Endocrinology,” Endocrine Reviews 46, no. 1 (2025): 26-42.

[312]

R. J. Galindo, R. W. Beck, M. F. Scioscia, et al., “Glycemic Monitoring and Management in Advanced Chronic Kidney Disease,” Endocrine Reviews 41, no. 5 (2020): 756-774.

[313]

P. Cruz, “Inpatient Hypoglycemia: The Challenge Remains,” J Diabetes Sci Technol 14, no. 3 (2020): 560-566.

[314]

T. Vatanen, E. A. Franzosa, R. Schwager, et al., “The human Gut Microbiome in Early-onset Type 1 Diabetes From the TEDDY Study,” Nature 562, no. 7728 (2018): 589-594.

[315]

J. G. Markle, D. N. Frank, S. Mortin-Toth, et al., “Sex Differences in the Gut Microbiome Drive Hormone-dependent Regulation of Autoimmunity,” Science 339, no. 6123 (2013): 1084-1088.

[316]

P. de Groot, T. Nikolic, S. Pellegrini, et al., “Faecal Microbiota Transplantation Halts Progression of human New-onset Type 1 Diabetes in a Randomised Controlled Trial,” Gut 70, no. 1 (2021): 92-105.

[317]

Y. Zeng, Y. Wu, Q. Zhang, et al., “Crosstalk Between Glucagon-Like Peptide 1 and Gut Microbiota in Metabolic Diseases,” MBio 15, no. 1 (2024): e0203223.

[318]

C. L. Stabler, Y. Li, J. M. Stewart, et al., “Engineering Immunomodulatory Biomaterials for Type 1 Diabetes,” Nature Reviews Materials 4, no. 6 (2019): 429-450.

[319]

N. Sharon, R. Chawla, J. Mueller, et al., “A Peninsular Structure Coordinates Asynchronous Differentiation With Morphogenesis to Generate Pancreatic Islets,” Cell 176, no. 4 (2019): 790-804. e713.

[320]

D. Delcassian, I. Luzhansky, V. Spanoudaki, et al., “Magnetic Retrieval of Encapsulated Beta Cell Transplants From Diabetic Mice Using Dual-Function MRI Visible and Retrievable Microcapsules,” Advanced Materials 32, no. 16 (2020): e1904502.

[321]

X. Zhao, W. Xue, W. Ding, et al., “A Novel Injectable Sodium Alginate/Chitosan/Sulfated Bacterial Cellulose Hydrogel as Biohybrid Artificial Pancreas for Real-time Glycaemic Regulation,” Carbohydrate Polymers 354 (2025): 123323.

[322]

X. Liu, S. D. Carter, M. J. Renes, et al., “Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs,” Adv Healthc Mater 8, no. 7 (2019): e1801181.

[323]

S. Chen, W. Wang, L. Shen, et al., “A 3D-printed Microdevice Encapsulates Vascularized Islets Composed of iPSC-derived β-Like Cells and Microvascular Fragments for Type 1 Diabetes Treatment,” Biomaterials 315 (2025): 122947.

[324]

M. Kim, S. Cho, D. G. Hwang, et al., “Bioprinting of Bespoke Islet-specific Niches to Promote Maturation of Stem Cell-derived Islets,” Nature Communications 16, no. 1 (2025): 1430.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/