RNA Modifications in Health and Disease

Shiqi Li , Ping Luo , Junli Fan , Yirong Li , Jiancheng Tu , Xinghua Long

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70341

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70341 DOI: 10.1002/mco2.70341
REVIEW

RNA Modifications in Health and Disease

Author information +
History +
PDF

Abstract

RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies. This review systematically synthesizes recent advances in understanding how dynamic RNA modifications orchestrate health and disease. We critically review the m6A modifications, the most abundant RNA methylation, its association with diseases, and regulations by post translation. We evaluate three interconnected themes: disease mechanisms, where dysregulated m6A drives oncogenesis (e.g., METTL3-mediated hypermethylation in breast cancer) and contributes to neuropsychiatric/cardiovascular disorders; homeostatic functions, spanning embryogenesis (maternal-to-zygotic transition), tissue regeneration (YTHDF1 in muscle), and immune regulation; therapeutic frontiers, including enzyme-targeting strategies (FTO inhibitors, METTL3 stabilizers) and diagnostic approaches. Our analysis reveals that context-dependent RNA modification networks operate as biological “switches” whose dysregulation creates pathogenic cascades. We further propose a novel framework for targeting these networks using multiomics integration. This review establishes RNA modifications as central targets for precision medicine, while highlighting critical challenges in clinical translation that demand interdisciplinary collaboration.

Keywords

cancer / cardiovascular health / m6A methylation / neurodegenerative diseases / PTMs / RNA modifications

Cite this article

Download citation ▾
Shiqi Li, Ping Luo, Junli Fan, Yirong Li, Jiancheng Tu, Xinghua Long. RNA Modifications in Health and Disease. MedComm, 2025, 6(9): e70341 DOI:10.1002/mco2.70341

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. A. Roundtree, M. E. Evans, T. Pan, and C. He, “Dynamic RNA Modifications in Gene Expression Regulation, ” Cell 169, no. 7 (2017): 1187-1200.

[2]

A. G. Torres, E. Batlle, and L. Ribas de Pouplana, “Role of tRNA Modifications in human Diseases, ” Trends in Molecular Medicine 20, no. 6 (2014): 306-314.

[3]

W. E. Cohn, “Pseudouridine, a Carbon-carbon Linked Ribonucleoside in Ribonucleic Acids: Isolation, Structure, and Chemical Characteristics, ” Journal of Biological Chemistry 235 (1960): 1488-1498.

[4]

R. W. Holley, J. Apgar, G. A. Everett, et al., “Structure of a Ribonucleic Acid,” Science 147, no. 3664 (1965): 1462-1465.

[5]

R. Desrosiers, K. Friderici, F. Rottman, “Identification of Methylated Nucleosides in Messenger RNA From Novikoff Hepatoma Cells,” Proceedings of the National Academy of Sciences of the United States of America 71, no. 10 (1974): 3971-3975.

[6]

T. Selmi, S. Hussain, S. Dietmann, et al., “Sequence- and Structure-specific Cytosine-5 mRNA Methylation by NSUN6, ” Nucleic Acids Res 49, no. 2 (2021): 1006-1022.

[7]

K. E. Bohnsack, C. Höbartner, and M. T. Bohnsack, “Eukaryotic 5-methylcytosine (m5C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease, ” Genes 10, no. 2 (2019): 102.

[8]

Y. Y. Wang, Y. Tian, Y. Z. Li, et al., “The Role of m5C Methyltransferases in Cardiovascular Diseases, ” Frontiers in Cardiovascular Medicine 10 (2023): 1225014.

[9]

S. Oerum, C. Dégut, P. Barraud, and C. Tisné, “m1A Post-Transcriptional Modification in tRNAs, ” Biomolecules 7, no. 1 (2017): 20.

[10]

X. Zhang, W. Y. Zhu, S. Y. Shen, J. H. Shen, and X. D. Chen, “Biological Roles of RNA m7G Modification and Its Implications in Cancer, ” Biology Direct 18, no. 1 (2023): 58.

[11]

Y. Li, Y. Yi, X. Gao, et al., “2'-O-methylation at Internal Sites on mRNA Promotes mRNA Stability, ” Molecular Cell 84, no. 12 (2024): 2320-2336.e6.

[12]

D. Wiener and S. Schwartz, “The Epitranscriptome Beyond m6A, ” Nature Reviews Genetics 22, no. 2 (2021): 119-131.

[13]

X. Deng, R. Su, H. Weng, H. Huang, Z. Li, and J. Chen, “RNA N6-methyladenosine Modification in Cancers: Current Status and Perspectives, ” Cell Research 28, no. 5 (2018): 507-517.

[14]

J. Liu, Y. Yue, D. Han, et al., “A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-adenosine Methylation, ” Nature Chemical Biology 10, no. 2 (2014): 93-95.

[15]

X. L. Ping, B. F. Sun, L. Wang, et al., “Mammalian WTAP Is a Regulatory Subunit of the RNA N6-methyladenosine Methyltransferase, ” Cell Research 24, no. 2 (2014): 177-189.

[16]

B. I. Fedeles, V. Singh, J. C. Delaney, D. Li, and J. M. Essigmann, “The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond, ” Journal of Biological Chemistry 290, no. 34 (2015): 20734-20742.

[17]

X. Zhao, Y. Yang, B. F. Sun, et al., “FTO-dependent Demethylation of N6-methyladenosine Regulates mRNA Splicing and Is Required for Adipogenesis, ” Cell Research 24, no. 12 (2014): 1403-1419.

[18]

M. Merkestein, S. Laber, F. McMurray, et al., “FTO Influences Adipogenesis by Regulating Mitotic Clonal Expansion, ” Nature Communications 6 (2015): 6792.

[19]

G. Zheng, J. A. Dahl, Y. Niu, et al., “ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility, ” Molecular Cell 49, no. 1 (2013): 18-29.

[20]

X. Y. Chen, J. Zhang, and J. S. Zhu, “The Role of m6A RNA Methylation in human Cancer, ” Molecular cancer 18 (2019): 103.

[21]

G. Casella, D. Tsitsipatis, K. Abdelmohsen, and M. Gorospe, “mRNA Methylation in Cell Senescence, ” Wiley Interdiscip Rev RNA 10, no. 6 (2019): e1547.

[22]

X. Wang, Z. Lu, A. Gomez, et al., “m6A-dependent Regulation of Messenger RNA Stability, ” Nature 505, no. 7481 (2014): 117-120.

[23]

C. Xu, X. Wang, K. Liu, et al., “Structural Basis for Selective Binding of m6A RNA by the YTHDC1 YTH Domain, ” Nature Chemical Biology 10, no. 11 (2014): 927-929.

[24]

S. Müller, M. Glaß, A. K. Singh, et al., “IGF2BP1 promotes SRF-dependent Transcription in Cancer in a m6A- and miRNA-dependent Manner, ” Nucleic Acids Res. 47, no. 1 (2019): 375-390.

[25]

S. Wang, B. Chim, Y. Su, et al., “Enhancement of LIN28B-induced Hematopoietic Reprogramming by IGF2BP3, ” Genes & development 33, no. 15-16 (2019): 1048-1068.

[26]

T. Li, P. S. Hu, Z. Zuo, et al., “METTL3 facilitates Tumor Progression via an m6A-IGF2BP2-dependent Mechanism in Colorectal Carcinoma, ” Molecular cancer 18 (2019): 112.

[27]

B. Chen, Y. Li, R. Song, C. Xue, and F. Xu, “Functions of RNA N6-methyladenosine Modification in Cancer Progression, ” Molecular Biology Reports 46, no. 1 (2019): 1383-1391.

[28]

Z. Bi, Y. Liu, Y. Zhao, et al., “A Dynamic Reversible RNA N6 -methyladenosine Modification: Current Status and Perspectives, ” Journal of Cellular Physiology 234, no. 6 (2019): 7948-7956.

[29]

N. Pinello, S. Sun, and J. J. L. Wong, “Aberrant Expression of Enzymes Regulating m6A mRNA Methylation: Implication in Cancer, ” Cancer Biol Med 15, no. 4 (2018): 323-334.

[30]

S. Zaccara, R. J. Ries, and S. R. Jaffrey, “Reading, Writing and Erasing mRNA Methylation, ” Nature Reviews Molecular Cell Biology 20, no. 10 (2019): 608-624.

[31]

R. Desrosiers, K. Friderici, and F. Rottman, “Identification of Methylated Nucleosides in Messenger RNA From Novikoff Hepatoma Cells, ” PNAS 71, no. 10 (1974): 3971-3975.

[32]

P. Wang, K. A. Doxtader, and Y. Nam, “Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases, ” Molecular Cell 63, no. 2 (2016): 306-317.

[33]

S. Schwartz, M. R. Mumbach, M. Jovanovic, et al., “Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5' sites, ” Cell reports 8, no. 1 (2014): 284-296.

[34]

Y. Yue, J. Liu, X. Cui, et al., “VIRMA Mediates Preferential m6A mRNA Methylation in 3'UTR and near Stop Codon and Associates With Alternative Polyadenylation, ” Cell Discovery 4 (2018): 10.

[35]

P. Knuckles, T. Lence, I. U. Haussmann, et al., “Zc3h13/Flacc Is Required for Adenosine Methylation by Bridging the mRNA-binding Factor Rbm15/Spenito to the m6A Machinery Component Wtap/Fl(2)D, ” Genes & development 32, no. 5-6 (2018): 415-429.

[36]

D. P. Patil, C. K. Chen, B. F. Pickering, et al., “A RNA Methylation Promotes XIST-mediated Transcriptional Repression, ” Nature 537, no. 7620 (2016): 369-373.

[37]

I. Barbieri, K. Tzelepis, L. Pandolfini, et al., “Promoter-bound METTL3 Maintains Myeloid Leukaemia via m6A-dependent Translation Control, ” Nature 552, no. 7683 (2017): 126-131.

[38]

A. Bertero, S. Brown, P. Madrigal, et al., “The SMAD2/3 Interactome Reveals That TGFβ Controls m6A mRNA Methylation in Pluripotency, ” Nature 555, no. 7695 (2018): 256-259.

[39]

F. Yu, J. Wei, X. Cui, et al., “Post-translational Modification of RNA m6A Demethylase ALKBH5 Regulates ROS-induced DNA Damage Response, ” Nucleic Acids Res. 49, no. 10 (2021): 5779-5797.

[40]

G. Zhu, L. Jin, W. Sun, S. Wang, and N. Liu, “Proteomics of Post-translational Modifications in Colorectal Cancer: Discovery of New Biomarkers, ” Biochim Biophys Acta Rev Cancer 1877, no. 4 (2022): 188735.

[41]

J. R. Johnson, D. C. Crosby, J. F. Hultquist, et al., “Global Post-translational Modification Profiling of HIV-1-infected Cells Reveals Mechanisms of Host Cellular Pathway Remodeling, ” Cell reports 39, no. 2 (2022): 110690.

[42]

P. M. V. Shetty, A. Y. Rangrez, and N. Frey, “SUMO Proteins in the Cardiovascular System: Friend or Foe?, ” Journal of Biomedical Science 27, no. 1 (2020): 98.

[43]

C. Pohl and I. Dikic, “Cellular Quality Control by the Ubiquitin-proteasome System and Autophagy, ” Science 366, no. 6467 (2019): 818-822.

[44]

Z. C. Zeng, Q. Pan, Y. M. Sun, et al., “METTL3 protects METTL14 From STUB1-mediated Degradation to Maintain m6A Homeostasis, ” Embo Reports (2023): e55762, https://doi.org/10.15252/embr.202255762. n/a(n/a).

[45]

Y. Wang, Y. Li, J. I. Toth, M. D. Petroski, Z. Zhang, and J. C. Zhao, “N6-methyladenosine Modification Destabilizes Developmental Regulators in Embryonic Stem Cells, ” Nature Cell Biology 16, no. 2 (2014): 191-198.

[46]

Y. Yang, X. Fan, M. Mao, “Extensive Translation of Circular RNAs Driven by N6-methyladenosine, ” Cell Research 27, no. 5 (2017): 626-641.

[47]

L. Dong, D. Lu, R. Chen, et al., “Proteogenomic Characterization Identifies Clinically Relevant Subgroups of Intrahepatic Cholangiocarcinoma, ” Cancer Cell 40, no. 1 (2022): 70-87.e15.

[48]

J. Wei, B. T. Harada, D. Lu, et al., “HRD1-mediated METTL14 Degradation Regulates m6A mRNA Modification to Suppress ER Proteotoxic Liver Disease, ” Molecular Cell 81, no. 24 (2021): 5052-5065.e6.

[49]

Z. Liu, K. Wu, S. Gu, et al., “A Methyltransferase-Like 14/miR-99a-5p/Tribble 2 Positive Feedback Circuit Promotes Cancer Stem Cell Persistence and Radioresistance via Histone Deacetylase 2-mediated Epigenetic Modulation in Esophageal Squamous Cell Carcinoma, ” Clinical and translational medicine 11, no. 9 (2021): e545.

[50]

J. A. Harrigan, X. Jacq, N. M. Martin, and S. P. Jackson, “Deubiquitylating Enzymes and Drug Discovery: Emerging Opportunities, ” Nat Rev Drug Discovery 17, no. 1 (2018): 57-78.

[51]

J. Huang, W. Zhou, C. Hao, Q. He, and X. Tu, “The Feedback Loop of METTL14 and USP38 Regulates Cell Migration, Invasion and EMT as Well as Metastasis in Bladder Cancer, ” PLos Genet 18, no. 10 (2022): e1010366.

[52]

P. Lu, Y. Xu, S. Z. yong, “De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced Cardiac Hypertrophy, ” Experimental Cell Research 406, no. 1 (2021): 112761.

[53]

X. Xiao, J. Shi, C. He, et al., “ERK and USP5 Govern PD-1 Homeostasis via Deubiquitination to Modulate Tumor Immunotherapy, ” Nature Communications 14, no. 1 (2023): 2859.

[54]

H. L. Sun, A. C. Zhu, Y. Gao, et al., “Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation, ” Molecular Cell 80, no. 4 (2020): 633.

[55]

B. G. Beatty, S. Qi, M. Pienkowska, et al., “Chromosomal Localization of Phospholipase A2 Activating Protein, an Ets2 Target Gene, ” Genomics 62, no. 3 (1999): 529-532. to 9p21..

[56]

J. Z. Roberts, N. Crawford, and D. B. Longley, “The Role of Ubiquitination in Apoptosis and Necroptosis, ” Cell Death and Differentiation 29, no. 2 (2022): 272-284.

[57]

Z. Shen, L. Gu, Y. Liu, et al., “PLAA Suppresses Ovarian Cancer Metastasis via METTL3-mediated m6A Modification of TRPC3 mRNA, ” Oncogene 41, no. 35 (2022): 4145-4158.

[58]

A. P. Koivisto, M. G. Belvisi, R. Gaudet, and A. Szallasi, “Advances in TRP Channel Drug Discovery: From Target Validation to Clinical Studies, ” Nat Rev Drug Discovery 21, no. 1 (2022): 41-59.

[59]

.C. D. E. .C. Signaling Cell 131, no. 6 (2007): 1047-1058.

[60]

L. Liao, Y. He, S. J. Li, et al., “Anti-HIV Drug Elvitegravir Suppresses Cancer Metastasis via Increased Proteasomal Degradation of m6A Methyltransferase METTL3, ” Cancer Research 82, no. 13 (2022): 2444-2457.

[61]

J. Nedergaard, B. Cannon. Chapter 9 - Brown Adipose Tissue as a Heat-producing thermoeffector. In: Romanovsky AA, ed., ed. Handbook of Clinical Neurology. Vol 156. Thermoregulation: From Basic Neuroscience to Clinical Neurology Part I. Elsevier; 2018: 137-152.

[62]

X. Tao, R. Du, S. Guo, et al., “PGE2-EP3 axis Promotes Brown Adipose Tissue Formation Through Stabilization of WTAP RNA Methyltransferase, ” Embo Journal 41, no. 16 (2022): e110439.

[63]

T. Gerken, C. A. Girard, Y. C. L. Tung, et al., “The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase, ” Science 318, no. 5855 (2007): 1469-1472.

[64]

M. A. Russell and M. NG, “Conditional Expression of the FTO Gene Product in Rat INS-1 Cells Reveals Its Rapid Turnover and a Role in the Profile of Glucose-induced Insulin Secretion, ” Clin Sci 120, no. 9 (2011): 403-413.

[65]

P. Gulati, E. Avezov, M. Ma, et al., “Fat Mass and Obesity-related (FTO) Shuttles Between the Nucleus and Cytoplasm, ” Bioscience Reports 34, no. 5 (2014): e00144.

[66]

T. Zhu, X. L. H. Yong, D. Xia, J. Widagdo, and V. Anggono, “Ubiquitination Regulates the Proteasomal Degradation and Nuclear Translocation of the Fat Mass and Obesity-Associated (FTO) Protein, ” Journal of Molecular Biology 430, no. 3 (2018): 363-371.

[67]

Y. Li, R. Su, X. Deng, Y. Chen, and J. Chen, “FTO in Cancer: Functions, Molecular Mechanisms, and Therapeutic Implications, ” Trends in cancer 8, no. 7 (2022): 598-614.

[68]

Y. Niu, Z. Lin, A. Wan, “RNA N6-methyladenosine Demethylase FTO Promotes Breast Tumor Progression Through Inhibiting BNIP3, ” Molecular cancer 18 (2019): 46.

[69]

S. Yang, J. Wei, Y. H. Cui, et al., “m6A mRNA Demethylase FTO Regulates Melanoma Tumorigenicity and Response to anti-PD-1 Blockade, ” Nature Communications 10 (2019): 2782.

[70]

D. Zou, L. Dong, C. Li, Z. Yin, S. Rao, and Q. Zhou, “The m6A Eraser FTO Facilitates Proliferation and Migration of human Cervical Cancer Cells, ” Cancer cell international 19 (2019): 321.

[71]

D. Y. Ruan, T. Li, Y. N. Wang, et al., “FTO Downregulation Mediated by Hypoxia Facilitates Colorectal Cancer Metastasis, ” Oncogene 40, no. 33 (2021): 5168-5181.

[72]

X. Bian, D. Shi, K. Xing, et al., “AMD1 upregulates Hepatocellular Carcinoma Cells Stemness by FTO Mediated mRNA Demethylation, ” Clinical and translational medicine 11, no. 3 (2021): e352.

[73]

Stroke. The Lancet 2017; 389(10069): 641-654.

[74]

H. M. Eilken and R. H. Adams, “Dynamics of Endothelial Cell Behavior in Sprouting Angiogenesis, ” Current Opinion in Cell Biology 22, no. 5 (2010): 617-625.

[75]

I. Geudens and H. Gerhardt, “Coordinating Cell Behaviour During Blood Vessel Formation, ” Development (Cambridge, England) 138, no. 21 (2011): 4569-4583.

[76]

B. Han, Y. Zhang, Y. Zhang, et al., “Novel Insight Into Circular RNA HECTD1 in Astrocyte Activation via Autophagy by Targeting MIR142-TIPARP: Implications for Cerebral Ischemic Stroke, ” Autophagy 14, no. 7 (2018): 1164.

[77]

P. A. Mueller, L. Yang, M. Ubele, et al., “The Coronary Artery Disease Risk-associated Plpp3 Gene and Its Product Lipid Phosphate Phosphatase 3 Regulate Experimental Atherosclerosis, ” Arteriosclerosis, Thrombosis, and Vascular Biology 39, no. 11 (2019): 2261-2272.

[78]

B. Li, W. Xi, Y. Bai, et al., “FTO-dependent m6A Modification of Plpp3 in circSCMH1-regulated Vascular Repair and Functional Recovery Following Stroke, ” Nature Communications 14 (2023): 489.

[79]

C. Liu, Y. Li, C. Dong, L. Qu, and Y. Zuo, “E6E7 regulates the HK2 Expression in Cervical Cancer via GSK3β/FTO Signal, ” Archives of Biochemistry and Biophysics 729 (2022): 109389.

[80]

Z. Zhang, Q. Gao, and S. Wang, “Kinase GSK3β Functions as a Suppressor in Colorectal Carcinoma Through the FTO-mediated MZF1/c-Myc Axis, ” Journal of Cellular and Molecular Medicine 25, no. 5 (2021): 2655-2665.

[81]

C. Wen, M. Lan, X. Tan, et al., “GSK3β Exacerbates Myocardial Ischemia/Reperfusion Injury by Inhibiting Myc, ” Oxid Med Cell Longev 2022 (2022): 2588891.

[82]

J. Pan, L. Xu, and H. Pan, “Development and Validation of an m6A RNA Methylation Regulator-Based Signature for Prognostic Prediction in Cervical Squamous Cell Carcinoma, ” Frontiers in oncology 10 (2020): 1444.

[83]

M. Hirayama, F. Y. Wei, T. Chujo, et al., “FTO Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression, ” Cell reports 31, no. 1 (2020): 107464.

[84]

FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation—Zhou - 2018 - Molecular Carcinogenesis—Wiley Online Library. Accessed March 20, 2023. https://onlinelibrary.wiley.com/doi/10.1002/mc.22782

[85]

W. Song, K. Yang, J. Luo, Z. Gao, and Y. Gao, “Dysregulation of USP18/FTO/PYCR1 Signaling Network Promotes Bladder Cancer Development and Progression, ” Aging 13, no. 3 (2021): 3909-3925.

[86]

S. C. Trewick, T. F. Henshaw, R. P. Hausinger, T. Lindahl, and B. Sedgwick, “Oxidative Demethylation by Escherichia coli AlkB Directly Reverts DNA Base Damage, ” Nature 419, no. 6903 (2002): 174-178.

[87]

K. Tsujikawa, K. Koike, K. Kitae, et al., “Expression and Sub-cellular Localization of human ABH family Molecules, ” Journal of Cellular and Molecular Medicine 11, no. 5 (2007): 1105-1116.

[88]

G. Chang, G. S. Xie, L. Ma, P. Li, L. Li, and H. T. Richard, “USP36 promotes Tumorigenesis and Drug Sensitivity of Glioblastoma by Deubiquitinating and Stabilizing ALKBH5,” Neuro-Oncology: noac238, https://doi.org/10.1093/neuonc/noac238. Published online October 14, 2022.

[89]

A. Wang, H. Huang, J. H. Shi, et al., “USP47 inhibits m6A-dependent c-Myc Translation to Maintain Regulatory T Cell Metabolic and Functional Homeostasis, ” Journal of Clinical Investigation 133, no. 23: e169365.

[90]

Y. Chen, R. Wu, W. Chen, et al., “Curcumin Prevents Obesity by Targeting TRAF4-induced Ubiquitylation in m6A-dependent Manner, ” Embo Reports 22, no. 5 (2021): e52146.

[91]

S. Zhang, X. Guan, W. Liu, et al., “YTHDF1 alleviates Sepsis by Upregulating WWP1 to Induce NLRP3 Ubiquitination and Inhibit Caspase-1-dependent Pyroptosis, ” Cell Death Discov 8 (2022): 244.

[92]

F. Xu, J. Li, M. Ni, et al., “FBW7 suppresses Ovarian Cancer Development by Targeting the N6-methyladenosine Binding Protein YTHDF2, ” Molecular cancer 20 (2021): 45.

[93]

F. A. Barr, P. R. Elliott, and U. Gruneberg, “Protein Phosphatases and the Regulation of Mitosis, ” Journal of Cell Science 124, no. 14 (2011): 2323-2334.

[94]

Q. Fei, Z. Zou, I. A. Roundtree, H. L. Sun, and C. He, “YTHDF2 promotes Mitotic Entry and Is Regulated by Cell Cycle Mediators, ” Plos Biology 18, no. 4 (2020): e3000664.

[95]

J. Paris, M. Morgan, J. Campos, et al., “Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia, ” Cell Stem Cell 25, no. 1 (2019): 137-148.e6.

[96]

Z. R, N. W, Q. C, “A Functional Loop Between YTH Domain family Protein YTHDF3 Mediated m6A Modification and Phosphofructokinase PFKL in Glycolysis of Hepatocellular Carcinoma, ” J Exp Clin Cancer Res CR 41, no. 1 (2022), https://doi.org/10.1186/s13046-022-02538-4.

[97]

X. T. Lin, H. Q. Yu, L. Fang, et al., “Elevated FBXO45 Promotes Liver Tumorigenesis Through Enhancing IGF2BP1 Ubiquitination and Subsequent PLK1 Upregulation, ” Elife 10 (2021): e70715.

[98]

L. S. Kristensen, M. S. Andersen, L. V. W. Stagsted, K. K. Ebbesen, T. B. Hansen, and J. Kjems, “The Biogenesis, Biology and Characterization of Circular RNAs, ” Nature Reviews Genetics 20, no. 11 (2019): 675-691.

[99]

B. Li, L. Zhu, C. Lu, et al., “circNDUFB2 inhibits Non-small Cell Lung Cancer Progression via Destabilizing IGF2BPs and Activating Anti-tumor Immunity, ” Nature Communications 12, no. 1 (2021): 295.

[100]

B. Yao, Q. Zhang, Z. Yang, et al., “CircEZH2/miR-133b/IGF2BP2 Aggravates Colorectal Cancer Progression via Enhancing the Stability of m6A-modified CREB1 mRNA, ” Molecular cancer 21 (2022): 140.

[101]

M. J. Watson, P. L. Berger, K. Banerjee, et al., “Aberrant CREB1 Activation in Prostate Cancer Disrupts Normal Prostate Luminal Cell Differentiation, ” Oncogene 40, no. 18 (2021): 3260-3272.

[102]

K. M. Sakamoto and D. A. Frank, “CREB in the Pathophysiology of Cancer: Implications for Targeting Transcription Factors for Cancer Therapy, ” Clin Cancer Res Off J Am Assoc Cancer Res 15, no. 8 (2009): 2583-2587.

[103]

J. K. Park, S. H. Park, K. So, I. H. Bae, Y. D. Yoo, and H. D. Um, “ICAM-3 Enhances the Migratory and Invasive Potential of human Non-small Cell Lung Cancer Cells by Inducing MMP-2 and MMP-9 via Akt and CREB, ” International Journal of Oncology 36, no. 1 (2010): 181-192.

[104]

D. B. Shankar, J. C. Cheng, K. Kinjo, et al., “The Role of CREB as a Proto-oncogene in Hematopoiesis and in Acute Myeloid Leukemia, ” Cancer Cell 7, no. 4 (2005): 351-362.

[105]

Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM—PubMed. Accessed March 28, 2023. https://pubmed.ncbi.nlm.nih.gov/7760825/

[106]

Y. Wang, J. H. Lu, Q. N. Wu, et al., “LncRNA LINRIS Stabilizes IGF2BP2 and Promotes the Aerobic Glycolysis in Colorectal Cancer, ” Molecular cancer 18 (2019): 174.

[107]

L. D. Harris, J. Le Pen, N. Scholz, “The Deubiquitinase TRABID Stabilizes the K29/K48-specific E3 Ubiquitin Ligase HECTD1, ” Journal of Biological Chemistry 296 (2021): 100246.

[108]

A. Y. Rangrez, A. Borlepawar, N. Schmiedel, et al., “The E3 Ubiquitin Ligase HectD3 Attenuates Cardiac Hypertrophy and Inflammation in Mice, ” Communications Biology 3, no. 1 (2020): 562.

[109]

Z. Pan, R. Zhao, B. Li, et al., “EWSR1-induced circNEIL3 Promotes Glioma Progression and Exosome-mediated Macrophage Immunosuppressive Polarization via Stabilizing IGF2BP3, ” Molecular cancer 21 (2022): 16.

[110]

S. Kapoor, “IMP3: A New and Important Biomarker of Systemic Malignancies, ” Clin Cancer Res Off J Am Assoc Cancer Res 14, no. 17 (2008): 5640. author reply 5640-5641.

[111]

B. Liao, Y. Hu, and G. Brewer, “RNA-binding Protein Insulin-Like Growth Factor mRNA-binding Protein 3 (IMP-3) Promotes Cell Survival via Insulin-Like Growth Factor II Signaling After Ionizing Radiation, ” Journal of Biological Chemistry 286, no. 36 (2011): 31145-31152.

[112]

C. Jia, H. Tang, Y. Yang, et al., “Ubiquitination of IGF2BP3 by E3 Ligase MKRN2 Regulates the Proliferation and Migration of human Neuroblastoma SHSY5Y Cells, ” Biochemical and Biophysical Research Communications 529, no. 1 (2020): 43-50.

[113]

Y. Shuai, Z. Ma, W. Liu, et al., “TEAD4 modulated LncRNA MNX1-AS1 Contributes to Gastric Cancer Progression Partly Through Suppressing BTG2 and Activating BCL2, ” Molecular cancer 19, no. 1 (2020): 6.

[114]

Q. N. Wu, X. J. Luo, J. Liu, et al., “MYC-Activated LncRNA MNX1-AS1 Promotes the Progression of Colorectal Cancer by Stabilizing YB1, ” Cancer Research 81, no. 10 (2021): 2636-2650.

[115]

F. Li, Q. Chen, H. Xue, L. Zhang, K. Wang, and F. Shen, “LncRNA MNX1-AS1 Promotes Progression of Intrahepatic Cholangiocarcinoma Through the MNX1/Hippo Axis, ” Cell death & disease 11, no. 10 (2020): 894.

[116]

S. Liu, H. Li, Y. Zhu, et al., “LncRNA MNX1-AS1 Sustains Inactivation of Hippo Pathway Through a Positive Feedback Loop With USP16/IGF2BP3 Axis in Gallbladder Cancer, ” Cancer Letters 547 (2022): 215862.

[117]

R. J. J. Jansens, R. Verhamme, A. H. Mirza, et al., “Alphaherpesvirus US3 Protein-mediated Inhibition of the m6A mRNA Methyltransferase Complex, ” Cell reports 40, no. 3 (2022): 111107.

[118]

R. Roskoski, “ERK1/2 MAP Kinases: Structure, Function, and Regulation, ” Pharmacological Research 66, no. 2 (2012): 105-143.

[119]

H. L. Sun, A. C. Zhu, Y. Gao, et al., “Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation, ” Molecular Cell 80, no. 4 (2020): 633-647.

[120]

J. H. J. Hoeijmakers, “DNA Damage, Aging, and Cancer, ” New England Journal of Medicine 361, no. 15 (2009): 1475-1485.

[121]

M. R. Lieber, “The Mechanism of Double-strand DNA Break Repair by the Nonhomologous DNA End-joining Pathway, ” Annual Review of Biochemistry 79 (2010): 181-211.

[122]

W. D. Wright, S. S. Shah, and W. D. Heyer, “Homologous Recombination and the Repair of DNA Double-strand Breaks, ” Journal of Biological Chemistry 293, no. 27 (2018): 10524-10535.

[123]

S. P. Jackson and J. Bartek, “The DNA-damage Response in human Biology and Disease, ” Nature 461, no. 7267 (2009): 1071-1078.

[124]

C. Zhang, L. Chen, D. Peng, et al., “METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation, ” Molecular Cell 79, no. 3 (2020): 425-442.e7.

[125]

X. Li, B. Yuan, M. Lu, et al., “The Methyltransferase METTL3 Negatively Regulates Nonalcoholic Steatohepatitis (NASH) Progression, ” Nature Communications 12 (2021): 7213.

[126]

J. Chen, X. Wei, X. Wang, et al., “TBK1-METTL3 axis Facilitates Antiviral Immunity, ” Cell reports 38, no. 7 (2022): 110373.

[127]

B. Ou, Y. Liu, X. Yang, X. Xu, Y. Yan, and J. Zhang, “C5aR1-positive Neutrophils Promote Breast Cancer Glycolysis Through WTAP-dependent m6A Methylation of ENO1, ” Cell death & disease 12, no. 8 (2021): 737.

[128]

M. Marcinkowski, T. Pilžys, D. Garbicz, et al., “Human and Arabidopsis Alpha-ketoglutarate-dependent Dioxygenase Homolog Proteins-New Players in Important Regulatory Processes, ” Iubmb Life 72, no. 6 (2020): 1126-1144.

[129]

H. Tai, X. Wang, J. Zhou, et al., “Protein Kinase Cβ Activates Fat Mass and Obesity-associated Protein by Influencing Its Ubiquitin/Proteasome Degradation, ” FASEB J Off Publ Fed Am Soc Exp Biol 31, no. 10 (2017): 4396-4406.

[130]

K. J. Faulds, J. N. Egelston, L. J. Sedivy, et al., “Glycogen Synthase Kinase-3 (GSK-3) Activity Regulates mRNA Methylation in Mouse Embryonic Stem Cells, ” Journal of Biological Chemistry 293, no. 27 (2018): 10731-10743.

[131]

M. Marcinkowski, T. Pilžys, D. Garbicz, et al., “Calmodulin as Ca2+-Dependent Interactor of FTO Dioxygenase, ” International Journal of Molecular Sciences 22, no. 19 (2021): 10869.

[132]

C. Zhang, D. Samanta, H. Lu, et al., “Hypoxia Induces the Breast Cancer Stem Cell Phenotype by HIF-dependent and ALKBH5-mediated M6A-demethylation of NANOG mRNA, ” PNAS 113, no. 14 (2016): E2047-2056.

[133]

R. Fang, X. Chen, S. Zhang, et al., “EGFR/SRC/ERK-stabilized YTHDF2 Promotes Cholesterol Dysregulation and Invasive Growth of Glioblastoma, ” Nature Communications 12 (2021): 177.

[134]

T. Tanoue, M. Adachi, T. Moriguchi, and E. Nishida, “A Conserved Docking Motif in MAP Kinases Common to Substrates, Activators and Regulators, ” Nature Cell Biology 2, no. 2 (2000): 110-116.

[135]

J. Rini and M. Anbalagan, “IGF2BP1: A Novel Binding Protein of p38 MAPK, ” Molecular and Cellular Biochemistry 435, no. 1-2 (2017): 133-140.

[136]

A. Szwed, E. Kim, and E. Jacinto, “Regulation and Metabolic Functions of mTORC1 and mTORC2, ” Physiological Reviews 101, no. 3 (2021): 1371-1426.

[137]

P. L. Bernstein, D. J. Herrick, R. D. Prokipcak, and J. Ross, “Control of c-myc mRNA Half-life in Vitro by a Protein Capable of Binding to a Coding Region Stability Determinant, ” Genes & development 6, no. 4 (1992): 642-654.

[138]

A. S. Urbanska, A. Janusz-Kaminska, K. Switon, et al., “ZBP1 phosphorylation at Serine 181 Regulates Its Dendritic Transport and the Development of Dendritic Trees of Hippocampal Neurons, ” Scientific Reports 7, no. 1 (2017): 1876.

[139]

W. Han, S. Wang, Y. Qi, et al., “Targeting HOTAIRM1 Ameliorates Glioblastoma by Disrupting Mitochondrial Oxidative Phosphorylation and Serine Metabolism, ” Iscience 25, no. 8 (2022): 104823.

[140]

F. Bonnay, A. Veloso, V. Steinmann, et al., “Oxidative Metabolism Drives Immortalization of Neural Stem Cells During Tumorigenesis, ” Cell 182, no. 6 (2020): 1490-1507.

[141]

U. Ahmadov, D. Picard, J. Bartl, et al., “The Long Non-coding RNA HOTAIRM1 Promotes Tumor Aggressiveness and Radiotherapy Resistance in Glioblastoma, ” Cell death & disease 12, no. 10 (2021): 885.

[142]

R. T. Hay, “SUMO: A History of Modification, ” Molecular Cell 18, no. 1 (2005): 1-12.

[143]

Y. Du, G. Hou, H. Zhang, et al., “SUMOylation of the m6A-RNA Methyltransferase METTL3 Modulates Its Function, ” Nucleic Acids Res. 46, no. 10 (2018): 5195-5208.

[144]

H. Li, D. Wang, B. Yi, et al., “SUMOylation of IGF2BP2 Promotes Vasculogenic Mimicry of Glioma via Regulating OIP5-AS1/miR-495-3p Axis, ” Int J Biol Sci 17, no. 11 (2021): 2912-2930.

[145]

G. Hou, X. Zhao, L. Li, et al., “SUMOylation of YTHDF2 Promotes mRNA Degradation and Cancer Progression by Increasing Its Binding Affinity With m6A-modified mRNAs, ” Nucleic Acids Res. 49, no. 5 (2021): 2859-2877.

[146]

W. Yang, L. Wang, G. Roehn, et al., “Small Ubiquitin-Like Modifier 1-3 Is Activated in human Astrocytic Brain Tumors and Is Required for Glioblastoma Cell Survival, ” Cancer Science 104, no. 1 (2013): 70-77.

[147]

Ubc9 promotes invasion and metastasis of lung cancer cells. Accessed March 22, 2023. https://www.spandidos-publications.com/or/29/4/1588

[148]

W. H. Guo, L. H. Yuan, Z. H. Xiao, D. Liu, and J. X. Zhang, “Overexpression of SUMO-1 in Hepatocellular Carcinoma: A Latent Target for Diagnosis and Therapy of Hepatoma, ” Journal of Cancer Research and Clinical Oncology 137, no. 3 (2011): 533-541.

[149]

W. Chien, K. L. Lee, L. W. Ding, et al., “PIAS4 is an Activator of Hypoxia Signalling via VHL Suppression During Growth of Pancreatic Cancer Cells, ” British Journal of Cancer 109, no. 7 (2013): 1795-1804.

[150]

A. Hoellein, M. Fallahi, S. Schoeffmann, et al., “Myc-induced SUMOylation Is a Therapeutic Vulnerability for B-cell Lymphoma, ” Blood 124, no. 13 (2014): 2081-2090.

[151]

J. J. Driscoll, D. Pelluru, K. Lefkimmiatis, et al., “The Sumoylation Pathway Is Dysregulated in Multiple Myeloma and Is Associated With Adverse Patient Outcome, ” Blood 115, no. 14 (2010): 2827-2834.

[152]

G. W. Hart, M. P. Housley, and C. Slawson, “Cycling of O-linked Beta-N-acetylglucosamine on Nucleocytoplasmic Proteins, ” Nature 446, no. 7139 (2007): 1017-1022.

[153]

X. Yang and K. Qian, “Protein O-GlcNAcylation: Emerging Mechanisms and Functions, ” Nature Reviews Molecular Cell Biology 18, no. 7 (2017): 452-465.

[154]

Highly Efficient Enrichment of O-GlcNAc Glycopeptides Based on Chemical Oxidation and Reversible Hydrazide Chemistry. Anal Chem. Accessed April 17, 2023. https://pubs.acs.org/doi/full/10.1021/acs.analchem.1c04031

[155]

Y. Yang, Y. Yan, J. Yin, et al., “O-GlcNAcylation of YTHDF2 Promotes HBV-related Hepatocellular Carcinoma Progression in an N6-methyladenosine-dependent Manner, ” Signal Transduct Target Ther 8 (2023): 63.

[156]

P. Wang, D. Xie, T. Xiao, et al., “H3K18 lactylation Promotes the Progression of Arsenite-related Idiopathic Pulmonary Fibrosis via YTHDF1/m6A/NREP, ” Journal of Hazardous Materials 461 (2024): 132582.

[157]

J. Yu, P. Chai, M. Xie, et al., “Histone Lactylation Drives Oncogenesis by Facilitating m6A Reader Protein YTHDF2 Expression in Ocular Melanoma, ” Genome biology 22, no. 1 (2021): 85.

[158]

J. Xiong, J. He, J. Zhu, et al., “Lactylation-driven METTL3-mediated RNA m6A Modification Promotes Immunosuppression of Tumor-infiltrating Myeloid Cells, ” Molecular Cell 82, no. 9 (2022): 1660-1677.e10.

[159]

L. Sun, Y. Zhang, B. Yang, et al., “Lactylation of METTL16 Promotes Cuproptosis via m6A-modification on FDX1 mRNA in Gastric Cancer, ” Nature Communications 14, no. 1 (2023): 6523.

[160]

X. Chen, Y. Wang, J. N. Wang, et al., “Lactylation-driven FTO Targets CDK2 to Aggravate Microvascular Anomalies in Diabetic Retinopathy, ” EMBO Molecular Medicine 16, no. 2 (2024): 294-318.

[161]

P. Y. Bhattarai, G. Kim, S. C. Lim, R. Mariappan, T. Ohn, and H. S. Choi, “METTL3 stabilization by PIN1 Promotes Breast Tumorigenesis via Enhanced m6A-dependent Translation, ” Oncogene 42, no. 13 (2023): 1010-1023.

[162]

G. Chang, G. S. Xie, L. Ma, P. Li, L. Li, and H. T. Richard, “USP36 promotes Tumorigenesis and Drug Sensitivity of Glioblastoma by Deubiquitinating and Stabilizing ALKBH5, ” Neuro-Oncology 25, no. 5 (2023): 841-853.

[163]

K. Taketo, M. Konno, A. Asai, et al., “The Epitranscriptome m6A Writer METTL3 Promotes Chemo- and Radioresistance in Pancreatic Cancer Cells, ” International Journal of Oncology 52, no. 2 (2018): 621-629.

[164]

P. Lu, Y. Xu, Z. Y. Sheng, et al., “De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced Cardiac Hypertrophy, ” Experimental Cell Research 406, no. 1 (2021): 112761.

[165]

P. K. Brindle and M. R. Montminy, “The CREB family of Transcription Activators, ” Current opinion in genetics & development 2, no. 2 (1992): 199-204.

[166]

X. Liu, H. Wang, X. Zhao, et al., “Arginine Methylation of METTL14 Promotes RNA N6-methyladenosine Modification and Endoderm Differentiation of Mouse Embryonic Stem Cells, ” Nature Communications 12 (2021): 3780.

[167]

S. K. Azzam, H. Alsafar, and A. A. Sajini, “FTO m6A Demethylase in Obesity and Cancer: Implications and Underlying Molecular Mechanisms, ” International Journal of Molecular Sciences 23, no. 7 (2022): 3800.

[168]

M. Feng, X. Xie, G. Han, et al., “YBX1 is Required for Maintaining Myeloid Leukemia Cell Survival by Regulating BCL2 Stability in an m6A-dependent Manner, ” Blood 138, no. 1 (2021): 71-85.

[169]

J. Lobo, A. L. Costa, M. Cantante, et al., “m6A RNA Modification and Its Writer/Reader VIRMA/YTHDF3 in Testicular Germ Cell Tumors: A Role in Seminoma Phenotype Maintenance, ” Journal of translational medicine 17 (2019): 79.

[170]

S. Wang, P. Chai, R. Jia, and R. Jia, “Novel Insights on m6A RNA Methylation in Tumorigenesis: A Double-edged Sword, ” Molecular cancer 17 (2018): 101.

[171]

J. Choe, S. Lin, W. Zhang, et al., “mRNA Circularization by METTL3-eIF3h Enhances Translation and Promotes Oncogenesis, ” Nature 561, no. 7724 (2018): 556-560.

[172]

Y. Zhou, Z. Yin, B. Hou, et al., “Expression Profiles and Prognostic Significance of RNA N6-methyladenosine-related Genes in Patients With Hepatocellular Carcinoma: Evidence From Independent Datasets, ” Cancer Manag Res 11 (2019): 3921-3931.

[173]

X. Cai, X. Wang, C. Cao, et al., “HBXIP-elevated Methyltransferase METTL3 Promotes the Progression of Breast Cancer via Inhibiting Tumor Suppressor Let-7G, ” Cancer Letters 415 (2018): 11-19.

[174]

Y. Wang, J. Wei, L. Feng, et al., “Aberrant m5C Hypermethylation Mediates Intrinsic Resistance to Gefitinib Through NSUN2/YBX1/QSOX1 Axis in EGFR-mutant Non-small-cell Lung Cancer, ” Molecular cancer 22 (2023): 81.

[175]

Y. Hu, C. Chen, X. Tong, et al., “NSUN2 modified by SUMO-2/3 Promotes Gastric Cancer Progression and Regulates mRNA m5C Methylation, ” Cell death & disease 12, no. 9 (2021): 842.

[176]

L. Sun, H. Zhang, and P. Gao, “Metabolic Reprogramming and Epigenetic Modifications on the Path to Cancer, ” Protein Cell 13, no. 12 (2022): 877-919.

[177]

S. M. Jan, A. Fahira, E. S. G. Hassan, A. S. Abdelhameed, D. Wei, and A. Wadood, “Integrative Approaches to m6A and m5C RNA Modifications in Autism Spectrum Disorder Revealing Potential Causal Variants,” Mamm Genome Off J Int Mamm Genome Soc Published online December 30, 2024. https://doi.org/10.1007/s00335-024-10095-8

[178]

X. Ren, Z. Feng, X. Ma, et al., “m6A/m1A/m5C-Associated Methylation Alterations and Immune Profile in MDD, ” Molecular Neurobiology 61, no. 10 (2024): 8000-8025.

[179]

Y. Huang, J. Yan, Q. Li, et al., “Meclofenamic Acid Selectively Inhibits FTO Demethylation of m6A Over ALKBH5, ” Nucleic Acids Res. 43, no. 1 (2015): 373-384.

[180]

Q. Cui, H. Shi, P. Ye, et al., “m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells, ” Cell reports 18, no. 11 (2017): 2622-2634.

[181]

Y. Huang, R. Su, Y. Sheng, et al., “Small-molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia, ” Cancer Cell 35, no. 4 (2019): 677-691.e10.

[182]

T. Fukumoto, H. Zhu, T. Nacarelli, et al., “N6-methylation of Adenosine (m6A) of FZD10 mRNA Contributes to PARP Inhibitor Resistance, ” Cancer Research 79, no. 11 (2019): 2812-2820.

[183]

A. Visvanathan, V. Patil, A. Arora, et al., “Essential Role of METTL3-mediated m6A Modification in Glioma Stem-Like Cells Maintenance and Radioresistance, ” Oncogene 37, no. 4 (2018): 522-533.

[184]

Z. Y. Liu, L. C. Lin, Z. Y. Liu, J. J. Yang, and H. Tao, “m6A epitranscriptomic and Epigenetic Crosstalk in Cardiac Fibrosis, ” Mol Ther J Am Soc Gene Ther 32, no. 4 (2024): 878-889.

[185]

P. Zhukovsky, E. S. Tio, G. Coughlan, et al., “Genetic Influences on Brain and Cognitive Health and Their Interactions With Cardiovascular Conditions and Depression, ” Nature Communications 15, no. 1 (2024): 5207.

[186]

P. Krishnamurthy, E. Lambers, S. Verma, et al., “Myocardial Knockdown of mRNA-stabilizing Protein HuR Attenuates Post-MI Inflammatory Response and Left Ventricular Dysfunction in IL-10-null Mice, ” Faseb Journal 24, no. 7 (2010): 2484-2494.

[187]

P. Mathiyalagan, M. Adamiak, J. Mayourian, et al., “FTO-Dependent m6A Regulates Cardiac Function during Remodeling and Repair, ” Circulation 139, no. 4 (2019): 518-532.

[188]

T. Berulava, E. Buchholz, V. Elerdashvili, et al., “Changes in m6A RNA Methylation Contribute to Heart Failure Progression by Modulating Translation, ” European Journal of Heart Failure 22, no. 1 (2020): 54-66.

[189]

J. Shi, C. Yang, J. Zhang, et al., “NAT10 Is Involved in Cardiac Remodeling through ac4C-Mediated Transcriptomic Regulation, ” Circulation Research 133, no. 12 (2023): 989-1002.

[190]

M. K. Wang, C. C. Gao, and Y. G. Yang, “Emerging Roles of RNA Methylation in Development, ” Accounts of Chemical Research 56, no. 23 (2023): 3417-3427.

[191]

L. Li, X. Lu, and J. Dean, “The Maternal to Zygotic Transition in Mammals, ” Molecular Aspects of Medicine 34, no. 5 (2013): 919-938.

[192]

B. S. Zhao, X. Wang, A. V. Beadell, et al., “m6A-dependent Maternal mRNA Clearance Facilitates Zebrafish Maternal-to-zygotic Transition, ” Nature 542, no. 7642 (2017): 475-478.

[193]

S. Geula, S. Moshitch-Moshkovitz, D. Dominissini, et al., “Stem Cells. M6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Toward Differentiation, ” Science 347, no. 6225 (2015): 1002-1006.

[194]

R. Hauenschild, L. Tserovski, K. Schmid, et al., “The Reverse Transcription Signature of N-1-methyladenosine in RNA-Seq Is Sequence Dependent, ” Nucleic Acids Res. 43, no. 20 (2015): 9950-9964.

[195]

Y. Yang, L. Wang, X. Han, et al., “RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay, ” Molecular Cell 75, no. 6 (2019): 1188-1202.

[196]

J. Liu, H. Zuo, Z. Wang, et al., “The m6A Reader YTHDC1 Regulates Muscle Stem Cell Proliferation via PI4K-Akt-mTOR Signalling, ” Cell Proliferation 56, no. 8 (2023): e13410.

[197]

W. Wang, E. Li, J. Zou, et al., “Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy,” Circulation Research Published online July 19, 2024. https://doi.org/10.1161/CIRCRESAHA.124.324285

[198]

V. A. Golubeva, A. S. Das, C. P. Rabolli, L. E. Dorn, J. H. van Berlo, and F. Accornero, “YTHDF1 is Pivotal for Maintenance of Cardiac Homeostasis, ” Journal of Molecular and Cellular Cardiology 193 (2024): 25-35.

[199]

D. Han and M. M. Xu, “RNA Modification in the Immune System, ” Annual Review of Immunology 41 (2023): 73-98.

[200]

K. Karikó, M. Buckstein, H. Ni, and D. Weissman, “Suppression of RNA Recognition by Toll-Like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA, ” Immunity 23, no. 2 (2005): 165-175.

[201]

Y. Zhang, W. Hu, and H. B. Li, “RNA Modification-mediated Translational Control in Immune Cells, ” RNA Biol 20, no. 1 (2023): 603-613.

[202]

L. Cui, R. Ma, J. Cai, et al., “RNA Modifications: Importance in Immune Cell Biology and Related Diseases, ” Signal Transduct Target Ther 7, no. 1 (2022): 334.

[203]

Y. Liu, Y. Chen, M. Cai, Y. Hong, X. Wu, and S. Li, “m5C methylation Modification Guides the Prognostic Value and Immune Landscapes in Acute Myeloid Leukemia, ” Aging 15, no. 18 (2023): 9858-9876.

[204]

W. Zhao, Y. Wu, F. Zhao, et al., “Scoring Model Based on the Signature of Non-m6A-related Neoantigen-coding lncRNAs Assists in Immune Microenvironment Analysis and TCR-neoantigen Pair Selection in Gliomas, ” Journal of translational medicine 20, no. 1 (2022): 494.

[205]

Z. Yu, Q. He, and G. Xu, “Effect of N6-methyladenosine (m6A) Regulator-related Immunogenes on the Prognosis and Immune Microenvironment of Breast Cancer, ” Transl Cancer Res 11, no. 12 (2022): 4303-4314.

[206]

Y. Wang, S. Zhang, N. Kang, et al., “Progressive Polyadenylation and m6A Modification of Ighg1 mRNA Maintain IgG1 Antibody Homeostasis in Antibody-secreting Cells, ” Immunity 57, no. 11 (2024): 2547-2564.e12.

[207]

Y. Yang, M. Li, L. Ding, et al., “EZH2 promotes B-cell Autoimmunity in Primary Sjogren's Syndrome via METTL3-mediated m6A Modification, ” Journal of Autoimmunity 149 (2024): 103341.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/