Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions

Zichen Xu , Yongyi Xie , Wenjie Chen , Wei Deng

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70337

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70337 DOI: 10.1002/mco2.70337
REVIEW

Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions

Author information +
History +
PDF

Abstract

Nanomaterials have become promising platforms in the field of drug and gene delivery, offering unique advantages over traditional therapeutic approaches. Their tunable physicochemical properties enable improved pharmacokinetics and therapeutic performance. A wide range of nanocarriers, including lipid-based, polymer-based, and hybrid systems, have been rapidly developed and are attracting increasing attention in both preclinical and clinical research. However, despite promising preclinical outcomes, these systems still encounter critical challenges in achieving precise delivery to specific tissues, cells, and intracellular compartments. This review provides a comprehensive assessment of recent advances in the design and application of nanocarriers for targeted delivery, with emphasis on strategies designed for nuclear targeting. In the context of nuclear targeting, it explores passive approaches involving modulation of particle size, morphology, and surface charge, alongside active targeting strategies incorporating nuclear localization signals and other ligands. In addition to highlighting progress, the review examines the limitations associated with delivery efficiency, off-target effects, and barriers to clinical translation. By addressing both advances and ongoing challenges, this review provides valuable insights into the design and engineering of targeted nanocarriers. These developments are crucial for unlocking the full potential of precision nanomedicine.

Keywords

active targeting / drug and gene delivery / nanocarrier / nuclear localization signals / nuclear targeting / targeted delivery

Cite this article

Download citation ▾
Zichen Xu, Yongyi Xie, Wenjie Chen, Wei Deng. Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions. MedComm, 2025, 6(9): e70337 DOI:10.1002/mco2.70337

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Wang, K. Cheng, K. Chen, et al., “Nanoparticle-based Medicines in Clinical Cancer Therapy,” Nano Today 45 (2022): 101512.

[2]

T. C. Ezike, U. S. Okpala, U. L. Onoja, et al., “Advances in Drug Delivery Systems, Challenges and Future Directions,” Heliyon 9, no. 6 (2023): e17488.

[3]

S. Wilhelm, A. J. Tavares, Q. Dai, et al., “Analysis of Nanoparticle Delivery to Tumours,” Nature Reviews Materials 1, no. 5 (2016): 16014.

[4]

X. Shao, C. Meng, W. Song, T. Zhang, Q. Chen, “Subcellular Visualization: Organelle-specific Targeted Drug Delivery and Discovery,” Advanced Drug Delivery Reviews 199 (2023): 114977.

[5]

J. Liu, H. Cabral, P. Mi, “Nanocarriers Address Intracellular Barriers for Efficient Drug Delivery, Overcoming Drug Resistance, Subcellular Targeting and Controlled Release,” Advanced Drug Delivery Reviews 207 (2024): 115239.

[6]

D. Ye, H. Liu, E. Dai, J. Fan, L. Wu, “Recent Advances in Nanomedicine Design Strategies for Targeting Subcellular Structures,” Iscience 28, no. 1 (2025): 111597.

[7]

WF. Marshall, “Scaling of Subcellular Structures,” Annual Review of Cell and Developmental Biology 36, no. 1 (2020): 219-236.

[8]

X. Qin, H. Zhang, X. Xing, et al., “Robust Strategies in Nuclear-targeted Cancer Therapy Based on Functional Nanomaterials,” Materials & Design 221 (2022): 110999.

[9]

S. Chen, R. Cao, L. Xiang, et al., “Research Progress in Nucleus-targeted Tumor Therapy,” Biomaterials Science 11, no. 19 (2023): 6436-6456.

[10]

E. Blanco, H. Shen, M. Ferrari, “Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery,” Nature Biotechnology 33, no. 9 (2015): 941-51.

[11]

R. Yang, T. Wei, H. Goldberg, W. Wang, K. Cullion, D. S. Kohane, “Getting Drugs across Biological Barriers,” Advanced Materials 29, no. 37 (2017).

[12]

J. K. Patra, G. Das, L. F. Fraceto, et al., “Nano Based Drug Delivery Systems: Recent Developments and Future Prospects,” Journal of Nanobiotechnology 16, no. 1 (2018): 71.

[13]

S. Salatin, A. Yari Khosroushahi, “Overviews on the Cellular Uptake Mechanism of Polysaccharide Colloidal Nanoparticles,” Journal of Cellular and Molecular Medicine 21, no. 9 (2017): 1668-1686.

[14]

S. A. Smith, L. I. Selby, A. P. R. Johnston, G. K. Such, “The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery,” Bioconjugate Chemistry 30, no. 2 (2019): 263-272.

[15]

J. Yao, Y. Fan, Y. Li, L. Huang, “Strategies on the Nuclear-targeted Delivery of Genes,” Journal of Drug Targeting 21, no. 10 (2013): 926-939.

[16]

R. Singh, J. W. Lillard, “Nanoparticle-based Targeted Drug Delivery,” Experimental and Molecular Pathology 86, no. 3 (2009): 215-23.

[17]

S. Shojaei, M. Pourmadadi, M. Homayoonfal, et al., “Revolutionizing Lung Cancer Treatment: Nanotechnology-driven Advances in Targeted Drug Delivery and Novel Therapeutic Strategies,” Journal of Drug Delivery Science and Technology 101 (2024): 106186.

[18]

H. Abdouss, A. Gholami, M. Pourmadadi, et al., “Melphalan Delivery and co-delivery Nanoformulations for Cancer Therapy: A Comprehensive Review,” European Journal of Medicinal Chemistry Reports 12 (2024): 100171.

[19]

Abbas Abad FR, M. Pourmadadi, M. Abdouss, A. Rahdar, S. Fathi-karkan, S. Pandey, “Targeted Nanoparticle Delivery of lapatinib for Cancer Therapy: Progress, Challenges, and Future Directions,” Journal of Drug Delivery Science and Technology 108 (2025): 106902.

[20]

N. Jirofti, F. Sarhaddi, A. Jahani, et al., “Development and Characterization of Polymer-stabilized Dobutamine Nanomicelles for Improved Drug Delivery,” Nano LIFE 16, no. 02 (2025): 2550002.

[21]

S. A. Dilliard, D. J. Siegwart, “Passive, Active and Endogenous Organ-targeted Lipid and Polymer Nanoparticles for Delivery of Genetic Drugs,” Nature Reviews Materials 8, no. 4 (2023): 282-300.

[22]

M. Kumar, U. Kumar, A. Kumar Singh, “Therapeutic Nanoparticles: Recent Developments and Their Targeted Delivery Applications,” Nano Biomedicine and Engineering 14, no. 1 (2022): 38-52.

[23]

S. Mojarad-Jabali, M. Farshbaf, P. R. Walker, et al., “An Update on Actively Targeted Liposomes in Advanced Drug Delivery to Glioma,” International Journal of Pharmaceutics 602 (2021): 120645.

[24]

H. Daraee, A. Etemadi, M. Kouhi, S. Alimirzalu, A. Akbarzadeh, “Application of Liposomes in Medicine and Drug Delivery,” Artificial Cells, Nanomedicine, and Biotechnology 44, no. 1 (2016): 381-391.

[25]

J. Yu, Y. Wang, S. Zhou, et al., “Remote Loading paclitaxel-doxorubicin Prodrug Into Liposomes for Cancer Combination Therapy,” Acta Pharm Sin B 10, no. 9 (2020): 1730-1740.

[26]

Y. Liu, J. Fang, Y. J. Kim, M. K. Wong, P. Wang, “Codelivery of doxorubicin and paclitaxel by Cross-linked Multilamellar Liposome Enables Synergistic Antitumor Activity,” Mol Pharm 11, no. 5 (2014): 1651-61.

[27]

H. Nsairat, D. Khater, U. Sayed, F. Odeh, A. Al Bawab, W. Alshaer, “Liposomes: Structure, Composition, Types, and Clinical Applications,” Heliyon 8, no. 5 (2022): e09394.

[28]

R. Tenchov, R. Bird, A. E. Curtze, Q. Zhou, “Lipid Nanoparticles─from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement,” ACS Nano 15, no. 11 (2021): 16982-17015.

[29]

Y. Barenholz, “Doxil® — The First FDA-approved Nano-drug: Lessons Learned,” Journal of Controlled Release 160, no. 2 (2012): 117-134.

[30]

D. A. Balazs, W. Godbey, “Liposomes for Use in Gene Delivery,” J Drug Deliv 2011 (2011): 326497.

[31]

V. Francia, R. M. Schiffelers, P. R. Cullis, D. Witzigmann, “The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy,” Bioconjugate Chemistry 31, no. 9 (2020): 2046-2059.

[32]

I. Waheed, A. Ali, H. Tabassum, N. Khatoon, W. F. Lai, X. Zhou, “Lipid-based Nanoparticles as Drug Delivery Carriers for Cancer Therapy,” Frontiers in oncology 14 (2024): 1296091.

[33]

L. Xu, T. J. Anchordoquy, “Cholesterol Domains in Cationic Lipid/DNA Complexes Improve Transfection,” Biochimica Et Biophysica Acta (BBA)—Biomembranes 1778, no. 10 (2008): 2177-2181.

[34]

V. G. S. Sainaga Jyothi, R. Bulusu, B. Venkata Krishna Rao, “Stability Characterization for Pharmaceutical Liposome Product Development With Focus on Regulatory Considerations: An Update,” International Journal of Pharmaceutics 624 (2022): 122022.

[35]

Q. Yang, S. K. Lai, “Anti-PEG Immunity: Emergence, Characteristics, and Unaddressed Questions,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, no. 5 (2015): 655-77.

[36]

A. I. Antoniou, S. Giofrè, P. Seneci, D. Passarella, S. Pellegrino, “Stimulus-responsive Liposomes for Biomedical Applications,” Drug Discovery Today 26, no. 8 (2021): 1794-1824.

[37]

W. Chen, E. M. Goldys, W. Deng, “Light-induced Liposomes for Cancer Therapeutics,” Progress in Lipid Research 79 (2020): 101052.

[38]

P. Enzian, N. Kleineberg, E. Kirchert, C. Schell, R. Rahmanzadeh, “Light-Induced Liposomal Drug Delivery With an Amphiphilic Porphyrin and Its Chlorin and Bacteriochlorin Analogues,” Molecular Pharmaceutics 21, no. 2 (2024): 609-621.

[39]

A. Yaroslavov, A. Efimova, N. Smirnova, et al., “A Novel Approach to a Controlled Opening of Liposomes,” Colloids and Surfaces B: Biointerfaces 190 (2020): 110906.

[40]

B. Begines, T. Ortiz, M. Pérez-Aranda, et al., “Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects,” Nanomaterials (Basel) 10, no. 7 (2020): 1403.

[41]

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, R. Langer, “Engineering Precision Nanoparticles for Drug Delivery,” Nat Rev Drug Discovery 20, no. 2 (2021): 101-124.

[42]

A. Khanizadeh, A. Ghaemi, M. Pourmadadi, et al., “Advancing Cancer Therapy: Unveiling the Cutting-edge Potential of Carmustine Nano Carriers for Targeted Treatment,” Journal of Drug Delivery Science and Technology 99 (2024): 105943.

[43]

E. Rideau, R. Dimova, P. Schwille, F. R. Wurm, K. Landfester, “Liposomes and Polymersomes: A Comparative Review towards Cell Mimicking,” Chemical Society Reviews 47, no. 23 (2018): 8572-8610.

[44]

F. Meng, C. Hiemstra, G. H. M. Engbers, J. Feijen, “Biodegradable Polymersomes,” Macromolecules 36, no. 9 (2003): 3004-3006.

[45]

E. V. Konishcheva, U. E. Zhumaev, W. P. Meier, “PEO-b-PCL-b-PMOXA Triblock Copolymers: From Synthesis to Microscale Polymersomes With Asymmetric Membrane,” Macromolecules 50, no. 4 (2017): 1512-1520.

[46]

P.-A. Burnouf, Y.-L. Leu, Y.-C. Su, K. Wu, W.-C. Lin, S. R. Roffler, “Reversible Glycosidic Switch for Secure Delivery of Molecular Nanocargos,” Nature Communications 9, no. 1 (2018): 1843.

[47]

I. V. Zhigaltsev, N. Maurer, Q. F. Akhong, et al., “Liposome-encapsulated Vincristine, Vinblastine and Vinorelbine: A Comparative Study of Drug Loading and Retention,” J Control Release 104, no. 1 (2005): 103-11.

[48]

D. E. Discher, A. Eisenberg, “Polymer Vesicles,” Science 297, no. 5583 (2002): 967-973.

[49]

M. Khan, “Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules,” Polymers 16, no. 18 (2024): 2629.

[50]

S. K. Samal, M. Dash, S. Van Vlierberghe, et al., “Cationic Polymers and Their Therapeutic Potential,” Chemical Society Reviews 41, no. 21 (2012): 7147-7194.

[51]

T. Wan, Y. Chen, Q. Pan, et al., “Genome Editing of Mutant KRAS Through Supramolecular Polymer-mediated Delivery of Cas9 ribonucleoprotein for Colorectal Cancer Therapy,” Journal of Controlled Release 322 (2020): 236-247.

[52]

Q. Li, X. Lv, C. Tang, C. Yin, “Co-delivery of Doxorubicin and CRISPR/Cas9 or RNAi-expressing Plasmid by Chitosan-based Nanoparticle for Cancer Therapy,” Carbohydrate Polymers 287 (2022): 119315.

[53]

P. Patel, N. Vyas, M. Raval, “Safety and Toxicity Issues of Polymeric Nanoparticles,” Nanotechnology in Medicine (2021): 156-173.

[54]

A. H. Colby, R. Liu, R. P. Doyle, et al., “Pilot-scale Production of Expansile Nanoparticles: Practical Methods for Clinical Scale-up,” J Control Release 337 (2021): 144-154.

[55]

L. Eltaib, “Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication,” Polymers 17, no. 7 (2025): 833.

[56]

A. K. Tewari, S. C. Upadhyay, M. Kumar, et al., “Insights on Development Aspects of Polymeric Nanocarriers: The Translation From Bench to Clinic,” Polymers 14, no. 17 (2022): 3545.

[57]

V. V. Mody, R. Siwale, A. Singh, H. R. Mody, “Introduction to Metallic Nanoparticles,” J Pharm Bioallied Sci 2, no. 4 (2010): 282-9.

[58]

V. Chandrakala, V. Aruna, G. Angajala, “Review on Metal Nanoparticles as Nanocarriers: Current Challenges and Perspectives in Drug Delivery Systems,” Emergent Materials 5, no. 6 (2022): 1593-1615.

[59]

L. Dykman, B. Khlebtsov, N. Khlebtsov, “Drug Delivery Using Gold Nanoparticles,” Advanced Drug Delivery Reviews 216 (2025): 115481.

[60]

F.-Y. Kong, J.-W. Zhang, R.-F. Li, Z.-X. Wang, W.-J. Wang, W. Wang, “Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications,” Molecules (Basel, Switzerland) 22, no. 9 (2017): 1445.

[61]

K. Lee, M. Conboy, H. M. Park, et al., “Nanoparticle Delivery of Cas9 ribonucleoprotein and Donor DNA in Vivo Induces Homology-directed DNA Repair,” Nat Biomed Eng 1 (2017): 889-901.

[62]

A. Sani, C. Cao, D. Cui, “Toxicity of Gold Nanoparticles (AuNPs): A Review,” Biochem Biophys Rep 26 (2021): 100991.

[63]

Z. Zong, G. Tian, J. Wang, C. Fan, F. Yang, F. Guo, “Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release,” Pharmaceutics 14, no. 12 (2022): 2790.

[64]

Y. Sun, L. Zheng, Y. Yang, et al., “Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications,” Nano-Micro Letters 12, no. 1 (2020): 103.

[65]

Y. He, D. Li, L. Wu, et al., “Metal-Organic Frameworks for Gene Therapy and Detection,” Advanced Functional Materials 33, no. 12 (2023): 2212277.

[66]

A. Poddar, S. Pyreddy, F. Carraro, et al., “ZIF-C for Targeted RNA Interference and CRISPR/Cas9 Based Gene Editing in Prostate Cancer,” Chemical Communications (Cambridge, England) 56, no. 98 (2020): 15406-15409.

[67]

S. Peng, B. Bie, Y. Sun, et al., “Metal-organic Frameworks for Precise Inclusion of Single-stranded DNA and Transfection in Immune Cells,” Nature Communications 9, no. 1 (2018): 1293.

[68]

X. Chen, R. Tong, Z. Shi, et al., “MOF Nanoparticles With Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor,” ACS Applied Materials & Interfaces 10, no. 3 (2018): 2328-2337.

[69]

Z. Wang, S. M. Cohen, “Postsynthetic Modification of Metal-organic Frameworks,” Chemical Society Reviews 38, no. 5 (2009): 1315-1329.

[70]

S. F. Fatima, R. Sabouni, R. Garg, H. Gomaa, “Recent Advances in Metal-Organic Frameworks as Nanocarriers for Triggered Release of Anticancer Drugs: Brief History, Biomedical Applications, Challenges and Future Perspective,” Colloids and Surfaces B: Biointerfaces 225 (2023): 113266.

[71]

J. O. Erebor, E. O. Agboluaje, A. M. Perkins, M. Krishnakumar, N. Ngwuluka, “Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy,” Adv Pharm Bull 14, no. 3 (2024): 558-573.

[72]

S. Parveen, P. Gupta, S. Kumar, M. Banerjee, “Lipid Polymer Hybrid Nanoparticles as Potent Vehicles for Drug Delivery in Cancer Therapeutics,” Medicine in Drug Discovery 20 (2023): 100165.

[73]

K. R. Gajbhiye, R. Salve, M. Narwade, A. Sheikh, P. Kesharwani, V. Gajbhiye, “Lipid Polymer Hybrid Nanoparticles: A Custom-tailored next-generation Approach for Cancer Therapeutics,” Molecular Cancer 22, no. 1 (2023): 160.

[74]

S. Salel, B. Iyisan, “Polymer-lipid Hybrid Nanoparticles as Potential Lipophilic Anticancer Drug Carriers,” Discover Nano 18, no. 1 (2023): 114.

[75]

M. Pourmadadi, N. Ajalli, M. Nouri, et al., “Enhanced Drug Delivery of 5-Fluorouracil Using a GO-PVP-SA Nanocomposite for Targeted Colorectal Cancer Treatment,” BioNanoScience 15, no. 1 (2025): 194.

[76]

N. Rajana, A. Mounika, P. S. Chary, et al., “Multifunctional Hybrid Nanoparticles in Diagnosis and Therapy of Breast Cancer,” Journal of Controlled Release 352 (2022): 1024-1047.

[77]

J. Wu, “The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application,” J Pers Med 11, no. 8 (2021): 771.

[78]

H. Maeda, G. Y. Bharate, J. Daruwalla, “Polymeric Drugs for Efficient Tumor-targeted Drug Delivery Based on EPR-effect,” European Journal of Pharmaceutics and Biopharmaceutics 71, no. 3 (2009): 409-419.

[79]

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, “Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review,” Journal of Controlled Release 65, no. 1 (2000): 271-284.

[80]

B. Haley, E. Frenkel, “Nanoparticles for Drug Delivery in Cancer Treatment,” Urologic Oncology 26, no. 1 (2008): 57-64.

[81]

M. F. Attia, N. Anton, J. Wallyn, Z. Omran, T. F. Vandamme, “An Overview of Active and Passive Targeting Strategies to Improve the Nanocarriers Efficiency to Tumour Sites,” Journal of Pharmacy and Pharmacology 71, no. 8 (2019): 1185-1198.

[82]

W. Arap, R. Pasqualini, E. Ruoslahti, “Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model,” Science 279, no. 5349 (1998): 377-380.

[83]

H. Maeda, “Vascular Permeability in Cancer and Infection as Related to Macromolecular Drug Delivery, With Emphasis on the EPR Effect for Tumor-selective Drug Targeting,” Proc Jpn Acad Ser B Phys Biol Sci 88, no. 3 (2012): 53-71.

[84]

F. Salahpour Anarjan, “Active Targeting Drug Delivery Nanocarriers: Ligands,” Nano-Structures & Nano-Objects 19 (2019): 100370.

[85]

X. Lin, A. O'Reilly Beringhs, X. Lu, “Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging,” The Aaps Journal [Electronic Resource] 23, no. 2 (2021): 43.

[86]

H. Chen, L. Wang, Q. Yu, et al., “Anti-HER2 Antibody and ScFvEGFR-conjugated Antifouling Magnetic Iron Oxide Nanoparticles for Targeting and Magnetic Resonance Imaging of Breast Cancer,” Int J Nanomedicine 8 (2013): 3781-3794.

[87]

O. K. Nag, J. B. Delehanty, “Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery,” Pharmaceutics 11, no. 10 (2019): 543.

[88]

M. Kumari, A. Acharya, P. T. Krishnamurthy, “Antibody-conjugated Nanoparticles for Target-specific Drug Delivery of Chemotherapeutics,” Beilstein Journal of Nanotechnology 14 (2023): 912-926.

[89]

Z. Fu, J. Xiang, “Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy,” International Journal of Molecular Sciences 21, no. 23 (2020): 9123.

[90]

H. Jo, C. Ban, “Aptamer-nanoparticle Complexes as Powerful Diagnostic and Therapeutic Tools,” Experimental & Molecular Medicine 48, no. 5 (2016): e230-e230.

[91]

X. Y. He, X. H. Ren, Y. Peng, et al., “Aptamer/Peptide-Functionalized Genome-Editing System for Effective Immune Restoration Through Reversal of PD-L1-Mediated Cancer Immunosuppression,” Advanced Materials 32, no. 17 (2020): e2000208.

[92]

J. Zhou, J. Rossi, “Aptamers as Targeted Therapeutics: Current Potential and Challenges,” Nat Rev Drug Discovery 16, no. 3 (2017): 181-202.

[93]

B. Mansoori, A. Mohammadi, F. Abedi-Gaballu, et al., “Hyaluronic Acid-decorated Liposomal Nanoparticles for Targeted Delivery of 5-fluorouracil Into HT-29 Colorectal Cancer Cells,” Journal of Cellular Physiology 235, no. 10 (2020): 6817-6830.

[94]

S. Handali, E. Moghimipour, M. Rezaei, et al., “A Novel 5-Fluorouracil Targeted Delivery to Colon Cancer Using Folic Acid Conjugated Liposomes,” Biomedicine & Pharmacotherapy 108 (2018): 1259-1273.

[95]

A. Alomrani, M. Badran, G. I. Harisa, et al., “The Use of Chitosan-coated Flexible Liposomes as a Remarkable Carrier to Enhance the Antitumor Efficacy of 5-fluorouracil Against Colorectal Cancer,” Saudi Pharm J 27, no. 5 (2019): 603-611.

[96]

L. Wang, J. C. Evans, L. Ahmed, C. Allen, “Folate Receptor Targeted Nanoparticles Containing Niraparib and Doxorubicin as a Potential Candidate for the Treatment of High Grade Serous Ovarian Cancer,” Scientific Reports 13, no. 1 (2023): 3226.

[97]

J. Wu, Q. Liu, R. J. Lee, “A Folate Receptor-targeted Liposomal Formulation for paclitaxel,” International Journal of Pharmaceutics 316, no. 1 (2006): 148-153.

[98]

S. Mura, J. Nicolas, P. Couvreur, “Stimuli-responsive Nanocarriers for Drug Delivery,” Nature Materials 12, no. 11 (2013): 991-1003.

[99]

P. Jayapriya, E. Pardhi, R. Vasave, S. K. Guru, J. Madan, N. K. Mehra, “A Review on Stimuli-pH Responsive Liposomal Formulation in Cancer Therapy,” Journal of Drug Delivery Science and Technology 90 (2023): 105172.

[100]

J. F. Quinn, M. R. Whittaker, T. P. Davis, “Glutathione Responsive Polymers and Their Application in Drug Delivery Systems,” Polymer Chemistry 8, no. 1 (2017): 97-126.

[101]

A. Refaat, B. del Rosal, J. Palasubramaniam, et al., “Near-infrared Light-responsive Liposomes for Protein Delivery: Towards Bleeding-free Photothermally-assisted Thrombolysis,” Journal of Controlled Release 337 (2021): 212-223.

[102]

K. Entzian, A. Aigner, “Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment,” Pharmaceutics 13, no. 8 (2021): 1135.

[103]

L. Spiers, M. Gray, P. Lyon, et al., “Clinical Trial Protocol for PanDox: A Phase I Study of Targeted Chemotherapy Delivery to Non-resectable Primary Pancreatic Tumours Using Thermosensitive Liposomal Doxorubicin (ThermoDox®) and Focused Ultrasound,” BMC cancer 23, no. 1 (2023): 896.

[104]

F. Herranz, E. Almarza, I. Rodríguez, et al., “The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging,” Microscopy Research and Technique 74, no. 7 (2011): 577-91.

[105]

L. N. Kasiewicz, S. Biswas, A. Beach, et al., “GalNAc-Lipid Nanoparticles Enable Non-LDLR Dependent Hepatic Delivery of a CRISPR Base Editing Therapy,” Nature Communications 14, no. 1 (2023): 2776.

[106]

D. Sun, B. Sahu, S. Gao, et al., “Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for Leber's Congenital Amaurosis,” Molecular Therapy—Nucleic Acids 7 (2017): 42-52.

[107]

P. Arjunan, G. Mahalingam, P. Sankar, et al., “Base-modified Factor VIII mRNA Delivery With Galactosylated Lipid Nanoparticles as a Protein Replacement Therapy for Haemophilia A,” Biomaterials Science 12, no. 19 (2024): 5052-5062.

[108]

Z. Hang, L. Zhou, C. Xing, Y. Wen, H. Du, “The Blood-brain Barrier, a Key Bridge to Treat Neurodegenerative Diseases,” Ageing Research Reviews 91 (2023): 102070.

[109]

A. M. Hersh, S. Alomari, B. M. Tyler, “Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology,” International Journal of Molecular Sciences 23, no. 8 (2022): 4153.

[110]

A. S. Joshi, V. Singh, A. Gahane, A. K. Thakur, “Biodegradable Nanoparticles Containing Mechanism Based Peptide Inhibitors Reduce Polyglutamine Aggregation in Cell Models and Alleviate Motor Symptoms in a Drosophila Model of Huntington's Disease,” ACS Chemical Neuroscience 10, no. 3 (2019): 1603-1614.

[111]

Y. Liu, S. An, J. Li, “Brain-targeted co-delivery of Therapeutic Gene and Peptide by Multifunctional Nanoparticles in Alzheimer's disease Mice,” Biomaterials 80 (2016): 33-45.

[112]

YA. Ioannou, “Gene Therapy for Lysosomal Storage Disorders With Neuropathology,” Journal of the American Society of Nephrology 11, no. 8 (2000): 1542-1547.

[113]

Y. Zhang, Y. Wang, R. J. Boado, W. M. Pardridge, “Lysosomal Enzyme Replacement of the Brain With Intravenous Non-Viral Gene Transfer,” Pharmaceutical Research 25, no. 2 (2008): 400-406.

[114]

Z. Fan, H. Jin, X. Tan, “ROS-responsive Hierarchical Targeting Vehicle-free Nanodrugs for Three-pronged Parkinson's Disease Therapy,” Chemical Engineering Journal 466 (2023): 143245.

[115]

J. Bejarano, M. Navarro-Marquez, F. Morales-Zavala, et al., “Nanoparticles for Diagnosis and Therapy of Atherosclerosis and Myocardial Infarction: Evolution Toward Prospective Theranostic Approaches,” Theranostics 8, no. 17 (2018): 4710-4732.

[116]

F. Imanparast, M. A. Faramarzi, A. Vatannejad, et al., “mZD7349 peptide-conjugated PLGA Nanoparticles Directed Against VCAM-1 for Targeted Delivery of Simvastatin to Restore Dysfunctional HUVECs,” Microvascular Research 112 (2017): 14-19.

[117]

A. Kheirolomoom, C. W. Kim, J. W. Seo, et al., “Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE(-/-) Mice,” ACS Nano 9, no. 9 (2015): 8885-97.

[118]

Y. T. Ko, W. C. Hartner, A. Kale, V. P. Torchilin, “Gene Delivery Into Ischemic Myocardium by Double-targeted Lipoplexes With Anti-myosin Antibody and TAT Peptide,” Gene Therapy 16, no. 1 (2009): 52-59.

[119]

Y.-W. Won, A. N. McGinn, M. Lee, D. A. Bull, S. W. Kim, “Targeted Gene Delivery to Ischemic Myocardium by Homing Peptide-Guided Polymeric Carrier,” Molecular Pharmaceutics 10, no. 1 (2013): 378-385.

[120]

H. Wang, P. Zhao, X. Liang, et al., “Folate-PEG Coated Cationic Modified Chitosan - Cholesterol Liposomes for Tumor-targeted Drug Delivery,” Biomaterials 31, no. 14 (2010): 4129-4138.

[121]

D. Fan, Y. Cao, M. Cao, Y. Wang, Y. Cao, T. Gong, “Nanomedicine in Cancer Therapy,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 293.

[122]

S. Sonzini, R. M. England, A. N. Kapustin, et al., “HER2-targeted Star Polymer Conjugates for Improved Tumor Distribution and Efficacy,” Journal of Controlled Release 382 (2025): 113654.

[123]

J. Zhang, Y. Lin, Z. Lin, et al., “Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy,” Advanced Science 9, no. 5 (2022): 2103444.

[124]

L. Shen, Y. Huang, D. Chen, et al., “pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy,” Theranostics 7, no. 18 (2017): 4537-4550.

[125]

M. Zhou, H. Huang, D. Wang, et al., “Light-Triggered PEGylation/dePEGylation of the Nanocarriers for Enhanced Tumor Penetration,” Nano Letters 19, no. 6 (2019): 3671-3675.

[126]

N. S. Awad, V. Paul, N. M. AlSawaftah, et al., “Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review,” ACS Pharmacol Transl Sci 4, no. 2 (2021): 589-612.

[127]

R. Sang, F. Deng, A. Engel, E. Goldys, W. Deng, “Lipid-polymer Nanocarrier Platform Enables X-ray Induced Photodynamic Therapy Against human Colorectal Cancer Cells,” Biomedicine & Pharmacotherapy 155 (2022): 113837.

[128]

J. Chen, H. Fang, Y. Hu, et al., “Combining Mannose Receptor Mediated Nanovaccines and Gene Regulated PD-L1 Blockade for Boosting Cancer Immunotherapy,” Bioactive Materials 7 (2022): 167-180.

[129]

R. A. Rosalia, L. J. Cruz, S. van Duikeren, et al., “CD40-targeted Dendritic Cell Delivery of PLGA-nanoparticle Vaccines Induce Potent Anti-tumor Responses,” Biomaterials 40 (2015): 88-97.

[130]

T. T. Smith, S. B. Stephan, H. F. Moffett, et al., “In Situ Programming of Leukaemia-specific T Cells Using Synthetic DNA Nanocarriers,” Nature Nanotechnology 12, no. 8 (2017): 813-820.

[131]

Y. Nie, L. Shi, Y. Zhang, Y. Guo, H. Gu, “Mannose and Hyaluronic Acid Dual-Modified Iron Oxide Enhances Neoantigen-Based Peptide Vaccine Therapy by Polarizing Tumor-Associated Macrophages,” Cancers (Basel) 14, no. 20 (2022): 5107.

[132]

GM. Cooper, The Cell: a Molecular Approach. 2nd edition ed (The Nuclear Envelope and Traffic between the Nucleus and Cytoplasm, 2000).

[133]

VA. Shepherd, “The Cytomatrix as a Cooperative System of Macromolecular and Water Networks,” Current Topics in Developmental Biology (Academic Press, 2006): 171-223.

[134]

J. Lv, Q. Fan, H. Wang, Y. Cheng, “Polymers for Cytosolic Protein Delivery,” Biomaterials 218 (2019): 119358.

[135]

Z. Wu, T. Li, “Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives,” Pharmaceutical Research 38, no. 3 (2021): 473-478.

[136]

H. Dana, G. M. Chalbatani, H. Mahmoodzadeh, et al., “Molecular Mechanisms and Biological Functions of siRNA,” International Journal of Biomedical Sciences 13, no. 2 (2017): 48-57.

[137]

K. A. Whitehead, R. Langer, D. G. Anderson, “Knocking Down Barriers: Advances in siRNA Delivery,” Nature Reviews Drug Discovery 8, no. 2 (2009): 129-138.

[138]

M. L. Yeung, Y. Bennasser, Le SY, “Jeang KT. siRNA, miRNA and HIV: Promises and Challenges,” Cell Research 15, no. 11 (2005): 935-946.

[139]

P. Wang, Y. Zhou, A. M. Richards, “Effective Tools for RNA-derived Therapeutics: SiRNA Interference or miRNA Mimicry,” Theranostics 11, no. 18 (2021): 8771-8796.

[140]

Y.-W. Won, K. S. Lim, Y.-H. Kim, “Intracellular Organelle-targeted Non-viral Gene Delivery Systems,” Journal of Controlled Release 152, no. 1 (2011): 99-109.

[141]

A. K. Ikramy, K. Kentaro, A. Hidetaka, H. Hideyoshi, “Uptake Pathways and Subsequent Intracellular Trafficking in Nonviral Gene Delivery,” Pharmacological Reviews 58, no. 1 (2006): 32.

[142]

N. S. Chandel, “Mitochondria,” Cold Spring Harbor perspectives in biology 13, no. 3 (2021): a040543.

[143]

K. Shen, C. L. Pender, R. Bar-Ziv, et al., “Mitochondria as Cellular and Organismal Signaling Hubs,” Annual Review of Cell and Developmental Biology 38, no. 1 (2022): 179-218.

[144]

E. Zacharioudakis, E. Gavathiotis, “Mitochondrial Dynamics Proteins as Emerging Drug Targets,” Trends in Pharmacological Sciences 44, no. 2 (2023): 112-127.

[145]

S. Zhang, L. Yang, X. Ling, et al., “Tumor Mitochondria-targeted Photodynamic Therapy With a Translocator Protein (TSPO)-specific Photosensitizer,” Acta Biomaterialia 28 (2015): 160-170.

[146]

W. Lv, Z. Zhang, K. Y. Zhang, et al., “A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects under Hypoxia,” Angewandte Chemie (International ed in English) 55, no. 34 (2016): 9947-51.

[147]

N. Gong, X. Ma, X. Ye, et al., “Carbon-dot-supported Atomically Dispersed Gold as a Mitochondrial Oxidative Stress Amplifier for Cancer Treatment,” Nature Nanotechnology 14, no. 4 (2019): 379-387.

[148]

S. Wen, D. Zhu, P. Huang, “Targeting Cancer Cell Mitochondria as a Therapeutic Approach,” Future Med Chem 5, no. 1 (2013): 53-67.

[149]

LJ. Martin, “Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases,” Pharmaceuticals 3, no. 4 (2010): 839-915.

[150]

W. Deng, K. J. McKelvey, A. Guller, et al., “Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer,” ACS Central Science 6, no. 5 (2020): 715-726.

[151]

M. Abrishamdar, M. S. Jalali, Y. Farbood, “Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease,” Cellular and Molecular Neurobiology 43, no. 4 (2023): 1499-1518.

[152]

E. Trushina, S. Trushin, M. F. Hasan, “Mitochondrial Complex I as a Therapeutic Target for Alzheimer's Disease,” Acta Pharm Sin B 12, no. 2 (2022): 483-495.

[153]

K. Cheung-Ong, G. Giaever, C. Nislow, “DNA-Damaging Agents in Cancer Chemotherapy: Serendipity and Chemical Biology,” Chemistry & Biology 20, no. 5 (2013): 648-659.

[154]

L. Pan, J. Liu, J. Shi, “Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy,” ACS Appl Mater Interfaces 9, no. 19 (2017): 15952-15961.

[155]

N. Li, Q. Sun, Z. Yu, et al., “Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence With Near-Infrared Triggered Copper Sulfide Nanoparticles,” ACS Nano 12, no. 6 (2018): 5197-5206.

[156]

G. Wan, Y. Cheng, J. Song, et al., “Nucleus-targeting near-infrared Nanoparticles Based on TAT Peptide-conjugated IR780 for Photo-chemotherapy of Breast Cancer,” Chemical Engineering Journal 380 (2020): 122458.

[157]

Y. Wu, D. Liang, Y. Wang, et al., “Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9,” Cell Stem Cell 13, no. 6 (2013): 659-662.

[158]

F. Baylis, M. McLeod, “First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready?,” Current Gene Therapy 17, no. 4 (2017): 309-319.

[159]

F. Jiang, J. A. Doudna, “CRISPR-Cas9 Structures and Mechanisms,” Annual Review of Biophysics 46, no. 1 (2017): 505-529.

[160]

L. Duan, K. Ouyang, X. Xu, et al., “Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing,” Frontiers in Genetics 12 (2021): 673286.

[161]

C. Guo, X. Ma, F. Gao, Y. Guo, “Off-target Effects in CRISPR/Cas9 Gene Editing,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1143157.

[162]

W. Li, C. Huang, J. Chen, “The Application of CRISPR /Cas Mediated Gene Editing in Synthetic Biology: Challenges and Optimizations,” Frontiers in Bioengineering and Biotechnology 10 (2022): 890155.

[163]

B. Fahrenkrog, U. Aebi, “The Nuclear Pore Complex: Nucleocytoplasmic Transport and Beyond,” Nature Reviews Molecular Cell Biology 4, no. 10 (2003): 757-66.

[164]

D. Stoffler, B. Fahrenkrog, U. Aebi, “The Nuclear Pore Complex: From Molecular Architecture to Functional Dynamics,” Current Opinion in Cell Biology 11, no. 3 (1999): 391-401.

[165]

B. Fahrenkrog, U. Aebi, “The Vertebrate Nuclear Pore Complex: From Structure to Function,” Results and Problems in Cell Differentiation 35 (2002): 25-48.

[166]

N. Panté, U. Aebi, “The Nuclear Pore Complex,” Journal of Cell Biology 122, no. 5 (1993): 977-984.

[167]

D. H. Lin, A. Hoelz, “The Structure of the Nuclear Pore Complex (An Update),” Annual Review of Biochemistry 88, no. 1 (2019): 725-783.

[168]

M. Raices, M. A. D'Angelo, “Nuclear Pore Complex Composition: A New Regulator of Tissue-specific and Developmental Functions,” Nature Reviews Molecular Cell Biology 13, no. 11 (2012): 687-699.

[169]

J. Ma, A. Goryaynov, A. Sarma, W. Yang, “Self-regulated Viscous Channel in the Nuclear Pore Complex,” PNAS 109, no. 19 (2012): 7326-31.

[170]

B. Nachmias, A. D. Schimmer, “Targeting Nuclear Import and Export in Hematological Malignancies,” Leukemia 34, no. 11 (2020): 2875-2886.

[171]

D. Pei, M. Buyanova, “Overcoming Endosomal Entrapment in Drug Delivery,” Bioconjugate Chem 30, no. 2 (2019): 273-283.

[172]

JL. Jeger, “Endosomes, Lysosomes, and the Role of Endosomal and Lysosomal Biogenesis in Cancer Development,” Molecular Biology Reports 47, no. 12 (2020): 9801-9810.

[173]

L. Pan, J. Liu, J. Shi, “Cancer Cell Nucleus-targeting Nanocomposites for Advanced Tumor Therapeutics,” Chemical Society Reviews 47, no. 18 (2018): 6930-6946.

[174]

G. Kabachinski, T. U. Schwartz, “The Nuclear Pore Complex-structure and Function at a Glance,” Journal of Cell Science 128, no. 3 (2015): 423-9.

[175]

Y. Yang, L. Guo, L. Chen, B. Gong, D. Jia, Q. Sun, “Nuclear Transport Proteins: Structure, Function and Disease Relevance,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 425.

[176]

T. Jovanovic-Talisman, A. Zilman, “Protein Transport by the Nuclear Pore Complex: Simple Biophysics of a Complex Biomachine,” Biophysical Journal 113, no. 1 (2017): 6-14.

[177]

PL. Paine, “Nuclear Protein Accumulation by Facilitated Transport and Intranuclear Binding,” Trends in Cell Biology 3, no. 10 (1993): 325-9.

[178]

S. Huo, S. Jin, X. Ma, “Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy due to Size-Dependent Nuclear Entry,” ACS Nano 8, no. 6 (2014): 5852-5862.

[179]

V. Sokolova, G. Nzou, S. B. van der Meer, et al., “Ultrasmall Gold Nanoparticles (2 nm) Can Penetrate and Enter Cell Nuclei in an in Vitro 3D Brain Spheroid Model,” Acta Biomaterialia 111 (2020): 349-362.

[180]

T. Zhang, Y. Sun, J. Cao, et al., “Intrinsic Nucleus-targeted Ultra-small Metal-organic Framework for the Type I Sonodynamic Treatment of Orthotopic Pancreatic Carcinoma,” Journal of Nanobiotechnology 19, no. 1 (2021): 315.

[181]

V. Agrahari, V. Agrahari, M.-L. Chou, C. H. Chew, J. Noll, T. Burnouf, “Intelligent Micro-/Nanorobots as Drug and Cell Carrier Devices for Biomedical Therapeutic Advancement: Promising Development Opportunities and Translational Challenges,” Biomaterials 260 (2020): 120163.

[182]

C. H. Wong, K. W. Siah, A. W. Lo, “Estimation of Clinical Trial Success Rates and Related Parameters,” Biostatistics (Oxford, England) 20, no. 2 (2019): 273-286.

[183]

S. Bai, Y. Zhang, D. Li, X. Shi, G. Lin, G. Liu, “Gain an Advantage From both Sides: Smart Size-shrinkable Drug Delivery Nanosystems for High Accumulation and Deep Penetration,” Nano Today 36 (2021): 101038.

[184]

E. Hinde, K. Thammasiraphop, H. T. T. Duong, et al., “Pair Correlation Microscopy Reveals the Role of Nanoparticle Shape in Intracellular Transport and Site of Drug Release,” Nature Nanotechnology 12, no. 1 (2017): 81-89.

[185]

L. J. Colwell, M. P. Brenner, K. Ribbeck, “Charge as a Selection Criterion for Translocation Through the Nuclear Pore Complex,” PLOS Computational Biology 6, no. 4 (2010): e1000747.

[186]

G. Paci, J. Caria, E. A. Lemke, “Cargo Transport Through the Nuclear Pore Complex at a Glance,” Journal of Cell Science 134, no. 2 (2021): jcs247874.

[187]

J. Lee, Y. Choi, Y. Cho, R. Song, “Selective Targeting of Cellular Nucleus Using Positively-charged Quantum Dots,” Journal of Nanoscience and Nanotechnology 13, no. 1 (2013): 417-22.

[188]

Y.-X. Zhu, H.-R. Jia, G.-Y. Pan, N. W. Ulrich, Z. Chen, F.-G. Wu, “Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials,” Journal of the American Chemical Society 140, no. 11 (2018): 4062-4070.

[189]

P. Goyal, R. Malviya, “Advances in Nuclei Targeted Delivery of Nanoparticles for the Management of Cancer,” Biochimica Et Biophysica Acta (BBA)—Reviews on Cancer 1878, no. 3 (2023): 188881.

[190]

J. Li, Q. Wang, G. Xia, et al., “Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy,” Pharmaceutics 15, no. 9 (2023): 2233.

[191]

O. Cohen, R. Granek, “Nucleus-Targeted Drug Delivery: Theoretical Optimization of Nanoparticles Decoration for Enhanced Intracellular Active Transport,” Nano Letters 14, no. 5 (2014): 2515-2521.

[192]

J. Lu, T. Wu, B. Zhang, et al., “Types of Nuclear Localization Signals and Mechanisms of Protein Import Into the Nucleus,” Cell Communication and Signaling 19, no. 1 (2021): 60.

[193]

Y. Sun, L. Xian, H. Xing, et al., “Factors Influencing the Nuclear Targeting Ability of Nuclear Localization Signals,” Journal of Drug Targeting 24, no. 10 (2016): 927-933.

[194]

R. Fagerlund, K. Mélen, L. Kinnunen, I. Julkunen, “Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions Between Dimeric STATs and Importin Alpha 5,” Journal of Biological Chemistry 277, no. 33 (2002): 30072-8.

[195]

K. J. Bradley, M. R. Bowl, S. E. Williams, et al., “Parafibromin Is a Nuclear Protein With a Functional Monopartite Nuclear Localization Signal,” Oncogene 26, no. 8 (2007): 1213-1221.

[196]

A. N. Nguyen Ba, A. Pogoutse, N. Provart, A. M. Moses, “NLStradamus: A Simple Hidden Markov Model for Nuclear Localization Signal Prediction,” BMC Bioinformatics [Electronic Resource] 10, no. 1 (2009): 202.

[197]

A. Lange, L. M. McLane, R. E. Mills, S. E. Devine, A. H. Corbett, “Expanding the Definition of the Classical Bipartite Nuclear Localization Signal,” Traffic (Copenhagen, Denmark) 11, no. 3 (2010): 311-23.

[198]

C. Dingwall, R. A. Laskey, “Nuclear Targeting Sequences — a Consensus?,” Trends in Biochemical Sciences 16 (1991): 478-481.

[199]

M. Cokol, R. Nair, B. Rost, “Finding Nuclear Localization Signals,” EMBO Reports 1, no. 5 (2000): 411-415.

[200]

B. Bourgeois, S. Hutten, B. Gottschalk, et al., “Nonclassical Nuclear Localization Signals Mediate Nuclear Import of CIRBP,” Proceedings of the National Academy of Sciences 117, no. 15 (2020): 8503-8514.

[201]

D. Xu, A. Farmer, Y. M. Chook, “Recognition of Nuclear Targeting Signals by Karyopherin-β Proteins,” Current Opinion in Structural Biology 20, no. 6 (2010): 782-790.

[202]

S. Kosugi, M. Hasebe, N. Matsumura, et al., “Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin α*,” Journal of Biological Chemistry 284, no. 1 (2009): 478-485.

[203]

M. Burnatowska-Hledin, P. Zhao, B. Capps, et al., “VACM-1, a Cullin Gene family Member, Regulates Cellular Signaling,” American Journal of Physiology. Cell Physiology 279, no. 1 (2000): C266-73.

[204]

A. N. Willis, S. E. B. Dean, J. A. Habbouche, et al., “Nuclear Localization Signal Sequence Is Required for VACM-1/CUL5-dependent Regulation of Cellular Growth,” Cell and Tissue Research 368, no. 1 (2017): 105-114.

[205]

A. S. Don-Salu-Hewage, S. Y. Chan, K. M. McAndrews, “Cysteine (C)-x-C Receptor 4 Undergoes Transportin 1-dependent Nuclear Localization and Remains Functional at the Nucleus of Metastatic Prostate Cancer Cells,” PLoS ONE 8, no. 2 (2013): e57194.

[206]

T. Kawai, U. Choi, N. L. Whiting-Theobald, et al., “Enhanced Function With Decreased Internalization of Carboxy-terminus Truncated CXCR4 Responsible for WHIM Syndrome,” Experimental Hematology 33, no. 4 (2005): 460-468.

[207]

J. C. Grieger, J. S. Johnson, B. Gurda-Whitaker, M. Agbandje-McKenna, R. J. Samulski, “Surface-exposed Adeno-associated Virus Vp1-NLS Capsid Fusion Protein Rescues Infectivity of Noninfectious Wild-type Vp2/Vp3 and Vp3-only Capsids but Not That of Fivefold Pore Mutant Virions,” Journal of Virology 81, no. 15 (2007): 7833-43.

[208]

J. H. Cheng, G. H. Lai, Y. Y. Lien, et al., “Identification of Nuclear Localization Signal and Nuclear Export Signal of VP1 From the Chicken Anemia Virus and Effects on VP2 Shuttling in Cells,” Virology journal 16, no. 1 (2019): 45.

[209]

K. Luk, P. Liu, J. Zeng, et al., “Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells,” GEN Biotechnology 1, no. 3 (2022): 271-284.

[210]

C. V. Dang, W. M. Lee, “Identification of the human c-myc Protein Nuclear Translocation Signal,” Molecular and Cellular Biology 8, no. 10 (1988): 4048-54.

[211]

Y. Nie, G. Fu, Y. Leng, “Nuclear Delivery of Nanoparticle-Based Drug Delivery Systems by Nuclear Localization Signals,” Cells 12, no. 12 (2023): 1637.

[212]

W. D. Richardson, B. L. Roberts, A. E. Smith, “Nuclear Location Signals in Polyoma Virus Large-T,” Cell 44, no. 1 (1986): 77-85.

[213]

T. J. Florio, R. K. Lokareddy, D. P. Yeggoni, et al., “Differential Recognition of Canonical NF-κB Dimers by Importin α3,” Nature Communications 13, no. 1 (2022): 1207.

[214]

C.-Y. Xiao, S. Hübner, D. A. Jans, “SV40 Large Tumor Antigen Nuclear Import Is Regulated by the Double-stranded DNA-dependent Protein Kinase Site (Serine 120) Flanking the Nuclear Localization Sequence*,” Journal of Biological Chemistry 272, no. 35 (1997): 22191-22198.

[215]

D. Ahuja, M. T. Sáenz-Robles, J. M. Pipas, “SV40 large T Antigen Targets Multiple Cellular Pathways to Elicit Cellular Transformation,” Oncogene 24, no. 52 (2005): 7729-7745.

[216]

M. R. M. Fontes, T. Teh, B. Kobe, “Structural Basis of Recognition of Monopartite and Bipartite Nuclear Localization Sequences by Mammalian Importin-α11Edited by. K. Nagai,” Journal of Molecular Biology 297, no. 5 (2000): 1183-1194.

[217]

X. Zhang, K.-S. Wang, Z.-Q. Wang, et al., “Nuclear Localization Signal of ING4 Plays a Key Role in Its Binding to p53,” Biochemical and Biophysical Research Communications 331, no. 4 (2005): 1032-1038.

[218]

A. Shatnawi, S. A. Malkaram, T. Fandy, E. Tsouko, “Identification of the Inhibitor of Growth Protein 4 (ING4) as a Potential Target in Prostate Cancer Therapy,” Molecular and Cellular Biochemistry 464, no. 1-2 (2020): 153-167.

[219]

L. Pan, M. E. Lemieux, T. Thomas, et al., “IER5, a DNA Damage Response Gene, Is Required for Notch-mediated Induction of Squamous Cell Differentiation,” Elife 9 (2020): e58081.

[220]

A. Tubita, Z. Lombardi, I. Tusa, P. Dello Sbarba, E. Rovida, “Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy,” International Journal of Molecular Sciences 21, no. 3 (2020): 938.

[221]

D. C. Miller, S. J. Harnor, M. P. Martin, R. A. Noble, S. R. Wedge, C. Cano, “Modulation of ERK5 Activity as a Therapeutic Anti-Cancer Strategy,” Journal of Medicinal Chemistry 66, no. 7 (2023): 4491-4502.

[222]

A. Lange, R. E. Mills, S. E. Devine, A. H. Corbett, “A PY-NLS Nuclear Targeting Signal Is Required for Nuclear Localization and Function of the Saccharomyces Cerevisiae mRNA-binding Protein Hrp1,” Journal of Biological Chemistry 283, no. 19 (2008): 12926-34.

[223]

L. Wang, M. Li, M. Cai, J. Xing, S. Wang, C. Zheng, “A PY-nuclear Localization Signal Is Required for Nuclear Accumulation of HCMV UL79 Protein,” Med Microbiol Immunol 201, no. 3 (2012): 381-7.

[224]

M. Naumann, A. Pal, A. Goswami, et al., “Impaired DNA Damage Response Signaling by FUS-NLS Mutations Leads to Neurodegeneration and FUS Aggregate Formation,” Nature Communications 9, no. 1 (2018): 335.

[225]

J. Gal, J. Zhang, D. M. Kwinter, et al., “Nuclear Localization Sequence of FUS and Induction of Stress Granules by ALS Mutants,” Neurobiology of Aging 32, no. 12 (2011): 2323. e27-e40.

[226]

Y. Sun, K. Zhao, W. Xia, et al., “The Nuclear Localization Sequence Mediates hnRNPA1 Amyloid Fibril Formation Revealed by cryoEM Structure,” Nature Communications 11, no. 1 (2020): 6349.

[227]

G. Ruffenach, L. Medzikovic, L. Aryan, M. Li, M. Eghbali, “HNRNPA2B1: RNA-Binding Protein That Orchestrates Smooth Muscle Cell Phenotype in Pulmonary Arterial Hypertension,” Circulation 146, no. 16 (2022): 1243-1258.

[228]

A. Kaffman, N. M. Rank, E. K. O'Shea, “Phosphorylation Regulates Association of the Transcription Factor Pho4 With Its Import Receptor Pse1/Kap121,” Genes & development 12, no. 17 (1998): 2673-83.

[229]

K. L. Jiang, L. Zhong, X. Q. Yang, et al., “NLS-RARα Is a Novel Transcriptional Factor,” Oncology letters 14, no. 6 (2017): 7091-7098.

[230]

N. Freitas, C. Cunha, “Mechanisms and Signals for the Nuclear Import of Proteins,” Current Genomics 10, no. 8 (2009): 550-557.

[231]

M. Lakshmanan, Y. Kodama, T. Yoshizumi, K. Sudesh, K. Numata, “Rapid and Efficient Gene Delivery Into Plant Cells Using Designed Peptide Carriers,” Biomacromolecules 14, no. 1 (2013): 10-6.

[232]

O. Al Musaimi, L. Lombardi, D. R. Williams, F. Albericio, “Strategies for Improving Peptide Stability and Delivery,” Pharmaceuticals (Basel) 15, no. 10 (2022): 1283.

[233]

H. Brooks, B. Lebleu, E. Vivès, “Tat Peptide-mediated Cellular Delivery: Back to Basics,” Advanced Drug Delivery Reviews 57, no. 4 (2005): 559-577.

[234]

R. Truant, B. R. Cullen, “The Arginine-Rich Domains Present in Human Immunodeficiency Virus Type 1 Tat and Rev Function as Direct Importin β-Dependent Nuclear Localization Signals,” Molecular and Cellular Biology 19, no. 2 (1999): 1210-1217.

[235]

Y. Song, X. Li, S. Cong, H. Zhao, M. Tan, “Nuclear-targeted of TAT Peptide-conjugated Carbon Dots for both One-and Two-photon Fluorescence Imaging,” Colloids and Surfaces B: Biointerfaces 180 (2019): 449-456.

[236]

H. M. Leung, M. S. Chan, L. S. Liu, et al., “Dual-Function, Cationic, Peptide-Coated Nanodiamond Systems: Facilitating Nuclear-Targeting Delivery for Enhanced Gene Therapy Applications,” ACS Sustainable Chemistry & Engineering 6, no. 8 (2018): 9671-9681.

[237]

P. Opanasopit, T. Rojanarata, A. Apirakaramwong, T. Ngawhirunpat, U. Ruktanonchai, “Nuclear Localization Signal Peptides Enhance Transfection Efficiency of Chitosan/DNA Complexes,” International Journal of Pharmaceutics 382, no. 1 (2009): 291-295.

[238]

R. S. Rosada, C. L. Silva, M. H. Santana, C. R. Nakaie, L. G. de la Torre, “Effectiveness, Against Tuberculosis, of Pseudo-ternary Complexes: Peptide-DNA-cationic Liposome,” Journal of Colloid & Interface Science 373, no. 1 (2012): 102-9.

[239]

J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, “Cancer Nanomedicine: Progress, Challenges and Opportunities,” Nature Reviews Cancer 17, no. 1 (2017): 20-37.

[240]

R. Jevprasesphant, J. Penny, D. Attwood, A. D'Emanuele, “Transport of Dendrimer Nanocarriers Through Epithelial Cells via the Transcellular Route,” J Control Release 97, no. 2 (2004): 259-67.

[241]

O. Harush-Frenkel, N. Debotton, S. Benita, Y. Altschuler, “Targeting of Nanoparticles to the Clathrin-mediated Endocytic Pathway,” Biochemical and Biophysical Research Communications 353, no. 1 (2007): 26-32.

[242]

S. Zhang, H. Gao, G. Bao, “Physical Principles of Nanoparticle Cellular Endocytosis,” ACS Nano 9, no. 9 (2015): 8655-8671.

[243]

T.-G. Iversen, T. Skotland, K. Sandvig, “Endocytosis and Intracellular Transport of Nanoparticles: Present Knowledge and Need for Future Studies,” Nano Today 6, no. 2 (2011): 176-185.

[244]

L. C. Nelemans, L. Gurevich, “Drug Delivery With Polymeric Nanocarriers-Cellular Uptake Mechanisms,” Materials (Basel) 13, no. 2 (2020): 366.

[245]

R. Allen, T. Yokota, “Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids,” Molecules (Basel, Switzerland) 29, no. 24 (2024): 5997.

[246]

V. Del Gaizo, R. Mark Payne, “A Novel TAT-Mitochondrial Signal Sequence Fusion Protein Is Processed, Stays in Mitochondria, and Crosses the Placenta,” Molecular Therapy 7, no. 6 (2003): 720-730.

[247]

V. Del Gaizo, J. A. MacKenzie, R. M. Payne, “Targeting Proteins to Mitochondria Using TAT,” Molecular Genetics and Metabolism 80, no. 1-2 (2003): 170-80.

[248]

M. T. Manzari, Y. Shamay, H. Kiguchi, N. Rosen, M. Scaltriti, D. A. Heller, “Targeted Drug Delivery Strategies for Precision Medicines,” Nature Reviews Materials 6, no. 4 (2021): 351-370.

[249]

C. Corbo, R. Molinaro, A. Parodi, N. E. Toledano Furman, F. Salvatore, E. Tasciotti, “The Impact of Nanoparticle Protein Corona on Cytotoxicity, Immunotoxicity and Target Drug Delivery,” Nanomedicine (Lond) 11, no. 1 (2016): 81-100.

[250]

S. Z. Alshawwa, A. A. Kassem, R. M. Farid, S. K. Mostafa, G. S. Labib, “Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence,” Pharmaceutics 14, no. 4 (2022): 883.

[251]

P. M. Perrigue, R. A. Murray, A. Mielcarek, A. Henschke, S. E. Moya, “Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate,” Pharmaceutics 13, no. 6 (2021): 770.

[252]

E. B. Souto, R. H. Müller, “Cosmetic Features and Applications of Lipid Nanoparticles (SLN®, NLC®),” International Journal of Cosmetic Science 30, no. 3 (2008): 157-165.

[253]

H. Bunjes, K. Westesen, M. H. J. Koch, “Crystallization Tendency and Polymorphic Transitions in Triglyceride Nanoparticles,” International Journal of Pharmaceutics 129, no. 1 (1996): 159-173.

[254]

L. Battaglia, M. Gallarate, “Lipid Nanoparticles: State of the Art, New Preparation Methods and Challenges in Drug Delivery,” Expert Opinion on Drug Delivery 9, no. 5 (2012): 497-508.

[255]

M. Mehta, T. A. Bui, X. Yang, Y. Aksoy, E. M. Goldys, W. Deng, “Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development,” ACS Materials Au 3, no. 6 (2023): 600-619.

[256]

R. Bawa, G. F. Audette, B. Reese, Handbook of Clinical Nanomedicine. 1 ed (Law, Business, Regulation, Safety, and Risk. Jenny Stanford Publishing, 2016).

[257]

M. A. Alghamdi, A. N. Fallica, N. Virzì, P. Kesharwani, V. Pittalà, K. Greish, “The Promise of Nanotechnology in Personalized Medicine,” J Pers Med 12, no. 5 (2022): 673.

[258]

E. Svensson, U. von Mentzer, A. Stubelius, “Achieving Precision Healthcare Through Nanomedicine and Enhanced Model Systems,” ACS Mater Au 4, no. 2 (2024): 162-173.

[259]

S. Liu, T. Ning, J. Chen, et al., “A Bio-feedback-mimicking Electrode Combining Real-time Monitoring and Drug Delivery,” The Innovation 5, no. 6 (2024): 100705.

[260]

M. P. Lokugamage, C. D. Sago, J. E. Dahlman, “Testing Thousands of Nanoparticles in Vivo Using DNA Barcodes,” Current Opinion in Biomedical Engineering 7 (2018): 1-8.

[261]

Y. Yuan, Y. Li, G. Li, et al., “Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics,” Molecular Pharmaceutics 22, no. 3 (2025): 1142-1159.

[262]

M. M. Lewis, T. J. Beck, D. Ghosh, “Applying Machine Learning to Identify Ionizable Lipids for Nanoparticle-mediated Delivery of mRNA,” BioRxiv (2023). 2023.11.09.565872.

[263]

B. Li, I. O. Raji, A. G. R. Gordon, et al., “Accelerating Ionizable Lipid Discovery for mRNA Delivery Using Machine Learning and Combinatorial Chemistry,” Nature Materials 23, no. 7 (2024): 1002-1008.

[264]

E. Egorov, C. Pieters, H. Korach-Rechtman, J. Shklover, A. Schroeder, “Robotics, Microfluidics, Nanotechnology and AI in the Synthesis and Evaluation of Liposomes and Polymeric Drug Delivery Systems,” Drug Delivery and Translational Research 11, no. 2 (2021): 345-352.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/