Plasmacytoid and CD141+ Myeloid Dendritic Cells Cooperation with CD8+ T Cells in Lymph Nodes is Associated with HIV Control

Joana Vitallé , Sara Bachiller , Beatriz Dominguez-Molina , Eirini Moysi , Sara Ferrando-Martínez , María Inés Camacho-Sojo , Isabel Gallego , Alberto Pérez-Gómez , María Reyes Jiménez-Leon , Carmen Gasca-Capote , Francisco José Ostos , Mohammed Rafii-El-Idrissi Benhnia , Laura E. Via , Antonio Mochón , Luis Fernando López-Cortes , Constantinos Petrovas , Richard A. Koup , Ezequiel Ruiz-Mateos

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70354

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70354 DOI: 10.1002/mco2.70354
ORIGINAL ARTICLE

Plasmacytoid and CD141+ Myeloid Dendritic Cells Cooperation with CD8+ T Cells in Lymph Nodes is Associated with HIV Control

Author information +
History +
PDF

Abstract

Dendritic cells (DC) are known to modulate antiviral immune responses; however, the knowledge about the role of different DC subsets in antiviral T cell priming in human tissues remains uncompleted. In the context of HIV infection, we determined the phenotype and location of plasmacytoid and CD141+ myeloid DCs (pDCs and mDCs) in lymph nodes of people living with HIV (PLWH). We found an interaction between pDCs and CD141+ mDCs with CD8+ T cells, being associated with participants’ viral levels in blood and tissue. Moreover, we demonstrated a higher and more polyfunctional superantigen- and HIV-specific CD8+ T cell response after the coculture with Toll-like receptor (TLR)-primed pDCs and CD141+ mDCs. Last, we showed the potential of programmed cell death-1 (PD-1) blocking using pembrolizumab to further increase antigen-specific CD8+ T cell response along with TLR agonists. Therefore, these results showed a cooperation between pDCs, CD141+ mDCs and CD8+ T cells in lymph nodes of PLWH, which is associated with higher HIV control, highlighting the importance of DC subsets crosstalk to achieve a more potent anti-HIV response and support the use of DC-based immunotherapies for HIV control.

Keywords

HIV / dendritic cell (DC) / plasmacytoid DC / CD141 myeloid DC / CD8 T cell / lymph node

Cite this article

Download citation ▾
Joana Vitallé, Sara Bachiller, Beatriz Dominguez-Molina, Eirini Moysi, Sara Ferrando-Martínez, María Inés Camacho-Sojo, Isabel Gallego, Alberto Pérez-Gómez, María Reyes Jiménez-Leon, Carmen Gasca-Capote, Francisco José Ostos, Mohammed Rafii-El-Idrissi Benhnia, Laura E. Via, Antonio Mochón, Luis Fernando López-Cortes, Constantinos Petrovas, Richard A. Koup, Ezequiel Ruiz-Mateos. Plasmacytoid and CD141+ Myeloid Dendritic Cells Cooperation with CD8+ T Cells in Lymph Nodes is Associated with HIV Control. MedComm, 2025, 6(9): e70354 DOI:10.1002/mco2.70354

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Finzi, M. Hermankova, T. Pierson, et al., “Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy,” Science 278, no. 5341 (1997): 1295-1300.

[2]

A. Chaillon, S. Gianella, S. Dellicour, et al., “HIV Persists throughout Deep Tissues With Repopulation From Multiple Anatomical Sources,” Journal of Clinical Investigation 130, no. 4 (2020): 1699-1712.

[3]

D. SenGupta, C. Brinson, E. DeJesus, et al., “The TLR7 Agonist Vesatolimod Induced a Modest Delay in Viral Rebound in HIV Controllers After Cessation of Antiretroviral Therapy,” Science Translational Medicine 13, no. 599 (2021): eabg3071.

[4]

S. A. Riddler, M. Para, C. A. Benson, et al., “Vesatolimod, a Toll-Like Receptor 7 Agonist, Induces Immune Activation in Virally Suppressed Adults Living with Human Immunodeficiency Virus-1,” Clinical Infectious Diseases 72, no. 11 (2021): e815-e824.

[5]

M. Calvet-Mirabent, I. Sánchez-Cerrillo, N. Martín-Cófreces, et al., “Antiretroviral Therapy Duration and Immunometabolic state Determine Efficacy of Ex Vivo Dendritic Cell-based Treatment Restoring Functional HIV-specific CD8+ T Cells in People Living With HIV,” EBioMedicine 81 (2022): 104090.

[6]

M. R. Jimenez-Leon, C. Gasca-Capote, L. Tarancon-Diez, et al., “Toll-Like Receptor Agonists Enhance HIV-specific T Cell Response Mediated by Plasmacytoid Dendritic Cells in Diverse HIV-1 Disease Progression Phenotypes,” EBioMedicine 91 (2023): 104549.

[7]

L. Usero, L. Leal, C. E. Gómez, et al., “The Combination of an mRNA Immunogen, a TLR7 Agonist and a PD1 Blocking Agent Enhances in-Vitro HIV T-Cell Immune Responses,” Vaccines (Basel) 11, no. 2 (2023): 286.

[8]

J. W. Rhodes, O. Tong, A. N. Harman, and S. G. Turville, “Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection,” Frontiers in Immunology 10 (2019): 1088.

[9]

E. Segura, “Human Dendritic Cell Subsets: An Updated View of Their Ontogeny and Functional Specialization,” European Journal of Immunology 52, no. 11 (2022): 1759-1767.

[10]

B. Reizis, “Plasmacytoid Dendritic Cells: Development, Regulation, and Function,” Immunity 50, no. 1 (2019): 37-50.

[11]

K. Machmach, M. Leal, C. Gras, et al., “Plasmacytoid Dendritic Cells Reduce HIV Production in Elite Controllers,” Journal of Virology 86, no. 8 (2012): 4245-4252.

[12]

M. Calvet-Mirabent, D. T. Claiborne, M. Deruaz, et al., “Poly I:C and STING Agonist-primed DC Increase Lymphoid Tissue Polyfunctional HIV-1-specific CD8 + T Cells and Limit CD4 + T-cell Loss in BLT Mice,” European Journal of Immunology 52, no. 3 (2022): 447-461.

[13]

E. Domenjo-Vila, V. Casella, R. Iwabuchi, et al., “XCR1+ DCs Are Critical for T Cell-mediated Immunotherapy of Chronic Viral Infections,” Cell Reports 42, no. 2 (2023): 112123.

[14]

J. D. Gunst, J. F. Højen, M. H. Pahus, et al., “Impact of a TLR9 Agonist and Broadly Neutralizing Antibodies on HIV-1 Persistence: The Randomized Phase 2a TITAN Trial,” Nature Medicine 29, no. 10 (2023): 2547-2558.

[15]

L. Bailón, J. Moltó, A. Curran, et al., “Safety, Immunogenicity and Effect on Viral Rebound of HTI Vaccines Combined With a TLR7 Agonist in Early-treated HIV-1 Infection: A Randomized, Placebo-controlled Phase 2a Trial,” Nature Communications 16, no. 1 (2025): 2146.

[16]

U. H. von Andrian, and T. R. Mempel, “Homing and Cellular Traffic in Lymph Nodes,” Nature Reviews Immunology 3, no. 11 (2003): 867-878.

[17]

R. He, S. Hou, C. Liu, et al., “Follicular CXCR5-expressing CD8+ T Cells Curtail Chronic Viral Infection,” Nature 537, no. 7620 (2016): 412-416.

[18]

Y. A. Leong, Y. Chen, H. S. Ong, et al., “CXCR5+ follicular Cytotoxic T Cells Control Viral Infection in B Cell Follicles,” Nature Immunology 17, no. 10 (2016): 1187-1196.

[19]

C. Petrovas, S. Ferrando-Martinez, M. Y. Gerner, et al., “Follicular CD8 T Cells Accumulate in HIV Infection and Can Kill Infected Cells in Vitro via Bispecific Antibodies,” Science Translational Medicine 9, no. 373 (2017): eaag2285.

[20]

M. Y. H. Lee, A. A. Upadhyay, H. Walum, et al., “Tissue-specific Transcriptional Profiling of Plasmacytoid Dendritic Cells Reveals a Hyperactivated state in Chronic SIV Infection,” PLoS Pathogens 17, no. 6 (2021): e1009674.

[21]

M. T. Ollerton, J. M. Folkvord, K. K. Peachman, et al., “HIV-1 Infected Humanized DRAGA Mice Develop HIV-specific Antibodies Despite Lack of Canonical Germinal Centers in Secondary Lymphoid Tissues,” Frontiers in Immunology 13 (2022): 1047277.

[22]

E. Moysi, P. M. Del Rio Estrada, F. Torres-Ruiz, G. Reyes-Terán, R. A. Koup, and C. Petrovas, “In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization,” Frontiers in Immunology 12 (2021): 683396.

[23]

A. Brewitz, S. Eickhoff, S. Dähling, et al., “CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming,” Immunity 46, no. 2 (2017): 205-219.

[24]

H. Zhang, J. D. Gregorio, T. Iwahori, et al., “A Distinct Subset of Plasmacytoid Dendritic Cells Induces Activation and Differentiation of B and T Lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 8 (2017): 1988-1993.

[25]

M. Lechmann, S. Berchtold, A. Steinkasserer, and J. Hauber, “CD83 on Dendritic Cells: More Than Just a Marker for Maturation,” Trends in Immunology 23, no. 6 (2002): 273-275.

[26]

M. Y. Gerner, W. Kastenmuller, I. Ifrim, J. Kabat, and R. N. Germain, “Histo-Cytometry: A Method for Highly Multiplex Quantitative Tissue Imaging Analysis Applied to Dendritic Cell Subset Microanatomy in Lymph Nodes,” Immunity 37, no. 2 (2012): 364-376.

[27]

M. Colonna, G. Trinchieri, and Y.-J. Liu, “Plasmacytoid Dendritic Cells in Immunity,” Nature Immunology 5, no. 12 (2004): 1219-1226.

[28]

B. Bošnjak, K. T. H. Do, R. Förster, and S. I. Hammerschmidt, “Imaging Dendritic Cell Functions,” Immunological Reviews 306, no. 1 (2022): 137-163.

[29]

B. Dave, J. Kaplan, S. Gautam, and P. Bhargava, “Plasmacytoid Dendritic Cells in Lymph Nodes of Patients with Human Immunodeficiency Virus,” Applied Immunohistochemistry & Molecular Morphology 20, no. 6 (2012): 566-572.

[30]

H. Xu, X. Wang, and R. S. Veazey, “Mucosal Immunology of HIV Infection,” Immunological Reviews 254, no. 1 (2013): 10-33.

[31]

A. Benlahrech, A. Yasmin, S. J. Westrop, et al., “Dysregulated Immunophenotypic Attributes of Plasmacytoid but Not Myeloid Dendritic Cells in HIV-1 Infected Individuals in the Absence of Highly Active Anti-retroviral Therapy,” Clinical and Experimental Immunology 170, no. 2 (2012): 212-221.

[32]

L. Zhang, Q. Jiang, G. Li, J. Jeffrey, G. I. Kovalev, and L. Su, “Efficient Infection, Activation, and Impairment of pDCs in the BM and Peripheral Lymphoid Organs During Early HIV-1 Infection in Humanized rag2/γ C/ Mice in Vivo,” Blood 117, no. 23 (2011): 6184-6192.

[33]

G. Pantaleo, C. Graziosi, J. F. Demarest, et al., “HIV Infection Is Active and Progressive in Lymphoid Tissue During the Clinically Latent Stage of Disease,” Nature 10, no. 6418 (1993): 355-358.

[34]

J. M. Folkvord, C. Armon, and E. Connick, “Lymphoid Follicles Are Sites of Heightened Human Immunodeficiency Virus Type 1 (HIV-1) Replication and Reduced Antiretroviral Effector Mechanisms,” Aids Research and Human Retroviruses 21, no. 5 (2005): 363-370.

[35]

M. P. Bronnimann, P. J. Skinner, and E. Connick, “The B-Cell Follicle in HIV Infection: Barrier to a Cure,” Frontiers in Immunology 9 (2018): 20.

[36]

J. D. Ventura, J. P. Nkolola, A. Chandrashekar, et al., “Therapeutic Efficacy of an Ad26/MVA Vaccine With SIV gp140 Protein and Vesatolimod in ART-suppressed rhesus Macaques,” NPJ Vaccines 7, no. 1 (2022): 53.

[37]

B. Moldt, A. Chandrashekar, E. N. Borducchi, et al., “HIV Envelope Antibodies and TLR7 Agonist Partially Prevent Viral Rebound in Chronically SHIV-infected Monkeys,” PLoS Pathogens 18, no. 4 (2022): e1010467.

[38]

M. Saxena, R. L. Sabado, M. La Mar, et al., “Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients with Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial,” Frontiers in Immunology 10 (2019): 725.

[39]

A. Tsai, A. Irrinki, J. Kaur, et al., “Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells From HIV-Infected Individuals on Suppressive Antiretroviral Therapy,” Journal of Virology 91, no. 8 (2017): e02166-16.

[40]

A. Ribas, T. Medina, J. M. Kirkwood, et al., “Overcoming PD-1 Blockade Resistance With CpG-A Toll-Like Receptor 9 Agonist Vidutolimod in Patients With Metastatic Melanoma,” Cancer Discovery 11, no. 12 (2021): 2998-3007.

[41]

T. S. Uldrick, S. V. Adams, R. Fromentin, et al., “Pembrolizumab Induces HIV Latency Reversal in People Living With HIV and Cancer on Antiretroviral Therapy,” Science Translational Medicine 14, no. 629 (2022): eabl3836.

[42]

R. Banga, C. Rebecchini, F. A. Procopio, et al., “Lymph Node Migratory Dendritic Cells Modulate HIV-1 Transcription Through PD-1 Engagement,” PLoS Pathogens 15, no. 7 (2019): e1007918.

[43]

M. F. Quigley, V. D. Gonzalez, A. Granath, J. Andersson, and J. K. Sandberg, “CXCR5 + CCR7 - CD8 T Cells Are Early Effector Memory Cells That Infiltrate Tonsil B Cell Follicles,” European Journal of Immunology 37, no. 12 (2007): 3352-3362.

[44]

E. M. M. Manders, F. J. Verbeek, and J. A. Aten, “Measurement of co-localization of Objects in Dual-colour Confocal Images,” Journal of Microscopy 169, no. 3 (1993): 375-382.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/