Activity and Heterogeneity of Astrocytes in Neurological Diseases: Molecular Mechanisms and Therapeutic Targets

Shijie Mao , Rui Qiao , Qi Wang , Ling Shen , Daxing Li , Xinchen Huo , Jindou Wang , Kunxuan Liu , Wenjing Chen , Tianhao Zhu , Beicheng Zhang , Shuo Leng , Ying Bai

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70329

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70329 DOI: 10.1002/mco2.70329
REVIEW

Activity and Heterogeneity of Astrocytes in Neurological Diseases: Molecular Mechanisms and Therapeutic Targets

Author information +
History +
PDF

Abstract

Astrocytes, the most prevalent glial cells in the central nervous system (CNS), play crucial roles in maintaining CNS homeostasis and responding to various pathological stimuli. They play key roles in neural development, neurotransmission, neuroinflammation, metabolic support, and tissue repair. Recent advancements in single-cell sequencing have revealed the remarkable heterogeneity of astrocytes, with distinct subpopulations differentially contributing to disease progression in neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, ischemic stroke, intracerebral hemorrhage, and multiple sclerosis. In addition, they play an important role in various behavioral neuropsychiatric disorders. This review highlights the dual roles of astrocytes in disease progression, driven by their diverse molecular profiles and functions. It outlines the key molecular mechanisms underlying astrocyte heterogeneity and their impact on neuroinflammation, neuronal support, and ionic balance regulation. Additionally, the review discusses potential therapeutic strategies targeting astrocytes to modulate these processes, aiming to improve treatment outcomes in neurological diseases. By elucidating the specific roles of astrocyte subsets in disease, this review seeks to advance the development of precision medicine for astrocyte-related neurological disorders.

Keywords

astrocytes / heterogeneity / neurological disorders / inflammation / neuron–astrocyte communication / biomarker

Cite this article

Download citation ▾
Shijie Mao, Rui Qiao, Qi Wang, Ling Shen, Daxing Li, Xinchen Huo, Jindou Wang, Kunxuan Liu, Wenjing Chen, Tianhao Zhu, Beicheng Zhang, Shuo Leng, Ying Bai. Activity and Heterogeneity of Astrocytes in Neurological Diseases: Molecular Mechanisms and Therapeutic Targets. MedComm, 2025, 6(9): e70329 DOI:10.1002/mco2.70329

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Endo, A. Kasai, J. S. Soto, et al., “Molecular Basis of Astrocyte Diversity and Morphology Across the CNS in Health and Disease,” Science 378, no. 6619 (2022): eadc9020.

[2]

F. Giovannoni and F. J. Quintana, “The Role of Astrocytes in CNS Inflammation,” Trends in Immunology 41, no. 9 (2020): 805-819.

[3]

Global, Regional, and National Burden of Disorders Affecting the Nervous System, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurology 2024; 23(4): 344-381.

[4]

M. Y. Batiuk, A. Martirosyan, J. Wahis, et al., “Identification of Region-specific Astrocyte Subtypes at Single Cell Resolution,” Nature Communications 11, no. 1 (2020): 1220.

[5]

R. Patani, G. E. Hardingham, and S. A. Liddelow, “Functional Roles of Reactive Astrocytes in Neuroinflammation and Neurodegeneration,” Nature Reviews Neurology 19, no. 7 (2023): 395-409.

[6]

F. Takata, S. Nakagawa, J. Matsumoto, and S. Dohgu, “Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction,” Front Cell Neurosci 15 (2021): 661838.

[7]

H. Kim, K. Leng, J. Park, et al., “Reactive Astrocytes Transduce Inflammation in a Blood-brain Barrier Model Through a TNF-STAT3 Signaling Axis and Secretion of Alpha 1-antichymotrypsin,” Nature Communications 13, no. 1 (2022): 6581.

[8]

T. Takano, J. T. Wallace, K. T. Baldwin, et al., “Chemico-genetic Discovery of Astrocytic Control of Inhibition in Vivo,” Nature 588, no. 7837 (2020): 296-302.

[9]

Y. T. Cheng, E. Luna-Figueroa, J. Woo, et al., “Inhibitory Input Directs Astrocyte Morphogenesis Through Glial GABA(B)R,” Nature 617, no. 7960 (2023): 369-376.

[10]

M. S. Ioannou, J. Jackson, S. H. Sheu, et al., “Neuron-Astrocyte Metabolic Coupling Protects Against Activity-Induced Fatty Acid Toxicity,” Cell 177, no. 6 (2019): 1522-1535. e14.

[11]

M. Linnerbauer, M. A. Wheeler, and F. J. Quintana, “Astrocyte Crosstalk in CNS Inflammation,” Neuron 108, no. 4 (2020): 608-622.

[12]

H. G. Lee, M. A. Wheeler, F. J. Quintana, “Function and Therapeutic Value of Astrocytes in Neurological Diseases,” Nat Rev Drug Discovery 21, no. 5 (2022): 339-358.

[13]

P. Scheltens, B. De Strooper, M. Kivipelto, et al., “Alzheimer's Disease,” Lancet 397, no. 10284 (2021): 1577-1590.

[14]

C. R. Jack, D. A. Bennett, K. Blennow, et al., “NIA-AA Research Framework: Toward a Biological Definition of Alzheimer's Disease,” Alzheimers Dement 14, no. 4 (2018): 535-562.

[15]

B. Bellaver, G. Povala, P. C. L. Ferreira, et al., “Astrocyte Reactivity Influences Amyloid-β Effects on Tau Pathology in Preclinical Alzheimer's Disease,” Nature Medicine 29, no. 7 (2023): 1775-1781.

[16]

T. Guo, A. Li, P. Sun, et al., “Astrocyte Reactivity Is Associated With Tau Tangle Load and Cortical Thinning in Alzheimer's Disease,” Mol Neurodegener 19, no. 1 (2024): 58.

[17]

M. Cho, S. Chaudhuri, S. Liu, et al., “Functional Insight Into East Asian-specific Genetic Risk Loci for Alzheimer's Disease,” Alzheimers Dement 21, no. 2 (2025): e14553.

[18]

H. Mathys, C. A. Boix, L. A. Akay, et al., “Single-cell Multiregion Dissection of Alzheimer's Disease,” Nature 632, no. 8026 (2024): 858-868.

[19]

A. Grubman, G. Chew, J. F. Ouyang, et al., “A Single-cell Atlas of Entorhinal Cortex From Individuals With Alzheimer's Disease Reveals Cell-type-specific Gene Expression Regulation,” Nature Neuroscience 22, no. 12 (2019): 2087-2097.

[20]

A. J. Griswold, K. Celis, P. L. Bussies, et al., “Increased APOE ε4 Expression Is Associated With the Difference in Alzheimer's Disease Risk From Diverse Ancestral Backgrounds,” Alzheimers Dement 17, no. 7 (2021): 1179-1188.

[21]

W. E. Allen, T. R. Blosser, Z. A. Sullivan, C. Dulac, and X. Zhuang, “Molecular and Spatial Signatures of Mouse Brain Aging at Single-cell Resolution,” Cell 186, no. 1 (2023): 194-208. e18.

[22]

Y. Sun, H. Zhang, X. Zhang, et al., “Promotion of Astrocyte-neuron Glutamate-glutamine Shuttle by SCFA Contributes to the Alleviation of Alzheimer's Disease,” Redox Biology 62 (2023): 102690.

[23]

D. Li, J. Zhang, and Q. Liu, “Brain Cell Type-specific Cholesterol Metabolism and Implications for Learning and Memory,” Trends in Neuroscience (Tins) 45, no. 5 (2022): 401-414.

[24]

J. Le Douce, M. Maugard, and J. Veran, “Impairment of Glycolysis-Derived L-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease,” Cell metabolism 31, no. 3 (2020): 503-517.

[25]

Y. Zhou, W. M. Song, P. S. Andhey, et al., “Human and Mouse Single-nucleus Transcriptomics Reveal TREM2-dependent and TREM2-independent Cellular Responses in Alzheimer's Disease,” Nature Medicine 26, no. 1 (2020): 131-142.

[26]

L. T. Zhou, D. Liu, H. C. Kang, et al., “Tau Pathology Epigenetically Remodels the Neuron-glial Cross-talk in Alzheimer's disease,” Science Advances 9, no. 16 (2023): eabq7105.

[27]

F. Yang, P. Beltran-Lobo, K. Sung, et al., “Reactive Astrocytes Secrete the Chaperone HSPB1 to Mediate Neuroprotection,” Science Advances 10, no. 12 (2024): eadk9884.

[28]

D. Peng, Y. Wang, Y. Xiao, et al., “Extracellular Vesicles Derived From Astrocyte-treated With haFGF(14-154) Attenuate Alzheimer Phenotype in AD Mice,” Theranostics 12, no. 8 (2022): 3862-3881.

[29]

A. Mallach, M. Zielonka, V. van Lieshout, et al., “Microglia-astrocyte Crosstalk in the Amyloid Plaque Niche of an Alzheimer's disease Mouse Model, as Revealed by Spatial Transcriptomics,” Cell reports 43, no. 6 (2024): 114216.

[30]

A. B. Lopez-Rodriguez, E. Hennessy, C. L. Murray, et al., “Acute Systemic Inflammation Exacerbates Neuroinflammation in Alzheimer's disease: IL-1β Drives Amplified Responses in Primed Astrocytes and Neuronal Network Dysfunction,” Alzheimers Dement 17, no. 10 (2021): 1735-1755.

[31]

J. Rostami, T. Mothes, M. Kolahdouzan, et al., “Crosstalk Between Astrocytes and Microglia Results in Increased Degradation of α-synuclein and Amyloid-β Aggregates,” J Neuroinflammation 18, no. 1 (2021): 124.

[32]

C. S. McAlpine, J. Park, A. Griciuc, et al., “Astrocytic Interleukin-3 Programs Microglia and Limits Alzheimer's Disease,” Nature 595, no. 7869 (2021): 701-706.

[33]

S. R. Saroja, K. Gorbachev, T. Julia, A. M. Goate, and A. C. Pereira, “Astrocyte-secreted Glypican-4 Drives APOE4-dependent Tau Hyperphosphorylation,” PNAS 119, no. 34 (2022): e2108870119.

[34]

T. E. Mahan, C. Wang, X. Bao, A. Choudhury, J. D. Ulrich, and D. M. Holtzman, “Selective Reduction of Astrocyte apoE3 and apoE4 Strongly Reduces Aβ Accumulation and Plaque-related Pathology in a Mouse Model of Amyloidosis,” Mol Neurodegener 17, no. 1 (2022): 13.

[35]

M. Xiong, C. Wang, M. Gratuze, et al., “Astrocytic APOE4 Removal Confers Cerebrovascular Protection Despite Increased Cerebral Amyloid Angiopathy,” Mol Neurodegener 18, no. 1 (2023): 17.

[36]

A. Nakano-Kobayashi, A. Canela, T. Yoshihara, and M. Hagiwara, “Astrocyte-targeting Therapy Rescues Cognitive Impairment Caused by Neuroinflammation via the Nrf2 Pathway,” PNAS 120, no. 33 (2023): e2303809120.

[37]

Z. Jiwaji, S. S. Tiwari, R. X. Avilés-Reyes, et al., “Reactive Astrocytes Acquire Neuroprotective as Well as Deleterious Signatures in Response to Tau and Aß Pathology,” Nature Communications 13, no. 1 (2022): 135.

[38]

S. Gaikwad, N. Puangmalai, A. Bittar, et al., “Tau Oligomer Induced HMGB1 Release Contributes to Cellular Senescence and Neuropathology Linked to Alzheimer's Disease and Frontotemporal Dementia,” Cell reports 36, no. 3 (2021): 109419.

[39]

S. Kim, H. Chun, Y. Kim, et al., “Astrocytic Autophagy Plasticity Modulates Aβ Clearance and Cognitive Function in Alzheimer's Disease,” Mol Neurodegener 19, no. 1 (2024): 55.

[40]

J. Zhou, N. Singh, J. Galske, J. Hudobenko, X. Hu, and R. Yan, “BACE1 regulates Expression of Clusterin in Astrocytes for Enhancing Clearance of β-amyloid Peptides,” Mol Neurodegener 18, no. 1 (2023): 31.

[41]

A. Lia, G. Sansevero, A. Chiavegato, et al., “Rescue of Astrocyte Activity by the Calcium Sensor STIM1 Restores Long-term Synaptic Plasticity in Female Mice Modelling Alzheimer's Disease,” Nature Communications 14, no. 1 (2023): 1590.

[42]

Y. Mi, G. Qi, F. Vitali, et al., “Loss of Fatty Acid Degradation by Astrocytic Mitochondria Triggers Neuroinflammation and Neurodegeneration,” Nat Metab 5, no. 3 (2023): 445-465.

[43]

B. Dejanovic, T. Wu, M. C. Tsai, et al., “Complement C1q-dependent Excitatory and Inhibitory Synapse Elimination by Astrocytes and Microglia in Alzheimer's disease Mouse Models,” Nat Aging 2, no. 9 (2022): 837-850.

[44]

Y. H. Ju, M. Bhalla, S. J. Hyeon, et al., “Astrocytic Urea Cycle Detoxifies Aβ-derived Ammonia While Impairing Memory in Alzheimer's Disease,” Cell metabolism 34, no. 8 (2022): 1104-1120. e8.

[45]

G. Stym-Popper, K. Matta, T. Chaigneau, et al., “Regulatory T Cells Decrease C3-positive Reactive Astrocytes in Alzheimer-Like Pathology,” J Neuroinflammation 20, no. 1 (2023): 64.

[46]

E. Kim, H. Kim, M. P. Jedrychowski, et al., “Irisin Reduces Amyloid-β by Inducing the Release of Neprilysin From Astrocytes Following Downregulation of ERK-STAT3 Signaling,” Neuron 111, no. 22 (2023): 3619-3633. e8.

[47]

B. V. Lananna, C. A. McKee, M. W. King, et al., “Chi3l1/YKL-40 Is Controlled by the Astrocyte Circadian Clock and Regulates Neuroinflammation and Alzheimer's Disease Pathogenesis,” Science Translational Medicine 12, no. 574 (2020): eaax3519.

[48]

L. Barbar, T. Jain, M. Zimmer, et al., “CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes,” Neuron 107, no. 3 (2020): 436-453. e12.

[49]

D. Luo, J. Li, H. Liu, et al., “Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease,” Adv Sci (Weinh) 10, no. 22 (2023): e2300876.

[50]

M. S. Uddin and L. W. Lim, “Glial Cells in Alzheimer's Disease: From Neuropathological Changes to Therapeutic Implications,” Ageing Research Reviews 78 (2022): 101622.

[51]

J. S. Sadick, M. R. O'Dea, P. Hasel, T. Dykstra, A. Faustin, and S. A. Liddelow, “Astrocytes and Oligodendrocytes Undergo Subtype-specific Transcriptional Changes in Alzheimer's Disease,” Neuron 110, no. 11 (2022): 1788-1805. e10.

[52]

A. M. Smith, K. Davey, S. Tsartsalis, et al., “Diverse human Astrocyte and Microglial Transcriptional Responses to Alzheimer's Pathology,” Acta Neuropathologica 143, no. 1 (2022): 75-91.

[53]

J. Blumenfeld, O. Yip, M. J. Kim, and Y. Huang, “Cell Type-specific Roles of APOE4 in Alzheimer Disease,” Nature Reviews Neuroscience 25, no. 2 (2024): 91-110.

[54]

E. C. B. Johnson, E. B. Dammer, D. M. Duong, et al., “Large-scale Proteomic Analysis of Alzheimer's Disease Brain and Cerebrospinal Fluid Reveals Early Changes in Energy Metabolism Associated With Microglia and Astrocyte Activation,” Nature Medicine 26, no. 5 (2020): 769-780. https://doi.org/10.1038/s41591-020-0815-6.

[55]

D. Singh, “Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer's Disease,” J Neuroinflammation 19, no. 1 (2022): 206.

[56]

W. Poewe, K. Seppi, C. M. Tanner, et al., “Parkinson Disease,” Nature reviews Disease primers 3 (2017): 17013.

[57]

C. Wang, T. Yang, M. Liang, J. Xie, and N. Song, “Astrocyte Dysfunction in Parkinson's disease: From the Perspectives of Transmitted α-synuclein and Genetic Modulation,” Transl Neurodegener 10, no. 1 (2021): 39.

[58]

T. I. Kam, J. T. Hinkle, T. M. Dawson, and V. L. Dawson, “Microglia and Astrocyte Dysfunction in parkinson's disease,” Neurobiology of Disease 144 (2020): 105028.

[59]

G. Prunell and S. Olivera-Bravo, “A Focus on Astrocyte Contribution to Parkinson's Disease Etiology,” Biomolecules 12, no. 12 (2022): 1745.

[60]

S. Smajić, C. A. Prada-Medina, Z. Landoulsi, et al., “Single-cell Sequencing of human Midbrain Reveals Glial Activation and a Parkinson-specific Neuronal state,” Brain 145, no. 3 (2022): 964-978.

[61]

H. Wu, Z. H. Zhang, P. Zhou, et al., “A Single-Cell Atlas of the Substantia Nigra Reveals Therapeutic Effects of Icaritin in a Rat Model of Parkinson's Disease,” Antioxidants (Basel) 13, no. 10 (2024): 1183.

[62]

Y. Zhang, Y. Jiang, Y. Li, et al., “Brain Single-cell Transcriptomics Highlights Comorbidity-related Cell Type-specific Changes of Parkinson's Disease With Major Depressive Disorder After Paraquat Exposure,” Ecotoxicol. Environ. Saf. 286 (2024): 117193.

[63]

S. P. Yun, T. I. Kam, N. Panicker, et al., “Block of A1 Astrocyte Conversion by Microglia Is Neuroprotective in Models of Parkinson's Disease,” Nature Medicine 24, no. 7 (2018): 931-938.

[64]

V. Kovaleva and M. Saarma, “Endoplasmic Reticulum Stress Regulators: New Drug Targets for Parkinson's Disease,” J Parkinsons Dis 11, no. s2 (2021): S219-s228.

[65]

E. Janda, M. Parafati, C. Martino, et al., “Autophagy and Neuroprotection in Astrocytes Exposed to 6-hydroxydopamine Is Negatively Regulated by NQO2: Relevance to Parkinson's Disease,” Scientific Reports 13, no. 1 (2023): 21624.

[66]

K. Saramowicz, N. Siwecka, G. Galita, A. Kucharska-Lusina, W. Rozpędek-Kamińska, and I. Majsterek, “Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease,” International Journal of Molecular Sciences 25, no. 1 (2023): 360.

[67]

X. D. Fu and W. C. Mobley, “Therapeutic Potential of PTB Inhibition through Converting Glial Cells to Neurons in the Brain,” Annual Review of Neuroscience 46 (2023): 145-165.

[68]

M. L. Neal, A. M. Boyle, K. M. Budge, F. F. Safadi, and J. R. Richardson, “The Glycoprotein GPNMB Attenuates Astrocyte Inflammatory Responses Through the CD44 Receptor,” J Neuroinflammation 15, no. 1 (2018): 73.

[69]

L. Wang, Y. Bai, Y. Tao, et al., “Bear Bile Powder Alleviates Parkinson's Disease-Like Behavior in Mice by Inhibiting Astrocyte-mediated Neuroinflammation,” Chin J Nat Med 21, no. 9 (2023): 710-720.

[70]

X. Y. Yao, L. N. Guan, Q. Chen, and C. Ren, “LRRK2 G2019S and Parkinson's Disease: Insight From Neuroinflammation,” Postgraduate Medical Journal 100 (1179): 4-11.

[71]

C. Yang and Y. Gao, “Mesencephalic Astrocyte-derived Neurotrophic Factor: A Treatment Option for parkinson's disease,” Front Biosci (Landmark Ed) 25, no. 9 (2020): 1718-1731.

[72]

H. Zhu, F. Xiao, and Y. Xiao, “Targeting CB2R in Astrocytes for Parkinson's Disease Therapy: Unraveling the Foxg1-mediated Neuroprotective Mechanism Through Autophagy-mediated NLRP3 Degradation,” J Neuroinflammation 20, no. 1 (2023): 304.

[73]

X. Li, X. Wu, P. Luo, and L. Xiong, “Astrocyte-specific NDRG2 Gene: Functions in the Brain and Neurological Diseases,” Cellular and Molecular Life Sciences 77, no. 13 (2020): 2461-2472.

[74]

N. Boonpraman, S. Yoon, C. Y. Kim, J. S. Moon, and S. S. Yi, “NOX4 as a Critical Effector Mediating Neuroinflammatory Cytokines, Myeloperoxidase and Osteopontin, Specifically in Astrocytes in the Hippocampus in Parkinson's disease,” Redox Biology 62 (2023): 102698.

[75]

C. Chen, E. Mossman, P. Malko, et al., “Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease,” Movement Disorders 37, no. 2 (2022): 302-314.

[76]

R. de A. Jacquet, M. Alpaugh, et al., “The Contribution of Inflammatory Astrocytes to BBB Impairments in a Brain-chip Model of Parkinson's Disease,” Nature Communications 14, no. 1 (2023): 3651.

[77]

X. Wang, H. Zhi, Z. Zhang, J. Li, and D. Guo, “REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons From Damage,” Journal of Molecular Neuroscience 74, no. 3 (2024): 84.

[78]

W. Zhang, L. Ding, H. Chen, et al., “Cntnap4 partial Deficiency Exacerbates α-synuclein Pathology Through Astrocyte-microglia C3-C3aR Pathway,” Cell death & disease 14, no. 4 (2023): 285.

[79]

N. P. Chang, E. M. DaPrano, M. Lindman, et al., “Neuronal DAMPs Exacerbate Neurodegeneration via Astrocytic RIPK3 Signaling,” JCI Insight 9, no. 11 (2024): e177002.

[80]

S. Yin, X. Y. Ma, Y. F. Sun, et al., “RGS5 augments Astrocyte Activation and Facilitates Neuroinflammation via TNF Signaling,” J Neuroinflammation 20, no. 1 (2023): 203.

[81]

J. Giehrl-Schwab, F. Giesert, B. Rauser, et al., “Parkinson's Disease Motor Symptoms Rescue by CRISPRa-reprogramming Astrocytes Into GABAergic Neurons,” EMBO Molecular Medicine 14, no. 5 (2022): e14797.

[82]

Y. Wang, Y. Xia, L. Kou, et al., “Astrocyte-to-neuron Reprogramming and Crosstalk in the Treatment of Parkinson's Disease,” Neurobiology of Disease 184 (2023): 106224.

[83]

S. J. Tabrizi, C. Estevez-Fraga, W. M. C. van Roon-Mom, et al., “Potential Disease-modifying Therapies for Huntington's Disease: Lessons Learned and Future Opportunities,” Lancet Neurology 21, no. 7 (2022): 645-658.

[84]

S. Ramazi, M. Dadzadi, M. Darvazi, N. Seddigh, and A. Allahverdi, “Protein Modification in Neurodegenerative Diseases,” MedComm 5, no. 8 (2024): e674.

[85]

A. Jurcau, “Molecular Pathophysiological Mechanisms in Huntington's Disease,” Biomedicines 10, no. 6 (2022): 1432.

[86]

F. O. Walker, “Huntington's Disease,” Lancet 369, no. 9557 (2007): 218-28.

[87]

D. K. Wilton and B. Stevens, “The Contribution of Glial Cells to Huntington's Disease Pathogenesis,” Neurobiology of Disease 143 (2020): 104963.

[88]

F. Ding, Q. Sun, C. Long, et al., “Dysregulation of Extracellular Potassium Distinguishes Healthy Ageing From Neurodegeneration,” Brain 147, no. 5 (2024): 1726-1739.

[89]

V. J. Garcia, D. J. Rushton, C. M. Tom, et al., “Huntington's Disease Patient-Derived Astrocytes Display Electrophysiological Impairments and Reduced Neuronal Support,” Frontiers in neuroscience 13 (2019): 669.

[90]

M. E. Noureldeen, N. N. Shahin, H. A. A. Amin, M. M. El-Sawalhi, and H. R. Ghaiad, “Parthenolide Ameliorates 3-nitropropionic Acid-induced Huntington's Disease-Like Aberrations via Modulating NLRP3 Inflammasome, Reducing Microglial Activation and Inducing Astrocyte Shifting,” Molecular Medicine 30, no. 1 (2024): 158.

[91]

T. Palpagama, A. R. Mills, M. W. Ferguson, et al., “Microglial and Astrocytic Responses in the Human Midcingulate Cortex in Huntington's Disease,” Annals of Neurology 94, no. 5 (2023): 895-910.

[92]

L. Abjean, L. Ben Haim, M. Riquelme-Perez, et al., “Reactive Astrocytes Promote Proteostasis in Huntington's disease Through the JAK2-STAT3 Pathway,” Brain 146, no. 1 (2023): 149-166.

[93]

G. Birolini, G. Verlengia, F. Talpo, et al., “SREBP2 gene Therapy Targeting Striatal Astrocytes Ameliorates Huntington's disease Phenotypes,” Brain 144, no. 10 (2021): 3175-3190.

[94]

E. González-Guevara, G. Cárdenas, F. Pérez-Severiano, and J. C. Martínez-Lazcano, “Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington's Disease,” Movement Disorders 35, no. 7 (2020): 1113-1127.

[95]

R. Kacher, C. Mounier, J. Caboche, and S. Betuing, “Altered Cholesterol Homeostasis in Huntington's Disease,” Frontiers in aging neuroscience 14 (2022): 797220.

[96]

K. Morimoto, M. Ouchi, T. Kitano, R. Eguchi, and K. I. Otsuguro, “Dopamine Regulates Astrocytic IL-6 Expression and Process Formation via Dopamine Receptors and Adrenoceptors,” European Journal of Pharmacology 928 (2022): 175110.

[97]

B. Van Houten, “Huntington's Disease: Astrocytes Shift to Fatty Acid Metabolism,” Trends in Endocrinology and Metabolism 30, no. 9 (2019): 575-577.

[98]

J. Creus-Muncunill and M. E. Ehrlich, “Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights From in Vitro and in Vivo Models,” Neurotherapeutics 16, no. 4 (2019): 957-978.

[99]

W. Kilb and S. Kirischuk, “GABA Release From Astrocytes in Health and Disease,” International Journal of Molecular Sciences 23, no. 24 (2022): 15859.

[100]

C. B. Villanueva, H. J. T. Stephensen, R. Mokso, A. Benraiss, J. Sporring, and S. A. Goldman, “Astrocytic Engagement of the Corticostriatal Synaptic Cleft Is Disrupted in a Mouse Model of Huntington's disease,” PNAS 120, no. 24 (2023): e2210719120.

[101]

X. Yu, J. Nagai, M. Marti-Solano, et al., “Context-Specific Striatal Astrocyte Molecular Responses Are Phenotypically Exploitable,” Neuron 108, no. 6 (2020): 1146-1162. e10.

[102]

B. Diaz-Castro, M. R. Gangwani, X. Yu, G. Coppola, B. S. Khakh, “Astrocyte Molecular Signatures in Huntington's disease,” Science Translational Medicine 11, no. 514 (2019): eaaw8546.

[103]

A. V. Goodnight, I. Kremsky, S. Khampang, et al., “Chromatin Accessibility and Transcription Dynamics During in Vitro Astrocyte Differentiation of Huntington's Disease Monkey Pluripotent Stem Cells,” Epigenetics & chromatin 12, no. 1 (2019): 67.

[104]

N. P. T. Huynh, M. Osipovitch, R. Foti, et al., “Shared Patterns of Glial Transcriptional Dysregulation Link Huntington's disease and Schizophrenia,” Brain 147, no. 9 (2024): 3099-3112.

[105]

Z. Wu, M. Parry, X. Y. Hou, et al., “Gene Therapy Conversion of Striatal Astrocytes Into GABAergic Neurons in Mouse Models of Huntington's Disease,” Nature Communications 11, no. 1 (2020): 1105.

[106]

D. del Toro, X. Xifró, A. Pol, et al., “Altered Cholesterol Homeostasis Contributes to Enhanced Excitotoxicity in Huntington's disease,” Journal of Neurochemistry 115, no. 1 (2010): 153-67.

[107]

E. L. Feldman, S. A. Goutman, S. Petri, et al., “Amyotrophic Lateral Sclerosis,” Lancet 400, no. 10360 (2022): 1363-1380.

[108]

B. F. Vahsen, E. Gray, A. G. Thompson, et al., “Non-neuronal Cells in Amyotrophic Lateral Sclerosis—From Pathogenesis to Biomarkers,” Nature reviews Neurology 17, no. 6 (2021): 333-348.

[109]

L. Ben Haim and D. H. Rowitch, “Functional Diversity of Astrocytes in Neural Circuit Regulation,” Nature Reviews Neuroscience 18, no. 1 (2017): 31-41.

[110]

S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, et al., “Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia,” Nature 541, no. 7638 (2017): 481-487.

[111]

G. Wang, S. Jin, J. Liu, et al., “A Neuron-immune Circuit Regulates Neurodegeneration in the Hindbrain and Spinal Cord of Arf1-ablated Mice,” National Science Review 10, no. 12 (2023): nwad222.

[112]

A. Varcianna, M. A. Myszczynska, L. M. Castelli, et al., “Micro-RNAs Secreted Through Astrocyte-derived Extracellular Vesicles Cause Neuronal Network Degeneration in C9orf72 ALS,” EBioMedicine 40 (2019): 626-635.

[113]

H. Chaytow, E. Carroll, D. Gordon, et al., “Targeting Phosphoglycerate Kinase 1 With Terazosin Improves Motor Neuron Phenotypes in Multiple Models of amyotrophic Lateral sclerosis,” EBioMedicine 83 (2022): 104202.

[114]

F. Endo, O. Komine, N. Fujimori-Tonou, et al., “Astrocyte-derived TGF-β1 Accelerates Disease Progression in ALS Mice by Interfering With the Neuroprotective Functions of Microglia and T Cells,” Cell reports 11, no. 4 (2015): 592-604.

[115]

C. Germeys, T. Vandoorne, K. Davie, et al., “Targeting EGLN2/PHD1 Protects Motor Neurons and Normalizes the Astrocytic Interferon Response,” Cell reports 43, no. 9 (2024): 114719.

[116]

C. Arredondo, C. Cefaliello, A. Dyrda, et al., “Excessive Release of Inorganic Polyphosphate by ALS/FTD Astrocytes Causes Non-cell-autonomous Toxicity to Motoneurons,” Neuron 110, no. 10 (2022): 1656-1670. e12.

[117]

A. A. Almad, A. Taga, J. Joseph, et al., “Cx43 hemichannels Contribute to Astrocyte-mediated Toxicity in Sporadic and Familial ALS,” PNAS 119, no. 13 (2022): e2107391119.

[118]

K. A. Guttenplan, M. K. Weigel, D. I. Adler, et al., “Knockout of Reactive Astrocyte Activating Factors Slows Disease Progression in an ALS Mouse Model,” Nature Communications 11, no. 1 (2020): 3753.

[119]

G. E. Tyzack, C. E. Hall, C. R. Sibley, et al., “A Neuroprotective Astrocyte state Is Induced by Neuronal Signal EphB1 but Fails in ALS Models,” Nature Communications 8, no. 1 (2017): 1164.

[120]

L. L. Jiang, B. Zhu, Y. Zhao, et al., “Membralin Deficiency Dysregulates Astrocytic Glutamate Homeostasis Leading to ALS-Like Impairment,” Journal of Clinical Investigation 129, no. 8 (2019): 3103-3120.

[121]

V. Granatiero, N. M. Sayles, A. M. Savino, et al., “Modulation of the IGF1R-MTOR Pathway Attenuates Motor Neuron Toxicity of human ALS SOD1(G93A) Astrocytes,” Autophagy 17, no. 12 (2021): 4029-4042.

[122]

O. Harding, E. Holzer, J. F. Riley, S. Martens, and E. L. F. Holzbaur, “Damaged Mitochondria Recruit the Effector NEMO to Activate NF-kappaB Signaling,” Molecular Cell 83, no. 17 (2023): 3188-3204. e7.

[123]

O. Komine, H. Yamashita, N. Fujimori-Tonou, et al., “Innate Immune Adaptor TRIF Deficiency Accelerates Disease Progression of ALS Mice With Accumulation of Aberrantly Activated Astrocytes,” Cell Death and Differentiation 25, no. 12 (2018): 2130-2146.

[124]

M. Zelic, A. Blazier, F. Pontarelli, et al., “Single-cell Transcriptomic and Functional Studies Identify Glial state Changes and a Role for Inflammatory RIPK1 Signaling in ALS Pathogenesis,” Immunity 58, no. 4 (2025): 961-979. e8.

[125]

D. M. Taha, B. E. Clarke, C. E. Hall, et al., “Astrocytes Display Cell Autonomous and Diverse Early Reactive States in Familial amyotrophic lateral sclerosis,” Brain 145, no. 2 (2022): 481-489.

[126]

M. V. Sofroniew and H. V. Vinters, “Astrocytes: Biology and Pathology,” Acta Neuropathologica 119, no. 1 (2010): 7-35.

[127]

P. S. Mishra, D. K. Dhull, A. Nalini, et al., “Astroglia Acquires a Toxic Neuroinflammatory Role in Response to the Cerebrospinal Fluid From Amyotrophic Lateral sclerosis Patients,” J Neuroinflammation 13, no. 1 (2016): 212.

[128]

R. Upadhya, W. Zingg, S. Shetty, and A. K. Shetty, “Astrocyte-derived Extracellular Vesicles: Neuroreparative Properties and Role in the Pathogenesis of Neurodegenerative Disorders,” J Control Release 323 (2020): 225-239.

[129]

M. Basso, S. Pozzi, M. Tortarolo, et al., “Mutant Copper-zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes: Implications for Disease Spreading and Motor Neuron Pathology in amyotrophic Lateral sclerosis,” Journal of Biological Chemistry 288, no. 22 (2013): 15699-711.

[130]

Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurology 2021; 20(10): 795-820.

[131]

S. Wu, B. Wu, M. Liu, et al., “Stroke in China: Advances and Challenges in Epidemiology, Prevention, and Management,” Lancet Neurology 18, no. 4 (2019): 394-405.

[132]

W. J. Tu, L. D. Wang, “China Stroke Surveillance Report 2021,” Mil Med Res 10, no. 1 (2023): 33.

[133]

Y. Zhao, X. Hua, X. Ren, et al., “Increasing Burden of Stroke in China: A Systematic Review and Meta-analysis of Prevalence, Incidence, Mortality, and Case Fatality,” Int J Stroke 18, no. 3 (2023): 259-267.

[134]

W. Chen, L. Jiang, Y. Hu, et al., “Nanomedicines, an Emerging Therapeutic Regimen for Treatment of Ischemic Cerebral Stroke: A Review,” J Control Release 340 (2021): 342-360.

[135]

C. Qin, S. Yang, Y. H. Chu, et al., “Correction to: Signaling Pathways Involved in Ischemic Stroke: Molecular Mechanisms and Therapeutic Interventions,” Signal Transduct Target Ther 7, no. 1 (2022): 278.

[136]

A. Patabendige, A. Singh, S. Jenkins, J. Sen, and R. Chen, “Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke,” International Journal of Molecular Sciences 22, no. 8 (2021): 4280.

[137]

Z. Liu and M. Chopp, “Astrocytes, Therapeutic Targets for Neuroprotection and Neurorestoration in Ischemic Stroke,” Progress in Neurobiology 144 (2016): 103-20.

[138]

D. Bormann, M. Knoflach, E. Poreba, et al., “Single-nucleus RNA Sequencing Reveals Glial Cell Type-specific Responses to Ischemic Stroke in Male Rodents,” Nature Communications 15, no. 1 (2024): 6232.

[139]

H. Ma, Y. Zhou, Z. Li, et al., “Single-Cell RNA-Sequencing Analyses Revealed Heterogeneity and Dynamic Changes of Metabolic Pathways in Astrocytes at the Acute Phase of Ischemic Stroke,” Oxid Med Cell Longev 2022 (2022): 1817721.

[140]

D. Cai, M. Fraunfelder, K. Fujise, and S. Y. Chen, “ADAR1 exacerbates Ischemic Brain Injury via Astrocyte-mediated Neuron Apoptosis,” Redox Biology 67 (2023): 102903.

[141]

Q. He, Y. Ma, J. Liu, et al., “Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke,” Frontiers in immunology 12 (2021): 801985.

[142]

B. Han, W. Jiang, H. Liu, et al., “Upregulation of Neuronal PGC-1α Ameliorates Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion,” Theranostics 10, no. 6 (2020): 2832-2848.

[143]

Z. Hong, J. Cao, D. Liu, et al., “Celastrol Targeting Nedd4 Reduces Nrf2-mediated Oxidative Stress in Astrocytes After Ischemic Stroke,” Journal of Pharmaceutical Analysis 13, no. 2 (2023): 156-169.

[144]

W. Lu and J. Wen, “H(2)S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination after Ischemic Stroke,” Molecular Neurobiology 60, no. 9 (2023): 5493-5504.

[145]

Y. M. Qiu, C. L. Zhang, A. Q. Chen, et al., “Immune Cells in the BBB Disruption after Acute Ischemic Stroke: Targets for Immune Therapy?,” Frontiers in immunology 12 (2021): 678744.

[146]

S. Song, H. Huang, X. Guan, et al., “Activation of Endothelial Wnt/β-catenin Signaling by Protective Astrocytes Repairs BBB Damage in Ischemic Stroke,” Progress in Neurobiology 199 (2021): 101963.

[147]

G. Wang, Y. C. Weng, I. C. Chiang, et al., “Neutralization of Lipocalin-2 Diminishes Stroke-Reperfusion Injury,” International Journal of Molecular Sciences 21, no. 17 (2020).

[148]

J. Chen, J. Yang, J. Chu, et al., “The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity,” Adv Sci (Weinh) 11, no. 36 (2024): e2401085.

[149]

D. Xie, P. Zhang, S. You, et al., “Salidroside Derivative SHPL-49 Attenuates Glutamate Excitotoxicity in Acute Ischemic Stroke via Promoting NR2A-CAMKIIα-Akt /CREB Pathway,” Phytomedicine 134 (2024): 155583.

[150]

H. Guo, Y. Li, S. Wang, et al., “Dysfunction of Astrocytic Glycophagy Exacerbates Reperfusion Injury in Ischemic Stroke,” Redox Biology 74 (2024): 103234.

[151]

N. W. Kieran, R. Suresh, M. F. Dorion, et al., “MicroRNA-210 Regulates the Metabolic and Inflammatory Status of Primary human Astrocytes,” J Neuroinflammation 19, no. 1 (2022): 10.

[152]

X. Y. Xiong, X. R. Pan, X. X. Luo, et al., “Astrocyte-derived Lactate Aggravates Brain Injury of Ischemic Stroke in Mice by Promoting the Formation of Protein Lactylation,” Theranostics 14, no. 11 (2024): 4297-4317.

[153]

X. X. Huang, L. Li, R. H. Jiang, et al., “Lipidomic Analysis Identifies Long-chain Acylcarnitine as a Target for Ischemic Stroke,” Journal of Advanced Research 61 (2024): 133-149.

[154]

J. Zhou, L. Zhang, J. Peng, et al., “Astrocytic LRP1 Enables Mitochondria Transfer to Neurons and Mitigates Brain Ischemic Stroke by Suppressing ARF1 Lactylation,” Cell metabolism 36, no. 9 (2024): 2054-2068. e14.

[155]

A. P. Gureev, I. S. Sadovnikova, E. V. Chernyshova, et al., “Beta-Hydroxybutyrate Mitigates Sensorimotor and Cognitive Impairments in a Photothrombosis-Induced Ischemic Stroke in Mice,” International Journal of Molecular Sciences 25, no. 11 (2024): 5710.

[156]

E. Y. Scott, N. Safarian, D. L. Casasbuenas, et al., “Integrating Single-cell and Spatially Resolved Transcriptomic Strategies to Survey the Astrocyte Response to Stroke in Male Mice,” Nature Communications 15, no. 1 (2024): 1584.

[157]

X. C. Ni, H. F. Wang, Y. Y. Cai, et al., “Ginsenoside Rb1 Inhibits Astrocyte Activation and Promotes Transfer of Astrocytic Mitochondria to Neurons Against Ischemic Stroke,” Redox Biology 54 (2022): 102363.

[158]

M. Bai, N. Cui, Y. Liao, et al., “Astrocytes and Microglia-targeted Danshensu Liposomes Enhance the Therapeutic Effects on Cerebral Ischemia-reperfusion Injury,” J Control Release 364 (2023): 473-489.

[159]

C. Wang and L. Li, “The Critical Role of KLF4 in Regulating the Activation of A1/A2 Reactive Astrocytes Following Ischemic Stroke,” J Neuroinflammation 20, no. 1 (2023): 44.

[160]

M. Liu, Z. Xu, L. Wang, et al., “Cottonseed Oil Alleviates Ischemic Stroke Injury by Inhibiting the Inflammatory Activation of Microglia and Astrocyte,” J Neuroinflammation 17, no. 1 (2020): 270.

[161]

P. Xian, Y. Hei, R. Wang, et al., “Mesenchymal Stem Cell-derived Exosomes as a Nanotherapeutic Agent for Amelioration of Inflammation-induced Astrocyte Alterations in Mice,” Theranostics 9, no. 20 (2019): 5956-5975.

[162]

S. Zheng, Y. Li, X. Song, et al., “OTUD1 ameliorates Cerebral Ischemic Injury Through Inhibiting Inflammation by Disrupting K63-linked Deubiquitination of RIP2,” J Neuroinflammation 20, no. 1 (2023): 281.

[163]

R. Liu, J. Wang, Y. Chen, et al., “NOX Activation in Reactive Astrocytes Regulates Astrocytic LCN2 Expression and Neurodegeneration,” Cell death & disease 13, no. 4 (2022): 371.

[164]

J. Li, P. Xu, Y. Hong, et al., “Lipocalin-2-mediated Astrocyte Pyroptosis Promotes Neuroinflammatory Injury via NLRP3 Inflammasome Activation in Cerebral Ischemia/Reperfusion Injury,” J Neuroinflammation 20, no. 1 (2023): 148.

[165]

Y. Shan, S. Tan, Y. Lin, et al., “The Glucagon-Like Peptide-1 Receptor Agonist Reduces Inflammation and Blood-brain Barrier Breakdown in an Astrocyte-dependent Manner in Experimental Stroke,” J Neuroinflammation 16, no. 1 (2019): 242.

[166]

Y. Kim, S. Lee, H. Zhang, et al., “CLEC14A deficiency Exacerbates Neuronal Loss by Increasing Blood-brain Barrier Permeability and Inflammation,” J Neuroinflammation 17, no. 1 (2020): 48.

[167]

L. He, G. Huang, H. Liu, C. Sang, X. Liu, and T. Chen, “Highly Bioactive Zeolitic Imidazolate Framework-8-capped Nanotherapeutics for Efficient Reversal of Reperfusion-induced Injury in Ischemic Stroke,” Science Advances 6, no. 12 (2020): eaay9751.

[168]

S. Dabrowska, A. Andrzejewska, B. Lukomska, and M. Janowski, “Neuroinflammation as a Target for Treatment of Stroke Using Mesenchymal Stem Cells and Extracellular Vesicles,” J Neuroinflammation 16, no. 1 (2019): 178.

[169]

L. Otero-Ortega, F. Laso-García, M. C. G. Frutos, et al., “Low Dose of Extracellular Vesicles Identified That Promote Recovery After Ischemic Stroke,” Stem Cell Res Ther 11, no. 1 (2020): 70.

[170]

X. Gao, H. Gao, K. Yue, et al., “Observing Extracellular Vesicles Originating From Endothelial Cells in Vivo Demonstrates Improved Astrocyte Function Following Ischemic Stroke via Aggregation-Induced Emission Luminogens,” ACS Nano 17, no. 16 (2023): 16174-16191.

[171]

S. Dabrowska, A. Andrzejewska, D. Strzemecki, M. Muraca, M. Janowski, and B. Lukomska, “Human Bone Marrow Mesenchymal Stem Cell-derived Extracellular Vesicles Attenuate Neuroinflammation Evoked by Focal Brain Injury in Rats,” J Neuroinflammation 16, no. 1 (2019): 216.

[172]

M. Haupt, S. T. Gerner, H. B. Huttner, and T. R. Doeppner, “Preconditioning Concepts for the Therapeutic Use of Extracellular Vesicles against Stroke,” Stem Cells Transl Med 12, no. 11 (2023): 707-713.

[173]

L. Zhang, I. Graf, Y. Kuang, et al., “Neural Progenitor Cell-Derived Extracellular Vesicles Enhance Blood-Brain Barrier Integrity by NF-κB (Nuclear Factor-κB)-Dependent Regulation of ABCB1 (ATP-Binding Cassette Transporter B1) in Stroke Mice,” Arteriosclerosis, Thrombosis, and Vascular Biology 41, no. 3 (2021): 1127-1145.

[174]

S. N. Ohashi, J. H. DeLong, M. G. Kozberg, et al., “Role of Inflammatory Processes in Hemorrhagic Stroke,” Stroke; A Journal of Cerebral Circulation 54, no. 2 (2023): 605-619.

[175]

L. Zhao, S. Chen, P. Sherchan, et al., “Recombinant CTRP9 Administration Attenuates Neuroinflammation via Activating Adiponectin Receptor 1 After Intracerebral Hemorrhage in Mice,” J Neuroinflammation 15, no. 1 (2018): 215.

[176]

S. Chen, L. Zhao, P. Sherchan, et al., “Activation of Melanocortin Receptor 4 With RO27-3225 Attenuates Neuroinflammation Through AMPK/JNK/p38 MAPK Pathway After Intracerebral Hemorrhage in Mice,” J Neuroinflammation 15, no. 1 (2018): 106.

[177]

X. Shi, L. Luo, J. Wang, et al., “Stroke Subtype-dependent Synapse Elimination by Reactive Gliosis in Mice,” Nature Communications 12, no. 1 (2021): 6943.

[178]

J. Yan, G. Zuo, P. Sherchan, et al., “CCR1 Activation Promotes Neuroinflammation through CCR1/TPR1/ERK1/2 Signaling Pathway after Intracerebral Hemorrhage in Mice,” Neurotherapeutics 17, no. 3 (2020): 1170-1183.

[179]

J. Yan, W. Xu, C. Lenahan, et al., “CCR5 Activation Promotes NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB Pathway after Intracerebral Hemorrhage,” Stroke; A Journal of Cerebral Circulation 52, no. 12 (2021): 4021-4032.

[180]

J. Yan, W. Xu, C. Lenahan, et al., “Met-RANTES Preserves the Blood-brain Barrier Through Inhibiting CCR1/SRC/Rac1 Pathway After Intracerebral Hemorrhage in Mice,” Fluids Barriers CNS 19, no. 1 (2022): 7.

[181]

J. Lin, Y. Xu, P. Guo, et al., “CCL5/CCR5-mediated Peripheral Inflammation Exacerbates Blood‒Brain Barrier Disruption After Intracerebral Hemorrhage in Mice,” Journal of translational medicine 21, no. 1 (2023): 196.

[182]

H. Yu, X. Cao, W. Li, et al., “Targeting Connexin 43 Provides Anti-inflammatory Effects After Intracerebral Hemorrhage Injury by Regulating YAP Signaling,” J Neuroinflammation 17, no. 1 (2020): 322.

[183]

S. Deng, X. Chen, Q. Lei, and W. Lu, “AQP2 Promotes Astrocyte Activation by Modulating the TLR4/NFkappaB-p65 Pathway Following Intracerebral Hemorrhage,” Frontiers in immunology 13 (2022): 847360.

[184]

C. C. Chen, C. H. Ke, C. H. Wu, et al., “Transient Receptor Potential Vanilloid 1 Inhibition Reduces Brain Damage by Suppressing Neuronal Apoptosis After Intracerebral Hemorrhage,” Brain Pathology 34, no. 5 (2024): e13244.

[185]

T. Li, W. Xu, J. Ouyang, et al., “Orexin A Alleviates Neuroinflammation via OXR2/CaMKKbeta/AMPK Signaling Pathway After ICH in Mice,” J Neuroinflammation 17, no. 1 (2020): 187.

[186]

Q. Li, L. Huang, Y. Ding, P. Sherchan, W. Peng, and J. H. Zhang, “Recombinant Slit2 Suppresses Neuroinflammation and Cdc42-mediated Brain Infiltration of Peripheral Immune Cells via Robo1-srGAP1 Pathway in a Rat Model of Germinal Matrix Hemorrhage,” J Neuroinflammation 20, no. 1 (2023): 249.

[187]

S. Chen, J. Peng, P. Sherchan, et al., “TREM2 activation Attenuates Neuroinflammation and Neuronal Apoptosis via PI3K/Akt Pathway After Intracerebral Hemorrhage in Mice,” J Neuroinflammation 17, no. 1 (2020): 168.

[188]

S. Deng, P. Jin, P. Sherchan, et al., “Recombinant CCL17-dependent CCR4 Activation Alleviates Neuroinflammation and Neuronal Apoptosis Through the PI3K/AKT/Foxo1 Signaling Pathway After ICH in Mice,” J Neuroinflammation 18, no. 1 (2021): 62.

[189]

M. Ding, L. Jin, B. Wei, et al., “Tumor Necrosis Factor-stimulated Gene-6 Ameliorates Early Brain Injury After Subarachnoid Hemorrhage by Suppressing NLRC4 Inflammasome-mediated Astrocyte Pyroptosis,” Neural Regen Res 19, no. 5 (2024): 1064-1071.

[190]

T. Li, L. Zhang, P. Wang, et al., “Extracellular Vesicles From Neural Stem Cells Safeguard Neurons in Intracerebral Hemorrhage by Suppressing Reactive Astrocyte Neurotoxicity,” Cell reports 43, no. 10 (2024): 114854.

[191]

Y. Zheng, L. Peng, G. Jiang, et al., “Activation of Chaperone-mediated Autophagy Exerting Neuroprotection Effect on Intracerebral Hemorrhage-induced Neuronal Injury by Targeting Lamp2a,” Experimental Neurology 382 (2024): 114986.

[192]

X. Fei, Y. N. Dou, L. Wang, et al., “Homer1 promotes the Conversion of A1 Astrocytes to A2 Astrocytes and Improves the Recovery of Transgenic Mice After Intracerebral Hemorrhage,” J Neuroinflammation 19, no. 1 (2022): 67.

[193]

X. Fei, L. Wang, Y. N. Dou, et al., “Extracellular Vesicle Encapsulated Homer1a as Novel Nanotherapeutics Against Intracerebral Hemorrhage in a Mouse Model,” J Neuroinflammation 21, no. 1 (2024): 85.

[194]

C. Liu, Y. Guo, S. Deng, et al., “Hemorrhagic Stroke-induced Subtype of Inflammatory Reactive Astrocytes Disrupts Blood-brain Barrier,” Journal of Cerebral Blood Flow and Metabolism 44, no. 7 (2024): 1102-1116.

[195]

W. He, Q. Lu, P. Sherchan, et al., “Activation of Frizzled-7 Attenuates Blood-brain Barrier Disruption Through Dvl/Beta-catenin/WISP1 Signaling Pathway After Intracerebral Hemorrhage in Mice,” Fluids Barriers CNS 18, no. 1 (2021): 44.

[196]

X. Wu, S. Fu, Y. Liu, et al., “NDP-MSH Binding Melanocortin-1 Receptor Ameliorates Neuroinflammation and BBB Disruption Through CREB/Nr4a1/NF-kappaB Pathway After Intracerebral Hemorrhage in Mice,” J Neuroinflammation 16, no. 1 (2019): 192.

[197]

J. Chen-Roetling, W. Song, H. M. Schipper, C. S. Regan, and R. F. Regan, “Astrocyte Overexpression of Heme Oxygenase-1 Improves Outcome After Intracerebral Hemorrhage,” Stroke; A Journal of Cerebral Circulation 46, no. 4 (2015): 1093-8.

[198]

J. Chen-Roetling, P. Kamalapathy, Y. Cao, W. Song, H. M. Schipper, and R. F. Regan, “Astrocyte Heme Oxygenase-1 Reduces Mortality and Improves Outcome After Collagenase-induced Intracerebral Hemorrhage,” Neurobiology of Disease 102 (2017): 140-146.

[199]

C. Wang, F. Cheng, Z. Han, et al., “Human-induced Pluripotent Stem Cell-derived Neural Stem Cell Exosomes Improve Blood-brain Barrier Function After Intracerebral Hemorrhage by Activating Astrocytes via PI3K/AKT/MCP-1 Axis,” Neural Regen Res 20, no. 2 (2025): 518-532.

[200]

L. Gao, L. Peng, P. Sherchan, et al., “Inhibition of Lysophosphatidic Acid Receptor 1 Relieves PMN Recruitment in CNS via LPA1/TSP1/CXCR2 Pathway and Alleviates Disruption on Blood-brain Barrier Following Intracerebral Haemorrhage in Mice,” Fluids Barriers CNS 20, no. 1 (2023): 33.

[201]

J. Zheng, J. Lu, S. Mei, et al., “Ceria Nanoparticles Ameliorate White Matter Injury After Intracerebral Hemorrhage: Microglia-astrocyte Involvement in Remyelination,” J Neuroinflammation 18, no. 1 (2021): 43.

[202]

S. X. Shi, Y. J. Li, K. Shi, K. Wood, A. F. Ducruet, and Q. Liu, “IL (Interleukin)-15 Bridges Astrocyte-Microglia Crosstalk and Exacerbates Brain Injury Following Intracerebral Hemorrhage,” Stroke; A Journal of Cerebral Circulation 51, no. 3 (2020): 967-974.

[203]

R. Jiang, Z. Lu, C. Wang, et al., “Astrocyte-derived Interleukin-31 Causes Poor Prognosis in Elderly Patients With Intracerebral Hemorrhage,” Brain Pathology 34, no. 5 (2024): e13245.

[204]

T. Garton, S. P. Gadani, A. J. Gill, and P. A. Calabresi, “Neurodegeneration and Demyelination in Multiple Sclerosis,” Neuron 112, no. 19 (2024): 3231-3251.

[205]

I. C. Clark, C. Gutierrez-Vazquez, M. A. Wheeler, et al., “Barcoded Viral Tracing of Single-cell Interactions in central Nervous System Inflammation,” Science 372, no. 6540 (2021): eabf1230.

[206]

N. Itoh, Y. Itoh, A. Tassoni, et al., “Cell-specific and Region-specific Transcriptomics in the Multiple Sclerosis Model: Focus on Astrocytes,” PNAS 115, no. 2 (2018): E302-E309.

[207]

T. Trobisch, A. Zulji, N. A. Stevens, et al., “Cross-regional Homeostatic and Reactive Glial Signatures in Multiple Sclerosis,” Acta Neuropathologica 144, no. 5 (2022): 987-1003.

[208]

M. G. Kiss, J. E. Mindur, A. G. Yates, et al., “Interleukin-3 Coordinates Glial-peripheral Immune Crosstalk to Incite Multiple Sclerosis,” Immunity 56, no. 7 (2023): 1502-1514. e8.

[209]

G. Ponath, S. Ramanan, M. Mubarak, et al., “Myelin Phagocytosis by Astrocytes After Myelin Damage Promotes Lesion Pathology,” Brain 140, no. 2 (2017): 399-413.

[210]

T. Meyer, D. Shimon, S. Youssef, et al., “NAD(+) Metabolism Drives Astrocyte Proinflammatory Reprogramming in central Nervous System Autoimmunity,” PNAS 119, no. 35 (2022): e2211310119.

[211]

M. E. Deerhake, K. Danzaki, M. Inoue, et al., “Dectin-1 Limits Autoimmune Neuroinflammation and Promotes Myeloid Cell-astrocyte Crosstalk via Card9-independent Expression of Oncostatin M,” Immunity 54, no. 3 (2021): 484-498.

[212]

C. Chen, Y. Shu, C. Yan, et al., “Astrocyte-derived Clusterin Disrupts Glial Physiology to Obstruct Remyelination in Mouse Models of Demyelinating Diseases,” Nature Communications 15, no. 1 (2024): 7791.

[213]

Y. Song, W. Jiang, S. K. Afridi, et al., “Astrocyte-derived CHI3L1 Signaling Impairs Neurogenesis and Cognition in the Demyelinated Hippocampus,” Cell reports 43, no. 5 (2024): 114226.

[214]

D. Jonnalagadda, Y. Kihara, A. Groves, et al., “FTY720 requires Vitamin B(12)-TCN2-CD320 Signaling in Astrocytes to Reduce Disease in an Animal Model of Multiple Sclerosis,” Cell reports 42, no. 12 (2023): 113545.

[215]

E. Colombo, D. Triolo, C. Bassani, et al., “Dysregulated Copper Transport in Multiple Sclerosis May Cause Demyelination via Astrocytes,” PNAS 118, no. 27 (2021): e2025804118.

[216]

G. E. Denaroso, Z. Smith, C. G. Angeliu, V. T. Cheli, C. Wang, and P. M. Paez, “Deletion of Voltage-gated Calcium Channels in Astrocytes Decreases Neuroinflammation and Demyelination in a Murine Model of Multiple Sclerosis,” J Neuroinflammation 20, no. 1 (2023): 263.

[217]

Q. Wu, X. Miao, J. Zhang, et al., “Astrocytic YAP Protects the Optic Nerve and Retina in an Experimental Autoimmune Encephalomyelitis Model Through TGF-beta Signaling,” Theranostics 11, no. 17 (2021): 8480-8499.

[218]

I. C. Clark, M. A. Wheeler, H. G. Lee, et al., “Identification of Astrocyte Regulators by Nucleic Acid Cytometry,” Nature 614, no. 7947 (2023): 326-333.

[219]

M. A. Wheeler, I. C. Clark, E. C. Tjon, et al., “MAFG-driven Astrocytes Promote CNS Inflammation,” Nature 578, no. 7796 (2020): 593-599.

[220]

P. Bhargava, M. D. Smith, L. Mische, et al., “Bile Acid Metabolism Is Altered in Multiple Sclerosis and Supplementation Ameliorates Neuroinflammation,” Journal of Clinical Investigation 130, no. 7 (2020): 3467-3482.

[221]

M. Linnerbauer, L. Losslein, O. Vandrey, et al., “The Astrocyte-produced Growth Factor HB-EGF Limits Autoimmune CNS Pathology,” Nature Immunology 25, no. 3 (2024): 432-447.

[222]

J. Kerkering, B. Muinjonov, K. S. Rosiewicz, et al., “iPSC-derived Reactive Astrocytes From Patients With Multiple Sclerosis Protect Cocultured Neurons in Inflammatory Conditions,” Journal of Clinical Investigation 133, no. 13 (2023): e164637.

[223]

I. Molina-Gonzalez, R. K. Holloway, Z. Jiwaji, et al., “Astrocyte-oligodendrocyte Interaction Regulates central Nervous System Regeneration,” Nature Communications 14, no. 1 (2023): 3372.

[224]

M. Zelic, F. Pontarelli, L. Woodworth, et al., “RIPK1 activation Mediates Neuroinflammation and Disease Progression in Multiple Sclerosis,” Cell reports 35, no. 6 (2021): 109112.

[225]

M. Gharagozloo, M. D. Smith, and J. Jin, “Complement Component 3 From Astrocytes Mediates Retinal Ganglion Cell Loss During Neuroinflammation,” Acta Neuropathologica 142, no. 5 (2021): 899-915.

[226]

L. M. Sanmarco, M. A. Wheeler, C. Gutiérrez-Vázquez, et al., “Gut-licensed IFNγ(+) NK Cells Drive LAMP1(+)TRAIL(+) Anti-inflammatory Astrocytes,” Nature 590, no. 7846 (2021): 473-479.

[227]

M. A. Wheeler, M. Jaronen, R. Covacu, et al., “Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation,” Cell 176, no. 3 (2019): 581-596. e18.

[228]

F. Lemaitre, N. Farzam-Kia, A. Carmena Moratalla, et al., “IL-27 Shapes the Immune Properties of human Astrocytes and Their Impact on Encountered human T Lymphocytes,” J Neuroinflammation 19, no. 1 (2022): 212.

[229]

B. C. Smith, R. A. Tinkey, O. D. Brock, et al., “Astrocyte Interferon-gamma Signaling Dampens Inflammation During Chronic central Nervous System Autoimmunity via PD-L1,” J Neuroinflammation 20, no. 1 (2023): 234.

[230]

A. T. Wilmes, S. Reinehr, S. Kuhn, et al., “Laquinimod Protects the Optic Nerve and Retina in an Experimental Autoimmune Encephalomyelitis Model,” J Neuroinflammation 15, no. 1 (2018): 183.

[231]

M. G. Kiss, J. E. Mindur, A. G. Yates, et al., “Interleukin-3 Coordinates Glial-peripheral Immune Crosstalk to Incite Multiple Sclerosis,” Immunity 56, no. 7 (2023): 1502-1514. e8.

[232]

WHO. Mental disorders. 22 November, 2024. Updated 8 June 2022. https://www.who.int/news-room/fact-sheets/detail/mental-disorders

[233]

J. S. Soto, Y. Jami-Alahmadi, J. Chacon, et al., “Astrocyte-neuron Subproteomes and Obsessive-compulsive Disorder Mechanisms,” Nature 616, no. 7958 (2023): 764-773.

[234]

J. A. Williams, S. Burgess, J. Suckling, et al., “Inflammation and Brain Structure in Schizophrenia and Other Neuropsychiatric Disorders: A Mendelian Randomization Study,” JAMA Psychiatry 79, no. 5 (2022): 498-507.

[235]

X. Cai, H. Liu, B. Feng, et al., “A D2 to D1 Shift in Dopaminergic Inputs to Midbrain 5-HT Neurons Causes Anorexia in Mice,” Nature Neuroscience 25, no. 5 (2022): 646-658.

[236]

O. D. Howes, E. Dawkins, M. C. Lobo, S. J. Kaar, and K. Beck, “New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction,” Biological Psychiatry 96, no. 8 (2024): 638-650.

[237]

I. Cardon, S. Grobecker, F. Jenne, et al., “Serotonin Effects on human iPSC-derived Neural Cell Functions: From Mitochondria to Depression,” Molecular Psychiatry 29, no. 9 (2024): 2689-2700.

[238]

C. González-Arias, A. Sánchez-Ruiz, J. Esparza, et al., “Dysfunctional Serotonergic Neuron-astrocyte Signaling in Depressive-Like States,” Molecular Psychiatry 28, no. 9 (2023): 3856-3873.

[239]

F. Petrelli, G. Dallérac, L. Pucci, et al., “Dysfunction of Homeostatic Control of Dopamine by Astrocytes in the Developing Prefrontal Cortex Leads to Cognitive Impairments,” Molecular Psychiatry 25, no. 4 (2020): 732-749.

[240]

K. Nisha Aji, N. Lalang, C. Ramos-Jiménez, et al., “Evidence of Altered Monoamine Oxidase B, an Astroglia Marker, in Early Psychosis and High-risk state,” Molecular Psychiatry 30, no. 5 (2025): 2049-2058.

[241]

T. D. Als, M. I. Kurki, J. Grove, et al., “Depression Pathophysiology, Risk Prediction of Recurrence and Comorbid Psychiatric Disorders Using Genome-wide Analyses,” Nature Medicine 29, no. 7 (2023): 1832-1844.

[242]

J. Fan, F. Guo, R. Mo, et al., “O-GlcNAc Transferase in Astrocytes Modulates Depression-related Stress Susceptibility Through Glutamatergic Synaptic Transmission,” Journal of Clinical Investigation 133, no. 7 (2023): e160016.

[243]

S. F. Tsai, P. L. Hsu, Y. W. Chen, et al., “High-fat Diet Induces Depression-Like Phenotype via Astrocyte-mediated Hyperactivation of Ventral Hippocampal Glutamatergic Afferents to the Nucleus Accumbens,” Molecular Psychiatry 27, no. 11 (2022): 4372-4384.

[244]

Y. Liu, N. Song, H. Yao, et al., “β-Arrestin2-biased Drd2 Agonist UNC9995 Alleviates Astrocyte Inflammatory Injury via Interaction Between β-arrestin2 and STAT3 in Mouse Model of Depression,” J Neuroinflammation 19, no. 1 (2022): 240.

[245]

M. M. Novakovic, K. S. Korshunov, R. A. Grant, et al., “Astrocyte Reactivity and Inflammation-induced Depression-Like Behaviors Are Regulated by Orai1 Calcium Channels,” Nature Communications 14, no. 1 (2023): 5500.

[246]

S. Li, Y. Sun, M. Song, et al., “NLRP3/caspase-1/GSDMD-mediated Pyroptosis Exerts a Crucial Role in Astrocyte Pathological Injury in Mouse Model of Depression,” JCI Insight 6, no. 23 (2021): e146852.

[247]

Y. Fang, X. Ding, Y. Zhang, et al., “Fluoxetine Inhibited the Activation of A1 Reactive Astrocyte in a Mouse Model of Major Depressive Disorder Through Astrocytic 5-HT(2B)R/β-arrestin2 Pathway,” J Neuroinflammation 19, no. 1 (2022): 23.

[248]

R. Dang, M. Wang, X. Li, et al., “Edaravone Ameliorates Depressive and Anxiety-Like Behaviors via Sirt1/Nrf2/HO-1/Gpx4 Pathway,” J Neuroinflammation 19, no. 1 (2022): 41.

[249]

J. Wahis, A. Baudon, F. Althammer, et al., “Astrocytes Mediate the Effect of Oxytocin in the central Amygdala on Neuronal Activity and Affective States in Rodents,” Nature Neuroscience 24, no. 4 (2021): 529-541.

[250]

J. T. Li, J. SY, J. Hu, et al., “Astrocytes in the Ventral Hippocampus Bidirectionally Regulate Innate and Stress-Induced Anxiety-Like Behaviors in Male Mice,” Adv Sci (Weinh) 11, no. 38 (2024): e2400354.

[251]

W. H. Cho, K. Noh, B. H. Lee, et al., “Hippocampal Astrocytes Modulate Anxiety-Like Behavior,” Nature Communications 13, no. 1 (2022): 6536.

[252]

J. S. Soto, C. Neupane, M. Kaur, V. Pandey, J. A. Wohlschlegel, and B. S. Khakh, “Astrocyte Gi-GPCR Signaling Corrects Compulsive-Like Grooming and Anxiety-related Behaviors in Sapap3 Knockout Mice,” Neuron 112, no. 20 (2024): 3412-3423. e6.

[253]

A. Szabo, I. A. Akkouh, M. Vandenberghe, et al., “A human iPSC-astroglia Neurodevelopmental Model Reveals Divergent Transcriptomic Patterns in Schizophrenia,” Transl Psychiatry 11, no. 1 (2021): 554.

[254]

H. M. Abdolmaleky, A. C. Gower, C. K. Wong, et al., “Aberrant Transcriptomes and DNA Methylomes Define Pathways That Drive Pathogenesis and Loss of Brain Laterality/Asymmetry in Schizophrenia and Bipolar Disorder,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 180, no. 2 (2019): 138-149.

[255]

R. F. Chan, A. A. Shabalin, C. Montano, et al., “Independent Methylome-Wide Association Studies of Schizophrenia Detect Consistent Case-Control Differences,” Schizophrenia Bulletin 46, no. 2 (2020): 319-327.

[256]

Z. Farsi, A. Nicolella, S. K. Simmons, et al., “Brain-region-specific Changes in Neurons and Glia and Dysregulation of Dopamine Signaling in Grin2a Mutant Mice,” Neuron 111, no. 21 (2023): 3378-3396. e9.

[257]

E. Ling, J. Nemesh, M. Goldman, et al., “A Concerted Neuron-astrocyte Program Declines in Ageing and Schizophrenia,” Nature 627, no. 8004 (2024): 604-611.

[258]

X. Zhou, Q. Xiao, Y. Liu, et al., “Astrocyte-mediated Regulation of BLA(WFS1) Neurons Alleviates Risk-assessment Deficits in DISC1-N Mice,” Neuron 112, no. 13 (2024): 2197-2217. e7.

[259]

K. Qian, X. Jiang, Z. Q. Liu, et al., “Revisiting the Critical Roles of Reactive Astrocytes in Neurodegeneration,” Molecular Psychiatry 28, no. 7 (2023): 2697-2706.

[260]

C. Escartin, E. Galea, A. Lakatos, et al., “Reactive Astrocyte Nomenclature, Definitions, and Future Directions,” Nature Neuroscience 24, no. 3 (2021): 312-325.

[261]

M. W. Park, H. W. Cha, J. Kim, et al., “NOX4 promotes Ferroptosis of Astrocytes by Oxidative Stress-induced Lipid Peroxidation via the Impairment of Mitochondrial Metabolism in Alzheimer's Diseases,” Redox Biology 41 (2021): 101947.

[262]

R. de Ceglia, A. Ledonne, D. G. Litvin, et al., “Specialized Astrocytes Mediate Glutamatergic Gliotransmission in the CNS,” Nature 622, no. 7981 (2023): 120-129.

[263]

L. M. Sanmarco, C. M. Polonio, M. A. Wheeler, and F. J. Quintana, “Functional Immune Cell-astrocyte Interactions,” Journal of Experimental Medicine 218, no. 9 (2021): e20202715.

[264]

H. G. Lee, J. H. Lee, L. E. Flausino, and F. J. Quintana, “Neuroinflammation: An Astrocyte Perspective,” Science Translational Medicine 15, no. 721 (2023): eadi7828.

[265]

X. Li, Y. Zhu, Y. Wang, X. Xia, and J. C. Zheng, “Neural Stem/Progenitor Cell-derived Extracellular Vesicles: A Novel Therapy for Neurological Diseases and Beyond,” MedComm 4, no. 1 (2023): e214.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/